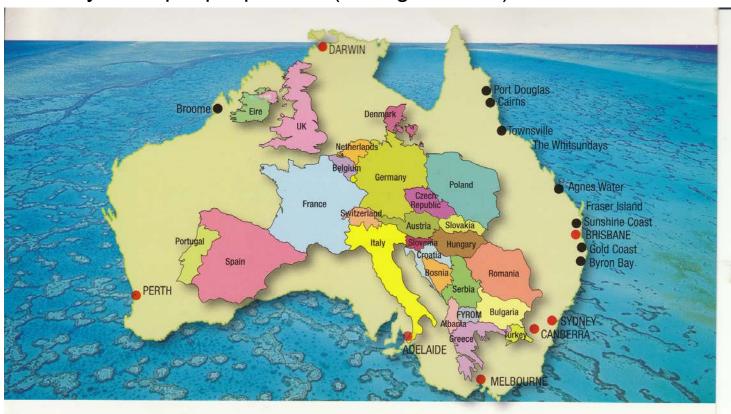
Multipliers for FPGA Machine Learning Applications

Philip Leong (梁恆惠) | Computer Engineering Laboratory School of Electrical and Information Engineering, The University of Sydney

Population density: 3.20 people per km² (Shanghai 2059)



Australia and Europe Area size comparison

Darwin to Perth 4396km • Perth to Adelaide 2707km • Adelaide to Melbourne 726km Melbourne to Sydney 887km • Sydney to Brisbane 972km • Brisbane to Cairns 1748km

Population: ~25M (2017)

Europe: ~743M (2018)

Shanghai: ~24M (2018)

Computer Engineering Laboratory

- Focuses on how to use parallelism to solve demanding problems
 - Novel architectures, applications and design techniques using VLSI, FPGA and parallel computing technology
- > Research
 - Reconfigurable computing
 - Machine learning
 - Signal processing
- Collaborations
 - Xilinx, Intel, Exablaze
 - Defence and DSTG
 - clustertech.com

- Multipliers (and adders) play a key role in the implementation of DNNs
- > This talk
 - Two speed multiplier with different critical paths for zero and non-zero recodings
 - PIR-DSP block to support a range of precisions
 - AddNet which uses k-levels of shifted values as multipliers
 - A fully pipelined DNN implementation with ternary coefficients
- > These slides are available at https://phwl.github.io/talks

A Two Speed Multiplier

D. J. M. Moss, D. Boland, and P. H. W. Leong

- Multipliers (and adders) play a key role in the implementation of DNNs
- > This talk
 - Two speed multiplier with different critical paths for zero and non-zero recodings
 - PIR-DSP block to support a range of precisions
 - AddNet which uses k-levels of shifted values as multipliers
 - A fully pipelined DNN implementation with ternary coefficients

Unsigned Multiplication

Example: Multiply 118d by 99d

Step1) Initialize	Multiplicand	118d
	Multiplier	<u>99d</u>
Step2) Find part	ial products	1062d
		<u>1062 d</u>
Step3) Sum up t	he shifted	11682d
partial products		

Shift-and-Add Algorithm

Two's Complement Method		
Step1) Initialize	118d = 01110110 99d = <u>0110001</u> 01110110	1 <u>b</u>
	01110110	b
Step2) Find partial	00000000	b
products	0000000	b
producto	0000000	b
	01110110	b
	01110110	b
Step3) Sum up the	0000000	b
shifted partial products	010110110100010	b

Convert 2's-Comp back to decimal: 0010 1101 1010 0010 = 11682d

- > How can we handle signed multiplication?
- Could
 - multiply absolute values
 - separately calculate the sign
 - negate if necessary
- > But ...

Signed Multiplication using Booth Recoding

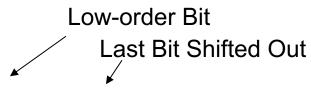
- Booth Recoding
 - Reduce the number of partial products by recoding the multiplier operand
 - Works for signed numbers

Example: Multiply -118 by -99

Radix-2

Booth
$$-99 = \overline{1}010 \ 0\overline{1}1\overline{1}$$

Recoding



A _n	A _{n-1}	Partial Product
0	0	0
0	1	+B
1	0	-B
1	1	0

Example of Booth Radix-2 Recoding

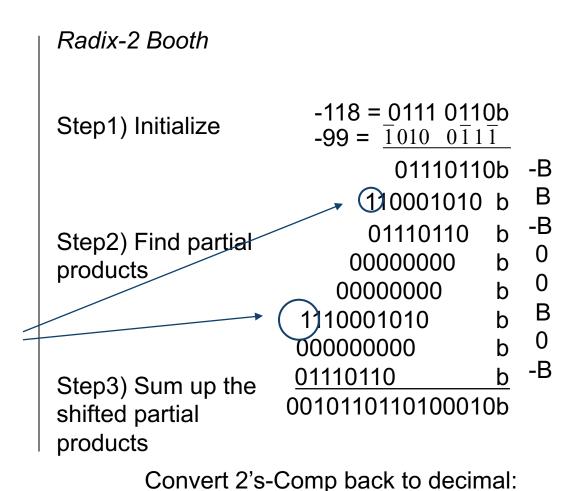
Multiply -118 by -99

$$A = -99 = 1001 \ 1101b$$

 $-99 = \overline{1}010 \ 0\overline{1}1\overline{1}$

$$\rightarrow$$
 -99=(-2⁷+2⁵-2²+2¹-2⁰)

Sign Extension



0010 1101 1010 0010 = 11682d

Booth Radix-4 Multiplication

Similar to Radix-2, but uses looks at two loworder bits at a time (instead of 1)

1001 1100b

<u>1b</u>

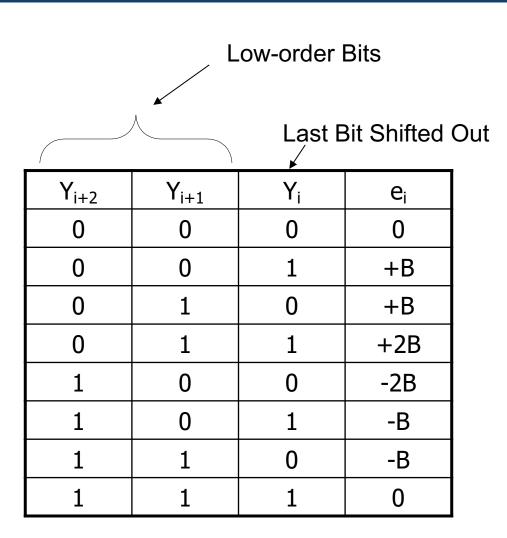
-99d = 1001 1101b

Radix-4

Booth $-99d = \overline{2}2\overline{1}1$

Recoding

$$(-99=-2.4^3+2.4^2-1.4^1+1.4^0)$$



Example of Booth Radix-4 Multiplication

Example: Multiply -118d by -99d

$$A = -99d = 1001 \ 1101b$$

 $-99d = \overline{2}2\overline{1}1$

Sign Extension

Radix-4 Booth

Step1) Initialize
$$-118d = 0111 \ 0110b \ -99d = 2 \ 2 \ 1 \ 1$$

Step2) Find partial products $011101100 \ b \ -B$

Step3) Sum up the $011101100 \ b \ -B$

Shifted partial $0010110110100010 \ b \ 2B$

products

Convert 2's-Comp back to decimal: 0010 1101 1010 0010 = 11682d

Reduces number of partial products by half!

Booth Radix-4 Multiplier Implementation

TABLE I: Booth Encoding

Y_{i+2}	Y_{i+1}	Y_i	e_i
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	2
1	0	0	$\bar{2}$
1	0	1	$\begin{array}{c} 2\\ \bar{2}\\ \bar{1}\\ \bar{1} \end{array}$
1	1	0	$\bar{1}$
1	1	1	0

 $\bar{2}$ and $\bar{1}$ represent -2 and -1 respectively.

Algorithm: Booth Radix-4 Multiplication

Data: y: Multiplier, x: Multiplicand

Result: *p*: Product

$$p = y;$$

 $e = (P[0] - 2P[1]);$

for count = 1 to N do

$$\begin{aligned} &PartialProduct = e * x; \\ &p = \text{sra}(p,2); \\ &P[2*B-1:B] += PartialProduct; \\ &e = (P[1]+P[0]-2P[2]); \end{aligned}$$

end

Booth Radix-4 Multiplier Datapath

Algorithm: Booth Radix-4 Multiplication

Data: y: Multiplier, x: Multiplicand

Result: *p*: Product

$$p = y;$$

 $e = (P[0] - 2P[1]);$

for count = 1 to N do

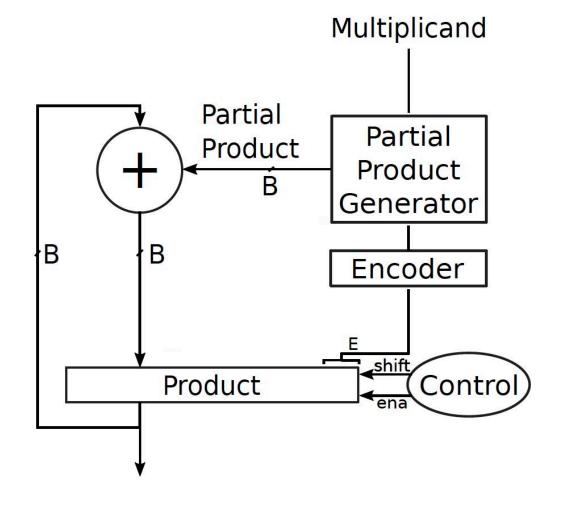
PartialProduct = e * x;

 $p = \operatorname{sra}(p,2);$

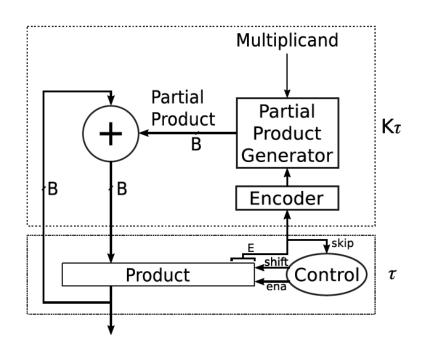
P[2*B-1:B] += PartialProduct;

e = (P[1] + P[0] - 2P[2]);

end



- Booth Radix-4 datapath split into 2 sections, each with own critical path
- Non-zero encodings take $\overline{K}\tau$ (add) and zero take τ (skip)
- Naturally supports sparse problems



```
Algorithm: Two Speed Booth Radix-4 Multiplication
Data: y: Multiplier, x: Multiplicand
Result: p: Product
p = y;
e = (P[0] - 2P[1]);
for count = 1 to N do
   p = \operatorname{sra}(p,2);
   // If non-zero encoding, take the K	au
       path, otherwise the \tau path
   if e \neq 0 then
      // this path is clocked ar{K} times
      PartialProduct = e * x;
      P[2*B-1:B] += PartialProduct;
   end
   e = (P[1] + P[0] - 2P[2]);
end
```

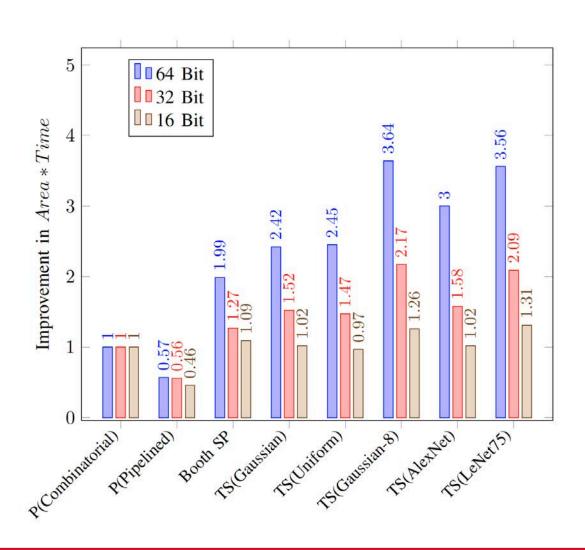

Two-speed multiplier Execution

Bit Representation	Action	Time	PartialProduct
1111010001000	skip	au	$0x \times 2^{\circ}$
11110100010	add	$\tau + \overline{K}\tau$	$1x \times 2^{2}$
111101000	skip	$2\tau + \overline{K}\tau$	$0x \times 2^{4}$
1111010	add	$2\tau + 2\overline{K}\tau$	$1x \times 2^{6}$
11110	add	$2\tau + 3\overline{K}\tau$	$-1x \times 2^{8}$
111	skip	$3\tau + 3\overline{K}\tau$	$0x \times 2^{10}$

. .

В	Туре	Area (LEs)	Max Delay (ns)	Latency (Cycles)	Power (mW)
64	Parallel(Combinatorial) Parallel(Pipelined) Booth Serial-Parallel Two Speed	5104 4695 292 304	14.7 6.99 3.9 1.83 (τ)	1 4** 33 45.2*	2.23 9.62 2.23 5.2
32	Parallel(Combinatorial) Parallel(Pipelined) Booth Serial-Parallel Two Speed	1255 1232 156 159	10.2 4.6 3.8 1.76 (τ)	1 4** 17 25.6*	1.33 5.07 1.78 3.18
16	Parallel(Combinatorial) Parallel(Pipelined) Booth Serial-Parallel Two Speed	319 368 81 87	6.8 3.2 2.72 1.52 (τ)	1 4** 9 14*	0.94 3.49 1.67 4.35

Area * Time Improvement of TSM



- Variant of the serial-parallel modified radix-4 Booth multiplier
- Adds only the non-zero Booth encodings and skips over the zero operations
- Two sub-circuits with different critical paths are utilised so that throughput and latency are improved for a subset of multiplier values
- > For bit widths of 32 and 64, our optimisations can result in a 1.42-3.36x improvement over the standard parallel Booth multiplier
- Future work: explore training NN with weights to minimise execution time on TSM

PIR-DSP: An FPGA DSP block Architecture for Multi-Precision Deep Neural Networks

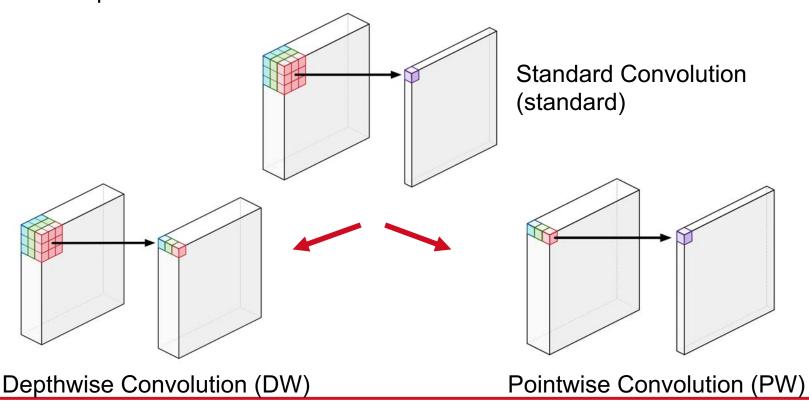
SeyedRamin Rasoulinezhad, Hao Zhou, Lingli Wang, and Philip H.W. Leong

- Multipliers (and adders) play a key role in the implementation of DNNs
- > This talk
 - Two speed multiplier with different critical paths for zero and non-zero recodings
 - **PIR-DSP** block to support a range of precisions
 - AddNet which uses k-levels of shifted values as multipliers
 - A fully pipelined DNN implementation with ternary coefficients

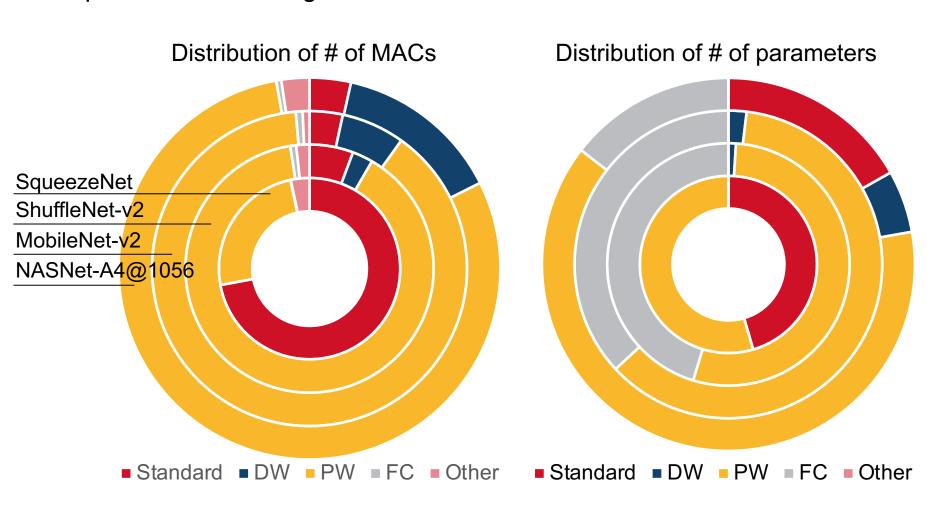
- > Introduction
- > PIR-DSP Architecture
- > Results
- Conclusion

Embedded Deep Neural Networks

- DNNs for embedded applications share two features to reduce computation and storage requirements
 - Low precision (from 1-16 bits)
 - Depthwise separable convolutions



Computation and Storage for Embedded DNNs



Low-Precision Neural Networks

Imagenet accuracy with binary and ternary weights and 8-bit activations

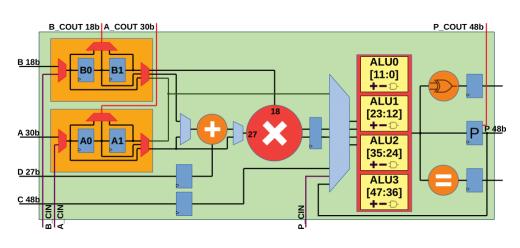
Model		1-8	2-8	Baseline	Reference
A low NI of	Top-1	56.6	58.1	56.6	57.1
AlexNet	Top-5	79.4	80.8	80.2	80.2
VGG	Top-1	66.2	68.7	69.4	_
	Top-5	87.0	88.5	89.1	_
ResNet-18	Top-1	62.9	67.7	69.1	69.6
	Top-5	84.6	87.8	89.0	89.2

- Optimise FPGA DSP architecture to better support
 - Efficient implementation of embedded DNNs
 - Wordlengths down to ternary and binary
- > Talk will focus on convolutions

- > Introduction
- > PIR-DSP Architecture
- > Results
- > Conclusion

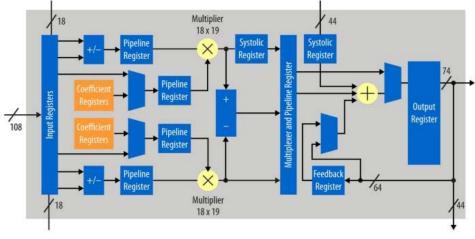
> Xilinx DSP48

 27×18 multiplier, 48-bit ALU (Add/Sub/Logic), 27-bit pre-adder, Wide 96bit XOR, 48-bit comparator



- No support for low-precision computations
- No run-time configuration
- 1D arrangement inefficient for implementing 2D systolic arrays

- Intel (Multiprecision)
 - 27×27 multiplier decomposable to two 19×18, Compile-time configurable Coefficient registers, Two 18-bit preadder, 54-bit adder



ALU0 [11:0]

ALU1

P_COUT 48b

> PIR-DSP: Optimized version of DSP48

- Precision: Multiplier architecture

A COUT 30bit

⊳B1,

FIFO/RF

Shift-Req

- Interconnect: Shift-Reg

- Reuse : RF/FIFO

B0,

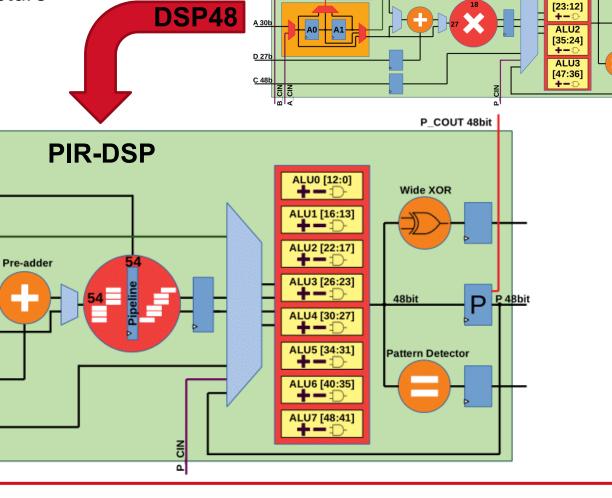
B COUT 27bit

B 18bit

A 30bit

D 27bit

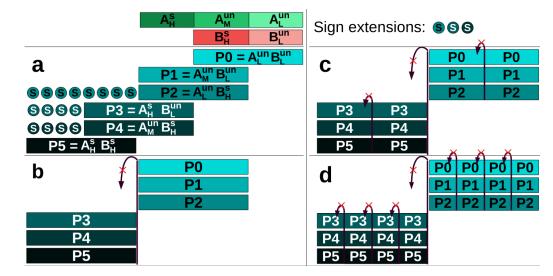
C 48bit

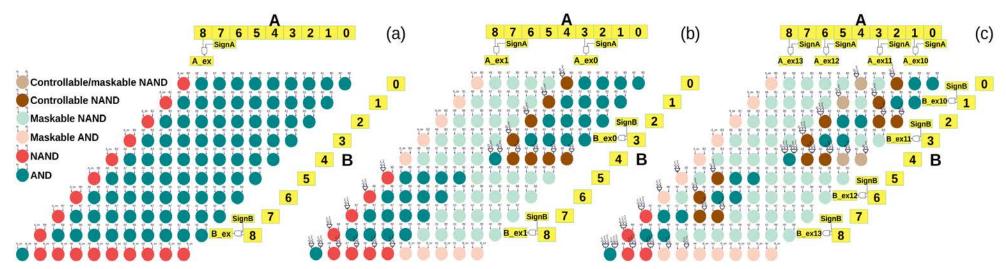


B_COUT 18b A_COUT 30b

Precision (1)

- Based on two approaches:
 - 1. Chopping
 - 2. Recursive decomposition





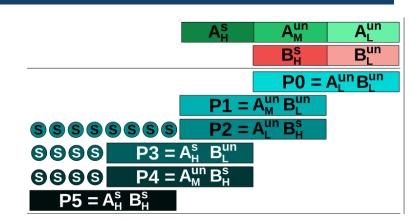
Precision (2)

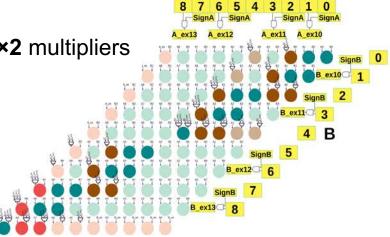
Parameterised Decomposable MAC unit

- Notation: M×NCijDk
- > PIR-DSP multiplier: 27×18C32D2
 - Chopping factors 3 and 2 respectively for 27 and 18
 - $-(27=9+9+9)\times(18=9+9)$
 - Six 9×9 multiplier
 - Decomposing factor is 2
 - Each 9×9 multiplier decomposes to Two **4×4** or Four **2×2** multipliers

> PIR-DSP Modes:

- One 27×18
- \rightarrow 1 MAC
- Two $9\times9 + 9\times9 + 9\times9 \rightarrow 6$ MACs
- Four $4\times4 + 4\times4 + 4\times4 \rightarrow 12$ MACs
- Eight $2\times2 + 2\times2 + 2\times2 \rightarrow 24$ MACs

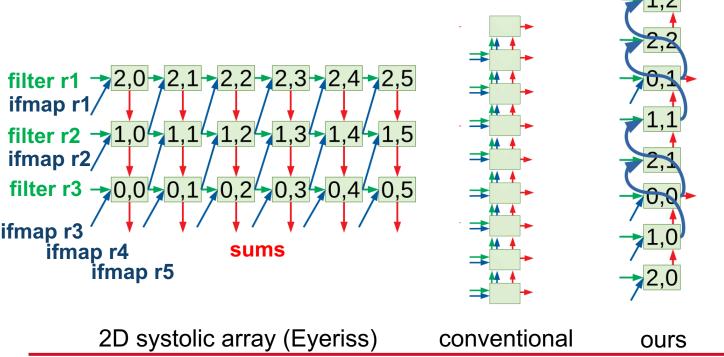


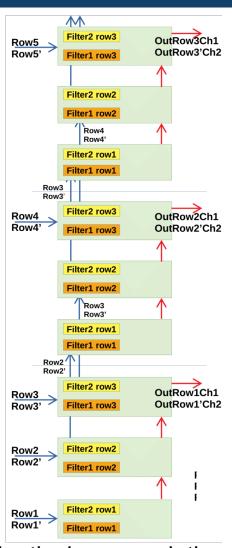


Interconnect (1)

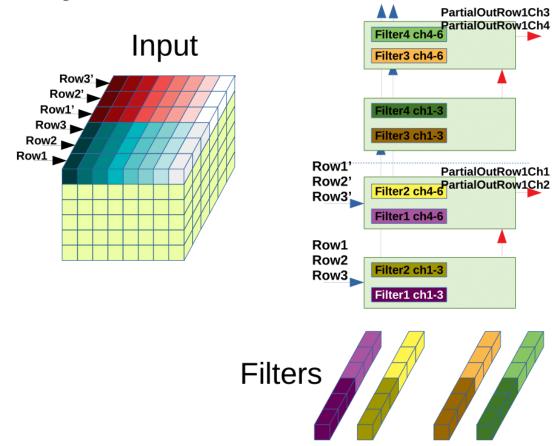
- > Three types of convolutions
 - 1- **Depth-wise**: using three PIR-DSPs

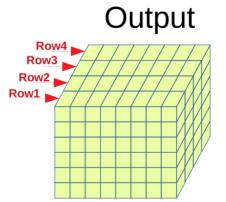
2- **Standard**: based on depth-wise convolution implementation and adding the partial results



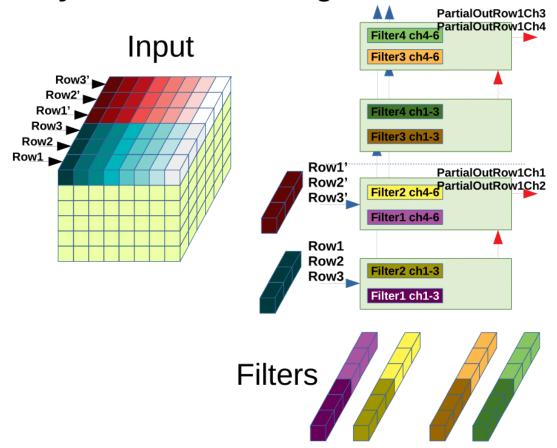


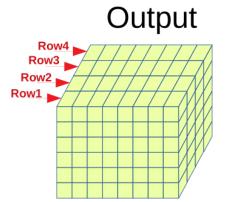
Cycle #0



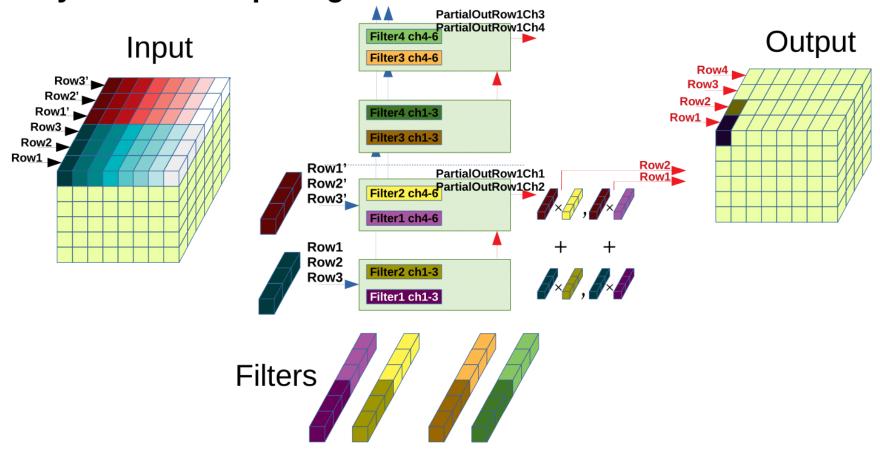


Cycle #1 - Streaming

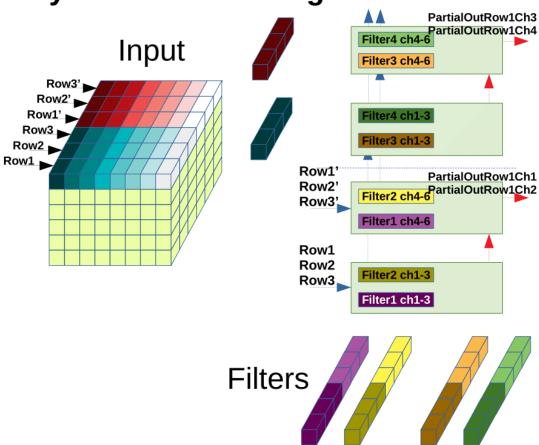


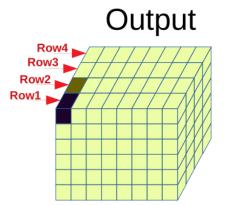


Cycle #1 - Computing

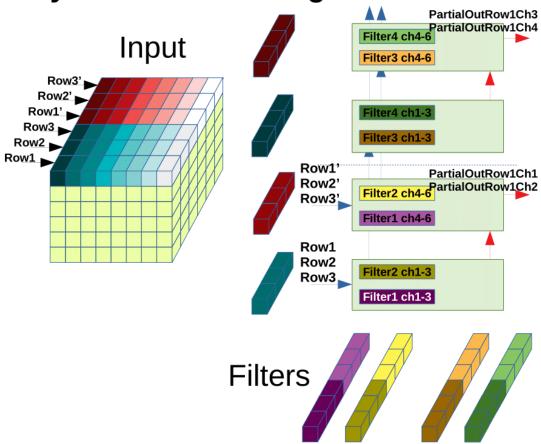


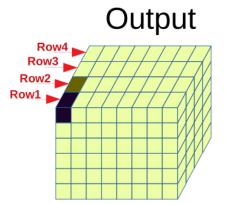
Cycle #2 - Streaming

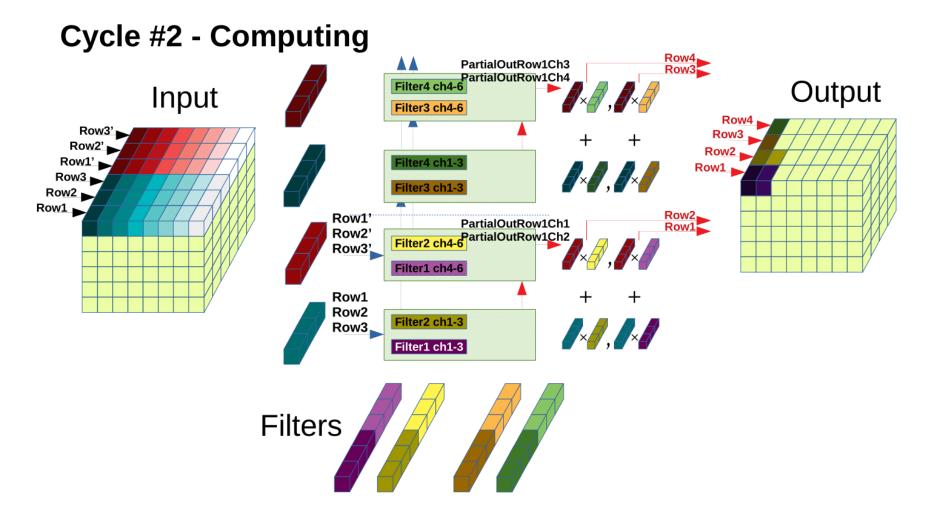




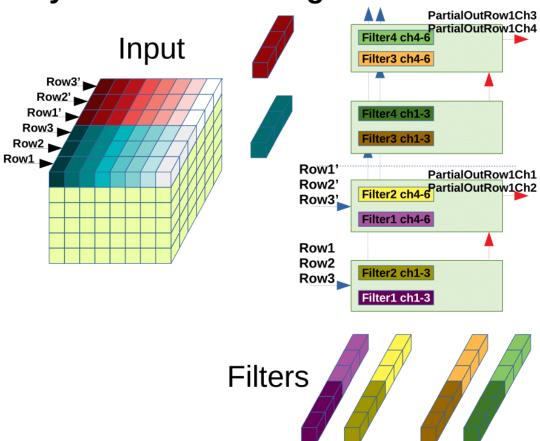
Cycle #2 - Streaming

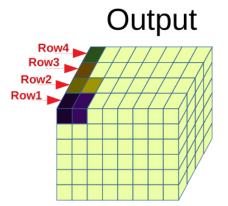




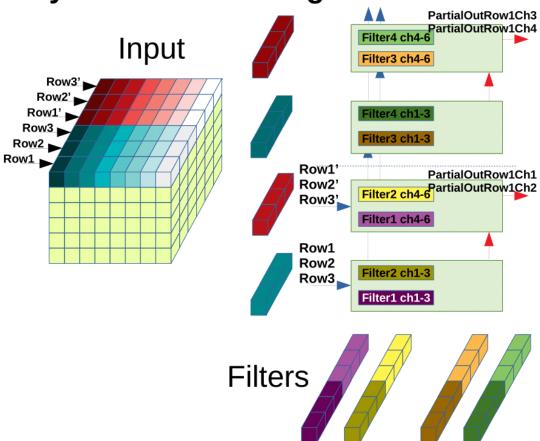


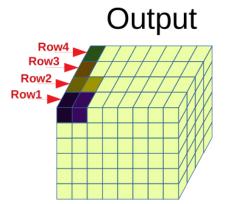
Cycle #3 - Streaming

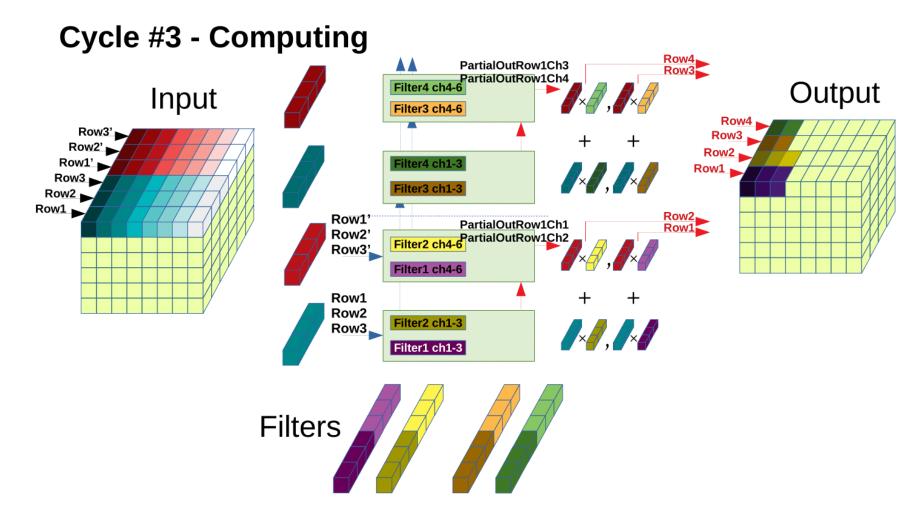


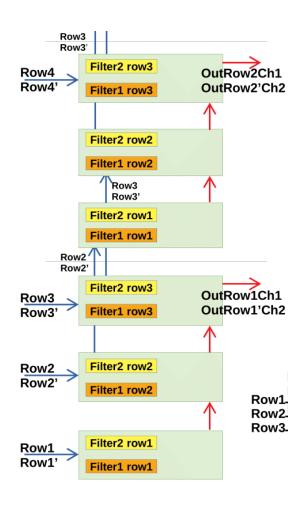


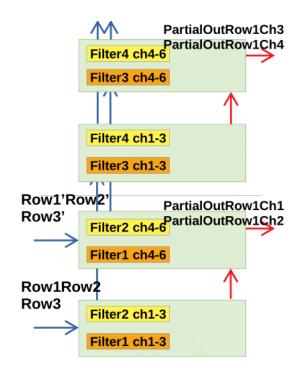
Cycle #3 - Streaming











Depthwise Convolution (DW)

Pointwise Convolution (PW)

- > Introduction
- > PIR-DSP Architecture
- > Results
- > Conclusion

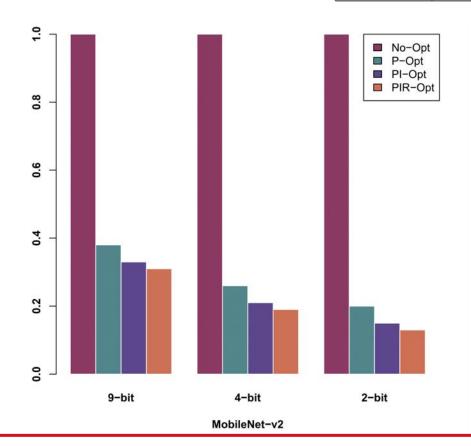
- SMIC 65-nm standard cell technology
 - Synopsis Design Compiler 2013.12

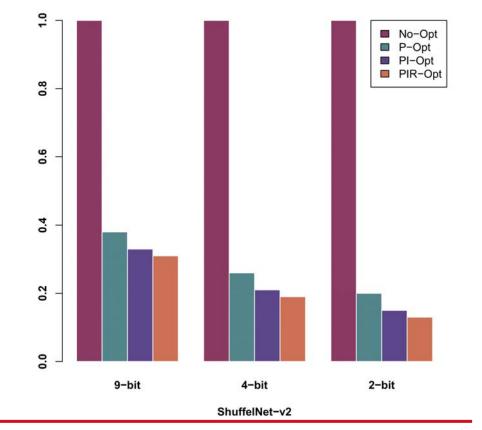
Version	Area Ratio	Fmax
DSP48E2	1.0	463
+ M27×18C32D2 MAC-IP	1.14	358
+ interconnect	1.18	362
+ reuse	1.28	357

Data movement energy ratios in 65 nm Technology ($1 \times = 90 \text{FJ}$).

> Other networks are similar

Energy	FF	SR _e	RFe	Chain	RF	SR	BRAM(B)	MAC
Ratio	1	2	12.5	23	40	44	205	89-22





> Sits between Sharma (low-precision) and Boutros (high-precision)

	Bitfusion [56] ISCA'18	Ours	Boutros [44] FPL'18	Ours			
Area	0.24	1	0.77	1			
Performance P	Performance Per Area						
2x2	1	0.4					
4x4	1	0.7	1	1.2			
8x8	1	1.4	1	1.2			
16x16			1	0.4			
27x18			1	0.8			

- > Introduction
- > PIR-DSP Architecture
- > Results
- Conclusion

- Described optimizations to the DSP48 to support a range of low-precision DNNs and quantified their impact on performance
 - Precision, Interconnect and Reuse
 - designs are available at http://github.com/raminrasoulinezhad/PIR-DSP
- > Future research
 - Consider what we can do if we give up DSP48-like functionality
 - Other interconnect optimisations

AddNet: Deep Neural Networks using FPGA-Optimized Multipliers

Julian Faraone, Martin Kumm Member, Martin Hardieck, Peter Zipf, Xueyuan Liu, David Boland, Philip H.W. Leong

- Multipliers (and adders) play a key role in the implementation of DNNs
- > This talk
 - Two speed multiplier with different critical paths for zero and non-zero recodings
 - PIR-DSP block to support a range of precisions
 - AddNet which uses k-levels of shifted values as multipliers
 - A fully pipelined DNN implementation with ternary coefficients

Reconfigurable constant coefficient multipliers (RCCMs) implement y = cx for a fixed set of coefficients c using only adds and shifts e.g.

$$(x << 2) + (x << 1) = 6x$$

- Present FPGA logic element optimised RCCMs which implement large sets c with few resources
- When applied to neural networks (AddNet), achieve up to 50% resource savings over traditional 8-bit quantized networks

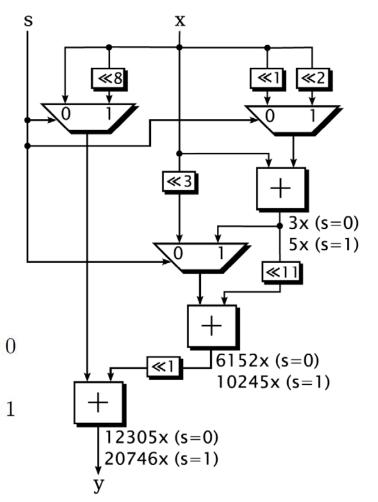
Reconfigurable constant coefficient multipliers (RCCM)

- Another example has the coefficient set C={12305, 20746}
- Top adder computes

$$\begin{cases} x + (x << 1) = 3x & \text{if } s = 0 \\ x + (x << 2) = 5x & \text{if } s = 1 \end{cases}$$

> Bottom adder computes

$$y = \begin{cases} x + ((x << 3) + ((x + x << 1)) & \text{if} \quad s = 0 \\ << 11) << 1) = 12305x \\ (x << 8) + ((x + x << 2) + & \text{if} \quad s = 1 \\ ((x + x << 2) << 11) << 1) = 20746x \end{cases}$$



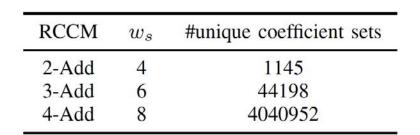
Base Topologies

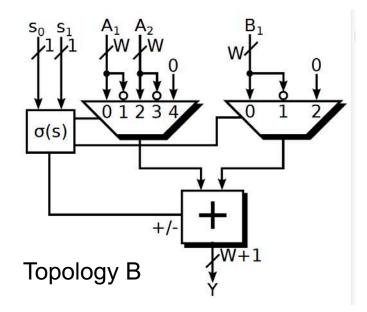
> Topology A has potentially a larger coefficient set $\pm A_p \pm B_1 \ \sigma(s)$ chooses operation

>	Topology B allows symmetric coefficients
	around 0 as $A_p-B_1=-(A_p-B_1)$

ightarrow Maximum possible set size is 2^{w_s}

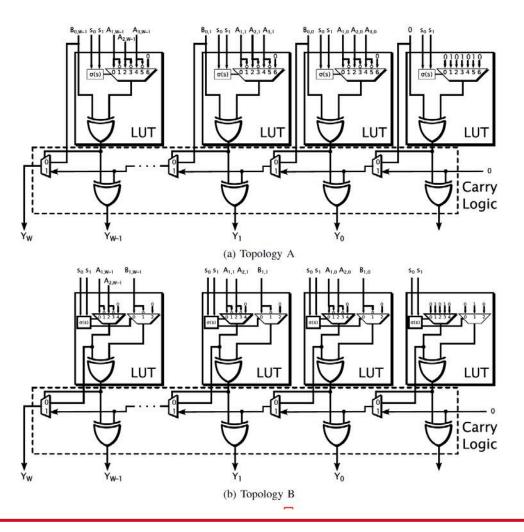
s_0 s_1 0 0 0 0 0 0 0 0 0 0	A ₁ A ₂ A ₃ W W W O O O O O O O O O O O O O O O O	$W \downarrow B_1$
1	+/- +	
Topology A	W+1	



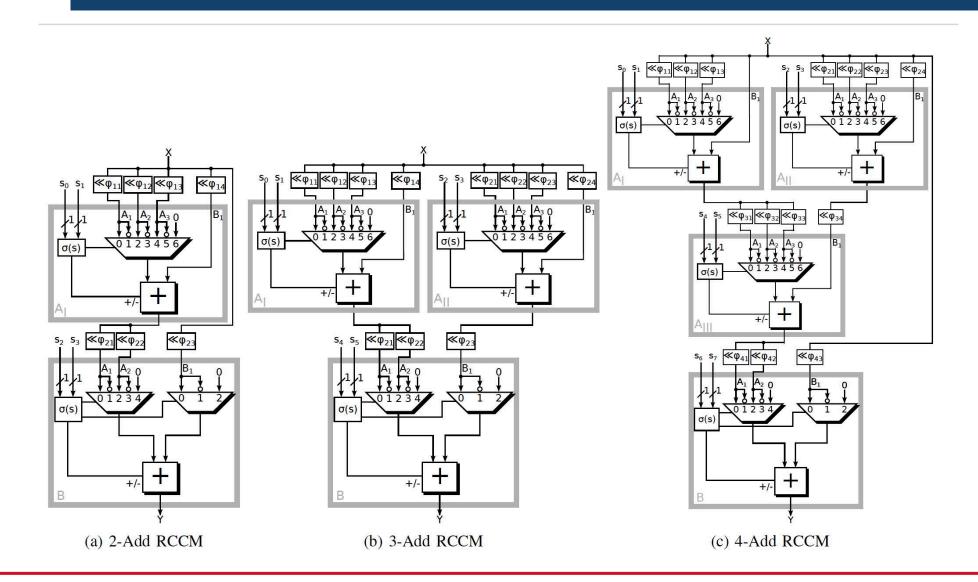


Bit Level Slice Mapping

Works for any 6-LUT FPGA such as Xilinx Ultrascale or Intel Stratix X



RCCM Circuits



- Weights in a DNN follow a distribution (Gaussian-like)
- > RCCM coefficients can be chosen to match
 - Find best 5 in terms of Kullback-Leibler divergence, then choose set with largest number of coefficients

$$D_{\text{KL}}(P||R) = \sum_{i=0}^{N-1} P(i) \, \log \frac{P(i)}{R(i)}$$

CM	e	$s_1 \ s_0$					shifts			
RC	type	00	01	10	11	φ_i	φ_{i2}	$_2 \varphi_{i3}$	φ_{i4}	
2-Add RCCM	A _I B	A1+B1 -A1+B1	A2+B1 -A2+B1	A3+B1 A1-B1	B1 A2-B1	0	1 3	3 2	2	
3-Add	A _I A _{II} B	A1+B1 A1+B1 -A1+B1	A2+B1 A2+B1 -A2+B1	A3+B1 A3+B1 A1-B1	-A2+B1 -A1+B1 A2-B1	0 0 0	2 1 3	3 3 0	3 0 -	
4-Add	A _I A _{II} A _{III} B	A1+B1 A1+B1 A1+B1 -A1+B1	A2+B1 A2+B1 A2+B1 -A2+B1	A3+B1 A3+B1 A3+B1 A1-B1	-A3+B1 -A2+B1 -A1+B1 A2-B1	0 0 0 0	1 1 1 3	3 3 1	0 1 3 -	

arch.	#coef	f Coefficient set (土)
2-Add	15	0 1 2 8 28 36 44 92
3-Add	59	0 1 2 3 4 5 6 7 9 10 12 13 14 16 23 29 30 32 63 69 70 72 87 93 94 96 119 125 126 128
4-Add	207	0 1 2 4 5 7 8 9 11 13 14 15 16 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 46 48 54 58 64 69 70 71 74 75 76 78 80 81 82 84 85 87 94 96 102 114 118 126 134 142 150 166 174 182 190 194 198 206 214 222 230 238 246 258 262 270 278 286 302 310 318 326 334 382 398 446 450 526 566 574 582 614 622 654 662 670 686 694 710 766 782 830 1214

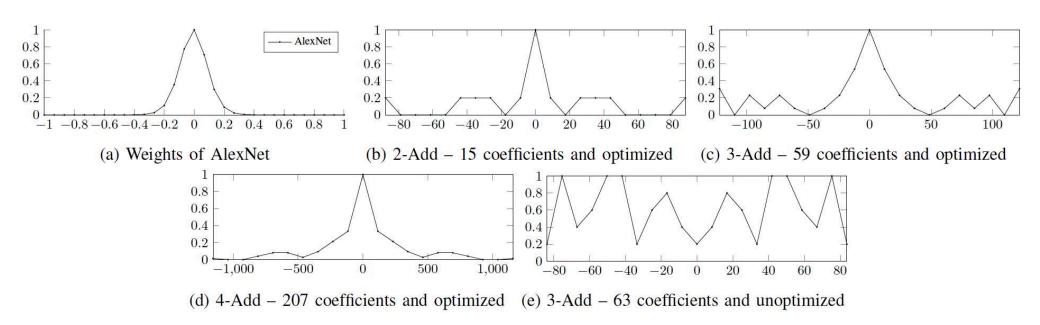
DNN Training using AddNet

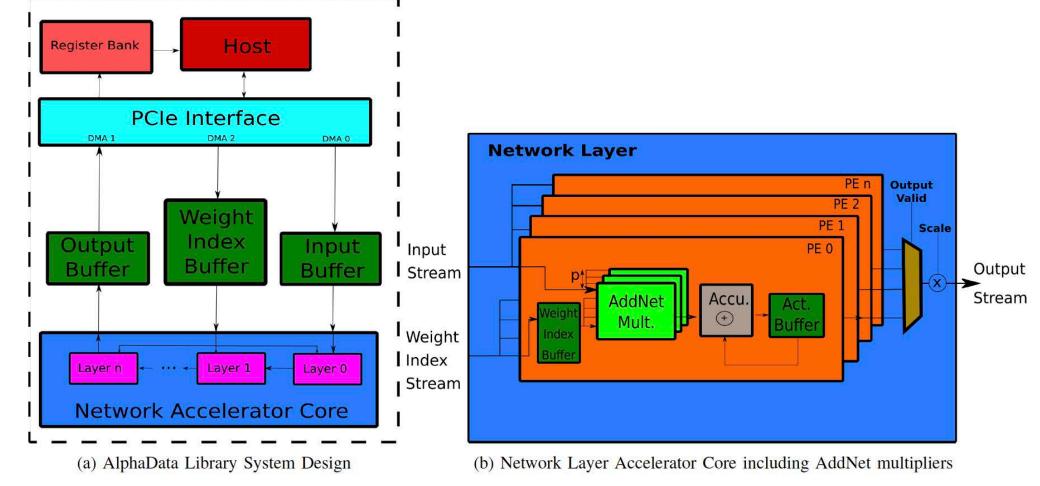
Trained using straight-through estimator (STE)

```
Algorithm 1 Training a CNN using AddNet representations
   Initialize: Pre-train model
    Set adder size
   c = DistributionMatching(\sigma(s)) using (4)
    Inputs: Minibatch of inputs & targets (I, Y), Loss function
   L(Y, \hat{Y}), current weights W_t and learning rate, \gamma_t
   Outputs: Updated W_{t+1}, \lambda_{t+1} and \gamma_{t+1}
   Forward propagation:
   for l=1 to L do
       Q_l = \text{Quantize}(W_l) \text{ using (5)} \text{ and (7)}
   end for
   \hat{Y} = ForwardPropagation (I, Y, \mathbf{Q}_l) using (7)
   Backward Propagation:
   \frac{\partial \hat{L}}{\partial \boldsymbol{Q}_{l}} = \mathbf{WeightBackward}(\boldsymbol{Q}_{l}, \frac{\partial \hat{L}}{\partial \hat{\mathbf{v}}})
   \frac{\partial \hat{L}}{\partial \lambda_l} = \mathbf{ScalarBackward}(\frac{\partial \hat{L}}{\partial Q_l}, \lambda_l, \frac{\partial \hat{L}}{\partial \hat{V}})
   W_{t+1} = \text{UpdateWeights}(W_t, \frac{\partial \hat{L}}{\partial Q_t}, \gamma)
   \lambda_{t+1} = \text{UpdateScalars}(\lambda_t, \frac{\partial \hat{L}}{\partial \lambda_t}, \gamma)
   \gamma_{t+1} = UpdateLearningRate(\dot{\gamma}_t, t)
```

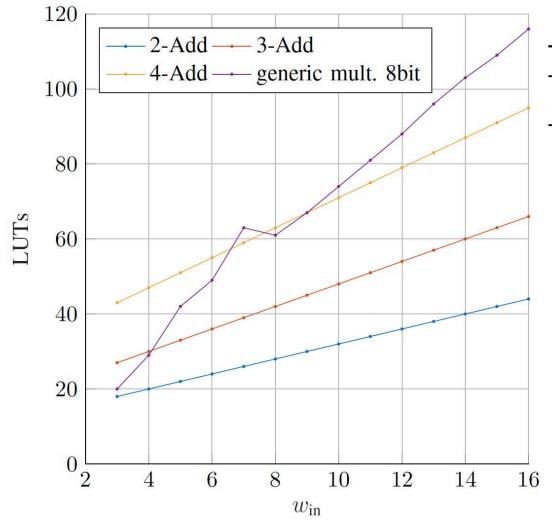

Distribution-Optimised Coefficient Sets (for Gaussian)

> AlexNet top1/top5: 53.8%/76.9% (unoptimised) vs 55.8%/79.8% (optimised)





Resource Utilization

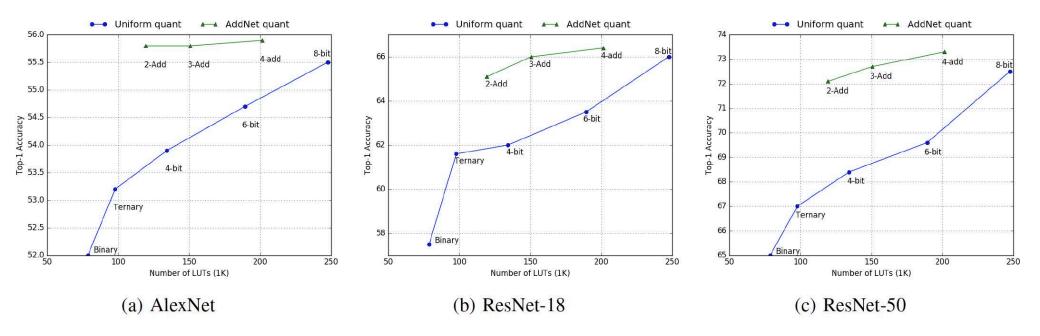


Type 2-Add		3-Add	4-Add	
Original	447.43 MHz	483.09 MHz	342.82 MHz	
Pipelined	770.42 MHz	578.03 MHz	623.83 MHz	

Xilinx KU115	Architecture	2-Add	3-Add	4-Add	8-bit disab. [41].	8-bit enab. [41]
BRAM	Conv Layer	1154	1154	1154	1154	170
(2160)	AlexNet	1365	1557	1557	1557	1229
DSP	Conv Layer	48	48	48	48	96
(5520)	AlexNet	48	48	48	48	3760
LUTs (663K)	Conv Layer	187.0	205.6	255.8	383.0	36.2
	AlexNet	331.7	372.8	430.7	467.1	128.8
Estim.	Conv Layer	7.6W	7.6W	7.8W	7.5W	7.2W
Power	AlexNet	39W	44W	48W	52W	29W

> 8-bit disab. = DSP disabled, 8-bit enab. = DSP enabled

Accuracy-Area Tradeoff Compared with Uniform Multipliers



- Described AddNet which uses constant coefficient multipliers to save area
- Showed it is advantageous over uniform multipliers
- Uses trainability of DNNs to match computer architecture

Unrolling Ternary Networks

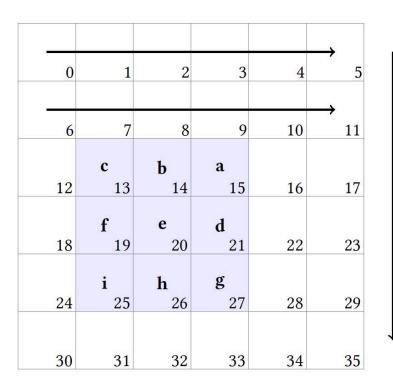
Stephen Tridgell, Martin Kumm, Martin Hardieck, David Boland, Duncan Moss, Peter Zipf, Philip H.W. Leong

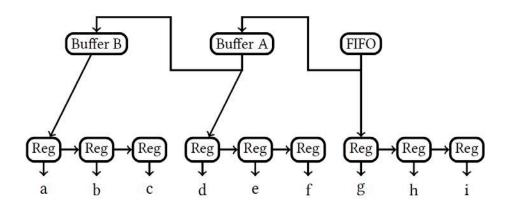
- Multipliers (and adders) play a key role in the implementation of DNNs
- > This talk
 - Two speed multiplier with different critical paths for zero and non-zero recodings
 - PIR-DSP block to support a range of precisions
 - AddNet which uses k-levels of shifted values as multipliers
 - A fully pipelined DNN implementation with ternary coefficients

- Not possible to make fully parallel implementations of a NN on contemporary FPGA due to size
- Fit entire DNN on FPGA by exploiting unstructured sparsity and the following techniques:
 - 1. Buffering of streaming inputs in a pipelined manner
 - 2. Ternary weights implemented as pruned adder trees
 - Common subexpression merging
 - 4. 16-bit bit serial arithmetic to minimize accuracy loss with low area
 - Sparsity control

Buffering of Streaming Inputs

Implement Pipelined 3x3 Convolution





Input FIFO outputs the pixel each cycle to both Buffer A and the first stage of a shift register.
Buffer A and Buffer B delay the output by the image width

Ternary Weights as Pruned Adder Trees

- Weights are ternary
 - So multiplication with ± 1 is either addition or subtraction
 - Multiplication with 0 makes matrix sparse

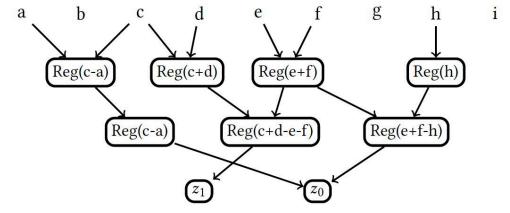
$$a \times (-1)$$
 $b \times 0$ $c \times 1$ $d \times 0$ $e \times 1$ $f \times 1$ $g \times 0$ $h \times (-1)$ $i \times 0$

Common Subexpression Elimination

Weights are ternary

- Reduces convolution to constructing adder tree
- Subexpression merged to reduce implementation

$$\begin{array}{cccc} a\times (-1) & b\times 0 & c\times 1 \\ d\times 0 & e\times 1 & f\times 1 \\ g\times 0 & h\times (-1) & i\times 0 \end{array}$$



Computing $z_0 = c + e + f - (a + h)$ and $z_1 = c + d - e - f$

Common Subexpression Elimination (RPAG)

> RPAG Algorithm

- Greedy algorithm for the related Multiple Constant Multiplication problem
- Looks at all the outputs of a matrix-vector multiplication and calculates the minimal tree depth, d, required to get the results
- Tries to determine the minimum number of terms needed at depth d 1 to compute the terms at depth d and iterates until d=1 (whole tree generated)

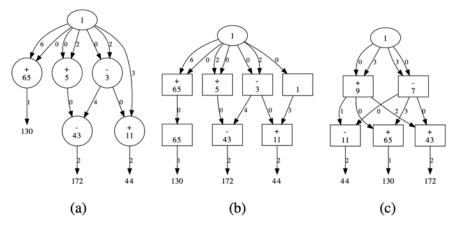


Fig. 1. Graph realizations of coefficient set $\{44, 130, 172\}$: (a) Adder graph obtained by H_{cub} AD min, (b) PAG using ASAP pipelining, (c) optimal PAG

Top-down CSE (TD-CSE)

- Builds multiple adder trees from the inputs to the outputs by creating an adder each iteration
- > Count frequency of all size 2 subexpressions, replace most frequent $(x_6=x_2+x_3)$

$$\mathbf{y} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} x_2 + x_3 \\ x_0 + x_2 + x_3 + x_4 \\ x_1 + x_4 + x_5 \\ x_0 + x_2 + x_3 \\ x_1 + x_4 + x_5 \end{pmatrix}.$$

$$\mathbf{y} = \begin{pmatrix} x_6 \\ x_0 + x_4 + x_6 \\ x_1 + x_4 + x_5 \\ x_0 + x_4 + x_5 \\ x_0 + x_6 \\ x_0 + x_3 \\ x_1 + x_4 + x_5 \end{pmatrix}.$$

Bottom-up CSE (BU-CSE)

- > Starts at the outputs and works back to the inputs
- More computation than TD-CSE but can find larger common subexpressions
- > Largest common subexpression is then selected to be removed e.g. $x_6 = x_0 + x_2 + x_3$ appears twice and is added to the bottom row

$$\mathbf{y} = \begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} x_2 + x_3 \\ x_0 + x_2 + x_3 + x_4 \\ x_1 + x_4 + x_5 \\ x_0 + x_2 + x_3 \\ x_0 + x_2 + x_3 \\ x_0 + x_2 + x_3 \\ x_0 + x_3 \\ x_1 + x_4 + x_5 \end{pmatrix} . \qquad \mathbf{y} = \begin{pmatrix} x_2 + x_3 \\ x_4 + x_6 \\ x_1 + x_4 + x_5 \\ x_1 + x_4 + x_5 \\ x_6 \\ x_0 + x_3 \\ x_1 + x_4 + x_5 \end{pmatrix} .$$

- (1) Compute the number of common terms for each pair of vectors and store this as the pattern matrix
- (2) Find the largest value in the pattern matrix and the vectors it corresponds to
- (3) Remove that subexpression from all matching vectors following the process described for the example in Equation 8
- (4) Update the pattern matrix
- (5) Go to step 2 until the largest value in the pattern matrix is 1

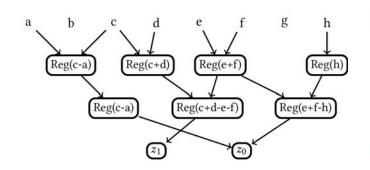
Comparison of CSE Techniques for all Layers

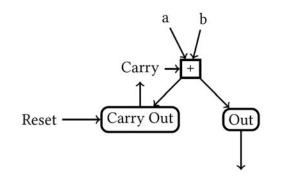
Layer	Method	Adds	Regs	Adds+Regs	Time(s)	Mem(GB)	CLB/148K	FF/2.4M	LUTS/1.2M	P&R(hrs)
	None	731	137	868	L	L.	1400	8723	8272	0.5
1	RPAG	451	31	482	64	0.008	894	5764	6260	0.48
1	TD-CSE	295	304	599	0.4	0.029	_	-		~
	BU-CSE	295	321	616	0.5	0.03	820	4499	5230	0.45
	None	8432	249	8681	=	17	15231	119848	116345	1.08
2	TD-CSE	3782	1517	5299	24	0.1		=	₩	E
	BU-CSE	3686	858	4544	64	0.17	10258	71908	66131	0.93
*	None	17481	491	17972	F	f ri	15171	102657	77743	1.9
3	TD-CSE	8466	2299	10765	89	0.18			-	2
	BU-CSE	8492	1878	10370	545	1.1	8772	61965	36611	1.13
ž.	None	36155	586	36741	E	in the second	30536	206940	164458	4.25
4	TD-CSE	17143	4214	21357	873	0.63	=	-	-	-
	BU-CSE	17309	3056	20365	2937	6.6	16909	118476	73581	2.68
>	None	71050	1198	72248	H	J .	18414	165794	85743	3.86
5	TD-CSE	32829	6830	39659	3088	1.2	-	-	<u>-</u>	1-
	BU-CSE	33026	6109	39135	25634	44	7579	89820	39805	1.72
-	None	144813	1270	146083	<u>u</u>	<u>.</u>	35117	335134	180402	11.15
6	TD-CSE	62653	13852	76505	26720	4.8	=:	-	-	-
	BU-CSE	63832	10103	73935	147390	191.0	13764	160634	74696	3.08

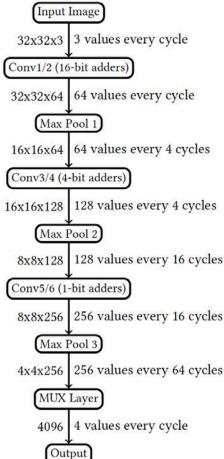
> RPAG too computationally expensive for layers 2-6

Digit Serial Arithmetic

- Used 16-bit fixed point
- Each layer followed by batch normalization with floating point scaling factor
- Suppose that for a given layer, p pixels arrive at the same time
 - For p ≥ 1 have p adder trees in parallel
 - For p < 1 word or bit-serial adders can match input rate with hardware resources
 - 4-bit digit serial has 1/4 area
 - 1-bit bit serial has 1/16 area
- Avoids idle adders







Network Studied

- > VGG-7 network
- Ternary weights
- > 16-bit activations
- Accept a single pixel every cycle (p=1)
 - W*W image takes W*W cycles

Layer	Num Mults	Num Mults	With Sparsity	With CSE
Conv1	32*32*3*3*3*64	1769472	716800	630784
Conv2	32*32*3*3*64*64	37748736	8637440	4653056
Conv3	16*16*3*3*64*128	18874368	4559616	2654720
Conv4	16*16*3*3*128*128	37748736	9396480	5213440
Conv5	8*8*3*3*128*256	18874368	4656768	2504640
Conv6	8*8*3*3*256*256	37748736	9356736	4731840
Dense	4096*128	524228	524228	1048456 ¹
SM	128*10	1280	1280	2560 ¹
Total	153289924	153 MMACs/Image	38 MMACs/Image	21 MOps/Image

¹ Obtained by converting one MACs to two Ops

Operation	Image Size In	Channel In	Channel Out
Buffer	32x32	3	3
Conv	32x32	3	64
Scale and Shift	32x32	64	64
Buffer	32x32	64	64
Conv	32x32	64	64
Scale and Shift	32x32	64	64
Buffer	32x32	64	64
Max Pool	32x32	64	64
Buffer	16x16	64	64
Conv	16x16	64	128
Scale and Shift	16x16	128	128
Buffer	16x16	128	128
Conv	16x16	128	128
Scale and Shift	16x16	128	128
Buffer	16x16	128	128
Max Pool	16x16	128	128
Buffer	8x8	128	128
Conv	8x8	128	256
Scale and Shift	8x8	256	256
Buffer	8x8	256	256
Conv	8x8	256	256
Scale and Shift	8x8	256	256
Buffer	8x8	256	256
Max Pool	8x8	256	256
FIFO	4x4	256	256
MuxLayer	4x4	256	4096
Dense	1x1	4096	128
Scale and Shift	1x1	128	128
MuxLayer	1x1	128	128
Dense	1x1	128	10

- CIFAR10 dataset
- Image padded with 4 pixels each side and randomly cropped back to 32x32
- Weights are compared with threshold $\Delta^* \approx \epsilon \cdot E(|W|)$
 - 0 if less than threshold, $s(\pm 1)$ otherwise (s is a scaling factor)
- ightharpoonup We introduce the idea of changing ϵ to control sparsity

TNN Type	ϵ	Sparsity (%)	Accuracy
Graham [Graham 2014] (Floating Point)	-	-	96.53%
Li et al. [Li et al. 2016], full-size	0.7	≈ 48	93.1%
Half-size	0.7	≈ 47	91.4%
Half-size	0.8	≈ 52	91.9%
Half-size	1.0	≈ 61	91.7%
Half-size	1.2	≈ 69	91.9%
Half-size	1.4	≈ 76	90.9%
Half-size	1.6	≈ 82	90.3%
Half-size	1.8	≈ 87	90.6%

Breakdown of Layer Sparsity

Layer Type	Input Image Size	Num Filters	ϵ	Sparsity
Conv2D	$32 \times 32 \times 3$	64	0.7	54.7%
Conv2D	$32 \times 32 \times 64$	64	1.4	76.9%
Max Pool	$32 \times 32 \times 64$	64	-	-
Conv2D	$16 \times 16 \times 64$	128	1.4	76.1%
Conv2D	$16 \times 16 \times 128$	128	1.4	75.3%
Max Pool	$16 \times 16 \times 128$	128		=
Conv2D	$8 \times 8 \times 128$	256	1.4	75.8%
Conv2D	$8 \times 8 \times 256$	256	1.4	75.4%
Max Pool	$8 \times 8 \times 256$	256	-	_
Dense	4096	128	1.0	76.2%
Softmax	128	10	1.0	58.4%

Improvement in using CSE

Layer	% decrease in Adds+Regs	% decrease in CLBs	%decrease in FFs	% decrease in LUTs
1	-29.0	-41.4	-48.4	-36.8
2	-47.7	-32.6	-40.0	-43.2
3	-42.3	-42.1	-39.6	-52.9
4	-44.6	-44.6	-42.3	-55.3
5	-45.8	-58.8	-45.8	-53.6
6	-49.4	-60.8	-52.1	-58.6

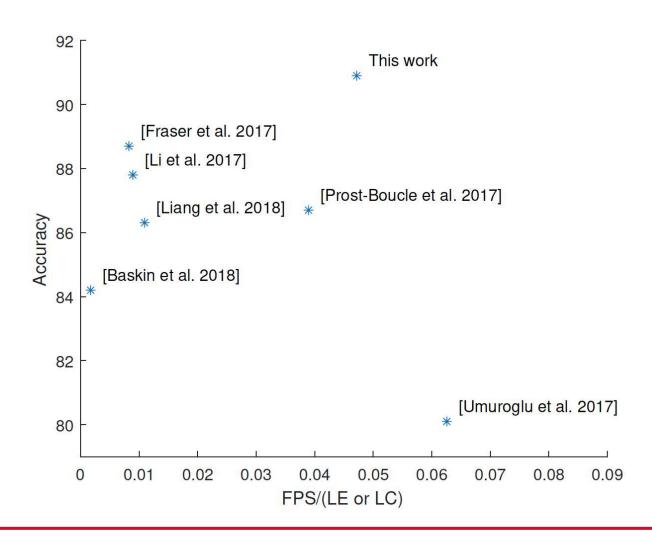
- System implemented on Ultrascale+ VU9P @ 125 MHz
- Open Source Verilog generator
 - https://github.com/da-steve101/binary_connect_cifar
- Generated code using in AWS F1 implementation
 - https://github.com/da-steve101/aws-fpga

Block	LUTs/1182240	FFs/2364480
Conv1	3764 (0.3%)	10047 (0.4%)
Conv2	40608 (3.4%)	71827 (3.0%)
Conv3	55341 (4.7%)	56040 (2.4%)
Conv4	111675 (9.4%)	110021 (4.7%)
Conv5	73337 (6.2%)	79233 (3.4%)
Conv6	127932 (10.8%)	139433 (5.9%)
All Conv	535023 (45.3%)	631672 (26.7%)
Dense	12433 (1.1%)	19295 (0.8%)
SM	500 (0.04%)	442 (0.02%)
Whole CNN	549358 (46.5%)	659252 (27.9%)
Whole design	787545 (66.6%)	984443 (41.6%)

Comparison with ASIC and FPGA implementations

Reference	Hardware $(mm^2,nm,LE^5/LC^5 \times 10^6)$	Precision (wghts, actv)	Freq. [MHz]	Latency	TOps/sec A/L/E ⁶	FPS	Accuracy
[Venkatesh et al. 2017]	ASIC(1.09,14,-)	$(2,16^2)$	500	_	2.5/2.5/2.5	-	91.6% ³
[Andri et al. 2017]	ASIC(1.9,65,-)	(1,12)	480	-	1.5/1.5/1.5	434	:
[Jouppi et al. 2017]	ASIC(331,28,-)	(8,8)	700	$\approx 10 \text{ ms}$	86/86/86 ⁴	-	:-
[Baskin et al. 2018]	5SGSD8(1600,28,0.7)	(1,2)	105	_	_	1.2 k^3	84.2%
[Li et al. 2017]	XC7VX690(1806.25,28,0.7)	$(1^1, 1)$	90	-	7.7/3.9/7.7	6.2 k	87.8%
[Liang et al. 2018]	5SGSD8(1600,28,0.7)	(1,1)	150	<u></u>	9.4/4.7/9.4	$7.6 k^3$	86.31%
[Prost-Boucle et al. 2017]	VC709(1806.25,28,0.7)	(2,2)	250	=	8.4/4.2/8.4	27 k	86.7%
[Umuroglu et al. 2017]	ZC706(961,28,0.35)	(1,1)	200	283 μs	2.4/1.2/2.4	21.9 k	80.1%
[Fraser et al. 2017]	KU115(1600,20,1.45)	(1,1)	125	671 μs	14.8/7.4/14.8	12 k	88.7%
This work	VU9P(2256.25,20,2.6)	(2,16)	125	29 μs	2.5/2.5/37.3	122k	90.9%

¹First layer is fixed point, ²floating point, ³estimated, ⁴ 92 TOps/sec peak, ⁵ LE and LC are from Xilinx or Altera documentation of the FPGAs, ⁶ Actual/Logical/Equivalent



- Presented method to unroll convolution with ternary weights and make parallel implementation
 - Exploits unstructured sparsity with no overhead
 - Uses CSE, sparsity control and digit serial adders to further reduce area
 - Limited amount of buffering and only loosely dependent on image size
- As larger FPGAs become available this technique may become more favourable

Summary of the Four Techniques

- Multipliers form the basis for the computational part of ML
- Presented a number of different techniques to trade off flexibility, throughput and area
- First three are applicable to ASICs or FPGA hard blocks but unrolled ternary is FPGA-specific

	Flexibility	Throughput	Area
Two speed	Normal	Normal	Normal
PIR	High	High	High
AddNet	Reduced	High	Low
Unrolled ternary	Ternary	High	Low

- [1] D. J. M. Moss, D. Boland, and P. H. W. Leong. <u>A two-speed, radix-4, serial-parallel multiplier</u>. *IEEE Transactions on Very Large Scale Integration (VLSI) Systems*, 27(4):769–777, April 2019. (doi:10.1109/TVLSI.2018.2883645)
- [2] SeyedRamin Rasoulinezhad, Hao Zhou, Lingli Wang, and Philip H.W. Leong. PIR-DSP: An FPGA DSP block architecture for multi-precision deep neural networks. In Proc. IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 1–8, 2019. (doi:10.1109/FCCM.2019.00015)
- [3] Julian Faraone, Martin Kumm, Martin Hardieck, Peter Zipf, Xueyuan Liu, David Boland, and Philip H.W. Leong. <u>AddNet: Deep neural networks using FPGA-optimized multipliers</u>. *IEEE Transactions on VLSI Systems*, page to appear (accepted 11 Aug 2019), 2019. (doi:10.1109/TVLSI.2019.2939429)
- [4] Stephen Tridgell, Martin Kumm, Martin Hardieck, David Boland, Duncan Moss, Peter Zipf, and Philip H. W. Leong. <u>Unrolling ternary neural networks</u>. *ACM Transactions on Reconfigurable Technology and Systems*, page to appear (accepted 30 Aug 2019), 2019.

https://phwl.github.io/talks

