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A Bitstream Reconfigurable FPGA Implementation of the
WSAT Algorithm

P. H. W. Leong, C. W. Sham, W. C. Wong, H. Y. Wong, W. S. Yuen,
and M. P. Leong

Abstract—A field programmable gate array (FPGA) implementation of
a coprocessor which uses the WSAT algorithm to solve Boolean satisfia-
bility problems is presented. The input is a SAT problem description file
from which a software program directly generates a problem-specific cir-
cuit design which can be downloaded to a Xilinx Virtex FPGA device and
executed to find a solution. On an XCV300, problems of 50 variables and
170 clauses can be solved. Compared with previous approaches, it avoids
the need for resynthesis, placement, and routing for different constraints.
Our coprocessor is eminently suitable for embedded applications where en-
ergy, weight and real-time response are of concern.

Index Terms—Cost, design, digital, programmable-logic-array, re-
config2000, reconfigurable-computing.

I. INTRODUCTION

A constraint satisfaction problem (CSP) is a problem with a finite
set of variables. Although there exist continuous CSPs with infinite
domain, this paper is concerned solely with discrete CSPs where
variables can take discrete values within a certain finite domain
subject to a set of constraints which restricts them. The solution of a
CSP involves finding an assignment of the variables which violates
no constraints.

There has been considerable recent interest in the application of field
programmable gate array (FPGAs) devices as accelerators for solving
constraint satisfaction problems and, in particular, the Boolean satisfia-
bility (SAT) problem. The Boolean SAT problem is a CSP in which the
constraints are represented by a Boolean function ofm binary variables
F (x0; x1; . . . ; xm�1) in a product of sums form. Each sum term is a
clause,Ci, and is the sum of single literals, where a literal is a variable
or its negation. The Boolean SAT problem is concerned with finding
a variable assignment that makesF = 1 (satisfiable) or proving that
F = 0 (unsatisfiable). If there aren literals in each clause, the problem
is called ann-SAT problem.

Most previous research on using FPGAs as accelerators for solving
SAT problems have concentrated on complete algorithms. Complete
algorithms are guaranteed to find a solution if one exists, whereas
incomplete algorithms may not find a solution even if one exists
(e.g., [1]). In the overview below, unless specifically specified, the
solvers are not restricted ton-SAT problems. Yokooet al. [2]
developed a machine based on FPGAs which implemented a tree
search with forward checking for SAT problems. Suyamaet al. [3]
developed a machine with a dynamic variable ordering heuristic.
Zhong et al. [4] developed a design for SAT problems utilizing the
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Davis–Putnam algorithm as well as an unimplemented design which
used nonchronological backtracking [5]. Hamadi and Merceron [6]
proposed an incomplete SAT solver based on the GSAT algorithm
[7], but the design was not tested on hardware. Leeet al., described
an architecture for an implementation of the GENET algorithm using
FPGA devices [8].

An important limitation of all of the implementations described
above is that they generated a high level description of a circuit
customized for the particular constraint problem. In order to execute
the design, an entire iteration of the synthesis, place, and route (P&R)
cycle was required for each new set of constraints. These steps are
time consuming (it can take several hours to synthesize, place, and
route a large design) and precludes their use in real time systems.

Recently, bitstream reconfigurable systems have been employed
to address this problem, modifying the bitstream in a problem
specific fashion without requiring resynthesis [9], [10]. To the best
of our knowledge, all runtime configurable systems have used Xilinx
XC6200 series devices [11] which document the manner in which the
bitstream relates to the hardware of the device. However, XC6200
devices have been discontinued by Xilinx and also have very small
logic capacity (the largest reportedbitstream reconfigurablesystem
only supports 13 variables and 29 clauses [10]). An implementation
of a bitstream reconfigurable clause checker was previously reported
by our group [12]. However, this implementation only addressed the
subproblem of clause evaluation and did not implement a complete
SAT solving system.

In this paper, we describe a system which implements the walksat
(WSAT) algorithm [13] on a single Xilinx Virtex device [14] and
enables the direct generation of a problem specific customization
of the implementation. The implementation can accomodate 3-SAT
problems up to 50 variables and 170 clauses, obviating the need for
synthesis, placement and routing of a new circuit for problems of this
size and smaller. This results in a three orders of magnitude savings in
compilation time. Finding a solution quickly is of great importance in
real-time applications and Selmanet al. [13] showed that incomplete
local search algorithms such as GSAT and WSAT outperform the best
known complete algorithms on certain classes of large SAT problems.
We are not aware of any previous hardware implementations of the
WSAT algorithm.

It is envisaged that there are many applications of this work in em-
bedded real-time constraint applications where size, power, and speed
are critical, the constraints are changing in real-time, and the limita-
tions of using incomplete algorithms are acceptable. As an example,
autonomous robots could use CSP solvers for navigational planning,
scene recognition, and scheduling.

II. WSAT MACHINE ARCHITECTURE

The WSAT algorithm [13] is a simple, local search-based method
for solving Boolean SAT problems. It was shown to have much
better performance than the random noise, GSAT, and simulated
annealing algorithms for a class of random, planning, circuit syn-
thesis, and circuit diagnosis problems [13]. For a Boolean constraint
equationF , the WSAT algorithm can be described by the following
pseudocode:
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Fig. 1. Datapath of the WSAT core.

WSAT(int Maxtries, int Maxflips)
f

for (tries = 1 to Maxtries) f

V = a random instantiation
of the variables;

for (flips = 1 to Maxflips) f

C = a random unsatisfied clause;
p = a random variable in C;
V = V with p flipped;
if (F(V) is true)

return V;
g

g

return(no solution);
g

The implementation described in the rest of this paper is for problems
of size up to 50 variables and 170 clauses and smaller. A block diagram
of the datapath of the WSAT core is shown in Fig. 1. Note that the
WSAT core implements only the inner loop of the WSAT algorithm
described in the previous section. The host will call the WSAT core
“Maxtries” times with random variable assignments to implement the
entire WSAT algorithm described earlier.

A random variable assignment is first downloaded from the host
machine tovariable(49:0)in the WSAT core. The clause checker then,
in parallel, outputs a vector of all of the clause values,clause(169:0).
If all clause values are TRUE, then the variable assignment represents
a solution to the SAT problem and the DONE signal is asserted.
Otherwise, the random clause selector takes the clause values serially
and selects an unsatisfied clause (i.e., one that is FALSE) which is
output asclause_number. Since the WSAT core supports 170 clauses,
clause_number is an eight-bit number.Clause_number is used to

address the clause table memory which is used to determine which
variables are used in a clause. Currently the design is for 3-SAT
problems so every clause has three variables (ct0, ct1, and ct2 in
Fig. 1). The random variable selector simply generates a random
number which is used to select a random variable in the chosen clause.
This is the variable number which is flipped via multiplexers to create
a new variable assignment.

In the following paragraphs, the major blocks of the WSAT machine
are described in detail.

Fig. 2 shows a block diagram of the clause checker. It contains an
array of logic cells (LC) (see Section III), the four input lookup table
(LUT) logic primitives of Xilinx Virtex devices [14]. The LCs are con-
figured as 16� 1-bit ROM memories. The inputs to the clause checker
are 50 bits corresponding to the variables and the outputs are the 170
clause evaluations. Note that although bits 50 and 51 are shown in the
figure, they are always tied to zero in the current design.

Each LC in a row has its address lines connected to four consecutive
inputs of the variable to be evaluated. The output of the LC is the eval-
uation of the sum terms for the input variables to which it is connected.
The ROM outputs are connected to OR gates which are implemented
outside of the array. As an example, for the clauseC0 = x0+x2+x5,
the first column LC of Fig. 2 implementsx0 + x2 (as a lookup table)
and the second column LC implementsx5. All the outputs along a row
are OR’ed together to form the desired equation for the clause.

The clause checker is the only part of the WSAT core which needs to
be reconfigurable at runtime. The equations for the clauses are stored
in LC 16 � 1-bit ROM primitives so all that is required is to have
the ability to alter these values. The circuit is designed in the normal
fashion and the ROMs can be placed at arbitrary locations. After syn-
thesis, technology mapping, placing and routing, a circuit description
file (for the Xilinx tools this has an extension .ncd) is generated. Using
tools provided by Xilinx, the contents of the circuit can be converted
into a human readable format, and information regarding the physical
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Fig. 2. Block diagram of the clause checker. Note that bits 50 and 51 are unused.

location of the LCs can be extracted. A software program was written
which takes as input the bitstream, .ncd file and specification of the
SAT problem in the standard DIMACS benchmark format [15]. It mod-
ifies the bitstream according to the SAT problem specification by cus-
tomizing the ROM values and recomputing the CRC of the bitstream.
The resulting bitstream can be downloaded to a Virtex FPGA.

The serial random clause selector is used to randomly select an un-
satisfied clause in an online fashion. In iterationi, thekth unsatisfied
clause, is chosen a with probability1=k (“choose =i” in the pseu-
docode below). Moreover, the previous unsatisfied clauses have a prob-
ability of 1=(k � 1) � (1 � 1=k) = 1=k of being chosen. Thus, the
algorithm will choose an unsatisfied clause with equal probability. The
selection algorithm is described in pseudocode form that follows:

select_clause(int clause[NUMBER_CLAUSES])
f

k = 1;
for (i = 1 to NUMBER_CLAUSES) f

if (clause[i] == ‘0’) f
r = rand(0, k);
if (r <= 1)

choose = i;
k = k + 1;

g
g
return choose;

g

The clause table memory is implemented as a 256� 32-bit memory
using the BlockRAM feature of the Virtex FPGAs (see Section III).
Each memory address of the RAM corresponds to a different clause
number. The address stores the number of each variable of the clause.
For example, for the clauseC0 = x0 + x2 + x5, memory address 0
would havect0 = 0, ct1 = 2, andct3 = 5 (refer to Fig. 1). Note
that the clause evaluator is not used efficiently since an entire row of
LCs is required to implement a single clause. Methods which modify
the routing in the bitstream instead of the logic equations could lead to
much more compact implementations.

III. I MPLEMENTATION

The WSAT processor was implemented on an Annapolis Micro
Systems Wildcard™ board [16], a type II PCMCIA card with 32-bit

CardBus interface consisting of a Processing Element (PE, Xilinx
Virtex XCV300-4 [14]) and two 64K� 32-bit SDRAMs. The
XCV300 has 64Kbits of block RAM (arranged as 8� 8-Kbit blocks)
and 1536 configurable logic blocks (CLB’s).

The basic building block of the Virtex FPGA is the the logic cell
(LC). An LC includes a four-input function generator, carry logic, and
a storage element. Each Virtex CLB contains four LCs, organized in
two slices. The four-input function generators are implemented as four-
input look-up tables (LUTs). Each of them can provide the functions
of one four-input LUT or a 16� 1-bit synchronous RAM (called “dis-
tributed RAM”). Furthermore, two LUTs in a slice can be combined to
create a 16� 2-bit or 32� 1-bit synchronous RAM, or a 16� 1-bit
dual-port synchronous RAM.

Ultimately, the compactness of the circuit implementation deter-
mines the size of the SAT problem that can be solved using the system.
The Xilinx Virtex XCV300-4 device used in our implementation has a
relatively large number of logic resources which enables a single chip
implementation of the WSAT core.

Based on an analysis of the resources required by the clause checker,
clause instance, variable instance, flipping logic, random number gen-
erator, control logic, registers and multiplexers, for a 3-SAT problem
with v variables andn clauses, the number of slices used for an-clause
v-variable problem can be approximated by

slices�
1

2
2n

v

4
+ 11 log

2
n+ v + 2 log

2
v + 12 + 200:

For the 50-variable 170-clause case, the number of slices used was
2382, whereas the number predicted by the formula is 2487. Using a
Xilinx Virtex XCV1000 which has 12 288 slices [14], one could solve
100-variable 340-clause SAT problems.

IV. RESULTS

On a Pentium II 333MHz machine, the time required to generate a
new bitstream file was 0.45 s and to download a bitstream to the FPGA
board was 1.46 s. Using the same Pentium machine, the synthesis and
place and route time was 6600 s. Thus the bitstream reconfigurable
version enjoys a three orders of magnitude improvement over the stan-
dard resynthesis approach. The current program reads an existing bit-
stream file, computes the new values for the clause ROMs, updates the
bitstream, computes a new CRC and writes the result to another file.
This file is then downloaded to the board using a download program.
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TABLE I
TABLE COMPARING THEEXECUTION TIME FOR SOFTWARE AND HARDWARE IMPLEMENTATIONS OFWSAT. “TIME” I S THERAW EXECUTION TIME NOT INCLUDING

RECONFIGURATION AND DOWNLOADING TIMES (WHICH ARE CONSTANT AND GIVEN AT THE BOTTOM OF THETABLE), “A VERAGE TRIES” REFERS TO THE

AVERAGE NUMBER OF TRIES TOFIND A SOLUTION, “SUCCESS” I S THE PERCENTAGE OFTIMES WSAT WILL FIND A SOLUTION TO THE SAT PROBLEM AND

“SPEEDUPIS THE TOTAL SPEEDUPCONSIDERING THERECONFIGURATION AND DOWNLOAD TIMES

For all problems, time to create a new bitstream file: 0.45 s; download a bitstream to FPGA: 1.46 s; and handshake

overhead is 0.67 ms per handshake.

It would be possible to avoid writing the intermediate files, avoid com-
puting a CRC (they are optional) and directly download the resulting
bitstream to the FPGA. This would significantly reduce the time re-
quired for reconfiguration.

The design was tested1 on the “aim” benchmark problem from the
Second DIMACS Implementation challenge on NP Hard Problems:
Maximum Clique, Graph Coloring, and Satisfiability [15] and on the
“uf20” uniform random 3-SAT benchmark problems [17]. The prob-
lems tested (see Table I) were “aim-50-2-*” which have 50 variables,
100 clauses; “aim-50-3-*” which have 50 variables, 170 clauses and
“uf20-91” with 20 variables and 91 clauses.

In order to provide a comparison with software performance, an im-
plementation of WSAT written by Selman and Kautz [13] was used.
This software implementation is highly optimized and when a variable
is flipped, only the clauses affected are recomputed. For all problems,
the software execution time was measured on a Sun SparcStation 20,
and the hardware WSAT implementation was clocked at 33 MHz. Ad-
ditionally, the software and hardware both used the parametersMax-
tries = 100andMaxflips = 100 000(see Section II).

The average flips per second (fps) achieved by the software
implementation were found to be independent of the problem and
measured at 50 000 fps. The hardware achieved 363 700 fps. This
measure can be thought of as the maximum performance achievable
by our design.

Table I details the average software and hardware execution times
(not including the constant configuration and downloading times) com-
puted over 100 trials. On average, a handshake takes 0.67 ms and the
overhead for a particular case can be computed by multiplying this
value by the “Average Tries” entry of Table I and does not contribute
significantly to the overall runtime of the system. The “Success rate”
of the hardware and software implementations are quite similar, indi-
cating that the statistics of our clause selection algorithm is similar to
that of the software implementation of the WSAT algorithm. As can be
seen from the “Speedup” column, the hardware is significantly slower
than the software for the “uf20” problems. This is due to the constant
1.91 s overhead incurred through reconfiguration and bitstream down-
load. This overhead becomes less significant as the run time increases
and the hardware performance for aim problems is approximately two
to three times faster than the software.

1All problems are available from SATLIB, http://aida.intellektik.infor-
matik.tu-darmstadt.de/SATLIB.

V. CONCLUSION

An implementation of a fast SAT solving machine which uses the
WSAT algorithm was presented. In contrast to previous approaches
which require resynthesis when the SAT problem is changed, a problem
specific architecture and runtime configuration was used to achieve a
three orders of magnitude speedup in the reconfiguration time of the
clause checker.

The measured performance of the WSAT core was approximately
equivalent to that of a typical workstation. However, this is achieved
with a single chip plus a host which does not need to perform com-
putationally demanding tasks. Such a system has advantages in terms
of cost, memory, energy, size, weight, and real-time performance com-
pared with software implementations. The WSAT core can be consid-
ered an SAT solving coprocessor chip for a microprocessor host and
would be eminently suitable for embedded application where energy,
weight and real-time response is important.
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Unifying Simulation and Execution in a Design
Environment for FPGA Systems

Brad L. Hutchings and Brent E. Nelson

Abstract—Field programmable gate array (FPGA)-based systems
provide advantages over conventional hardware including: 1) availability
of the hardware during design and debug; 2) programmability; and 3)
visibility. These three advantages can greatly shorten the design and
verification cycle. This paper discusses a design environment that exploits
these three FPGA-specific advantages to create a unified simulation/ex-
ecution debug environment implemented in the JHDL design system.
The described system provides ahardware debugging environment with
the functionality of a simulator but up to 10 000 faster. In addition,
testbenches and other typical verification software used in simulators can
be used to verify running hardware.

Index Terms—Debug, field programmable gate array (FPGA), reconfig-
urable computing.

I. INTRODUCTION

Field programmable gate array (FPGA)-based systems enjoy three
unique characteristics that can enhance the development and debug-
ging process relative to conventional custom-hardware-based systems:
1) hardware availability (FPGA hardware is generic and can be used
at the earliest point in the design cycle); 2) programmability (FPGA
hardware can be modified throughout the design cycle); and 3) visi-
bility (the internal state of many FPGAs is directly accessible). Early
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availability of the hardware means that designs can be executed on
high-speed hardware (as opposed to simulation1 ) and tested in-system
much earlier in the design cycle. Programmability not only allows
designers to fix bugs in their design, but more importantly allows
designers to incrementally develop designs in actual hardware, veri-
fying each circuit block in-system with other circuit blocks. Finally,
the ability to view internal FPGA state makes it easier to verify
designs and track down and fix bugs. In short, these features sug-
gest that a software-like debugging process containing many repeated
compile/execute/modify cycles should be feasible with FPGA-based
hardware systems.

In spite of these advantages, current FPGA-based systems remain
difficult to use and debug. The debug process is relatively primitive
and consists of two disjoint phases. In the first phase, the design
is verified using logic simulation. Test vectors, memory initialization
files, and command scripts are prepared and a system-level simulation
model is written. In the second phase, bitstreams for each FPGA
are generated and downloaded to the platform. Moving from the
simulation to hardware execution environment, at worst, requires a
total rewrite of test vectors and other files. Most platforms also require
the creation of a runtime control program (usually written in C) which
configures and controls the FPGA board. Additionally, an important
tool for hardware debug in this phase is a logic analyzer; a typical
approach to find bugs is to make repeated circuit synthesis runs to
bring signals of interest to package pins where they can be accessed
by the logic analyzer.

Most of the early research on CCM platforms reported rudimentary
“built-in” debugging capability. Splash2 [1] and DecPerle-1 [2] could
use readback (readback is the ability of Xilinx FPGAs to dump the in-
ternal state of memory elements as a user-accessible bitstream) to ac-
cess the internal FPGA state and could match this state with some of
the symbolic signal names found in the original design specification.
Teramac [3] and DecPerle-1 both had rudimentary breakpoint capabil-
ities that allowed the designer to define a single hardware event that
could be used to stop the global system clock. Finally, the work de-
scribed in [4] allowed a Verilog simulator to request a hardware read-
back and could then display the retrieved flip flop values in a table.
Triggers and breakpoints were also supported to provide feedback to
the simulator as to when doing a readback was warranted.

However, little has been done to further exploit the unique features of
FPGAs, especially for 1) incorporating readback data into a simulator
to deduce all signal values and 2) providing the same debug capabili-
ties insimulationandhardware execution. This paper discusses an ap-
proach to doing this. That is, whether simulating a circuit or executing
it in hardware, the same complete circuit state is presented to the user,
and the same GUI, testbenches, commands, and control and data input
files can be used in both places, simplifying the move from simulation
to hardware execution and back. Further, the resulting CAD tool makes
it possible to implement many of the features found in standard soft-
ware debuggers including signal probing and tracing, single-stepping,
breakpointing, and checkpointing. This provides support for hardware
experimentation much earlier in the design process than current tools,
reducing the user’s reliance on much slower simulation.

In the sections which follow we first describe the structure of the
CAD system, focusing on the APIs and mechanisms required to support
both simulation and execution. We conclude with an example of the
tool’s use and a description of ongoing and future research in this area.

1Although much slower, software simulation is still useful when the FPGA
hardware is not available or while waiting for bitstreams to be generated.
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