
A Fully Parallel DNN Implementation and 
its Application to Automatic Modulation 
Classification

Philip Leong | Computer Engineering Laboratory
School of Electrical and Information Engineering, 

The University of Sydney
http://phwl.org/talks

http://phwl.org/talks


Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems  
- Novel architectures, applications and design techniques using VLSI, FPGA and parallel 

computing technology 

› Research
- Reconfigurable computing

- Machine learning

- Signal processing

› Collaborations
- Xilinx, Intel, Exablaze

- clustertech.com
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Introduction

› Hard to make fully parallel implementations of a NN on contemporary FPGA due 
to size 

› Fit entire DNN on FPGA by exploiting unstructured sparsity and the following 
techniques:
1. Buffering of streaming inputs in a pipelined manner

2. Ternary weights implemented as pruned adder trees

3. Common subexpression elimination 

4. Digit serial arithmetic for throughput matching

5. Sparsity control

6. Incremental precision throughput matching

› Apply to automatic modulation classification (AMC), an integral component in 
intelligent radio
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(Stephen Tridgell PhD work)
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Network Studied

› VGG-7 network 
› Ternary weights
› 16-bit activations
› Accept a single pixel every cycle 

(p=1)
- W*W image takes W*W cycles
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1. Buffering of Streaming Inputs

7

Implement Pipelined 3x3 Convolution

Input FIFO outputs the
pixel each cycle to both Buffer A and the 
first stage of a shift register.
Buffer A and Buffer B delay the output by 
the image width



2. Ternary Weights as Pruned Adder Trees

› Weights are ternary
- So multiplication with ±1 is either addition or subtraction

- Since we have many multiplications with 0 matrix is sparse

8



3. Common Subexpression Elimination

› Weights are ternary
- Reduces convolution to 

constructing adder tree

- Subexpression merged to 
reduce implementation
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Improvement in using CSE
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4. Digital Serial Arithmetic for Throughput Matching

› Used 16-bit fixed point
› Each layer followed by batch 

normalization with floating point 
scaling factor

› Suppose that for a given layer, p 
pixels arrive at the same time
- For p≥ 1 have p adder trees in 

parallel
- For p < 1 word or bit-serial adders 

can match input rate with hardware 
resources

- 4-bit digit serial has 1/4 area

- 1-bit bit serial has 1/16 area

› Avoids idle adders
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5. Sparsity Control

› CIFAR10 dataset
› Weights are compared with threshold

- 0 if less than threshold, 𝑠(±1) otherwise (s is a scaling factor)

› We introduce the idea of changing 𝜖 to control sparsity 
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Breakdown of Layer Sparsity
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CIFAR10 Accuracy vs Speed (FPGA Implementations)
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Automatic Modulation Classification

› Identify modulation type from raw radio signal
- A step towards general problem of interpreting RF scenes from raw signals is a fertile 

research problem

› Reconfigurable computing an excellent solution for this problem
- FPGA enable integration of radio and machine learning in single device

- Latency, size, weight and power are crucial in applications



Implementation

› System implemented on ZCU111 
RFSoC
- 8x 12-bit 4.096GSPS ADCs

- 8x 14-bit 6.554GSPS DACs

- Arm Cortex-A53

- Arm Cortex-R5

› Open Source Verilog generator
- https://github.com/da-

steve101/twn_generator
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https://github.com/da-steve101/twn_generator


FPGA Implementation
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› Ternary Modulation classifier: 488K class/s, 8us latency



6. Incremental Precision Throughput Matching

› Use incremental precision 
activations instead of 16 bit
- Adjust precision to match the 

throughput

- Same area as ternary 
activations

- Almost 5% accuracy gain

Model TW-64 TW-96 TW-BA-
128

TW-
INCRA-
128

CLBs 28k 
(53.5%) 

47k 
(89.3%) 

43k 
(80.7%) 

42k 
(80.2%) 

LUTs 124k 
(29.1%) 

232k 
(54.7%) 

234k 
(55.1%) 

211k 
(49.6%) 

FFs 217k 
(25.5%) 

369k 
(43.4%) 

333k 
(39.2%) 

324k 
(38.1%) 

BRAMs
524 
(48.5%) 

524 
(48.5%) 

523 
(48.4%) 

512.2 
(48.3%) 

DSPs 1496 
(35%) 

1207 
(28.3%) 

1408 
(33.0%) 

1407 
(32.9%) 

Accr 78.7 81.1 75.9 80.2



Video Demonstration
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QAM16/8PSK/BPSK



O’Shea at al, RadioML Dataset
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Conclusion

› Presented an optimized network for AMC which
- Applies common subexpression elimination and digit serial arithmetic to a fully unrolled 

ternary network

- Integrates the entire design on a single chip for a low-latency batch size 1 
implementation

› These serve to achieve a level of performance higher than previously reported
› Challenge of achieving state of the art accuracy remains
› As FPGAs become larger, we believe these techniques will become more 

common
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