Low Precision Inference and Training for Deep Neural Networks

Philip Leong Director, Computer Engineering Laboratory http://phwl.org/talks

Computer Engineering Laboratory

- Focuses on how to use parallelism to solve demanding problems
 - Novel architectures, applications and design techniques using FPGAs
- > Research: reconfigurable computing, radio frequency machine learning

Motivation

Tradeoff between performance and precision

- CPUs/GPUs designed to support datatypes of fixed wordlength
 - Double, float, long, short, char
- FPGA and ASICs can provide custom datapaths of arbitrary wordlength

Precision	Peak TOPS		On-chip weights		
1b	~66	\wedge	~70 M	\wedge	
8b	~4		~10 M 🖌		
16b	~1	00 V	~5 M	0X X	
32b	~0.3		~2 M		

Slide: Xilinx

> So how can we utilize low-precision for inference and training?

Background: Radio Frequency Machine Learning

- Understanding of radio signals in low SNR difficult problem
- Radio data is high speed and low latency often required (ML will never be fast enough)
- FPGAs offer possibility of integrating radio, signal processing and ML on the same chip
- Study automatic modulation classification (AMC): detect modulation type from raw IQ samples
 - Other problems similar

BPSK modulated signal

Background: Convolutional Neural Network

O'Shea et al, "Over-the-Air Deep Learning Based Radio Signal Classification"

• ResNet on the raw IQ data gives SOA results

THE UNIVERSITY OF

FINN: A framework for fast, scalable binarized neural network inference," FPGA'17

- > Much smaller datapaths
 - Multiply becomes XNOR, addition becomes popcount
 - No DSPs needed, everything in LUTs
- > Much smaller weights
 - Large networks can fit entirely into on-chip memory (OCM)

But accuracy not good! How can we improve accuracy and performance?

- To achieve highest speed: parallel implementation (but FPGA resources insufficient for contemporary CNN model)
- How can we push limits of performance on an FPGA?
- > Exploit unstructured sparsity and the following techniques:
 - 1. Massively parallel ternary NN implemented as pruned adder trees
 - 2. Common subexpression merging
 - 3. 16-bit bit serial arithmetic to minimize accuracy loss with low area
 - 4. Sparsity control (not discussed)

Common Subexpression Elimination

> Weights are ternary

THE UNIVERSITY OF

- Reduces convolution to constructing adder tree
- Subexpression merged to reduce implementation

Computing $z_0 = c + e + f - (a + h)$ and $z_1 = c + d - e - f$

Throughput matching with serial adders

- > Activations are 16-bit
 - Not all layers have same throughput
 - Use digit serial to make more compact
 - 4-bit digit serial has 1/4 area
 - 1-bit bit serial has 1/16 area

Accuracy on RadioML 2018.01A dataset

Incremental Precision

 Use incremental precision activations instead of 16 bit 	Model	TW-64	TW-96	TW-BA- 128	TW- INCRA- 128
everywhere (to improve accuracy)	CLBs	28k (53.5%)	47k (89.3%)	43k (80.7%)	42k (80.2%)
 Use bit serial adders	LUTs	124k	232k	234k	211k
everywhere		(29.1%)	(54.7%)	(55.1%)	(49.6%)
 Adjust precision to match the	FFs	217k	369k	333k	324k
throughput		(25.5%)	(43.4%)	(39.2%)	(38.1%)
- Same area as binary	BRAMs	524	524	523	512.2
activations		(48.5%)	(48.5%)	(48.4%)	(48.3%)
 Almost 5% accuracy gain	DSPs	1496	1207	1408	1407
over binary activations		(35%)	(28.3%)	(33.0%)	(32.9%)
	Accr	78.7	81.1	75.9	80.2

Implementation

- System implemented on ZCU111 RFSoC
- <u>https://github.com/da-</u> <u>steve101/radio_modulation</u>
- Open Source Ternary Weight Network (TWN) Verilog generator
- <u>https://github.com/da-</u> <u>steve101/twn_generator</u>

 Automatic Modulation classifier: 488K class/s, 8us latency using TW-INCRA-128

Accuracy

Accuracy vs FPS/LE on CIFAR10 (not AMC)

- > Presented an optimized network for AMC which
 - Applies common subexpression elimination and digit serial arithmetic to a fully unrolled ternary network
 - Integrates the entire design on a single chip for a low-latency batch size 1 implementation
- These serve to achieve a level of performance higher than previously reported
- Further research needed to achieve state of the art accuracy with lower precision

Training

- Deep learning has even higher efficiency problem than inference!
 - E.g. Billions of parameters, 500+ GPUs

Specialized number representations have been proposed

- Alternative to FP32/FP16
- 4-8 bits for weights, activations and gradients
- Cheaper and faster training systems
- Datacenter to edge?

Minifloat

Narrow floating-point representation

- Ours range between 4-8 bits
- NaN/Infinity NOT supported

Block Minifloat

Share exponent bias across **blocks** of N minifloat numbers

- Dynamic range (with fewer bits)
- Denser dot-products in hardware

Block Minifloat

Share exponent bias across blocks of N minifloat numbers

Block Minifloat

BFP

Minifloat

Block Minifloat

 Block Minifloats – share exponent bias across blocks of N minifloat numbers

- Kulisch Accumulator: Fixed point accumulator wide enough to compute error-free sum of floating-point products
- Integer-like hardware complexity for exponent <=4 bits</p>

- Three techniques to reduce data loss:
 - Gradual underflow, Block Design, Hybrid Formats
- Simulate specialized BM hardware on GPU (with FP32)
 - Apply Block Minifloat to all weights, acts, grads
- Our Spectrum of Block Minifloats

BM8 (ours)	(2,5)/(4,3)
BM7 (ours)	(2,4)/(4,2)
BM6 (ours)	(2,3)/(3,2)
BM5 (ours)	(2,2)/(3,1)
BM5-log (ours)	(4,0)/(4,0)
BM4 (ours)	(2,1)/(3,0)
BM4-log (ours)	(3,0)/(3,0)

End-to-end Training with BM

(c) Bwd weight grad. and update

1x floating point operation every N MACs

Training experiments:

THE UNIVERSITY OF

- Datasets: (ImageNet, VOC, PTB, IWSLT)
- Models: (ResNet, LSTM, TF base, SSD-Lite, EfficientNet)

RTL synthesis:

- Fused multiply-add (FMA)
- 4x4 systolic matrix mutlipliers

Component	Area (μm^2)	Power (μW)	
FP32	4782	10051	
FP8 (w/ FP16 add)	829	1429	
INT8 (w/ INT32 add)	417	1269	
BM8	391	1141	
BM6	200	624	
INT8 (4x4 systolic)	7005	20253	
FP8 (4x4 systolic)	18201	56202	
BM8 (4x4 systolic)	6976	18765	

Experiments and Results

Training experiments:

- Datasets: (ImageNet, VOC, PTB, IWSLT)
- Models: (ResNet, LSTM, TF base, SSD-Lite, EfficientNet)

RTL synthesis:

- Fused multiply-add (FMA)
- 4x4 systolic matrix mutlipliers

- Block Minifloat sustains high training accuracy with lower precision than previous techniques
- Faster Training is possible:
 - Fewer bits increases performance in memory-bound
 - Narrow exponents yield denser arithmetic units in compute-bound
- This work may be particularly advantageous in moving training into Edge devices
- github.com/sfox14/block_minifloat

Conclusion

- It is well known that DNN hardware performance can be significantly improved through precision optimisations
- > We have demonstrated feasibility of
 - Fully parallel, ternary single chip DNN implementations using adder trees, throughput matching and incremental activations
 - Training of wide variety of DNNs with single 8-bit precision format
- More research needed to make this technology useful for mainstream applications

[1] Stephen Tridgell, David Boland, Philip HW Leong, Ryan Kastner, Alireza Khodamoradi, and Siddhartha. Real-time automatic modulation classification using RFSoC. In *2020 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2020, New Orleans, LA, USA, May 18-22, 2020*, 82–89. IEEE, 2020. URL: <u>amc_raw20.pdf</u>, doi:10.1109 / IPDPSW50202.2020.00021.

[2] Sean Fox, Seyedramin Rasoulinezhad, Julian Faraone, and David Boland Philip H.W. Leong. A block minifloat representation for training deep neural networks. In *Proc. of The International Conference on Learning Representations (ICLR)*. 2021. URL: <u>bm_iclr21.pdf</u>.

Philip Leong philip.leong@sydney.edu.au

