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Abstract—Techniques for the automatic clustering of
extracellular multineuron recordings from the nervous system
are compared for efficiency and accuracy. Selected waveforms
were combined with noise to form test data with known
classifications. After identical preprocessing using a Schmitt
trigger threshold detector, the K-means, template matching
and ART2 algorithms were applied to the same data.
Measurements of the efficiency and utility of the three
algorithms are presented using both the raw waveforms and
the weightings of the first two principal components.
Additionally, all three algorithms were tested with data
obtained from electrophysiological experiments.

Index terms—Multi-unit spike train, Computer spike
discrimination, neural network

I. INTRODUCTION

Extracellular recordings of neuronal spiking activity are
becoming increasingly important in studies of multi-
neuronal activity in physiological laboratories. Such
recordings allow the activities of multiple closely spaced
neurons to be recorded from a single electrode as opposed
to the usual case where only a single neuron can be
monitored. This extra information may be an important tool
for gaining improved understanding of the interactions
between neurons when processing information.
A key problem in wusing multineuron extracellular
recordings is that of demultiplexing individual neuronal
activities from the spike trains recorded. This clustering
procedure can be accomplished by sorting the different
spikes by shape, each different shape assumed to be
associated with a different neuron.

Ideally a solution to this spike-sorting problem should have

the following features:

e Real-time - use an efficient online computation
algorithm to facilitate operation in a real time
environment

e  Accurate - discard the occasional corrupted spike but
form new templates for genuine spikes of a new class

¢ Unsupervised - operate with minimal human
intervention
e Adaptive - adapt reference patterns (templates)

dynamically to track changes in the shape of a spike
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over time due to movement of the electrodes or

changes in the membrane potential.
e Cost and convenience — should run on standard

personal computers so no special hardware is required.
Many different techniques have been proposed for the
automatic waveform classification of such signals (see
Schmidt [1] for a review). The earliest techniques
discriminated between: waveforms based on the amplitude
of several selected points [1]. They were hardware based so
they met the real-time constraint, however their accuracy
was limited and they did not adapt to changing spike
patterns. Computer based methods have focussed on
template matching in which templates which are
representative of single neuron spikes are constructed and
spikes classified by comparison with the templates [2].
Both online and batch (offline), adaptive and non-adaptive
methods have been proposed for producing templates. The
algorithms used have included generating new templates
when no good match with existing templates are found [2],
the K-means clustering algorithm [3,4], linear filters [5] and
artificial neural networks [6]. Many of these algorithms
employ principal component analysis [1] as a preprocessing
step, serving to reduce the dimensionality of the patterns to
be clustered as well as extract only the most salient features
of the waveform.
Online computer based methods for spike sorting have
typically relied on high-speed processors to meet the strict
real-time requirements of the task. A state of the art real
time system [7] uses two AT&T DSP32C floating point
digital signal processing chips per channel to demultiplex
up to 8 spikes in real-time. A standard modern desktop

computer (e.g. a 400 MHz Pentium II processor) has much
more computing power than a DSP32C,

Artificial neural networks (ANNs) have been successfully
applied to many difficult pattern recognition problems such
as optical character recognition, time series prediction and
speech recognition [8]. In many cases ANN based solutions
were found to be more accurate and robust than even the
best conventional techniques. Work on using a
backpropagation network for spike sorting [6] has been
reported. However, this technique was an offline method
and training of the ANN was performed prior to spike



sorting. This means that the network is unable to learn new
spikes unseen presented during the training process.

In this paper, we introduce an online, unsupervised
software based spike recognition algorithm using the ART2
artificial neural network model [9]. This model can learn
new templates when previously unseen spikes are
encountered. The ART2 method is compared with two
standard techniques: a simple template matching technique,
and the K-means algorithm.

II. CLUSTERING ALGORITHMS

In this section an overview of the three algorithms that will
be compared is presented. Due to space limitations, a
complete description of each algorithm cannot be presented
although references are provided.

A. Online Template Matching (TM)

The template matching algorithm used is an online
modification of an algorithm proposed by Millecchia and
Mclntyre [10]. If an incoming spike is less than a user
defined distance D (in Euclidian distance) from one or
more templates, that spike is classified as belonging to the
same class as the closest matching template. The template is
then adapted using a weighted average between the
template and the new spike. A new template is generated
when a spike occurs which is greater than D from all of the
other templates. After a maximum number of new
templates (10) is generated, no further templates can be
made.

B. K-means Clustering

The K-means clustering algorithm 3] minimizes the sum of
square errors with K clusters (which is user-defined). Each
cluster contains a set of spikes that are similar in shape. The
templates are derived during a learning phase in which the
best partition of a set of training data (we use all of the data
available) is found by minimizing the sum of the Euclidian
distances between each spike and their cluster mean. The
algorithm starts by performing a rough initial clustering
based on the sum of the data points in the spike. This sum is
used to group the training spikes into one of the K initial
clusters. A test is performed on each spike by moving it
from its current cluster to each other clusters and
calculating the total error. The cluster is moved @if
necessary) to the cluster which gives the smallest total
error. This local optimization procedure is repeated for each
spike until the algorithm iterates over the entire training set
without changing the cluster assigned to any spike. After
the clusters have been assigned, fast classification can be
accomplished by assigning the spike to the closest cluster.

C. ART2

Adaptive resonance theory (ART2) [9] is a neural
computational algorithm designed for real time self-
organizing stable pattern recognition codes in response to
arbitrary sequences of analog input patterns. In an ART2
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network, an input pattern is applied to the F1 layer (see
Figure 1). A feedback structure in the F1 layer encodes the
input in an amplitude independent resonant state. During
this resonant period, learning or adaptation can occur via
interaction with the F2 layer.

ART2 adopts a competitive learning model in which a
stream of input patterns to a network F1 can adapt the Long
Term Memory (LTM) values that multiply the signals in
the pathways between F1 and F2. Layer F2 is a competitive
network capable of choosing the node which receives the
largest total input (this corresponds to the closest matching
template stored in the LTM).

Orienting
subsystem 1
Reset representati
Output layer F2 field entation
V A
feature
representation
r Input layer F1 field

* Input spike

Figure 1. Block diagram of the ART2 network.

The criterion for an adequate match between an input
pattern and a chosen template is adjustable by the vigilance
parameter p. An auxiliary orienting attentional subsystem
becomes active when a bottom-up input to F1 fails to match
the learned top-down expectation read-out by the active
template representation at F2. The orientation subsystem is
activated and causes a reset of the active template.
Alternative templates are tested in the hope of finding an
adequate match. If there is no successful match, the cycle
will end by selecting an uncommitted node OF F2, then the
bottom-up and top-down adaptive filters linked to this node
learn the F1 activation pattern generated directly by the
input. If the full capacity of the system is used, the system
will not be able to accommodate new input pattern.

II1. METHODS

The data used in our experiments were taken from the
lateral geniculate nucleus, part of the visual pathway
between the retina and the visual cortex of the common
marmoset, Callithrix jacchus, a small South American
monkey which has a visual system similar to that of
humans and other primates.

The signals from the extracellular electrodes are amplified
by a factor of 50000, passed through an anti-aliasing filter
and digitized with a 12 bit National Instruments NI-MIO-
16H data acquisition card at 22.5 kHz and saved to disk.
All experiments described in this paper were performed off-
line from recorded data.



A software implemented Schmitt trigger is used to identify
spikes. When the waveform amplitude exceeds a user-
defined trigger point 61 a spike is identified. The spike
waveform consists of 16 samples, 4 from prior to the
trigger and the 12 subsequent samples. Before a new trigger
can occur, the signal must pass below the second threshold
82, implementing a hysteresis effect to reduce false
triggering in the presence of noise.

Principal component analysis (PCA) [1] was used as an
optional preprocessor to reduce the dimensionality of spike
data. One thousand spike waveforms obtained using the
Schmitt trigger are chosen as the training set and a set of
orthogonal basis functions computed using PCA. Each
spike is then represented as the weighted sum of the
eigenvectors corresponding to the largest eigenvalues of the
training set’s covariance matrix. These two eigenvectors
form a basis which corresponds to the directions of greatest
data variance. This technique is the optimal linear
compression of the data, PCA serving to maintains most of
the information about the waveform while achieving an
eightfold compression.

The Schmitt trigger, PCA, clustering and data generation
software were all implemented using the Mathworks Inc,
MATLAB Version 5.0 language running on a Sun Sparc
Ultra 5 machine. MATLAB provides a fast prototyping
language for expressing computations, good data plotting
facilities and an interactive environment for testing
different algorithms.

IV. RESULTS

In order to test the accuracy of the three different
algorithms ART2, K-means and template matching (TM), 4
clearly differently shaped spikes were taken from a
clustering of recorded -electrophysiological data and
varying amounts of Gaussian noise added to each
waveform. For each of the 4 spike shapes, 30 corrupted
versions were generated to form a test set of 120 spikes.
This test set was generated at noise levels corresponding to
1%, 20%, 40%, 60% and 80% of the maximum amplitude
of the data (see Figure 2). The performance of each
algorithm for the test set described (with and without PCA
preprocessing) are shown in Table 1. For each algorithm,
the user-tunable parameters were adjusted to give the best
results. The number of floating point operations (FLOPS)
required to perform clustering was also recorded for the 1%
noise level case and is shown in Table 2.

From Table 1, it can be seen that the K-means and the
TM+PCA algorithms have the best performance. The TM
algorithm’s poor performance for noise levels >40% was
due to its simplistic method of creating new templates. The
ART?2 algorithm, did not have good overall performance.
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Figure 2. Example data sets with 1% noise
and 60% noise.
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Figure 3. Clustering results comparing the
performance of the three algorithms on recorded
electrophysiological data.

Table 1. Results for randomly generated data. The entries
correspond to the number of incorrectly classified data in a
120 point test set.

Noise Level 1% 20% 40% 60% 80%
ART2 0 1 21 29 31
ART2 + PCA 0 0 9 24 26
Kmeans 0 0 1 7 12
Kmeans + PCA 0 0 8 7 30
™ 0 0 90 90 90
T™™ + PCA 0 0 8 10 17




Table 2. Comparison of the efficiency of the algorithms for
the 1% noise level case of Table 1.

Algorithm FLOPS
ART2 537808
ART2 + PCA 79280
Kmeans 291936
Kmeans + PCA 64352
™ 47561
T™ + PCA 16110

It can be seen from Tables 1 and 2 that PCA improves the
accuracy and efficiency of clustering algorithms. The
reduction in the dimensionality of the data means less
computation is needed for clustering. PCA also serves as a
form of feature extraction, removing unnecessary
dimensions from the data so that the clustering algorithm
deals only with the most salient features of the signal.

It is clear from Table 2 that the TM algorithm is clearly the
most efficient, followed by K-means and then ART2. Using
PCA analysis prior to clustering significantly reduces the
amount of computation required. In this case, ART2 and K-
means have approximately the same computational
requirements.  Template  matching, however, is
approximately four times faster.

The K-means algorithm does not have any parameters to
tune (except the number of clusters) hence is the easiest to
use. ART2 showed much less sensitivity to the value of the
vigilance parameter than TM to the distance measure. For
some of the cases, slightly changing the distance for TM
would greatly change the results.

The three classification algorithms with PCA preprocessing
were also tested on a set of real recordings taken from
electrophysiological experiments. The clustering obtained
from the 3 different algorithms are shown in Figure 3.
Since it is not possible to associate spikes in the
extracellular recordings with their respective neurons, it is
not possible to make quantitative conclusions about the
quality of the clustering. Qualitatively, the authors feel that
none of the algorithms are clearly inferior or superior.

V. CONCLUSION

Three different clustering techniques were tested on
extracellular multineuron recordings. It was established that
applying principal component analysis to the waveforms
before clustering was beneficial both in terms of the
accuracy of the results and the efficiency of the clustering.
The three different algorithms, template matching, K-means
and ART2 had sithilar qualitative clustering performance.
K-means was found to be slightly more robust to large
amounts of noise than template matching with PCA, and
both methods were superior to ART2. Template matching
was clearly the most efficient algorithm followed by K-
means and PCA.
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