
A Fully Parallel DNN Implementation and 
its Application to Automatic Modulation 
Classification

Philip Leong | Computer Engineering Laboratory
School of Electrical and Information Engineering, 

The University of Sydney
http://phwl.org/talks

http://phwl.org/talks


Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems  
- Novel architectures, applications and design techniques using VLSI, FPGA and parallel 

computing technology 

› Research
- Reconfigurable computing

- Machine learning

- Signal processing

› Collaborations
- Xilinx, Intel, Exablaze

- clustertech.com

2



Introduction

› Hard to make fully parallel implementations of a NN on contemporary FPGA due 
to size 

› Fit entire DNN on FPGA by exploiting unstructured sparsity and the following 
techniques:
1. Buffering of streaming inputs in a pipelined manner

2. Ternary weights implemented as pruned adder trees

3. Common subexpression elimination 

4. Digit serial arithmetic for throughput matching

5. Sparsity control

6. Incremental precision throughput matching

› Apply to automatic modulation classification (AMC), an integral component in 
intelligent radio

3

(Stephen Tridgell PhD work)



Optimising CNNs

Application to AMC

Overview



Optimising CNNs

Application to AMC

Overview



Network Studied

› VGG-7 network 
› Ternary weights
› 16-bit activations
› Accept a single pixel every cycle 

(p=1)
- W*W image takes W*W cycles

6



1. Buffering of Streaming Inputs

7

Implement Pipelined 3x3 Convolution

Input FIFO outputs the
pixel each cycle to both Buffer A and the 
first stage of a shift register.
Buffer A and Buffer B delay the output by 
the image width



2. Ternary Weights as Pruned Adder Trees

› Weights are ternary
- So multiplication with ±1 is either addition or subtraction

- Since we have many multiplications with 0 matrix is sparse

8



3. Common Subexpression Elimination

› Weights are ternary
- Reduces convolution to 

constructing adder tree

- Subexpression merged to 
reduce implementation

9



Improvement in using CSE

10



4. Digital Serial Arithmetic for Throughput Matching

› Used 16-bit fixed point
› Each layer followed by batch 

normalization with floating point 
scaling factor

› Suppose that for a given layer, p 
pixels arrive at the same time
- For p≥ 1 have p adder trees in 

parallel
- For p < 1 word or bit-serial adders 

can match input rate with hardware 
resources

- 4-bit digit serial has 1/4 area

- 1-bit bit serial has 1/16 area

› Avoids idle adders

11



5. Sparsity Control

› CIFAR10 dataset
› Weights are compared with threshold

- 0 if less than threshold, 𝑠(±1) otherwise (s is a scaling factor)

› We introduce the idea of changing 𝜖 to control sparsity 

12



Breakdown of Layer Sparsity

13



CIFAR10 Accuracy vs Speed (FPGA Implementations)

14

OUR WORK



Optimising CNNs

Application to AMC

Overview



Automatic Modulation Classification

› Identify modulation type from raw radio signal
- A step towards general problem of interpreting RF scenes from raw signals is a fertile 

research problem

› Reconfigurable computing an excellent solution for this problem
- FPGA enable integration of radio and machine learning in single device

- Latency, size, weight and power are crucial in applications



Implementation

› System implemented on ZCU111 
RFSoC
- 8x 12-bit 4.096GSPS ADCs

- 8x 14-bit 6.554GSPS DACs

- Arm Cortex-A53

- Arm Cortex-R5

› Open Source Verilog generator
- https://github.com/da-

steve101/twn_generator

17

https://github.com/da-steve101/twn_generator


FPGA Implementation

18

› Ternary Modulation classifier: 488K class/s, 8us latency



6. Incremental Precision Throughput Matching

› Use incremental precision 
activations instead of 16 bit
- Adjust precision to match the 

throughput

- Same area as ternary 
activations

- Almost 5% accuracy gain

Model TW-64 TW-96 TW-BA-
128

TW-
INCRA-
128

CLBs 28k 
(53.5%) 

47k 
(89.3%) 

43k 
(80.7%) 

42k 
(80.2%) 

LUTs 124k 
(29.1%) 

232k 
(54.7%) 

234k 
(55.1%) 

211k 
(49.6%) 

FFs 217k 
(25.5%) 

369k 
(43.4%) 

333k 
(39.2%) 

324k 
(38.1%) 

BRAMs
524 
(48.5%) 

524 
(48.5%) 

523 
(48.4%) 

512.2 
(48.3%) 

DSPs 1496 
(35%) 

1207 
(28.3%) 

1408 
(33.0%) 

1407 
(32.9%) 

Accr 78.7 81.1 75.9 80.2



Video Demonstration

20

QAM16/8PSK/BPSK



O’Shea at al, RadioML Dataset

21



Conclusion

› Presented an optimized network for AMC which
- Applies common subexpression elimination and digit serial arithmetic to a fully unrolled 

ternary network

- Integrates the entire design on a single chip for a low-latency batch size 1 
implementation

› These serve to achieve a level of performance higher than previously reported
› Challenge of achieving state of the art accuracy remains
› As FPGAs become larger, we believe these techniques will become more 

common

22



References

[1] Stephen Tridgell, Martin Kumm, Martin Hardieck, David Boland, Duncan Moss, 
Peter Zipf, and Philip H. W. Leong. Unrolling ternary neural networks. ACM Trans. 
Reconfigurable Technol. Syst., 12(4):22:1–22:23, October 2019. 
URL: ternary_trets19.pdf, doi:10.1145/3359983.
[2] Stephen Tridgell, David Boland, Philip HW Leong, Ryan Kastner, Alireza 
Khodamoradi, and Siddhartha. Real-time automatic modulation classification using 
rfsoc. In 2020 IEEE International Parallel and Distributed Processing Symposium 
Workshops, IPDPSW 2020, New Orleans, LA, USA, May 18-22, 2020, 82–89. 
IEEE, 2020. URL: https://doi.org/10.1109/IPDPSW50202.2020.00021, doi:10.1109 
/ IPDPSW50202.2020.00021.

23

http://phwl.org/assets/papers/ternary_trets19.pdf
https://doi.org/10.1145/3359983
https://doi.org/10.1109/IPDPSW50202.2020.00021
https://doi.org/10.1109%20/%20IPDPSW50202.2020.00021

