FPGAs – EPIC Benefits

Philip Leong Director, Computer Engineering Laboratory http://phwl.org/talks

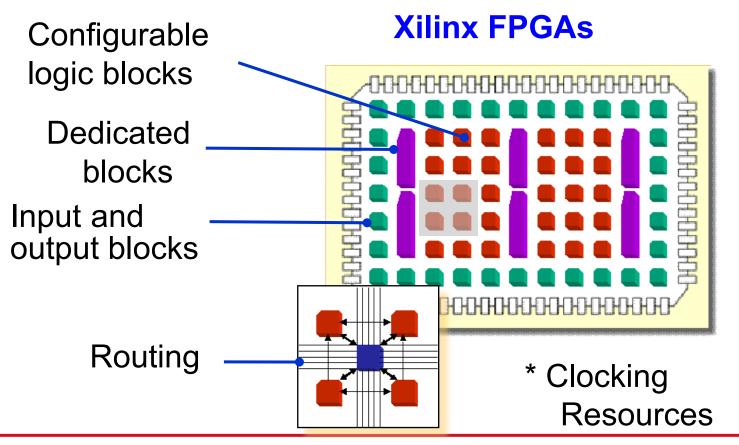
Computer Engineering Laboratory

- Focuses on how to use parallelism to solve demanding problems
 - Novel architectures, applications and design techniques using VLSI, FPGA and parallel computing technology
- > Research
 - Nanoscale interfaces
 - Machine learning
 - Reconfigurable computing
- Collaborations
 - Consunet, DST Group
 - Intel, Xilinx
- > Ex-students
 - Xilinx, Intel, Waymo

FPGA Technology Applications Our work

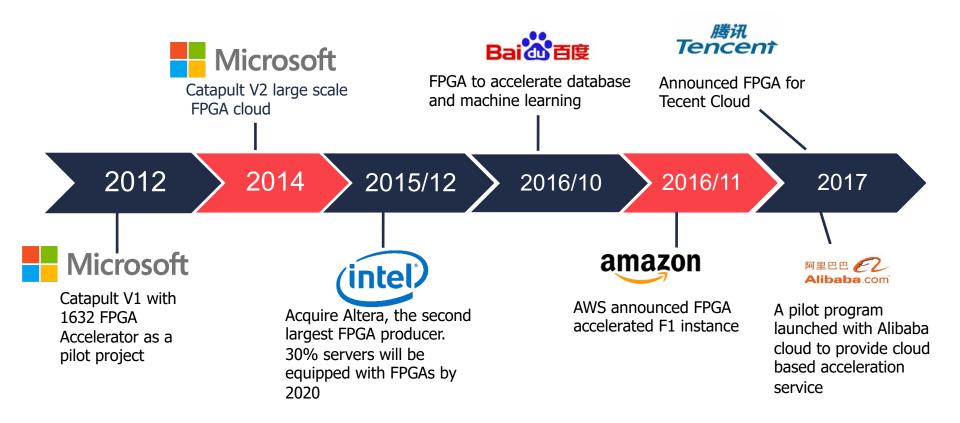
FPGA Technology

Applications


Our work

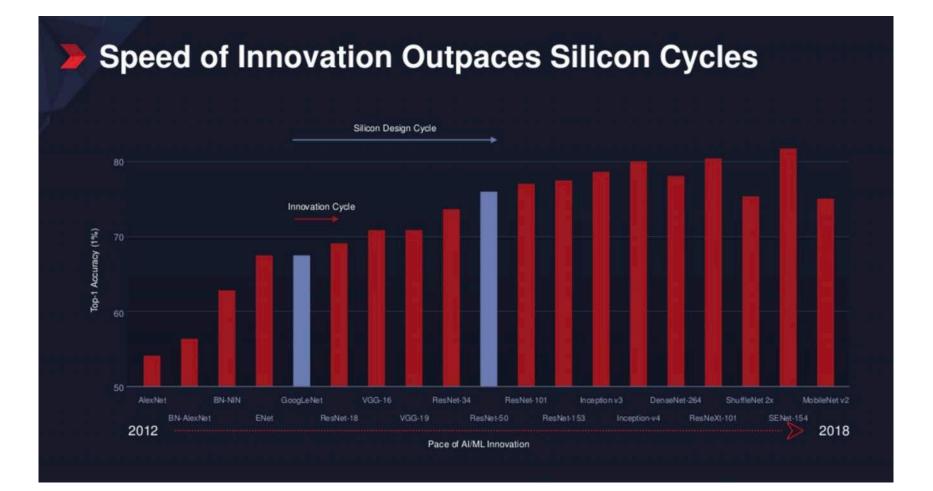
User-customisable integrated circuit

> Dedicated blocks: memory, transceivers and MAC, PLLs, DSPs, ARM cores



Xilinx RFSoc Device

Source: Xilinx

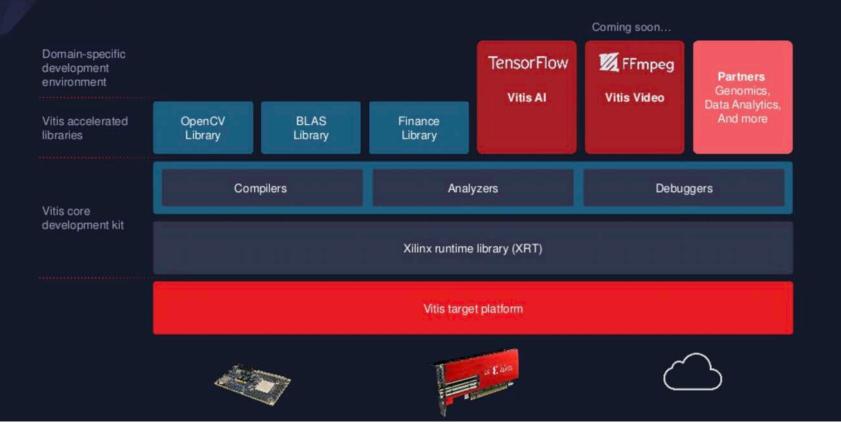


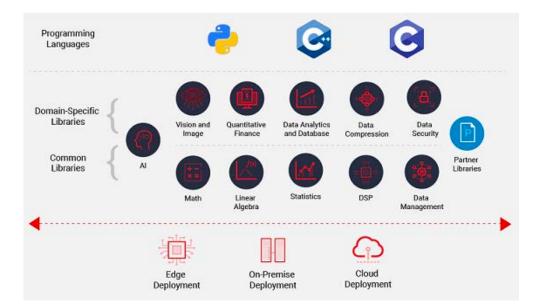
THE UNIVERSITY OF

Speed of Innovation

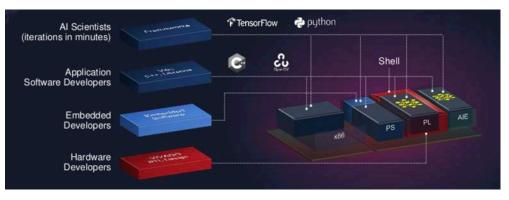
Motivation for FPGAs (EPIC)

- > FPGAs commercial off-the-shelf
- They offer an opportunity to implement complex algorithms with higher throughput, lower latency and lower power through
 - Exploration- easily try different ideas to arrive at a good solution
 - Parallelism so we can arrive at an answer faster
 - Integration so interfaces are not a bottleneck
 - Customisation problem-specific designs to improve efficiency (power, speed, density)




Unified Environment 2019

Vitis: Unified Software Platform



Xilinx Vitis Unified Software Platform

https://github.com/Xilinx/Vitis_Libraries

Source: Xilinx

Vitis Data Analytics Library

Xilinx ② @XilinxInc · Jul 1

#Vitis 2020.1 offers 500+ #FPGA-accelerated #opensource libraries, new Vitis HLS for C/C++ kernel design, improved RTL Kernel integration, better visibility into system performance and more to enable you to leverage the power of Xilinx platforms. Download: bitJy/2C1WdyP

EXILINX

Applications

Products Developers Support

A Vitis Data Analytics Library

2020.1

Search docs

Library Overview

Requirements

License

Trademark Notice

Release Note

L1 User Guide

L1 Module User Guide

L2 User Guide

L2 Module User Guide

Benchmark Result

Benchmark Result

Performance Data

Random Forest Classification Training	
Dataset:	

1 - HEPMASS (https://archive.ics.uci.edu/ml/datasets/HEPMASS)

2 - HIGGS (https://archive.ics.uci.edu/ml/datasets/HIGGS)

Dataset	Sample Num	Tree Depth	Tree Num	End-to-End (s)	Speedup	Thread num	Spark (s)
1	7000000	5	512	61.20	10.2	28	622.30
1	700000	5	1024	121.20	15.3	16	1849.724
2	8000000	5	512	70.30	13.3	28	933.83
2	8000000	5	1024	138.84	15.5	16	2154

K-Means Clustering Training

Dataset:

1 - NIPS Conference Papers (http://archive.ics.uci.edu/ml/datasets/NIPS+Conference+Papers+1987-2015)

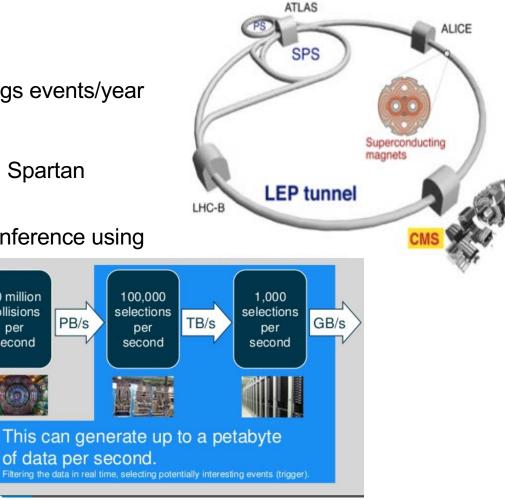
About

https://xilinx.github.io/Vitis_Libraries/data_analytics/2020.1/benchmark/result.html

Source: Xilinx

FPGA Technology Applications Our work

CERN Large Hadron Collider

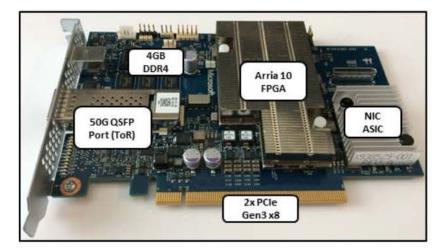

- Compact Muon Solenoid >
 - Few interesting events ~100 Higgs events/year -
 - 1.5Tb/s real-time DSP problem -
 - (2014) More than 500 Virtex and Spartan -FPGAs used in real-time trigger
 - (2019 doing FPGA-based DNN inference using -Vivado HLS)

40 million

collisions

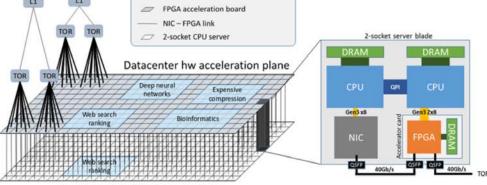
per

second



Source: Intel

- Uses FPGAs for DNNs, Bing search, and software defined networking (SDN) acceleration to reduce latency, while freeing CPUs for other tasks
 - 2010: MSR study FPGAs to accelerate Web search
 - 2012: Project Catapult's scale pilot of 1,632 FPGA servers deployed
 - 2013: Bing decision-tree algorithms 40x faster than CPUs
 - 2015: FPGAs deployed at scale in Bing and Azure datacenters (> 1M) enabled 50% ↑ throughput, 25% ↓ latency.



Microsoft Azure Cloud Network

World's fastest cloud network

Austral Austral	ilia Central	• •		AustraliaSo	Brazil South		Canada East			East Asia	East US	East US2		FranceSouth	Germany North	Germany West Ce	Japan East	Jopan West	Korea Central	Korea South	North Central US	North Europe Norway East	Norway West			South India	Southafrica West	SouthAfricaNorth	Switzerland North	Switzerland West		UAE North		UK West				
Australi Australi	lia Central2	2	7	12	312	198	208	144	179	120	205	200	242	228	253	244	132	138	159 1	58 18	6 27	1 272	264	174	92	124	400	390	238	236	172	170	246	252	164	250	146	142
Australi		100	8																			2 272																
	lia East	_		14	308	194	204	139	184	116	202	198	236	223	248	240	154	162	154 1	52 19	0 26	6 266	258	172	88	120	396	384	234	230	166	166	242	246	170	246	140	146
Brazil S	liaSouthEast				319	206	214	137	197	120	214	209	234	222	246	238	154	161	158 1	62 20	4 25	0 264	256	184	86	118	394	382	232	228	164	164	239	244	182	244	138	158
	South	10.00				130	139	304	144	321	117	114	186	200	200	190	262	268	302 3	13	8 17	2 208	202	140	330	324	324	352	196	194	294	298	180	182	158	188	302	172
	a Central						12	210	20	198	25	28	92	106	108	100	153	160	178 1	78 1	4 8	0 116	110	42	218	232	232	258	104	100	200	204	86	88	36	95	208	58
Canada	a East	12 20						220	30	208	34	38	102	116	116	108	162	170	188 1	88 2	4 8	8 126	118	52	226	240	240	268	114	110	210	214	96	98	44	104	218	67
Central	il India								226	86	198	200	118	106	130	122	123	128	126 1	32 21	9 13	3 148	140	226	54	24	278	266	116	112	30	28	123	128	240	128	4	222
Central	I US	10.00								177	24	28	102	110	116	106	132	139	158 1	58 8	8	8 124	124	22	196	230	246	274	112	110	216	219	96	97	14	102	223	40
East Asi	sia										202	196	184	170	194	186	49	52	43	49 18	4 19	7 213	206	171	34	66	342	332	180	176	113	112	188	193	162	192	88	148
East US	5	- 8-3										6	80	90	94	86	154	162 :	182 1	82 1	9 6	5 102	98	32	219	220	220	246	90	88	188	192	74	76	40	81	196	64
East US	52	11 10											80	90	98	88	150	156	178 1	76 2	2 7	1 106	100	26	215	222	224	252	94	88	190	194	78	80	46	86	198	58
France	Central								1					11	20	10	218	224	224	28 9	6 1	6 31	24	106	150	138	152	174	14	10	108	112	7	9	118	10	116	138
Frances	South	10.00													24	16	206	212	210 2	16 10	4 2	5 40	36	116	136	126	174	162	10	8	96	98	16	18	126	20	102	148
German	iny North															10	230	236	234 2	40 11	0 2	9 20	26	124	162	150	168	186	16	19	120	124	24	26	130	12	128	156
German	my West Central	11 12															221	228	226 2	32 10	2 2	0 24	20	114	152	142	160	178	6	10	112	114	14	16	124	8	120	146
Japan E	East	10.00														-		8	30	30 14	0 22	0 248	246	124	68	102	372	366	216	212	148	148	226	228	118	229	128	105
Japan V	West	- [1					13		i 1		i			1-1				1022 AUG	36	36 14	6 22	8 254	246	130	76	108	380	372	222	218	154	154	231	236	124	234	128	106
Korea (Central	127 22							1							1 2		1		8 16	6 24	8 254	246	152	74	106	382	372	220	216	154	154	228	234	144	232	128	130
Korea 5	South								1											16	5 24	8 258	252	152	80	112	388	376	226	222	159	162	234	238	144	238	132	130
North (Central US	- 3-33					10	-	-				-	3					- 1	15 17.2	8	4 118	118	30	204	238	240	267	108	104	208	212	90	91	24	100	216	52
North E	Europe																			101		38	32	97	164	153	156	185	26	24	123	127	11	12	106	16	130	129
Norway	iy East	- 3					12	·	· · · · · ·		1		ć	1	·	2						- 200	8	132	180	168	172	204	30	34	138	142	30	32	138	22	146	164
Norway	ry West												2	1	_									128	172	162	166	198	26	30	130	134	22	22	138	15	138	160
South 0	Central US	-1-3					111		i i		1			hi-i	·	i		ž-14		-0.1	-1	- i i			190	224	250	280	120	116	217	220	104	106	22	112	224	34
South E	East Asia	- 11-11					1		1					3		1		1		10				3 3		34	310	298	148	144	80	80	154	160	182	160	56	169
South In	India																										299	286	136	132	50	48	144	148	214	148	26	200
Southa	africa West	0.000					11-11		1																							272						
SouthA	and the second	_														_			_		_	_	-		_					100	350	200		4.00.00	200			
	AfricaNorth																												172	168	200	260	1/6	176	288	184	264	310

Network switch (top of rack, cl FPGA – switch link

Traditional sw (CPU) server plane

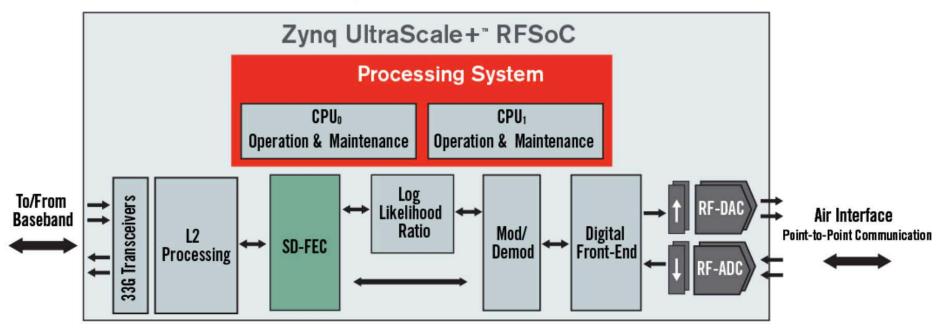
Source: Microsoft https://docs.microsoft.com/en-us/azure/networking/azure-network-latency

> Accelerator for SQL Queries (40% of their data analysis)

Total data:	~1EB
Processing data :	~100PB/day
Total web pages:	~1000 Billion
Web pages updated:	~10Billion/day
Requests:	~10Billion/day
Total logs :	~100PB
Logs updated:	~1PB/day

Evaluation - real case query

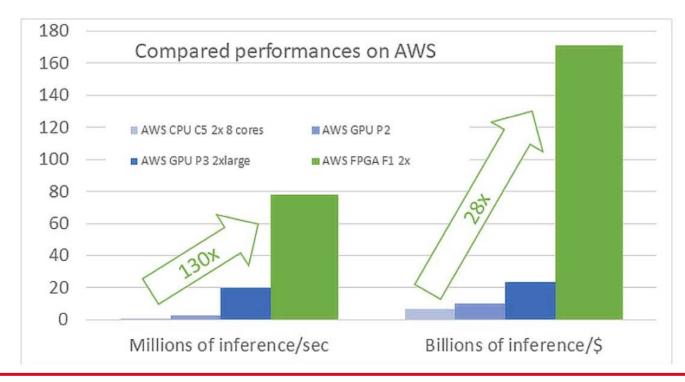
- TPC-DS scale = 10, query3
- Execution time



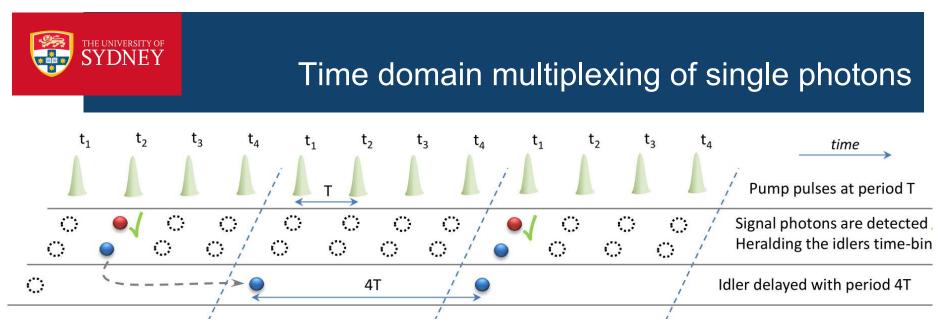
Mobile Backhaul

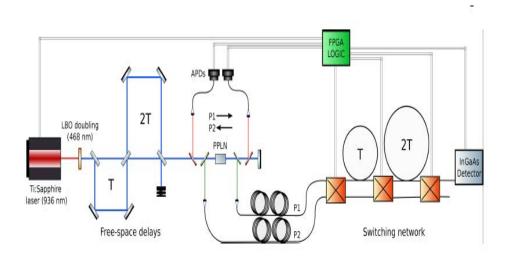
Key Zynq UltraScale+ RFSoC Benefits:

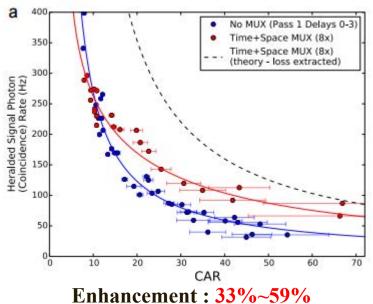
- Integrated Direct RF data converters for 4x4 TX/RX mobile backhaul architectures
- Multi-Level LDPC codec (SD-FEC) to meet 5G standards and support for custom codes
- Turbo Decode (SD-FEC) for 4G LTE-Advanced and 4G LTE Pro
- DSP48-rich fabric (6,620 GMACs) provides high-performance filtering and encoding/decoding
- 33 Gb/s transceivers for 12.2G CPRI and expansion into 16G & 25G CPRI


Smart City Example

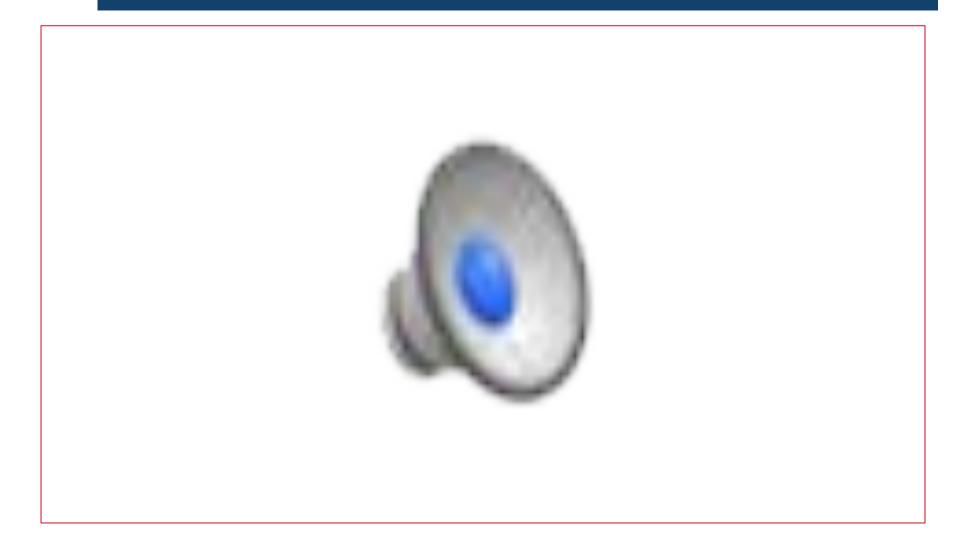
Source: Xilinx


- → Amadeus IT Group S.A adjusted profit €1.27B in 2019
- Accelerated inference of gradient boosted decision trees for search queries and quantified cost

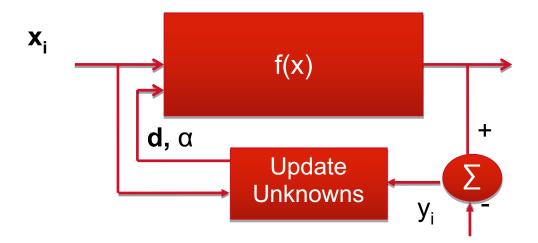



- FPGA Technology Applications
- Our work

Initially expectation : Heralded single photon rate should enhance significantly without degrading coincidence to accidental ratio (CAR)

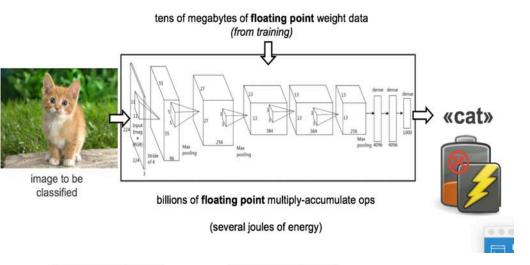


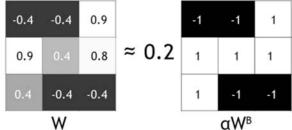
http://phwl.org/assets/papers/atm_ncomms16.pdf

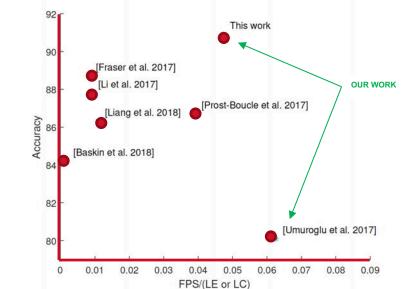

Time Multiplexing of Single Photons

Exploration: Kernel Methods

ARC Linkage with Exablaze

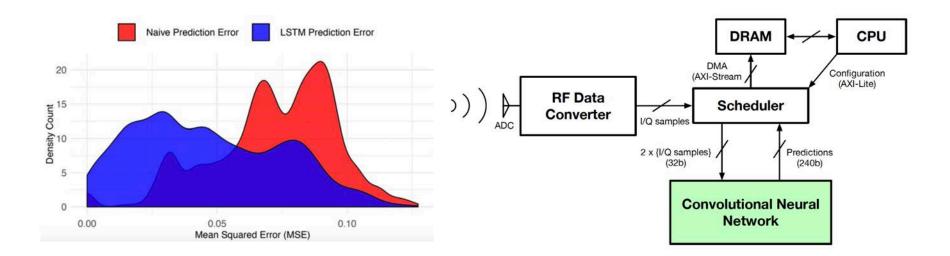



- A family of kernel methods that can do simultaneous learning and inference
 - Highest reported throughput 80 Gbps (TRETS'17)
 - Lowest reported latency 80 ns (FPT'15)
 - Highest capacity (FPGA'18)



Parallelism: Binarized Neural Networks

Collaboration with Xilinx



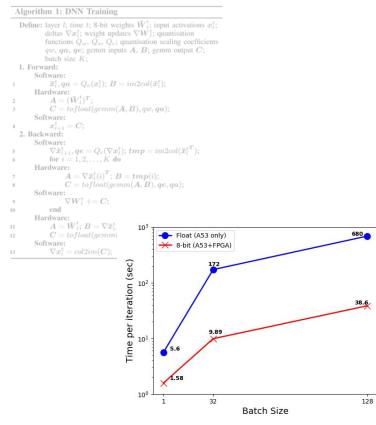
Ours is the most accurate and fastest reported FPGA-based CNN inference implementation CIFAR10: 90.9% acc, 122K fps (TRETS'19)

Next Generation Technology Fund

- > Processing RF signals remains a challenge
 - FPGAs allow integration of radio, machine learning and signal processing

LSTM Spectral prediction: 4.3 µs latency on Ettus X310 XC7K410T (MILCOM'18) Ternary Modulation classifier: 488K class/s, 8us latency, Xilinx ZCU111 RFSoC (FPT'19)

Defence Innovation Hub


- Implementation of a neuromorphic high dynamic range camera-based object detector on FPGAs
- Significantly improved accuracy in high contrast situations

On-FPGA Training

See paper for details

17x speed-up over ARM

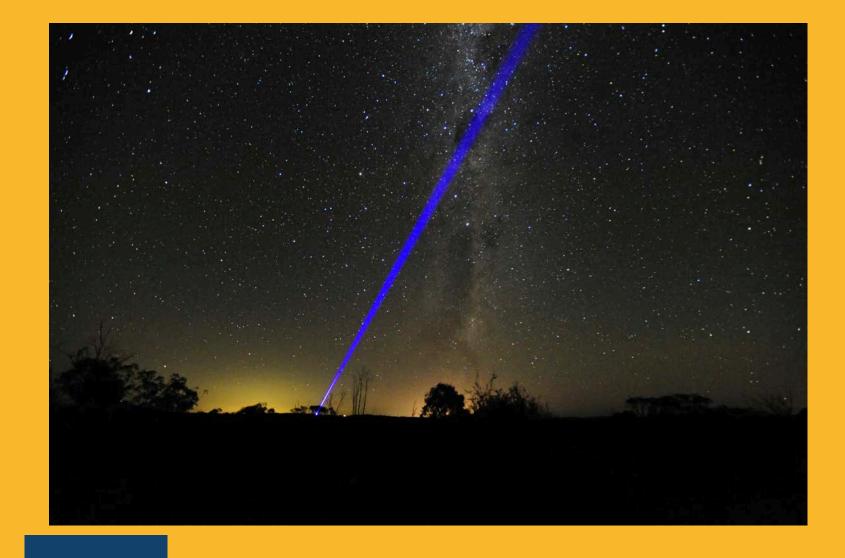
FPGA

- Low-Precision (8-bit)
 - All matrix multiplications
 - >95% of DNN operations

ARM

- High-Precision
 - Everything else!
 - Of particular importance is the weight update and gradient accumulator
- Suits a Zynq platform
 - Fast DDR, shared between PL and floating-point


FPGA Technology Applications Our work



Summary

- Industry Trends
 - Cloud/edge unification
 - More Sensors (video and hyperspectral); more nodes (edge devices/servers) generating data; more computation (DNNs, Monte Carlo methods); more bandwidth
 - Real-time AI and data science applied at all levels
- > FPGAs has advantages for these types of problems

