
Low-precision CNN Inference and
Training for Edge Applications on FPGAs

Philip Leong | Computer Engineering Laboratory
School of Electrical and Information Engineering,

The University of Sydney

Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems
- Novel architectures, applications and design techniques using VLSI, FPGA and parallel

computing technology

› Research
- Reconfigurable computing

- Machine learning

- Signal processing

› Collaborations
- Xilinx, Exablaze (now Cisco)

- Defence and DSTG

- clustertech.com

2

Overview

› Implementation of small CNNs
- Unrolling Ternary Networks

- Training deep neural networks in low-precision with high accuracy using FPGAs

Unrolling Ternary Networks

Stephen Tridgell, Martin Kumm, Martin Hardieck, David
Boland, Duncan Moss, Peter Zipf, Philip H.W. Leong

Introduction

› A fully pipelined DNN implementation with ternary coefficients
› Difficult to make fully parallel implementations of a NN on contemporary FPGA

due to size
› Fit entire DNN on FPGA by exploiting unstructured sparsity and the following

techniques:
1. Buffering of streaming inputs in a pipelined manner

2. Ternary weights implemented as pruned adder trees

3. Common subexpression merging

4. 16-bit bit serial arithmetic to minimize accuracy loss with low area

5. Sparsity control

5

Network Studied

› VGG-7 network
› Ternary weights
› 16-bit activations
› Accept a single pixel every cycle

(p=1)
- W*W image takes W*W cycles

6

Buffering of Streaming Inputs

7

Implement Pipelined 3x3 Convolution

Input FIFO outputs the
pixel each cycle to both Buffer A and the
first stage of a shift register.
Buffer A and Buffer B delay the output by
the image width

Ternary Weights as Pruned Adder Trees

› Weights are ternary
- So multiplication with ±1 is either addition or subtraction

- Multiplication with 0 makes matrix sparse

8

Common Subexpression Elimination (CSE)

› Weights are ternary
- Reduces convolution to

constructing adder tree

- Subexpression merged to
reduce implementation

9

CSE Techniques

› None – doesn’t fit
› Reduced Pipelined Adder Graph (RPAG) – too slow
› Top down CSE (TD-CSE) – doesn’t find good solutions
› Bottom up CSE (BU-CSE) – worst of both worlds, runs out of memory

10

Comparison of CSE Techniques for all Layers

› RPAG too
computationally
expensive for layers 2-6

› BU-CSE a bit better than
TD-CSE

11

Improvement in using CSE

12

Digit Serial Arithmetic

› Used 16-bit fixed point
› Each layer followed by batch

normalization with floating point
scaling factor

› Suppose that for a given layer, p
pixels arrive at the same time
- For p≥ 1 have p adder trees in

parallel
- For p < 1 word or bit-serial adders

can match input rate with hardware
resources

- 4-bit digit serial has 1/4 area

- 1-bit bit serial has 1/16 area

› Avoids idle adders

13

Sparsity Control

› CIFAR10 dataset
› Image padded with 4 pixels each side and randomly cropped back to 32x32
› Weights are compared with threshold

- 0 if less than threshold, 𝑠(±1) otherwise (s is a scaling factor)

› We introduce the idea of changing 𝜖 to control sparsity

14

Breakdown of Layer Sparsity

15

Implementation

› System implemented on Ultrascale+ VU9P @ 125 MHz
› Open Source Verilog generator

- https://github.com/da-steve101/binary_connect_cifar

› Generated code using in AWS F1 implementation
- https://github.com/da-steve101/aws-fpga

16

https://github.com/da-steve101/binary_connect_cifar

Area Breakdown

17

Summary of Sparsity and CSE Improvement

18

Accuracy

19

Comparison with ASIC and FPGA implementations (CIFAR10)

Accuracy vs Speed (FPGA Implementations)

20

Summary

› Presented method to unroll convolution with ternary weights and make parallel
implementation
- Exploits unstructured sparsity with no overhead

- Uses CSE, sparsity control and digit serial adders to further reduce area

- Limited amount of buffering and only loosely dependent on image size

› As larger FPGAs become available this technique may become more favourable

21

Training deep neural networks in low-precision
with high accuracy using FPGAs

Sean Fox, Julian Faraone, David Boland, Kees Vissers, and
Philip H.W. Leong

Deep Learning on the Edge

source: https://heartbeat.fritz.ai/

(and make use of
fast, low power
FPGA inference
engines?)

› How do we get deep learning to the edge?
§ Train on GPUs
§ Move trained model to the edge

- .

Deep Learning

source: https://heartbeat.fritz.ai/

To the edge!

What about
changing
environments?

We need to
be able to
train at the
edge

› How do we get deep learning to the edge?
§ Train on GPUs
§ Move trained model to the edge

- .

DNN Inference and Training

Layer
L0

W0

X0 LossLayer
L1

W1

Layer
L2

W2
CanyonDogPlaneElephant

Labels

Training
Dataset

§ Forward path (Inference)

§ Each layer computes:
§ Linear transform (Matrix operation)
§ Non-linear activation function

𝑓(𝒙) = 𝑔(𝑾-𝒙 + 𝒃)

DNN Inference and Training

LossLayer
L2

W2

§ Backward path:

§ Step 1: Weight gradient

§ Step 2: Activation gradient

X2

∇W2
𝜵𝑾𝟐 =

𝜕𝐿𝑜𝑠𝑠
𝜕𝑾6

= 𝑿6-. 𝜵𝑳(.)

𝜵𝑿6

𝜵𝑿6 =
𝜕𝐿𝑜𝑠𝑠
𝜕𝑿6

= 𝑾6. 𝜵𝑳(.)

𝜵𝑳(.) =
𝜕𝐿𝑜𝑠𝑠
𝜕𝑦;<=>

DNN Inference and Training

LossLayer
L2

W2

§ Backward path

§ Two additional Matrix Mults at each layer:
§ Weight gradients
§ Activation gradients (or loss back-

propagated)

X2

∇W2

Layer
L1

W1X1

∇W1

Layer
L0

W0X0

∇W0

𝜵𝑿? =
𝜕𝐿𝑜𝑠𝑠
𝜕𝑿?

= 𝑾?. 𝜵𝑿?@A

𝜵𝑾? =
𝜕𝐿𝑜𝑠𝑠
𝜕𝑾?

= 𝑿?-. 𝜵𝑿?@A

DNN Training

› DNN training is dominated by matrix multiplication
› GPUs good at floating-point matrix operations

- Large dynamic range and avoids excessive quantisation errors critical for DNN training

28

Mixed-Precision Algorithm

§ Low-Precision (8-bit)
§ All matrix multiplications
§ >95% of DNN operations

§ High-Precision
§ Everything else!
§ Of particular importance is the

weight update and gradient
accumulator

§ Suits a Zynq platform
§ Fast DDR, shared between PL

and floating-point

FPGA

ARM

Mixed-Precision Algorithm

§ Weight Update

§ Weight Gradient Accumulator

𝛁𝑾 = ∑𝒊E𝟏𝒃𝒂𝒕𝒄𝒉_𝒔𝒊𝒛𝒆 𝒙-. 𝛁𝒙

𝑾O@A = 𝑾O − 𝛼 𝜵𝑾O

If learning rate 𝛼 and
weight gradient 𝜵𝑾O are
small, then the update will
be rounded to 0

𝛁𝑾
× += × … ≈ 0

If accumulator is low
precision, then small
numbers are rounded to 0

Mixed-Precision Algorithm

§ Weight Update

§ Weight Gradient Accumulator

𝛁𝑾 = ∑𝒊E𝟏𝒃𝒂𝒕𝒄𝒉_𝒔𝒊𝒛𝒆 𝒙-. 𝛁𝒙

𝑾O@A = 𝑾O − 𝛼 𝜵𝑾O

If learning rate 𝛼 and
weight gradient 𝜵𝑾O are
small, then the update will
be rounded to 0

𝛁𝑾
× += × …

High-precision
accumulator can avoid
underflow

Block Floating Point (BFP)

§ A group of numbers that share the same exponent

§ Outcome: Dynamic Range
(at a cost of some accuracy degradation)

M E M E M E

M E M E M E

M E M E M E

M E M E M E

M M M

M M M

M M M

M M M

Float Fixed BFP

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

E E E

We use 1 block for weights, b for activations and deltas (where b is batch size)

Stochastic Weight Averaging Low Precision (SWALP)

› SWALP - averaging SGD
iterates of the weights with a
higher learning rate can
recover quantisation errors

Stochastic Weight Averaging (SWA)

Representable points

Stochastic Weight Averaging (SWA)

Representable points LP-SGD Trajectory

Stochastic Weight Averaging (SWA)

Representable points LP-SGD Trajectory

Stochastic Weight Averaging (SWA)

Representable points LP-SGD Trajectory

Stochastic Weight Averaging (SWA)

Representable points LP-SGD Trajectory

Stochastic Weight Averaging (SWA)

Representable points LP-SGD Trajectory

Stochastic Weight Averaging (SWA)

Representable points LP-SGD Trajectory SWA Solution

Zynq APSoC

§ Heterogenous computing platform:
1. Processing System (ARM processor)
2. Programmable Logic (8-bit GEMM)
3. Shared DRAM

§ Well suited to standalone embedded applications

Example: Convolution

ic

h
w

…

k×k filters

oc

h
w

ocic

§ Convolution must be transformed into Matrix Multiplication

Example: Convolution

ic

h
w

…

k×k filters

oc

h
w

ocic

§ Convolution must be transformed into Matrix Multiplication

Im2col

Example: Convolution

ic

h
w

…

k×k filters

oc

h
w

ocic

§ Convolution must be transformed into Matrix Multiplication

Im2col

col2im

Hardware Accelerator

§ 8-bit GEMM (C = A.B or C=AT.B)

§ Block Floating Point (BFP) rescaling

PLARM

BT

Quant

Im2col

Accum.

Hardware Accelerator

§ Red line: 32x32 Array @ 200Mhz on ZCU111

VGG

Operational Intensity (Ops/Byte)

Pe
rf

or
m

an
ce

 (G
O

Ps
/s

)

Mem
ory

Ban
dwidth (G

B/s)

**1xOp = 1xMAC

Hardware Accelerator

§ Red line: 32x32 Array @ 200Mhz on ZCU111

VGG

Operational Intensity (Ops/Byte)

Pe
rf

or
m

an
ce

 (G
O

Ps
/s

)

Peak memory bound
performance (46 TOPs)

**1xOp = 1xMAC

(10GB/s x 512 x 9
macs/byte)

Hardware Accelerator

§ Red line: 32x32 Array @ 200Mhz on ZCU111

VGG

Operational Intensity (Ops/Byte)

Pe
rf

or
m

an
ce

 (G
O

Ps
/s

)

Peak memory bound
performance (46 TOPs)

**1xOp = 1xMAC

Ours (200 GOPs)

Hardware Accelerator

§ Red line: 32x32 Array @ 200Mhz on ZCU111

VGG

Operational Intensity (Ops/Byte)

Pe
rf

or
m

an
ce

 (G
O

Ps
/s

)

Peak memory bound
performance (46 TOPs)

**1xOp = 1xMAC

Ours (200 GOPs)

Peak DSP bound
performance (4.7 TOPs)

Tile=2

Tile=64

Design and Runtime

§ Software integration with Darknet (Yolo backend)
§ Available: https://github.com/sfox14/darknet-zynq

Bitstream (.bit) and C/C++ runtime library (.so)

Open source C library for DNN training and inference

Our code can be compiled and run on ZYNQ
boards with PYNQ v2.3 image

https://github.com/sfox14/darknet-zynq

High Accuracy

51

Dataset Model Float SWALP Ours (8-bit)

CIFAR10
VGG16 93.02 92.47 92.93
PreResNet-20 93.50 93.29 93.29

MNIST Logistic
Regression

92.60 92.06 92.70

q High accuracy can be sustained with mostly 8-bits
• only requires a few more epochs than float

q Batch=128, no bias, no batchnorm
q Lr=0.01, SWA applied to last 25% of epochs

Training Time

52

§ Good speed-up over ARM
§ We don’t exploit batch-level parallelism
§ Much slower than a Tesla M40 GPU (600x) …

Software Overheads

§ Profiling VGG16 convolution layers (Pynq-Z1 and ZCU111)

Need to move
im2col/col2im to FPGA

Software Overheads

§ Profiling VGG16 convolution layers

Room for better
GEMM

Software Overheads

§ Profiling VGG16 convolution layers

Could update
BFP less
regularly/move
quantisation to
FPGA

Case Study: RF Anomaly Detector

§ Trained a small Autoencoder network in low-precision

Case Study: RF Anomaly Detector

§ Injected known anomalies into the validation set, and
observed the time taken to train the model.

Conclusion

› FPGAs can be used for training at the edge!
› We demonstrate:
› Low-precision training techniques for high accuracy
› FPGA prototype with software integration
› We have highlighted room for optimisation:

- Move more computation to the FPGA

- Optimise matrix multiplication

- Lower precision

- Versal?

58

59

https://phwl.github.io/talks

https://phwl.github.io/talks

References

[1] Stephen Tridgell, Martin Kumm, Martin Hardieck, David Boland , Duncan Moss,
Peter Zipf, and Philip H. W. Leong. Unrolling ternary neural networks. ACM
Transactions on Reconfigurable Technology and Systems, page to appear
(accepted 30 Aug 2019), 2019.
[2] Sean Fox, Julian Faraone, David Boland, Kees Vissers, and Philip H.W. Leong.
Training deep neural networks in low-precision with high accuracy using FPGAs.
In Proc. International Conference on Field Programmable Technology (FPT), to
appear. 2019.

60

https://phwl.github.io/assets/papers/ternary_trets19.pdf
http://phwl.org/assets/papers/lptrain_fpt19.pdf

