
Low Precision Inference and Training for
Deep Neural Networks

Philip Leong
Director, Computer Engineering Laboratory

http://phwl.org/talks

Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems
- Novel architectures, applications and design techniques using FPGAs

› Research: reconfigurable computing, radio frequency machine learning

2

Motivation

› CPUs/GPUs designed to support
datatypes of fixed wordlength
- Double, float, long, short, char

› FPGA and ASICs can provide
custom datapaths of arbitrary
wordlength

3

Tradeoff between performance and precision

On-chip
weights
~70 M

~10 M

~5 M

~2 M

Precision

1b

8b

16b

32b

30x

Peak TOPS

~66

~4

~1

~0.3

200x

Slide: Xilinx

› So how can we utilize low-precision for inference and training?

1
Inference

Background: Radio Frequency Machine Learning

› Understanding of radio signals in low SNR
difficult problem

› Radio data is high speed and low latency
often required (ML will never be fast
enough)

› FPGAs offer possibility of integrating radio,
signal processing and ML on the same
chip

› Study automatic modulation classification
(AMC): detect modulation type from raw IQ
samples
- Other problems similar

Background: Convolutional Neural Network

6

O’Shea et al, “Over-the-Air Deep Learning Based Radio Signal Classification”
• ResNet on the raw IQ data gives SOA results

Slide: Xilinx

Background: Binarized Neural Networks

7

FINN: A framework for fast, scalable binarized neural network inference,”
FPGA’17

But accuracy not good! How can we improve accuracy and performance?

› Much smaller datapaths
- Multiply becomes XNOR, addition becomes popcount

- No DSPs needed, everything in LUTs

› Much smaller weights
- Large networks can fit entirely into on-chip memory (OCM)

Ternary Inference Implementation

› To achieve highest speed: parallel implementation (but FPGA resources
insufficient for contemporary CNN model)

› How can we push limits of performance on an FPGA?
› Exploit unstructured sparsity and the following techniques:

1. Massively parallel ternary NN implemented as pruned adder trees

2. Common subexpression merging

3. 16-bit bit serial arithmetic to minimize accuracy loss with low area

4. Sparsity control (not discussed)

8

Common Subexpression Elimination

› Weights are ternary
- Reduces convolution to

constructing adder tree

- Subexpression merged to
reduce implementation

9

Throughput matching with serial adders

› Activations are 16-bit
- Not all layers have same

throughput

- Use digit serial to make more
compact

- 4-bit digit serial has 1/4 area

- 1-bit bit serial has 1/16 area

10

Accuracy on RadioML 2018.01A dataset

Incremental Precision

› Use incremental precision
activations instead of 16 bit
everywhere (to improve
accuracy)
- Use bit serial adders

everywhere

- Adjust precision to match the
throughput

- Same area as binary
activations

- Almost 5% accuracy gain
over binary activations

Model TW-64 TW-96 TW-BA-
128

TW-
INCRA-
128

CLBs 28k
(53.5%)

47k
(89.3%)

43k
(80.7%)

42k
(80.2%)

LUTs 124k
(29.1%)

232k
(54.7%)

234k
(55.1%)

211k
(49.6%)

FFs 217k
(25.5%)

369k
(43.4%)

333k
(39.2%)

324k
(38.1%)

BRAMs
524
(48.5%)

524
(48.5%)

523
(48.4%)

512.2
(48.3%)

DSPs 1496
(35%)

1207
(28.3%)

1408
(33.0%)

1407
(32.9%)

Accr 78.7 81.1 75.9 80.2

Implementation

› System implemented on ZCU111
RFSoC

› https://github.com/da-
steve101/radio_modulation

› Open Source Ternary Weight
Network (TWN) Verilog generator

› https://github.com/da-
steve101/twn_generator

13

System Implementation

14

› Automatic Modulation classifier: 488K class/s, 8us latency
using TW-INCRA-128

Accuracy

15

TW-INCRA-128

Accuracy vs FPS/LE on CIFAR10 (not AMC)

16

Summary

› Presented an optimized network for AMC which
- Applies common subexpression elimination and digit serial arithmetic to a fully

unrolled ternary network

- Integrates the entire design on a single chip for a low-latency batch size 1
implementation

› These serve to achieve a level of performance higher than previously
reported

› Further research needed to achieve state of the art accuracy with lower
precision

17

2

18

Training

Motivation

§ Deep learning has even higher efficiency problem than
inference!
§ E.g. Billions of parameters, 500+ GPUs

§ Specialized number representations have been proposed
§ Alternative to FP32/FP16
§ 4-8 bits for weights, activations and gradients
§ Cheaper and faster training systems
§ Datacenter to edge?

Minifloat

§ Narrow floating-point representation
§ Ours range between 4-8 bits
§ NaN/Infinity NOT supported

mantissaexponentsign
IEEE754 (FP32)

mes
Minifloat

§ Pros:
§ Memory (fewer bits)
§ Smaller hardware

§ Cons:
§ Dynamic Range (exponent bits)

For training >= 8 bits

Block Minifloat

§ Share exponent bias across blocks of N minifloat numbers

§ Dynamic range (with fewer bits)
§ Denser dot-products in hardware

Block Minifloat

§ Share exponent bias across blocks of N minifloat numbers

§ Dynamic range (with fewer bits)
§ Denser dot-products in hardware

§ Align wtih max exponent
§ Underflow is tolerated

Block Minifloat

§ Block Minifloats – share exponent bias across blocks of N
minifloat numbers

M M M
M M M
M M M
M M M

Minifloat

Fixed BFP

M
M
M
M

M
M
M
M

M
M
M
M

M
M
M
M

M
M
M
M

M
M
M
M

M
M
M
M

M
M
M
M

M
M
M
M

E E E

M E
M E
M E
M E

M E
M E
M E
M E

M E
M E
M E
M E

M E
M E
M E
M E

M E
M E
M E
M E

M E
M E
M E
M E

EEE

Block Minifloat

§ Kulisch Accumulator: Fixed point accumulator wide enough
to compute error-free sum of floating-point products

§ Integer-like hardware complexity for exponent <=4 bits

Fused Multiply-Add (FMA) with
Kulisch Accumulation

Implementation Details

§ Three techniques to reduce data loss:
§ Gradual underflow, Block Design, Hybrid Formats

§ Simulate specialized BM hardware on GPU (with FP32)
§ Apply Block Minifloat to all weights, acts, grads

§ Our Spectrum of Block Minifloats

End-to-end Training with BM

All off-chip memory transfers are low precision BM tensors
BM alignment, weight updates, quantisation, batchnorm and ReLU are in on-chip scalar FP32 units

Register file stores a block of weight gradients.
N=48 is a good choice

1x floating point operation every N MACs

Experiments and Results

§ Training experiments:
§ Datasets: (ImageNet, VOC, PTB,

IWSLT)
§ Models: (ResNet, LSTM, TF base,

SSD-Lite, EfficientNet)

§ RTL synthesis:
§ Fused multiply-add (FMA)
§ 4x4 systolic matrix mutlipliers

Experiments and Results

§ Training experiments:
§ Datasets: (ImageNet, VOC, PTB,

IWSLT)
§ Models: (ResNet, LSTM, TF base,

SSD-Lite, EfficientNet)

§ RTL synthesis:
§ Fused multiply-add (FMA)
§ 4x4 systolic matrix mutlipliers

Training Accuracy
with BM ≈ FP32

BM units are:
- Smaller
- Consume less

Power
- Similar in area

and power to FP8
with FP32 acc

Model: ResNet-18
Dataset: ImageNet

Imagenet

§ Block Minifloat sustains high training accuracy with lower
precision than previous techniques

§ Faster Training is possible:
§ Fewer bits – increases performance in memory-bound
§ Narrow exponents – yield denser arithmetic units in

compute-bound

§ This work may be particularly advantageous in moving
training into Edge devices

§ github.com/sfox14/block_minifloat

Summary

Conclusion

› It is well known that DNN hardware performance can be significantly
improved through precision optimisations

› We have demonstrated feasibility of
- Fully parallel, ternary single chip DNN implementations using adder trees,

throughput matching and incremental activations

- Training of wide variety of DNNs with single 8-bit precision format

› More research needed to make this technology useful for mainstream
applications

31

References

[1] Stephen Tridgell, David Boland, Philip HW Leong, Ryan Kastner, Alireza
Khodamoradi, and Siddhartha. Real-time automatic modulation
classification using RFSoC. In 2020 IEEE International Parallel and
Distributed Processing Symposium Workshops, IPDPSW 2020, New
Orleans, LA, USA, May 18-22, 2020, 82–89. IEEE, 2020.
URL: amc_raw20.pdf, doi:10.1109 / IPDPSW50202.2020.00021.

[2] Sean Fox, Seyedramin Rasoulinezhad, Julian Faraone, and David
Boland Philip H.W. Leong. A block minifloat representation for training deep
neural networks. In Proc. of The International Conference on Learning
Representations (ICLR). 2021. URL: bm_iclr21.pdf.

32

http://phwl.org/assets/papers/amc_raw20.pdf
https://doi.org/10.1109%20/%20IPDPSW50202.2020.00021
http://phwl.org/assets/papers/bm_iclr21.pdf

Thank you!

Philip Leong
philip.leong@sydney.edu.au

mailto:philip.leong@sydney.edu.au

