Low-precision CNN Inference and Training for Edge Applications on FPGAs

Philip Leong | Computer Engineering Laboratory School of Electrical and Information Engineering, The University of Sydney

Computer Engineering Laboratory

- > Focuses on how to use parallelism to solve demanding problems
 - Novel architectures, applications and design techniques using VLSI, FPGA and parallel computing technology
- > Research
 - Reconfigurable computing
 - Machine learning
 - Signal processing
- > Collaborations
 - Xilinx, Exablaze (now Cisco)
 - Defence and DSTG
 - clustertech.com

- > Implementation of small CNNs
 - Unrolling Ternary Networks
 - Training deep neural networks in low-precision with high accuracy using FPGAs

Unrolling Ternary Networks

Stephen Tridgell, Martin Kumm, Martin Hardieck, David Boland, Duncan Moss, Peter Zipf, Philip H.W. Leong

- > A fully pipelined DNN implementation with ternary coefficients
- Difficult to make fully parallel implementations of a NN on contemporary FPGA due to size
- Fit entire DNN on FPGA by exploiting unstructured sparsity and the following techniques:
 - 1. Buffering of streaming inputs in a pipelined manner
 - 2. Ternary weights implemented as pruned adder trees
 - 3. Common subexpression merging
 - 4. 16-bit bit serial arithmetic to minimize accuracy loss with low area
 - 5. Sparsity control

Network Studied

- > VGG-7 network
- > Ternary weights
- > 16-bit activations
- Accept a single pixel every cycle (p=1)
 - W*W image takes W*W cycles

Operation	Image Size In	Channel In	Channel Out
Buffer	32x32	3	3
Conv	32x32	3	64
Scale and Shift	32x32	64	64
Buffer	32x32	64	64
Conv	32x32	64	64
Scale and Shift	32x32	64	64
Buffer	32x32	64	64
Max Pool	32x32	64	64
Buffer	16x16	64	64
Conv	16x16	64	128
Scale and Shift	16x16	128	128
Buffer	16x16	128	128
Conv	16x16	128	128
Scale and Shift	16x16	128	128
Buffer	16x16	128	128
Max Pool	16x16	128	128
Buffer	8x8	128	128
Conv	8x8	128	256
Scale and Shift	8x8	256	256
Buffer	8x8	256	256
Conv	8x8	256	256
Scale and Shift	8x8	256	256
Buffer	8x8	256	256
Max Pool	8x8	256	256
FIFO	4x4	256	256
MuxLayer	4x4	256	4096
Dense	1x1	4096	128
Scale and Shift	1x1	128	128
MuxLayer	1x1	128	128
Dense	1x1	128	10

Buffering of Streaming Inputs

Implement Pipelined 3x3 Convolution

Input FIFO outputs the pixel each cycle to both Buffer A and the first stage of a shift register. Buffer A and Buffer B delay the output by the image width

Ternary Weights as Pruned Adder Trees

- > Weights are ternary
 - So multiplication with ± 1 is either addition or subtraction
 - Multiplication with 0 makes matrix sparse

$$a \times (-1)$$
 $b \times 0$ $c \times 1$ $d \times 0$ $e \times 1$ $f \times 1$ $g \times 0$ $h \times (-1)$ $i \times 0$

Common Subexpression Elimination (CSE)

- > Weights are ternary
 - Reduces convolution to constructing adder tree
 - Subexpression merged to reduce implementation

 $\begin{array}{ll} a\times(-1) & b\times 0 & c\times 1 \\ d\times 0 & e\times 1 & f\times 1 \\ g\times 0 & h\times(-1) & i\times 0 \end{array}$

9

CSE Techniques

- None doesn't fit
- > Reduced Pipelined Adder Graph (RPAG) too slow
- > Top down CSE (TD-CSE) doesn't find good solutions
- > Bottom up CSE (BU-CSE) worst of both worlds, runs out of memory

Comparison of CSE Techniques for all Layers

 RPAG too computationally expensive for layers 2-6

THE UNIVERSITY OF

> BU-CSE a bit better than TD-CSE

Layer	Method	Adds+Regs	Time(s)	Mem(GB)	P&R(hrs)
	None	868	н	-	0.5
1	RPAG	482	64	0.008	0.48
1	TD-CSE	599	0.4	0.029	-
	BU-CSE	616	0.5	0.03	0.45
	None	8681	Ξ	-	1.08
2	TD-CSE	5299	24	0.1	1 <u>99</u>
	BU-CSE	4544	64	0.17	0.93
	None	17972	Ξ	(T	1.9
3	TD-CSE	10765	89	0.18	120.
	BU-CSE	10370	545	1.1	1.13
<u>81</u> .	None	36741	÷		4.25
4	TD-CSE	21357	873	0.63	0 75
	BU-CSE	20365	2937	6.6	2.68
	None	72248	H	H	3.86
5	TD-CSE	39659	3088	1.2	-
	BU-CSE	39135	25634	44	1.72
k.	None	146083	L	-	11.15
6	TD-CSE	76505	26720	4.8	
	BU-CSE	73935	147390	191.0	3.08

Layer	% decrease in Adds+Regs	% decrease in CLBs
1	-29.0	-41.4
2	-47.7	-32.6
3	-42.3	-42.1
4	-44.6	-44.6
5	-45.8	-58.8
6	-49.4	-60.8

> Used 16-bit fixed point

THE UNIVERSITY OF

- Each layer followed by batch normalization with floating point scaling factor
- Suppose that for a given layer, p pixels arrive at the same time
 - For $p \ge 1$ have p adder trees in parallel
 - For p < 1 word or bit-serial adders can match input rate with hardware resources
 - 4-bit digit serial has 1/4 area
 - 1-bit bit serial has 1/16 area
- > Avoids idle adders

Sparsity Control

- > CIFAR10 dataset
- > Image padded with 4 pixels each side and randomly cropped back to 32x32
- > Weights are compared with threshold $\Delta^* \approx \epsilon \cdot E(|W|)$
 - 0 if less than threshold, $s(\pm 1)$ otherwise (s is a scaling factor)
- > We introduce the idea of changing ϵ to control sparsity

TNN Type	e	Sparsity (%)	Accuracy
Graham [Graham 2014] (Floating Point)	-	-	96.53%
Li et al. [Li et al. 2016], full-size	0.7	≈ 48	93.1%
Half-size	0.7	≈ 47	91.4%
Half-size	0.8	≈ 52	91.9%
Half-size	1.0	≈ 61	91.7%
Half-size	1.2	≈ 69	91.9%
Half-size	1.4	≈ 76	90.9%
Half-size	1.6	≈ 82	90.3%
Half-size	1.8	≈ 87	90.6%

Breakdown of Layer Sparsity

Layer Type	Input Image Size	Num Filters	е	Sparsity
Conv2D	$32 \times 32 \times 3$	64	0.7	54.7%
Conv2D	$32 \times 32 \times 64$	64	1.4	76.9%
Max Pool	$32 \times 32 \times 64$	64	-	-
Conv2D	$16 \times 16 \times 64$	128	1.4	76.1%
Conv2D	$16 \times 16 \times 128$	128	1.4	75.3%
Max Pool	$16 \times 16 \times 128$	128	-	iii
Conv2D	$8 \times 8 \times 128$	256	1.4	75.8%
Conv2D	$8 \times 8 \times 256$	256	1.4	75.4%
Max Pool	$8 \times 8 \times 256$	256	-	-
Dense	4096	128	1.0	76.2%
Softmax	128	10	1.0	58.4%

Implementation

- > System implemented on Ultrascale+ VU9P @ 125 MHz
- > Open Source Verilog generator
 - https://github.com/da-steve101/binary_connect_cifar
- > Generated code using in AWS F1 implementation
 - https://github.com/da-steve101/aws-fpga

Area Breakdown

Block	LUTs/1182240	FFs/2364480
Conv1	3764 (0.3%)	10047 (0.4%)
Conv2	40608 (3.4%)	71827 (3.0%)
Conv3	55341 (4.7%)	56040 (2.4%)
Conv4	111675 (9.4%)	110021 (4.7%)
Conv5	73337 (6.2%)	79233 (3.4%)
Conv6	127932 (10.8%)	139433 (5.9%)
All Conv	535023 (45.3%)	631672 (26.7%)
Dense	12433 (1.1%)	19295 (0.8%)
SM	500 (0.04%)	442 (0.02%)
Whole CNN	549358 (46.5%)	659252 (27.9%)
Whole design	787545 (66.6%)	984443 (41.6%)

Summary of Sparsity and CSE Improvement

Layer	Num Mults	Num Mults	With Sparsity	With CSE
Conv1	32*32*3*3*3*64	1769472	716800	630784
Conv2	32*32*3*3*64*64	37748736	8637440	4653056
Conv3	16*16*3*3*64*128	18874368	4559616	2654720
Conv4	16*16*3*3*128*128	37748736	9396480	5213440
Conv5	8*8*3*3*128*256	18874368	4656768	2504640
Conv6	8*8*3*3*256*256	37748736	9356736	4731840
Dense	4096*128	524228	524228	1048456^{1}
SM	128*10	1280	1280	2560^{1}
Total	153289924	153 MMACs/Image	38 MMACs/Image	21 MOps/Image

¹ Obtained by converting one MACs to two Ops

Accuracy

Comparison with ASIC and FPGA implementations (CIFAR10)

Reference	Hardware (<i>mm</i> ² ,nm,LE ⁵ /LC ⁵ ×10 ⁶)	Precision (wghts, actv)	Freq. [MHz]	Latency	TOps/sec A/L/E ⁶	FPS	Accuracy
[Venkatesh et al. 2017]	ASIC(1.09,14,-)	$(2,16^2)$	500		2.5/2.5/2.5		91.6% ³
[Andri et al. 2017]	ASIC(1.9,65,-)	(1,12)	480		1.5/1.5/1.5	434	_
[Jouppi et al. 2017]	ASIC(331,28,-)	(8,8)	700	$\approx 10 \text{ ms}$	86/86/86 ⁴		_
[Baskin et al. 2018]	5SGSD8(1600,28,0.7)	(1,2)	105		_	1.2 k ³	84.2%
[Li et al. 2017]	XC7VX690(1806.25,28,0.7)	$(1^1, 1)$	90	_	7.7/3.9/7.7	6.2 k	87.8%
[Liang et al. 2018]	5SGSD8(1600,28,0.7)	(1,1)	150	<u> </u>	9.4/4.7/9.4	$7.6 k^3$	86.31%
[Prost-Boucle et al. 2017]	VC709(1806.25,28,0.7)	(2,2)	250	-	8.4/4.2/8.4	27 k	86.7%
[Umuroglu et al. 2017]	ZC706(961,28,0.35)	(1,1)	200	283 µs	2.4/1.2/2.4	21.9 k	80.1%
[Fraser et al. 2017]	KU115(1600,20,1.45)	(1,1)	125	671 µs	14.8/7.4/14.8	12 k	88.7%
This work	VU9P(2256.25,20,2.6)	(2,16)	125	29 µs	2.5/2.5/37.3	122k	90.9%

¹First layer is fixed point, ²floating point, ³estimated, ⁴ 92 TOps/sec peak, ⁵ LE and LC are from Xilinx or Altera documentation of the FPGAs, ⁶ Actual/Logical/Equivalent

· @c

THE UNIVERSITY OF

- Presented method to unroll convolution with ternary weights and make parallel implementation
 - Exploits unstructured sparsity with no overhead
 - Uses CSE, sparsity control and digit serial adders to further reduce area
 - Limited amount of buffering and only loosely dependent on image size
- > As larger FPGAs become available this technique may become more favourable

Training deep neural networks in low-precision with high accuracy using FPGAs

Sean Fox, Julian Faraone, David Boland, Kees Vissers, and Philip H.W. Leong

.

Deep Learning on the Edge

> How do we get deep learning to the edge?

- Train on GPUs
- Move trained model to the edge

(and make use of fast, low power FPGA inference engines?)

= 1 billion device	es		
<100M	3B	12B	150B
servers	phones	IoT	embedded devices

source: https://heartbeat.fritz.ai/

Deep Learning

> How do we get deep learning to the edge?

- Train on GPUs
- Move trained model to the edge

What about changing environments?

source: https://heartbeat.fritz.ai/

DNN Inference and Training

Forward path (Inference)

- Each layer computes:
 - Linear transform (Matrix operation)

$$f(\boldsymbol{x}) = g(\boldsymbol{W}^T \boldsymbol{x} + \boldsymbol{b})$$

Non-linear activation function

DNN Inference and Training

Backward path:

$$\nabla L(.) = \frac{\partial Loss}{\partial y_{pred}}$$

• Step 1: Weight gradient

$$\nabla W_2 = \frac{\partial Loss}{\partial W_2} = X_2^T \cdot \nabla L(.)$$

Step 2: Activation gradient

$$\nabla X_2 = \frac{\partial Loss}{\partial X_2} = W_2. \nabla L(.)$$

DNN Inference and Training

Backward path

- Two additional Matrix Mults at each layer:
 - Weight gradients
 - Activation gradients (or loss backpropagated)

$$\nabla \boldsymbol{W}_{l} = \frac{\partial Loss}{\partial \boldsymbol{W}_{l}} = \boldsymbol{X}_{l}^{T} \cdot \boldsymbol{\nabla} \boldsymbol{X}_{l+1}$$

$$\boldsymbol{\nabla} \boldsymbol{X}_{l} = \frac{\partial Loss}{\partial \boldsymbol{X}_{l}} = \boldsymbol{W}_{l} \cdot \boldsymbol{\nabla} \boldsymbol{X}_{l+1}$$

DNN Training

- > DNN training is dominated by matrix multiplication
- > GPUs good at floating-point matrix operations
 - Large dynamic range and avoids excessive quantisation errors critical for DNN training

Mixed-Precision Algorithm

Algorithm 1: Convolution Layer

Define: layer l; time t; 8-bit weights \bar{W}_l^t ; input activations x_l^t ; deltas ∇x_l^t ; weight updates ∇W_l^t ; quantisation functions Q_w , Q_a , Q_e ; quantisation scaling coefficients qw, qa, qe; gemm inputs A, B; gemm output C; batch size K;

1. Forward:

Software: \bar{x}_{1}^{t} , aa

```
1 \bar{\boldsymbol{x}}_{l}^{t}, \boldsymbol{q}\boldsymbol{a} = Q_{a}(\boldsymbol{x}_{l}^{t}); \boldsymbol{B} = im2col(\bar{\boldsymbol{x}}_{l}^{t});
Hardware:
2 \boldsymbol{A} = (\bar{\boldsymbol{W}}_{l}^{t})^{T};
3 \boldsymbol{C} = tofloat(gemm(\boldsymbol{A}, \boldsymbol{B}), qw, \boldsymbol{q}\boldsymbol{a});
```

Software:

$$oldsymbol{x}_{l+1}^t = oldsymbol{C};$$

4

Software:

```
\nabla \bar{\boldsymbol{x}}_{l+1}^t, \boldsymbol{q} \boldsymbol{e} = Q_e(\nabla \boldsymbol{x}_l^t); \boldsymbol{t} \boldsymbol{m} \boldsymbol{p} = im2col(\bar{\boldsymbol{x}}_l^{t^T});
 5
                         for i = 1, 2, ..., K do
 6
               Hardware:
                                   \boldsymbol{A} = \nabla \boldsymbol{\bar{x}}_{l}^{t}(i)^{T}; \boldsymbol{B} = \boldsymbol{tmp}(i);
 7
                                   C = to float(qemm(A, B), qe, qa);
 8
               Software:
                                   \nabla W_l^t += C;
 9
                         end
10
               Hardware:
                         \boldsymbol{A} = \boldsymbol{\bar{W}}_{l}^{t}; \boldsymbol{B} = \nabla \boldsymbol{\bar{x}}_{l+1}^{t};
11
                         C = tofloat(gemm(A, B), qw, qe);
12
               Software:
                         \nabla \boldsymbol{x}_{l}^{t} = col2im(\boldsymbol{C});
13
```

FPGA

- Low-Precision (8-bit)
 - All matrix multiplications
 - >95% of DNN operations

ARM

- High-Precision
 - Everything else!
 - Of particular importance is the weight update and gradient accumulator
- Suits a Zynq platform
 - Fast DDR, shared between PL and floating-point

Mixed-Precision Algorithm

Weight Update $W^{t+1} = W^t - \alpha \nabla W^t$	If learning rate α and weight gradient ∇W^t are small, then the update will be rounded to 0		
Weight Gradient Accumulator $\nabla W = \sum_{i=1}^{batch_size} x^T \cdot \nabla x$	If accumulator is low precision, then small numbers are rounded to 0		
<i>∇W</i> =	× … ≈ 0		

Mixed-Precision Algorithm

• Weight Update $W^{t+1} = W^t - \alpha \nabla W^t$	If learning rate α and weight gradient ∇W^t are small, then the update will be rounded to 0
• Weight Gradient Accumulator $\nabla W = \sum_{i=1}^{batch_{size}} x^T \cdot \nabla x$	High-precision accumulator can avoid underflow
$\nabla W = \square \times \square + \square$	×

Block Floating Point (BFP)

- A group of numbers that share the same exponent
- Outcome: Dynamic Range (at a cost of some accuracy degradation)

We use 1 block for weights, b for activations and deltas (where b is batch size)

 SWALP - averaging SGD iterates of the weights with a higher learning rate can recover quantisation errors

THE UNIVERSITY OF

Representable points

Zynq APSoC

- Heterogenous computing platform:
 - 1. Processing System (ARM processor)
 - 2. Programmable Logic (8-bit GEMM)
 - 3. Shared DRAM
- Well suited to standalone embedded applications

Example: Convolution

Convolution must be transformed into Matrix Multiplication

Example: Convolution

Convolution must be transformed into Matrix Multiplication

Example: Convolution

Convolution must be transformed into Matrix Multiplication

Hardware Accelerator

- 8-bit GEMM (C = A.B or C= A^{T} .B)
- Block Floating Point (BFP) rescaling

Hardware Accelerator

Red line: 32x32 Array @ 200Mhz on ZCU111

**1*x*O*p* = 1*x*MAC

Red line: 32x32 Array @ 200Mhz on ZCU111

Red line: 32x32 Array @ 200Mhz on ZCU111

Red line: 32x32 Array @ 200Mhz on ZCU111

Design and Runtime

- Software integration with Darknet (Yolo backend)
- Available: <u>https://github.com/sfox14/darknet-zynq</u>

Bitstream (.bit) and C/C++ runtime library (.so)

Open source C library for DNN training and inference

Our code can be compiled and run on ZYNQ boards with PYNQ v2.3 image

High Accuracy

Dataset	Model	Float	SWALP	Ours (8-bit)
CIFAR10	VGG16	93.02	92.47	92.93
	PreResNet-20	93.50	93.29	93.29
MNIST	Logistic Regression	92.60	92.06	92.70

□ High accuracy can be sustained with mostly 8-bits

- only requires a few more epochs than float
- Batch=128, no bias, no batchnorm
- □ Lr=0.01, SWA applied to last 25% of epochs

Training Time

- Good speed-up over ARM
- We don't exploit batch-level parallelism
- Much slower than a Tesla M40 GPU (600x) ...

Software Overheads

Profiling VGG16 convolution layers (Pynq-Z1 and ZCU111)

Software Overheads

Profiling VGG16 convolution layers

Software Overheads

Profiling VGG16 convolution layers

Trained a small Autoencoder network in low-precision

 Injected known anomalies into the validation set, and observed the time taken to train the model.

- > FPGAs can be used for training at the edge!
- > We demonstrate:
- > Low-precision training techniques for high accuracy
- > FPGA prototype with software integration
- > We have highlighted room for optimisation:
 - Move more computation to the FPGA
 - Optimise matrix multiplication
 - Lower precision
 - Versal?

https://phwl.github.io/talks

[1] Stephen Tridgell, Martin Kumm, Martin Hardieck, David Boland, Duncan Moss, Peter Zipf, and Philip H. W. Leong. <u>Unrolling ternary neural networks</u>. *ACM Transactions on Reconfigurable Technology and Systems*, page to appear (accepted 30 Aug 2019), 2019.

[2] Sean Fox, Julian Faraone, David Boland, Kees Vissers, and Philip H.W. Leong. <u>Training deep neural networks in low-precision with high accuracy using FPGAs</u>. In Proc. International Conference on Field Programmable Technology (FPT), to appear. 2019.