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Computer Engineering Laboratory

» Focuses on how to use parallelism to solve demanding problems

- Novel architectures, applications and design techniques using VLSI, FPGA and
parallel computing technology

» Research
- Machine learning
- Reconfigurable computing
- Nanoscale Interfaces
» Ex-students
- AMD/Xilinx, Intel,
Waymo, Amazon,

Qualcomm
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Introduction

» GPUs widely used for DNNs (optimized for
throughput)

» FPGAs achieve better throughput, latency and
power through (EPIC)

Exploration —try different ideas to arrive at a good
solution

Parallelism — arrive at an answer faster

Integration — so interfaces are not a bottleneck

Customisation — problem-specific designs to
improve efficiency (power, speed, density)

» This talk: describe our work in using FPGAs for
DNN acceleration
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What is an FPGA?

User-customisable integrated circuit

» Dedicated blocks: memory, transceivers and MAC, PLLs, DSPs, ARM cores

Configurable Xilinx FPGAs
logic blocks

Dedicated
blocks

Input and
output blocks

Routing 5

* Clocking
Resources

Source: Xilinx
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Convolutional Neural Networks (CNNSs)
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Binariz

Collaboration with Xilinx

ed Neural Networks (FPGA17 [1])
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= Share exponent bias across blocks of NxN minifloat numbers

..................................

Exp. bias(B)

e 8
] : x
: X, 0
[} ; xl
-1 5
f -1
Minifloat tensor BM tensor

IX| minifloat (3,2)

|al] value distribution

Align with max. exponent e 0

= Dynamic range (with fewer bits)
= Denser dot-products in
hardware

= Align wtih max exponent
= Underflow is tolerated
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Imagenet Training using Block minifloat (ICLR21 [2])
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Model: ResNet-18
Dataset: ImageNet
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CNN Transfer Learning on FPGA (ICCAD23 [3])

ResNet20: Full update. ResNet20 on CIFAR10: 2 Conv + FC update.
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» Applied block minifloat to transfer learning
» Implemented on FPGA using high-level synthesis
- Reduced backpropagation time (4x faster)

- Overall latency reduced (2x faster)
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Conclusion

» Deep neural network acceleration is important for many real-time
applications (self-driving cars, communications systems, radar)

» CPUs and GPUs can achieve good performance but latency usually high

» FPGAs allow everything to be integrated on a single device and achieve
the lowest latency

» We are working on using the techniques developed for radio frequency
machine learning

11
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