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Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems  
- Novel architectures, applications and design techniques using VLSI, FPGA and parallel 

computing technology 

› Research
- Reconfigurable computing

- Machine learning

- Signal processing

› Collaborations
- Xilinx, Exablaze (now Cisco)

- Defence and DSTG

- clustertech.com
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Overview

› Implementation of small CNNs
- Unrolling Ternary Networks 

- Training deep neural networks in low-precision with high accuracy using FPGAs



Unrolling Ternary Networks

Stephen Tridgell, Martin Kumm, Martin Hardieck, David 
Boland, Duncan Moss, Peter Zipf, Philip H.W. Leong



Introduction

› A fully pipelined DNN implementation with ternary coefficients
› Difficult to make fully parallel implementations of a NN on contemporary FPGA 

due to size 
› Fit entire DNN on FPGA by exploiting unstructured sparsity and the following 

techniques:
1. Buffering of streaming inputs in a pipelined manner

2. Ternary weights implemented as pruned adder trees

3. Common subexpression merging 

4. 16-bit bit serial arithmetic to minimize accuracy loss with low area

5. Sparsity control
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Network Studied

› VGG-7 network
› Ternary weights
› 16-bit activations
› Accept a single pixel every cycle 

(p=1)
- W*W image takes W*W cycles
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Buffering of Streaming Inputs
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Implement Pipelined 3x3 Convolution

Input FIFO outputs the
pixel each cycle to both Buffer A and the 
first stage of a shift register.
Buffer A and Buffer B delay the output by 
the image width



Ternary Weights as Pruned Adder Trees

› Weights are ternary
- So multiplication with ±1 is either addition or subtraction

- Multiplication with 0 makes matrix sparse
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Common Subexpression Elimination (CSE)

› Weights are ternary
- Reduces convolution to 

constructing adder tree

- Subexpression merged to 
reduce implementation
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CSE Techniques

› None – doesn’t fit
› Reduced Pipelined Adder Graph (RPAG) – too slow
› Top down CSE (TD-CSE) – doesn’t find good solutions
› Bottom up CSE (BU-CSE) – worst of both worlds, runs out of memory
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Comparison of CSE Techniques for all Layers

› RPAG too 
computationally 
expensive for layers 2-6

› BU-CSE a bit better than 
TD-CSE
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Improvement in using CSE
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Digit Serial Arithmetic

› Used 16-bit fixed point
› Each layer followed by batch 

normalization with floating point 
scaling factor

› Suppose that for a given layer, p 
pixels arrive at the same time
- For p≥ 1 have p adder trees in 

parallel
- For p < 1 word or bit-serial adders 

can match input rate with hardware 
resources

- 4-bit digit serial has 1/4 area

- 1-bit bit serial has 1/16 area

› Avoids idle adders
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Sparsity Control

› CIFAR10 dataset
› Image padded with 4 pixels each side and randomly cropped back to 32x32
› Weights are compared with threshold

- 0 if less than threshold, 𝑠(±1) otherwise (s is a scaling factor)

› We introduce the idea of changing 𝜖 to control sparsity 
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Breakdown of Layer Sparsity

15



Implementation

› System implemented on Ultrascale+ VU9P @ 125 MHz
› Open Source Verilog generator

- https://github.com/da-steve101/binary_connect_cifar

› Generated code using in AWS F1 implementation
- https://github.com/da-steve101/aws-fpga
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https://github.com/da-steve101/binary_connect_cifar


Area Breakdown

17



Summary of Sparsity and CSE Improvement
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Accuracy
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Comparison with ASIC and FPGA implementations (CIFAR10)



Accuracy vs Speed (FPGA Implementations)
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Summary

› Presented method to unroll convolution with ternary weights and make parallel 
implementation
- Exploits unstructured sparsity with no overhead

- Uses CSE, sparsity control and digit serial adders to further reduce area

- Limited amount of buffering and only loosely dependent on image size

› As larger FPGAs become available this technique may become more favourable
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Training deep neural networks in low-precision 
with high accuracy using FPGAs

Sean Fox, Julian Faraone, David Boland, Kees Vissers, and 
Philip H.W. Leong



Deep Learning on the Edge

source: https://heartbeat.fritz.ai/

(and make use of 
fast, low power 
FPGA inference 
engines?)

› How do we get deep learning to the edge?
§ Train on GPUs
§ Move trained model to the edge

- .



Deep Learning

source: https://heartbeat.fritz.ai/

To the edge!

What about 
changing 
environments? 

We need to 
be able to 
train at the 
edge

› How do we get deep learning to the edge?
§ Train on GPUs
§ Move trained model to the edge

- .



DNN Inference and Training
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§ Forward path (Inference)

§ Each layer computes:
§ Linear transform (Matrix operation)
§ Non-linear activation function

𝑓(𝒙) = 𝑔(𝑾-𝒙 + 𝒃)



DNN Inference and Training

LossLayer
L2

W2

§ Backward path:

§ Step 1: Weight gradient

§ Step 2: Activation gradient
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DNN Inference and Training

LossLayer
L2

W2

§ Backward path

§ Two additional Matrix Mults at each layer:
§ Weight gradients
§ Activation gradients (or loss back-

propagated)
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DNN Training

› DNN training is dominated by matrix multiplication
› GPUs good at floating-point matrix operations

- Large dynamic range and avoids excessive quantisation errors critical for DNN training
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Mixed-Precision Algorithm

§ Low-Precision (8-bit)
§ All matrix multiplications
§ >95% of DNN operations

§ High-Precision
§ Everything else!
§ Of particular importance is the 

weight update and gradient 
accumulator

§ Suits a Zynq platform
§ Fast DDR, shared between PL 

and floating-point

FPGA

ARM



Mixed-Precision Algorithm

§ Weight Update 

§ Weight Gradient Accumulator

𝛁𝑾 = ∑𝒊E𝟏𝒃𝒂𝒕𝒄𝒉_𝒔𝒊𝒛𝒆 𝒙-. 𝛁𝒙

𝑾O@A = 𝑾O − 𝛼 𝜵𝑾O

If learning rate 𝛼 and 
weight gradient 𝜵𝑾O are 
small, then the update will 
be rounded to 0  

𝛁𝑾
× += × … ≈ 0

If accumulator is low 
precision, then small 
numbers are rounded to 0



Mixed-Precision Algorithm

§ Weight Update 

§ Weight Gradient Accumulator

𝛁𝑾 = ∑𝒊E𝟏𝒃𝒂𝒕𝒄𝒉_𝒔𝒊𝒛𝒆 𝒙-. 𝛁𝒙

𝑾O@A = 𝑾O − 𝛼 𝜵𝑾O

If learning rate 𝛼 and 
weight gradient 𝜵𝑾O are 
small, then the update will 
be rounded to 0  

𝛁𝑾
× += × …

High-precision 
accumulator can avoid 
underflow



Block Floating Point (BFP)

§ A group of numbers that share the same exponent

§ Outcome: Dynamic Range 
(at a cost of some accuracy degradation)
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We use 1 block for  weights, b for activations and deltas (where b is batch size)



Stochastic Weight Averaging Low Precision (SWALP)

› SWALP - averaging SGD 
iterates of the weights with a 
higher learning rate can 
recover quantisation errors



Stochastic Weight Averaging (SWA)

Representable points



Stochastic Weight Averaging (SWA)

Representable points LP-SGD Trajectory



Stochastic Weight Averaging (SWA)

Representable points LP-SGD Trajectory



Stochastic Weight Averaging (SWA)

Representable points LP-SGD Trajectory



Stochastic Weight Averaging (SWA)

Representable points LP-SGD Trajectory



Stochastic Weight Averaging (SWA)

Representable points LP-SGD Trajectory



Stochastic Weight Averaging (SWA)

Representable points LP-SGD Trajectory SWA Solution



Zynq APSoC

§ Heterogenous computing platform:
1. Processing System (ARM processor)
2. Programmable Logic (8-bit GEMM)
3. Shared DRAM

§ Well suited to standalone embedded applications



Example: Convolution
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Example: Convolution
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§ Convolution must be transformed into Matrix Multiplication

Im2col
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Hardware Accelerator

§ 8-bit GEMM (C = A.B  or  C=AT.B)

§ Block Floating Point (BFP) rescaling

PLARM

BT

Quant

Im2col

Accum.



Hardware Accelerator

§ Red line: 32x32 Array @ 200Mhz on ZCU111
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Hardware Accelerator

§ Red line: 32x32 Array @ 200Mhz on ZCU111

VGG

Operational Intensity (Ops/Byte)

Pe
rf

or
m

an
ce

 (G
O

Ps
/s

)

Peak memory bound 
performance (46 TOPs) 

**1xOp = 1xMAC

(10GB/s x 512 x 9 
macs/byte)



Hardware Accelerator
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Hardware Accelerator

§ Red line: 32x32 Array @ 200Mhz on ZCU111
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**1xOp = 1xMAC

Ours (200 GOPs)

Peak DSP bound 
performance (4.7 TOPs) 

Tile=2

Tile=64



Design and Runtime

§ Software integration with Darknet (Yolo backend)
§ Available: https://github.com/sfox14/darknet-zynq

Bitstream (.bit) and C/C++ runtime library (.so)

Open source C library for DNN training and inference

Our code can be compiled and run on ZYNQ 
boards with PYNQ v2.3 image

https://github.com/sfox14/darknet-zynq


High Accuracy
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Dataset Model Float SWALP Ours (8-bit)

CIFAR10
VGG16 93.02 92.47 92.93
PreResNet-20 93.50 93.29 93.29

MNIST Logistic 
Regression

92.60 92.06 92.70

q High accuracy can be sustained with mostly 8-bits
• only requires a few more epochs than float

q Batch=128, no bias, no batchnorm
q Lr=0.01, SWA applied to last 25% of epochs



Training Time
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§ Good speed-up over ARM
§ We don’t exploit batch-level parallelism
§ Much slower than a Tesla M40 GPU (600x) …



Software Overheads

§ Profiling VGG16 convolution layers (Pynq-Z1 and ZCU111)

Need to move 
im2col/col2im to FPGA



Software Overheads

§ Profiling VGG16 convolution layers

Room for better 
GEMM



Software Overheads

§ Profiling VGG16 convolution layers

Could update 
BFP less 
regularly/move 
quantisation to 
FPGA



Case Study: RF Anomaly Detector

§ Trained a small Autoencoder network in low-precision



Case Study: RF Anomaly Detector

§ Injected known anomalies into the validation set, and 
observed the time taken to train the model.



Conclusion

› FPGAs can be used for training at the edge!
› We demonstrate:
› Low-precision training techniques for high accuracy
› FPGA prototype with software integration
› We have highlighted room for optimisation:

- Move more computation to the FPGA

- Optimise matrix multiplication

- Lower precision

- Versal?
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https://phwl.github.io/talks

https://phwl.github.io/talks
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