Multipliers for FPGA Machine Learning Applications

Australia

Australia and Europe Area sze comporson
Darwin to Perth 4396 km • Perth to Adelaide 2707 km • Adelaide to Melbourne 726 km
Melbourne to Sydney 887 km • Sydney to Brisbane 972 km • Brisbane to Cairns 1748 km
Population: ~25M (2017) Europe: ~743M (2018)

Computer Engineering Laboratory

, Focuses on how to use parallelism to solve demanding problems

- Novel architectures, applications and design techniques using VLSI, FPGA and parallel computing technology

, Research

- Reconfigurable computing
- Machine learning
- Signal processing
, Collaborations
- Xilinx, Intel, Exablaze
- Defence and DSTG
- clustertech.com

, Multipliers (and adders) play a key role in the implementation of DNNs
) This talk
- Two speed multiplier with different critical paths for zero and non-zero recodings
- PIR-DSP block to support a range of precisions
- A fully pipelined DNN implementation with ternary coefficients
, These slides are available at https://phwl.github.io/talks

A Two Speed Multiplier

D. J. M. Moss, D. Boland, and P. H. W. Leong
, Multipliers (and adders) play a key role in the implementation of DNNs
, This talk

- Two speed multiplier with different critical paths for zero and non-zero recodings
- PIR-DSP block to support a range of precisions
- A fully pipelined DNN implementation with ternary coefficients

Unsigned Multiplication

Example: Multiply 118d by 99d

Step1) Initialize Multiplicand Multiplier	$\begin{array}{r} 118 d \\ \underline{99 d} \end{array}$	Two's Complement Method	
Step2) Find partial products	$\begin{gathered} 1062 \mathrm{~d} \\ 1062 \mathrm{~d} \end{gathered}$	Step1) Initialize	$\begin{aligned} 118 d & =01110110 b \\ 99 d & =\underline{01100011 b} \end{aligned}$
Step3) Sum up the shifted partial products	11682d		$01110110 b$ $01110110 ~ b$
		Step2) Find partial products	$\begin{array}{cc} 00000000 & b \\ 00000000 & b \end{array}$
> Shift-and-Add Algorithm			\square
		Step3) Sum up the shifted partial products	$\underline{00000000} 010 \mathrm{~b}$
Convert 2's-Comp back to decimal:$0010110110100010=11682 \mathrm{~d}$			

Signed Multiplication

, How can we handle signed multiplication?
, Could

- multiply absolute values
- separately calculate the sign
- negate if necessary
, But ...

Signed Multiplication using Booth Recoding

, Booth Recoding

- Reduce the number of partial products by recoding the multiplier operand
- Works for signed numbers

Example: Multiply -118 by -99

$$
\begin{aligned}
\text { Recall, } 99 & =01100011 \mathrm{~b} \\
-99 & =10011101 \mathrm{~b}
\end{aligned}
$$

Radix-2
Booth $\quad-99=\overline{1} 010 \quad 0 \overline{1} 1 \overline{1}$
Recoding

A_{n}	$\mathrm{A}_{\mathrm{n}-1}$	Pow-order Bit Product
0	0	0
0	1	+B
1	0	-B
1	1	0

Example of Booth Radix-2 Recoding

Multiply -118 by -99

Booth Radix-4 Multiplication

, Similar to Radix-2, but uses looks at two loworder bits at a time (instead of 1)

Recall, 99d $=01100011 \mathrm{~b}$
1001 1100b

$-99 d$	$=10011101 b$
$-99 d$	$=\overline{2} 2 \overline{1} 1$

$>\left(-99=-2 \cdot 4^{3}+2 \cdot 4^{2}-1 \cdot 4^{1}+1 \cdot 4^{0}\right)$

$\mathrm{Y}_{\mathrm{i}+2}$	$\mathrm{Y}_{\mathrm{i}+1}$	Y_{i}	e_{i}
0	0	0	0
0	0	1	+B
0	1	0	+B
0	1	1	+2 B
1	0	0	-2 B
1	0	1	-B
1	1	0	-B
1	1	1	0

Example of Booth Radix-4 Multiplication

Example: Multiply -118d by -99d

$$
\begin{aligned}
& \text { Radix-4 Booth } \\
& B=-118 d=10001010 b \\
& -B=118 d=01110110 b \\
& 2 B=-236 d=100010100 b \\
& -2 B=236 d=011101100 b \\
& A=-99 d=10011101 b \\
& -99 \mathrm{~d}=\overline{2} 2 \overline{1} 1 \\
& \text { Convert 2's-Comp back to decimal: } \\
& 0010110110100010 \text { = 11682d } \\
& \text { - Reduces number of partial products by half! }
\end{aligned}
$$

Booth Radix-4 Multiplier Implementation

TABLE I: Booth| Encoding

Y_{i+2}	Y_{i+1}	Y_{i}	e_{i}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	2
1	0	0	$\overline{2}$
1	0	1	$\overline{1}$
1	1	0	$\overline{1}$
1	1	1	0

$\overline{2}$ and $\overline{1}$ represent -2 and -1 respectively.

Algorithm: Booth Radix-4 Multiplication
Data: y : Multiplier, x : Multiplicand
Result: p : Product
$p=y$;
$e=(P[0]-2 P[1])$;
for count $=1$ to N do
PartialProduct $=e * x$;
$p=\operatorname{sra}(p, 2)$;
$P[2 * B-1: B]+=$ PartialProduct;
$e=(P[1]+P[0]-2 P[2]) ;$
end

Booth Radix-4 Multiplier Datapath

Algorithm: Booth Radix-4 Multiplication
Data: y : Multiplier, x : Multiplicand
Result: p : Product
$p=y$;
$e=(P[0]-2 P[1])$;
for count $=1$ to N do
PartialProduct $=e * x$;
$p=\operatorname{sra}(p, 2)$;
$P[2 * B-1: B]+=$ PartialProduct;
$e=(P[1]+P[0]-2 P[2]) ;$
end

Two-Speed Multiplier

- Booth Radix-4 datapath split into 2 sections, each with own critical path
- Non-zero encodings take $\bar{K} \tau$ (add) and zero take τ (skip)
- Naturally supports sparse problems

Algorithm: Two Speed Booth Radix-4 Multiplication
Data: y : Multiplier, x : Multiplicand
Result: p : Product

```
\(p=y\);
\(e=(P[0]-2 P[1])\);
for count \(=1\) to \(N\) do
    \(p=\operatorname{sra}(p, 2)\);
    // If non-zero encoding, take the \(K \tau\)
        path, otherwise the \(\tau\) path
    if \(e \neq 0\) then
        // this path is clocked \(\bar{K}\) times
        PartialProduct \(=e * x\);
        \(P[2 * B-1: B]+=\) PartialProduct;
    end
    \(e=(P[1]+P[0]-2 P[2]) ;\)
end
```


Two-speed multiplier Execution

Bit Representation	Action	Time	PartialProduct
1111010001000	skip	τ	$0 \times \times 2{ }^{0}$
11110100010	add	$\tau+\overline{\mathrm{K}} \tau$	$1 \times \times 2$
111101000	skip	$2 \tau+\mathrm{K} \tau$	$0 \times \times 2{ }^{4}$
1111010	add	$2 \tau+2 \mathrm{~K} \tau$	$1 \times \times 2{ }^{6}$
11110	add	$2 \tau+3 \mathrm{~K} \tau$	$-1 \times \times 2$
111	skip	$3 \tau+3 \bar{K}_{\tau}$	$0 \times \times 2{ }^{10}$

B	Type	Area (LEs)	Max Delay (ns)	Latency (Cycles)	Power (mW)
	Parallel(Combinatorial)	5104	14.7	1	2.23
	Parallel(Pipelined)	4695	6.99	$4^{* *}$	9.62
	Booth Serial-Parallel	292	3.9	33	2.23
	Two Speed	304	$1.83(\tau)$	45.2^{*}	5.2
32	Parallel(Combinatorial)	1255	10.2	1	1.33
	Parallel(Pipelined)	1232	4.6	$4^{* *}$	5.07
	Booth Serial-Parallel	156	3.8	17	1.78
	Two Speed	159	$1.76(\tau)$	25.6^{*}	3.18
16	Parallel(Combinatorial)	319	6.8	1	0.94
	Parallel(Pipelined)	368	3.2	$4^{* *}$	3.49
	Booth Serial-Parallel	81	2.72	9	1.67
	Two Speed	87	$1.52(\tau)$	14^{*}	4.35

Area * Time Improvement of TSM

, Variant of the serial-parallel modified radix-4 Booth multiplier
, Adds only the non-zero Booth encodings and skips over the zero operations
, Two sub-circuits with different critical paths are utilised so that throughput and latency are improved for a subset of multiplier values
, For bit widths of 32 and 64, our optimisations can result in a 1.42-3.36x improvement over the standard parallel Booth multiplier
, Future work: explore training NN with weights to minimise execution time on TSM

PIR-DSP: An FPGA DSP block Architecture for Multi-Precision Deep Neural Networks

SeyedRamin Rasoulinezhad, Hao Zhou, Lingli Wang, and Philip H.W. Leong
, Multipliers (and adders) play a key role in the implementation of DNNs
) This talk

- Two speed multiplier with different critical paths for zero and non-zero recodings
- PIR-DSP block to support a range of precisions
- A fully pipelined DNN implementation with ternary coefficients

Overview

, Introduction
, PIR-DSP Architecture
, Results
, Conclusion

Embedded Deep Neural Networks

DNNs for embedded applications share two features to reduce computation and storage requirements

- Low precision (from 1-16 bits)
- Depthwise separable convolutions

Computation and Storage for Embedded DNNs

Distribution of \# of parameters

Imagenet accuracy with binary and ternary weights and 8-bit activations

Model		$\mathbf{1 - 8}$	$\mathbf{2 - 8}$	Baseline	Reference
AlexNet	Top-1	$\mathbf{5 6 . 6}$	$\mathbf{5 8 . 1}$	56.6	57.1
	Top-5	$\mathbf{7 9 . 4}$	$\mathbf{8 0 . 8}$	80.2	80.2
VGG	Top-1	$\mathbf{6 6 . 2}$	$\mathbf{6 8 . 7}$	69.4	-
	Top-5	$\mathbf{8 7 . 0}$	$\mathbf{8 8 . 5}$	89.1	-
ResNet-18	Top-1	$\mathbf{6 2 . 9}$	$\mathbf{6 7 . 7}$	69.1	69.6
	Top-5	$\mathbf{8 4 . 6}$	$\mathbf{8 7 . 8}$	89.0	89.2

, Optimise FPGA DSP architecture to better support

- Efficient implementation of embedded DNNs
- Wordlengths down to ternary and binary
, Talk will focus on convolutions

Overview

, Introduction

, PIR-DSP Architecture
, Results
, Conclusion

Existing DSPs

, Xilinx DSP48

- 27×18 multiplier, 48 -bit ALU (Add/Sub/Logic), 27-bit pre-adder, Wide 96bit XOR, 48-bit comparator

- No support for low-precision computations
- No run-time configuration
- 1D arrangement inefficient for implementing 2D systolic arrays

PIR-DSP

, PIR-DSP: Optimized version of DSP48

- Precision: Multiplier architecture
- Interconnect: Shift-Reg
- Reuse : RF/FIFO

Based on two approaches:

1. Chopping
2. Recursive decomposition

Parameterised Decomposable MAC unit
, Notation: M×NCijDk

, PIR-DSP multiplier: 27×18C32D2

- Chopping factors 3 and 2 respectively for 27 and 18
- $(27=9+9+9) \times(18=9+9)$
- Six 9×9 multiplier
- Decomposing factor is 2

PIR-DSP Modes:

- Eight $2 \times 2+2 \times 2+2 \times 2 \rightarrow 24$ MACs

Interconnect (1)

, Three types of convolutions

1- Depth-wise: using three PIR-DSPs
2- Standard: based on depth-wise convolution implementation and adding the partial results

2D systolic array (Eyeriss)
conventional
ours

3- Point-wise

Cycle \#0

3- Point-wise

Cycle \#1 - Streaming

3- Point-wise

Cycle \#1-Computing

Filters

3- Point-wise

Cycle \#2 - Streaming

Filters

3- Point-wise

Cycle \#2 - Streaming

Filters

3- Point-wise

Cycle \#2 - Computing

Filters

3- Point-wise

Cycle \#3 - Streaming

Filters

3- Point-wise

Cycle \#3 - Streaming

Filters

3- Point-wise

Cycle \#3 - Computing

Filters

Depthwise Convolution (DW)

Overview

, Introduction
, PIR-DSP Architecture
, Results
, Conclusion

Area and Frequency

, SMIC 65-nm standard cell technology

- Synopsis Design Compiler 2013.12

Version	Area Ratio	Fmax
DSP48E2	1.0	463
+ M27×18C32D2 MAC-IP	1.14	358
+ interconnect	1.18	362
+ reuse	1.28	357

DATA MOVEMENT ENERGY RATIOS IN 65 NM TECHNOLOGY $(1 \times=90 \mathrm{FJ})$.
, Other networks are similar

Energy	FF	SR_{e}	RF_{e}	Chain	RF	SR	$\mathrm{BRAM}(\mathrm{B})$	MAC
Ratio	1	2	12.5	23	40	44	205	$89-22$

Related Work

, Sits between Sharma (low-precision) and Boutros (high-precision)

	Bitfusion [56] ISCA'18	Ours	Boutros [44] FPL'18	Ours
Area	0.24	1	0.77	1
Performance	Per Area			
2×2	1	0.4		
4×4	1	0.7	1	1.2
8×8	1	1.4	1	1.2
16×16			1	0.4
27×18			1	0.8

Overview

, Introduction
, PIR-DSP Architecture
, Results
, Conclusion
, Described optimizations to the DSP48 to support a range of low-precision DNNs and quantified their impact on performance

- Precision, Interconnect and Reuse
- designs are available at http://github.com/raminrasoulinezhad/PIR-DSP
, Future research
- Consider what we can do if we give up DSP48-like functionality
- Other interconnect optimisations

Unrolling Ternary Networks

Stephen Tridgell, Martin Kumm, Martin Hardieck, David Boland, Duncan Moss, Peter Zipf, Philip H.W. Leong
, Multipliers (and adders) play a key role in the implementation of DNNs
) This talk

- Two speed multiplier with different critical paths for zero and non-zero recodings
- PIR-DSP block to support a range of precisions
- A fully pipelined DNN implementation with ternary coefficients

Introduction

, Not possible to make fully parallel implementations of a NN on contemporary FPGA due to size
, Fit entire DNN on FPGA by exploiting unstructured sparsity and the following techniques:

1. Buffering of streaming inputs in a pipelined manner
2. Ternary weights implemented as pruned adder trees
3. Common subexpression merging
4. 16-bit bit serial arithmetic to minimize accuracy loss with low area
5. Sparsity control

Buffering of Streaming Inputs

Implement Pipelined 3x3 Convolution

Input FIFO outputs the pixel each cycle to both Buffer A and the first stage of a shift register.
Buffer A and Buffer B delay the output by the image width

Ternary Weights as Pruned Adder Trees

, Weights are ternary

- So multiplication with ± 1 is either addition or subtraction
- Multiplication with 0 makes matrix sparse

$$
\begin{array}{ccc}
\mathrm{a} \times(-1) & \mathrm{b} \times 0 & \mathrm{c} \times 1 \\
\mathrm{~d} \times 0 & \mathrm{e} \times 1 & \mathrm{f} \times 1 \\
\mathrm{~g} \times 0 & \mathrm{~h} \times(-1) & \mathrm{i} \times 0
\end{array}
$$

Common Subexpression Elimination

, Weights are ternary

- Reduces convolution to constructing adder tree
- Subexpression merged to reduce implementation

$$
\begin{array}{ccc}
\mathrm{a} \times(-1) & \mathrm{b} \times 0 & \mathrm{c} \times 1 \\
\mathrm{~d} \times 0 & \mathrm{e} \times 1 & \mathrm{f} \times 1 \\
\mathrm{~g} \times 0 & \mathrm{~h} \times(-1) & \mathrm{i} \times 0
\end{array}
$$

Computing $z_{0}=c+e+f-(a+h)$ and $z_{1}=c+d-e-f$

Common Subexpression Elimination (RPAG)

, RPAG Algorithm

- Greedy algorithm for the related Multiple Constant Multiplication problem
- Looks at all the outputs of a matrix-vector multiplication and calculates the minimal tree depth, d, required to get the results
- Tries to determine the minimum number of terms needed at depth $d-1$ to compute the terms at depth d and iterates until $\mathrm{d}=1$ (whole tree generated)

(a)

(b)

(c)

Fig. 1. Graph realizations of coefficient set $\{44,130,172\}$: (a) Adder graph obtained by $\mathrm{H}_{\text {cub }}$ AD min, (b) PAG using ASAP pipelining, (c) optimal PAG

Top-down CSE (TD-CSE)

, Builds multiple adder trees from the inputs to the outputs by creating an adder each iteration
, Count frequency of all size 2 subexpressions, replace most frequent $\left(x_{6}=x_{2}+x_{3}\right)$

$$
\mathbf{y}=\left(\begin{array}{llllll}
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\left(\begin{array}{c}
x_{2}+x_{3} \\
x_{0}+x_{2}+x_{3}+x_{4} \\
x_{1}+x_{4}+x_{5} \\
x_{1}+x_{5} \\
x_{0}+x_{2}+x_{3} \\
x_{0}+x_{3} \\
x_{1}+x_{4}+x_{5}
\end{array}\right) . \quad \mathbf{y}=\left(\begin{array}{c}
x_{6} \\
x_{0}+x_{4}+x_{6} \\
x_{1}+x_{4}+x_{5} \\
x_{1}+x_{5} \\
x_{0}+x_{6} \\
x_{0}+x_{3} \\
x_{1}+x_{4}+x_{5}
\end{array}\right) .
$$

Bottom-up CSE (BU-CSE)

, Starts at the outputs and works back to the inputs
, More computation than TD-CSE but can find larger common subexpressions
, Largest common subexpression is then selected to be removed e.g. $x_{6}=x_{0}+x_{2}+x_{3}$ appears twice and is added to the bottom row
$\mathbf{y}=\left(\begin{array}{llllll}0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1\end{array}\right)\left(\begin{array}{c}x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\left(\begin{array}{c}x_{2}+x_{3} \\ x_{0}+x_{2}+x_{3}+x_{4} \\ x_{1}+x_{4}+x_{5} \\ x_{1}+x_{5} \\ x_{0}+x_{2}+x_{3} \\ x_{0}+x_{3} \\ x_{1}+x_{4}+x_{5}\end{array}\right) . \quad \mathbf{y}=\left(\begin{array}{c}x_{2}+x_{3} \\ x_{4}+x_{6} \\ x_{1}+x_{4}+x_{5} \\ x_{1}+x_{5} \\ x_{6} \\ x_{0}+x_{3} \\ x_{1}+x_{4}+x_{5} \\ x_{0}+x_{3}+x_{3}\end{array}\right)$
(1) Compute the number of common terms for each pair of vectors and store this as the pattern matrix
(2) Find the largest value in the pattern matrix and the vectors it corresponds to
(3) Remove that subexpression from all matching vectors following the process described for the example in Equation 8
(4) Update the pattern matrix
(5) Go to step 2 until the largest value in the pattern matrix is 1

Comparison of CSE Techniques for all Layers

Layer	Method	Adds	Regs	Adds+Regs	Time(s)	$\operatorname{Mem}(\mathrm{GB})$	CLB/148K	FF/2.4M	LUTS/1.2M	$\mathrm{P} \& \mathrm{R}(\mathrm{hrs})$
1	None	731	137	868	-	-	1400	8723	8272	0.5
	RPAG	451	31	482	64	0.008	894	5764	6260	0.48
	TD-CSE	295	304	599	0.4	0.029	-	-	-	-
	BU-CSE	295	321	616	0.5	0.03	820	4499	5230	0.45
2	None	8432	249	8681	-	-	15231	119848	116345	1.08
	TD-CSE	3782	1517	5299	24	0.1	-	-	-	-
	BU-CSE	3686	858	4544	64	0.17	10258	71908	66131	0.93
3	None	17481	491	17972	-	-	15171	102657	77743	1.9
	TD-CSE	8466	2299	10765	89	0.18	-	-	-	-
	BU-CSE	8492	1878	10370	545	1.1	8772	61965	36611	1.13
4	None	36155	586	36741	-	-	30536	206940	164458	4.25
	TD-CSE	17143	4214	21357	873	0.63	-	-	-	-
	BU-CSE	17309	3056	20365	2937	6.6	16909	118476	73581	2.68
5	None	71050	1198	72248	-	-	18414	165794	85743	3.86
	TD-CSE	32829	6830	39659	3088	1.2	-	-	-	-
	BU-CSE	33026	6109	39135	25634	44	7579	89820	39805	1.72
6	None	144813	1270	146083	-	-	35117	335134	180402	11.15
	TD-CSE	62653	13852	76505	26720	4.8	-	-	-	-
	BU-CSE	63832	10103	73935	147390	191.0	13764	160634	74696	3.08

RPAG too computationally expensive for layers 2-6

Digit Serial Arithmetic

, Used 16-bit fixed point
, Each layer followed by batch normalization with floating point scaling factor
, Suppose that for a given layer, p pixels arrive at the same time

- For $p \geq 1$ have p adder trees in parallel
- For $p<1$ word or bit-serial adders can match input rate with hardware resources
- 4-bit digit serial has $1 / 4$ area
- 1-bit bit serial has 1/16 area
, Avoids idle adders

Network Studied

, VGG-7 network

, Ternary weights
16-bit activations
, Accept a single pixel every cycle ($\mathrm{p}=1$)

- W*W image takes $\mathrm{W}^{*} \mathrm{~W}$ cycles

Layer	Num Mults	Num Mults	With Sparsity	With CSE				
Conv1	$32^{*} 32^{*} 3^{*} 3^{*} 3^{*} 64$	1769472	716800	630784				
Conv2	$32^{*} 32^{*} 3^{*} 3^{*} 64^{*} 64$	37748736	8637440	4653056				
Conv3	$16^{*} 16^{*} 3^{*} 3^{*} 64^{*} 128$	18874368	4559616	2654720				
Conv4	$16^{*} 16^{*} 3^{*} 3^{*} 128^{*} 128$	37748736	9396480	5213440				
Conv5	$8^{*} 8^{*} 3^{*} 3^{*} 128^{*} 256$	18874368	4656768	2504640				
Conv6	$8^{*} 8^{*} 3^{*} 3^{*} 256^{*} 256$	37748736	9356736	4731840				
Dense	$4096^{*} 128$	524228	524228	1048456^{1}				
SM	$128^{*} 10$	1280	1280	2560^{1}				
Total	153289924	153 MMACs/Image					38 MMACs/Image	21 MOps/Image
Obtained by converting one MACs to two Ops								

Operation	Image Size In	Channel In	Channel Out
Buffer	32×32	3	3
Conv	32×32	3	64
Scale and Shift	32×32	64	64
Buffer	32×32	64	64
Conv	32×32	64	64
Scale and Shift	32×32	64	64
Buffer	32×32	64	64
Max Pool	32×32	64	64
Buffer	16×16	64	64
Conv	16×16	64	128
Scale and Shift	16×16	128	128
Buffer	16×16	128	128
Conv	16×16	128	128
Scale and Shift	16×16	128	128
Buffer	16×16	128	128
Max Pool	16×16	128	128
Buffer	8×8	128	128
Conv	8×8	128	256
Scale and Shift	8×8	256	256
Buffer	8×8	256	256
Conv	8×8	256	256
Scale and Shift	8×8	256	256
Buffer	8×8	256	256
Max Pool	8×8	256	256
FIFO	4×4	256	256
MuxLayer	4×4	256	4096
Dense	1×1	4096	128
Scale and Shift	1×1	128	128
MuxLayer	1×1	128	128
Dense	1×1	128	10

Sparsity Control

, CIFAR10 dataset
, Image padded with 4 pixels each side and randomly cropped back to 32×32
, Weights are compared with threshold $\Delta^{*} \approx \epsilon \cdot E(|W|)$

- 0 if less than threshold, $s(\pm 1)$ otherwise (s is a scaling factor)
) We introduce the idea of changing ϵ to control sparsity

TNN Type	ϵ	Sparsity $(\%)$	Accuracy
Graham [Graham 2014] (Floating Point)	-	-	96.53%
Li et al. [Li et al. 2016], full-size	0.7	≈ 48	93.1%
Half-size	0.7	≈ 47	91.4%
Half-size	0.8	≈ 52	91.9%
Half-size	$1.0 \approx 61$	91.7%	
Half-size	$1.2 \approx 69$	91.9%	
Half-size	1.4	≈ 76	90.9%
Half-size	$1.6 \approx 82$	90.3%	
Half-size	1.8	≈ 87	90.6%

Breakdown of Layer Sparsity

Layer Type	Input Image Size	Num Filters	ϵ	Sparsity
Conv2D	$32 \times 32 \times 3$	64	0.7	54.7%
Conv2D	$32 \times 32 \times 64$	64	1.4	76.9%
Max Pool	$32 \times 32 \times 64$	64	-	-
Conv2D	$16 \times 16 \times 64$	128	1.4	76.1%
Conv2D	$16 \times 16 \times 128$	128	1.4	75.3%
Max Pool	$16 \times 16 \times 128$	128	-	-
Conv2D	$8 \times 8 \times 128$	256	1.4	75.8%
Conv2D	$8 \times 8 \times 256$	256	1.4	75.4%
Max Pool	$8 \times 8 \times 256$	256	-	-
Dense	4096	128	1.0	76.2%
Softmax	128	10	1.0	58.4%

Improvement in using CSE

Layer	\% decrease in Adds+Regs	\% decrease in CLBs	\%decrease in FFs	\% decrease in LUTs
1	-29.0	-41.4	-48.4	-36.8
2	-47.7	-32.6	-40.0	-43.2
3	-42.3	-42.1	-39.6	-52.9
4	-44.6	-44.6	-42.3	-55.3
5	-45.8	-58.8	-45.8	-53.6
6	-49.4	-60.8	-52.1	-58.6

, System implemented on Ultrascale+ VU9P @ 125 MHz
, Open Source Verilog generator

- https://github.com/da-steve101/binary connect cifar
, Generated code using in AWS F1 implementation
- https://github.com/da-steve101/aws-fpga

Area Breakdown

Block	LUTs/1182240	FFs/2364480
Conv1	$3764(0.3 \%)$	$10047(0.4 \%)$
Conv2	$40608(3.4 \%)$	$71827(3.0 \%)$
Conv3	$55341(4.7 \%)$	$56040(2.4 \%)$
Conv4	$111675(9.4 \%)$	$110021(4.7 \%)$
Conv5	$73337(6.2 \%)$	$79233(3.4 \%)$
Conv6	$127932(10.8 \%)$	$139433(5.9 \%)$
All Conv	$535023(45.3 \%)$	$631672(26.7 \%)$
Dense	$12433(1.1 \%)$	$19295(0.8 \%)$
SM	$500(0.04 \%)$	$442(0.02 \%)$
Whole CNN	$549358(46.5 \%)$	$659252(27.9 \%)$
Whole design	$787545(66.6 \%)$	$984443(41.6 \%)$

Accuracy

Comparison with ASIC and FPGA implementations

Reference	Hardware $\left(\mathrm{mm}^{2}, \mathrm{~nm}, \mathrm{LE}^{5} / \mathrm{LC}^{5} \times 10^{6}\right)$	Precision $(\mathrm{wghts}$, actv $)$	Freq. $[\mathrm{MHz}]$	Latency	TOps $/ \mathrm{sec}$ $\mathrm{A} / \mathrm{L} / \mathrm{E}^{6}$	FPS	Accuracy
[Venkatesh et al. 2017]	ASIC(1.09,14,-)	$\left(2,16^{2}\right)$	500	-	$2.5 / 2.5 / 2.5$	-	$91.6 \%^{3}$
[Andri et al. 2017]	ASIC(1.9,65,-)	$(1,12)$	480	-	$1.5 / 1.5 / 1.5$	434	-
[Jouppi et al. 2017]	ASIC(331,28,-)	$(8,8)$	700	$\approx 10 \mathrm{~ms}$	$86 / 86 / 86^{4}$	-	-
[Baskin et al. 2018]	5SGSD8(1600,28,0.7)	$(1,2)$	105	-	-	$1.2 \mathrm{k}^{3}$	84.2%
[Li et al. 2017]	XC7VX690(1806.25,28,0.7)	$\left(1^{1}, 1\right)$	90	-	$7.7 / 3.9 / 7.7$	6.2 k	87.8%
[Liang et al. 2018]	5SGSD8(1600,28,0.7)	$(1,1)$	150	-	$9.4 / 4.7 / 9.4$	$7.6 \mathrm{k}^{3}$	86.31%
[Prost-Boucle et al. 2017]	VC709(1806.25,28,0.7)	$(2,2)$	250	-	$8.4 / 4.2 / 8.4$	27 k	86.7%
[Umuroglu et al. 2017]	ZC706(961,28,0.35)	$(1,1)$	200	$283 \mu \mathrm{~s}$	$2.4 / 1.2 / 2.4$	21.9 k	80.1%
[Fraser et al. 2017]	KU115(1600,20,1.45)	$(1,1)$	125	$671 \mu \mathrm{~s}$	$14.8 / 7.4 / 14.8$	12 k	88.7%
This work	VU9P(2256.25,20,2.6)	$(2,16)$	125	$29 \mu \mathrm{~s}$	$2.5 / 2.5 / 37.3$	122 k	90.9%

[^0]
Accuracy vs Speed (FPGA Implementations)

, Presented method to unroll convolution with ternary weights and make parallel implementation

- Exploits unstructured sparsity with no overhead
- Uses CSE, sparsity control and digit serial adders to further reduce area
- Limited amount of buffering and only loosely dependent on image size
, As larger FPGAs become available this technique may become more favourable

Summary of the Three Techniques

, Multipliers form the basis for the computational part of ML
, Presented multiplier, embedded block and FPGA-level optimisations

	Flexibility	Area	NN Throughput
Two speed	Normal	Normal	High
PIR	High	High	High (for low precision)
Unrolled ternary	Low	Low	High

References

[1] D. J. M. Moss, D. Boland, and P. H. W. Leong. A two-speed, radix-4, serialparallel multiplier. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(4):769-777, April 2019. (doi:10.1109/TVLSI.2018.2883645)
[2] SeyedRamin Rasoulinezhad, Hao Zhou, Lingli Wang, and Philip H.W. Leong. PIR-DSP: An FPGA DSP block architecture for multi-precision deep neural networks. In Proc. IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), pages 1-8, 2019. (doi:10.1109/FCCM.2019.00015)
[3] Stephen Tridgell, Martin Kumm, Martin Hardieck, David Boland , Duncan Moss, Peter Zipf, and Philip H. W. Leong. Unrolling ternary neural networks. ACM Transactions on Reconfigurable Technology and Systems, page to appear (accepted 30 Aug 2019), 2019.

https://phwl.github.io/talks

[^0]: ${ }^{1}$ First layer is fixed point, ${ }^{2}$ floating point, ${ }^{3}$ estimated, ${ }^{4} 92 \mathrm{TOps} /$ sec peak, ${ }^{5} \mathrm{LE}$ and LC are from Xilinx or Altera documentation of the FPGAs, ${ }^{6}$ Actual/Logical/Equivalent

