
A Parallel Spiking Neural Network Simulator

Kit Cheung 1, Simon R. Schultz 2, Philip H.W. Leong 3

1 Department of Computer Science and Engineering,
The Chinese University of Hong Kong

kcheung6@cse.cuhk.edu.hk

2 Department of Bioengineering
Imperial College London

s.schultz@imperial.ac.uk

3 Department of Electrical and Information Engineering
The University of Sydney
phwl@ee.usyd.edu.au

Abstract—An FPGA-based systolic architecture for the high
speed simulation of spiking neural networks is presented. The
design is an implementation of Izhikevich’s neuron model and
employs optimizations for the typical case where neuron activity
is low. Since execution time required is related to the activity
level, performance of the design can be improved by an order of
magnitude.

I. INTRODUCTION

The goal of computational neuroscience is to obtain an
understanding of how the brain processes information. Sim-
ulations are an important tool for modelling the massively
parallel computational processes involved, but the execution
time associated with a large scale cortical model is a lim-
iting factor in many cases. In this work, an accelerator for
simulating biologically plausible spiking neural networks is
presented which allows for the simulation of arbitrary size
networks using a single FPGA device.

In a biological neural network, information is exchanged be-
tween neurons through the frequency and phase relationships
between spikes. At any given time, only a small percentage of
neurons are firing (sparse firing) and the actual percentage is
known as the activity level. Its value may vary substantially,
for instance over the period during which the brain of an
organism develops [1], [2]. For high performance, spiking
neuron simulations can be optimised to take advantage of this
behaviour. The main contribution of this work is an event-
driven hardware architecture for simulating a network in which
a neuron state is only updated when a neuron spikes. Since
spikes occur infrequently, a savings in execution time related
to the activity level can be achieved. Thus for a typical case
in which the activity level is 1% to 10%, performance is
improved almost tenfold.

The architecture is also designed to operate at high fre-
quency and be scalable. This is achieved using a systolic
organisation involving mostly local interconnections between
processing elements [3]. Multiple FPGAs can be easily con-
nected to produce a larger network and arbitrary size networks
can be simulated provided that sufficient memory resources to
store the synaptic weights are available.

The rest of this paper is divided into the following sections.
In Section II, spiking neural networks and Izhikevich’s neuron
model are introduced. Section III describes the algorithmic
level changes introduced in this paper, namely activity factor
optimisation and parallelisation. Section IV explains the ar-
chitecture and implementation of the simulator. Experimental
results are presented in Section V. A comparison with a
previous work on spiking neural network implementations is
given in Section VI and conclusions concerning this work are
given in Section VII.

II. BACKGROUND

A typical neuron integrates signals from other neurons via
synaptic inputs onto its dendrites and soma, applies a non-
linearity and generates an output spike if the total exceeds
a threshold. While relatively biophysically accurate models
such as the Hodgkin-Huxley model have been developed to
simulate neurons, it must be noted that these models (which
are still phenomenological) are computationally intractable for
more than a small number of neurons, and hence not a good
choice for large scale spiking networks. Izhikevich proposed
a simplified phenomenological model which can reproduce
much of the known spiking and bursting behaviour of a wide
variety of cortical neurons while allowing simulation of tens of
thousands of neurons in real-time on a personal computer [4].
In the description below, the general notation of Thomas and
Luk [5] is first introduced and used to describe the neuron
dynamics model in an abstract fashion and then the specific
implementation of Izhikevich’s model is described.

The spiking neural network with N neurons is assumed
to be fully connected and hence the output of each neuron i
is connected to every other neuron. The synaptic strength of
these connections are given by the N × N matrix W where
W [i, j] is the strength between the output of neuron j and
the input of neuron i. Thus W[i, :] represents the synapses at
the input of neuron i, whereas W[:, j] represents the synapse
values connected to the outputs of neuron j.

Each neuron has its own static parameters and varying
state values. The set P represents the set of possible constant

978-1-4244-4377-2/09/$25.00  2009 IEEE FPT 2009247



parameters and S is the set of neuron states. The set of possible
inputs to the neurons is denoted by R.

The neuron updated function f : (P, S, R) → (S, [0, 1]).
takes as inputs the neuron parameters, states and inputs and
produces the next neuron state and binary output.

The computation of a timestep of the simulation is described
in Algorithm 1. For each neuron in the network, its input
is computed by calculating the dot product of all neuron
outputs with the associated synapse value to neuron i, i.e.
ii = W[i, :]̃f . We call this the ACC phase. This neuron input
is then used along with the neuron’s state and parameters to
compute the new state and output (!si, !ti) ← f(!ci, !si, ii) in the
CAL phase.

begin
// ACC phase ;
for i=1..n do

ii ← W [i, :]!f ;
end
// CAL phase ;
for i=1..n do

(!si, !fi) ← f(!ci, !si, ii) ;
end

end
Algorithm 1: Timestep (dense)

Izhikevich’s model uses 2 variables to represent the state
of a single neuron i, namely its membrane recovery variable
u[i] and membrane potential v[i], i.e. (u[i], v[i]) ∈ S. An
additional 5 parameters are used for the configuration of
the neurons: a - time scale of u; b - sensitivity of u; c -
value of v after the neuron fired; d - value of u after the
neuron fired; s - scaling factor for noise input. Hence the
neuron parameters are (a, b, c, d, s) ∈ P. These parameters can
be tuned to represent different neuron classes (for instance
by fitting membrane potential traces from whole-cell patch
clamp recording experiments [6]); in practice, in a large scale
simulation each parameter might be selected from a narrow
distribution for the respective cell class, thus incorporating
network inhomogeneity.

The dynamics of u[i] and v[i] are given by the two dimen-
sional system of ordinary differential equations:

du[i]/dt = a(bv[i] − u[i]) (1)

dv[i]/dt = 0.04v[i]2 + 5v[i] + 140 − u[i] + J [i] (2)

where J [i] = I[i] + sN(0, 1), and N(0, 1) is a zero mean,
unit variance normally distributed random input. This noise
term simulates the contribution of thalamic noise from non-
modelled sources [4].

If the value of v[i] is above 30 mV , the output is set to 1
(otherwise it is 0) and the state variables are reset:

if v[i] ≥ 30 mV then

{

v[i] = c
u[i] = u[i] + d

(3)

III. OPTIMIZATIONS

The time complexity of a spiking neural network simulation
lies in the O(N2) floating point operations required to perform
the dot product ii = W[:, i]̃f for all neurons. However, the

number of nonzero entries in !f is small. A more efficient
sparse implementation uses setbits() which returns the indices
of nonzero bits in a binary vector, followed by an empty
sentinel (denoted by e).

begin
// ACC phase;
for j in setbits(!f ) do

!i ←!i + W [:, j] ;
end
// CAL phase;
for i=1..n do

(!si, !fi) ← f(!ci, !si, ii) ;
end

end
Algorithm 2: Timestep (sparse)

Although this has the same O(N2) complexity as the
previous algorithm, the number of floating point operations
required is now equal to the number of set bits in !f , and hence
reduced by the activity factor. In the implementation described
setbits() is implemented using a leading ones detector (LOD).

A parallel implementation of Algorithm 2 is now described.
The number of processing elements (PEs) is K and they are
connected together in a unidirectional ring. C neurons are
handled per PE. A total of KC weight tables each holding
W [i, :] is required for accumulation of weights during the ACC
phase. The computation of the sparse dot product proceeds in
parallel as follows:

1) PE k applies a LOD over the subvector !fk = [fCk,
fCk+1, . . . fC(k+1)−1] and determines the offset d of the
first nonzero bit (indicating neuron j = Ck+d has fired).
If the LOD returns e, no updates are applied in the next
step below.

2) Each PE computes !ik ← !ik + W [:, j] for the C neurons
it handles, where ik are the associated inputs.

3) j is passed to the neighbouring PE and a new j is
received. Step 2 is repeated until all K fired neurons
have been processed.

4) Repeat from step 1 until all LODs return e.

The parallel implementation method just described has
several advantages:

• As mentioned before, the number of cycles required is
related to the activity factor.

• The PEs operate in parallel to reduce the execution time
by a factor up to K.

• Only a small number of local connections between PEs
are required.

248



IV. IMPLEMENTATION

A. Architecture

The overall datapath of the neural network simulator uses
the parallel implementation of Algorithm 2 described in the
previous section and is illustrated in Figure 1. Each PE is
responsible for computing the response of its C neurons as
well as storing their state and synaptic weights. A finite state
machine (not shown) is used to control the datapath.

A timestep computation is divided into two phases. The first
phase is the ACC phase which performs accumulation of the
spikes from other neurons according to Algorithm 2. The CAL
phase updates the neurons’ states according to Equations 1-3.

A key block in the design is the LOD which determines the
first set bit in a binary vector of length C. For example, if
C = 6 and the vector is “011001” the LOD should return the
sequence 0, 3, 4, e. In our current implementation, a parallel,
single cycle implementation of Algorithm 3 is used. Note that
successive calls to the LOD return new values of set bits since
x is modified on the fly.

Data: x (global variable)
while (x '= 0) do

// clear all but first unset bit
z = x&(−x);
for i = 0 . . . (N − 1) do

if (((1 << i)&z) '= 0) then
x = x&(∼ z);
return i;

end
end

end
Algorithm 3: Leading ones detector

An example of the accumulation procedure is presented in
Figure 2. The following points should be noted:

1) At the beginning of the first pass, the ACC units receive
the relative position d of the first non-zero bit of each
!fk from the LODs (0, 1, e, 0 in the example).

2) An offset of Ck for PE k (+6,+4,+2,+0) is added to
obtain the absolute fired neuron number (6, 5, e, 0). The
corresponding entries in the weight tables for each PE
will then be accumulated in the input Ii .

3) The neuron number d is passed to the adjacent PE.
4) Steps 2 & 3 are repeated until all fired neurons in the

pass have been processed by each PE. Hence each pass
requires a runtime of K cycles.

5) If all LODs return e the ACC phase ends, otherwise go
back to Step 1.

The implementation requires a runtime of KA cycles where
A is the maximum number of non-zero bits among all of the

subvectors !fk.

B. Fixed Point Precision

Calculations in the proposed implementation are made with
18-bit two’s complement numbers which have a sign bit, 9

integer bits and 8 fractional bits. Weights are 9-bit two’s
complement fractions, having 1 sign bit and 8 fractional bits.

These values were chosen because they fully utilise the 18-
bit two’s complement multipliers available in the DSP blocks
of the Xilinx Virtex-5 FPGA used [7]. Any larger precision
would double the DSP utilisation. The range of neuron state
variable v is typically between -110 and 390 and is calculated
in millivolts.

Weights were chosen to be half of that precision (9-bits) as
they are the limiting factor in our design for large networks.
We believe this is a reasonable estimate of the precision with
which a synaptic weight is defined in the central nervous
system. For instance, at the mossy-fibre to parallel fibre
synapse in the cerebellum, the most numerous synapse in the
brain, there are 200-400 quantal release sites [8] suggesting a
resolution of at most 9 bits. In practice, a more limited range
is likely to be used. It should also be noted that this is a
generalisation that can only be carried so far - for instance,
the calyx of Held, a synapse in the auditory brainstem, might
potentially have greater resolution [9].

C. Memory Organization

Three different types of data values need to be stored in the
CAL unit for an implementation of Izhikevich’s model. These
are the neuron states (v and u), the neuron parameters (ab,
1−a, c, d) and synaptic strength W. As suggested by Thomas
and Luk [5], ab and 1−a are precomputed so to facilitate the
evaluation of Equation 1 so u ← (ab)v + (1 − a)u can be
computed instead of u ← a(bv − u) + u.

The synapse values dominate the memory requirements
since it is O(N2) whereas the others are O(N). For this
reason, the W values are stored in dedicated Block RAMs [7]
whereas the states and parameters are stored in Distributed
RAM [7].

Each neuron has its own table of depth N each storing the
synaptic strength W[i, :], where N is the number of neurons
to be simulated. Since the size of Block RAMs is 18Kbit [7],
each can hold at most 2048 9-bit synaptic values, hence at least

) N
2

2048* Block RAMs are required in the full implementation.

D. ACC Unit

During the CAL phase, spike accumulation is achieved by
accumulating one entry of each synaptic strength table every
cycle. Fig. 3 shows the architecture of the ACC unit. The
memory tables W[i, :] for i ∈ [kC + 1..k(C + 1)] are stored
in the ACC unit of PE k.

The Block RAM receives an address from LOD in the first
cycle, and then receives address from the other PEs for the
remaining K-1 cycles. A counter is used to record the status
of the accumulation and determine the source of address of the
Block RAM. The offset mentioned in step 2 of section IV-A
is calculated using the counter and is added to the address.
The counter also determines when to obtain the next address
from LOD.

The AND-ed output of the e’s from the LODs disables
the accumulators. When asserted it indicates the end of the

249



 

!"
!
# !"

"
# !"

#
#

$#

%#

!"
$
#

&#

''''

!"#$!%&'())*+,$(-(.(+/$

012#$0(34*+,$&+()$4(/('/&%$

566#$78+39)($:(*,;/$3''<.<-3/&%$<+*/$

650#$=>;*?(@*';$.&4(-$'3-'<-3/*&+$<+*/$

($ ($ ($ ($

A
!

$ A
"

$ A
#

$ A
$

$

()*#()*# ()*# ()*#

+''#+''#+''#+''#

'+(# '+(# '+(# '+(#

,-./01#+22/-33#$#4-5#

367189#

+::.;.98<0/#=89.-#

,-./01#>6/-2#!8<<-/1#

'01</09#?67189#

Fig. 1. Datapath of the spiking neural network simulator. Four PEs K = 4 are shown, each handling C neurons. Thus a total of 4C neurons can be
simulated.

ACC phase and hence the accumulator will stop accumulating
spikes. This also causes the CAL phase to commence. At the
end of the CAL phase, the accumulators will be reset and the
next ACC phase will start.

E. CAL Unit

The CAL unit is pipelined and produces an output every
cycle with a latency of 6 cycles. The datapath is shown in
Fig. 4. A 0 to C−1 counter is used to select accumulator values
in the ACC unit and the read address of the neuron parameter
memory. The neuron update pipeline takes the accumulator
value, neuron parameters and states as input and produces a
new u and v value after 6 cycles which is then written into
the neuron state memory. The write address of this memory
is connected to the counter value minus 6 since the output is
delayed by 6 cycles.

The implementation of Equations 1-3 requires 5 multiplica-
tions, one of them being with a constant which is implemented
without using a DSP block. Hence the unit requires 4 multi-
pliers in total. The number of DSP blocks available is the
limiting factor for K, the number of PEs in the device.

F. Gaussian Random Number Generator

A Gaussian random number generator (GRNG) models the
thalamic noise input explained in Section II. Many different
schemes are possible [10] but in this particular application, a
GRNG is required per PE so small resource utilisation is more
important than accuracy in the tails of the distribution. Since
the number of memory and DSP blocks can limit the size of
the network which can be simulated, the GRNG should not
use these resources.

In our implementation, the Central Limit Theorem approach
which involves summing multiple uniform random number
generators to approach a Gaussian distribution was used. The
GRNG is formed by summing four linear feedback shift
registers (LFSR) based uniform random number generators,
which in turn were chosen because they occupy the smallest
amount of hardware resources. Its seed is related to the ID of
the PE, making the simulations repeatable. Of course, it can
be seeded with a random number should that be desirable.

The following equation is used to generate an N(0,1)
random number [10]:

R =

√

12

L
(

L
∑

i=1

Ui −
L

2
) (4)

where Ui is the output of i-th LFSR-based random number
generator and L = 4 in our implementation.

G. Multiple-FPGA Network

In a multiple-FPGA network, a single unidirectional connec-
tion between adjacent FPGAs of width )log2C* is required for
the neuron address where C is the number of neurons handled
by each processing unit. For large networks, the synaptic
weight storage is the limiting factor, and external memory can
be considered. The memory bandwidth is highest for the ACC
phase and hence may limit the speed of simulation. For each
FPGA, a total of 9NR

NF
bits need to be transferred per cycle,

where R is the clock rate of the design and NF is the total
number of FPGAs used. Figure 5 shows how a larger network
can be built by concatenating 4 FPGAs as a ring array where
each of the FPGAs stores 2 PEs.

250



 

!"#$%&'()**%$+,'

-
!

'.'/0'

(1
"
'(1

#
'(1

$
'(1

!
'

!"#$%&'()**%$+,'

-
$

'.'0/'

!"#$%&'()**%$+,'

-
#

'.'//'

!"#$%&'()**%$+,'

-
"

'.'/0'

234'

5' !"#$%& & '"#(%&)"#*%& & )"#)%& &

#6'7.'8!69:,'

#:'7.'8!:9:,'

 
;+<'=>&)*%?'

#/'7.'8!/9/,'

#0'7.'8!09/,'

!"#$%& &
'"#(%& )"#)%& & )"#*%& &

''& '&

!"#$#∑%&"'()'#($*'+'"#

!,#$#∑%&,'()'#($*'+'"#

'&

#@'7.'8!@9@,'

#A'7.'8!A9@,'

 

#5'7.'8!59/,'

#B'7.'8!B9/,'

 
;+<'=>&)*%?'

#/'7.'8!/9@,'

#0'7.'8!09@,'

#@'7.'8!@9:,'

#A'7.'8!A9:,'

 

!-#$#∑%&-'()'#($*'+'"#

!+#$#∑%&+'()'#($*'+'"#

!.#$#∑%&.'()'#($*'+'"#

!/#$#∑%&/'()'#($*'+'"#

!*#$#∑%&*'()'#($*'+'"#

!0#$#∑%&0'()'#($*'+'"#

5' 5' 5'

5' 5' 5' 5'

5' 5' 5' 5'

+,-.'!/&0112'33'3&4'5'267'1&829:&;<=3&3'51&79&0++3&

+,-.'(/&0112'33'3&.99>&6:954&0++&?5@73&

+,-.'AB$/&0112'33'3&.99>&6:954&0++&?5@73&

+,-.'C/&0..&;<=3&3'51&D'EF&0++&GH63'&'513&

CDD'

DC2'

234' 234' 234'

CDD' CDD' CDD'

DC2' DC2' DC2'

DC2' DC2' DC2' DC2'

234' 234' 234' 234'

CDD' CDD' CDD' CDD'

234' 234' 234' 234'

DC2' DC2' DC2' DC2'

CDD' CDD' CDD' CDD'

Fig. 2. ACC computation for an 8-neuron simulation. Neurons 0, 5 and 6 have fired and Ii values are accumulated in the 4 PEs, each one handling two
neurons.

251



 

!"#$

!""#$%&'#

!"#$%&'&() !"#$%*'&()

!"#$%&'()

!"#$%&'*()

!"#$%&'+()

!"#$%*'*()

!"#$%*'+()

!
"

!
"

%&&'$(')*$+,-$

%&&'$(')*$./
!"#$

0)$./
!%#$

0)$1%+$"234$

%11$5676843)2$

(')*$1%+$"234$

!"#$%,'&() !"#$%-'&()

!"#$%&'()

!"#$%,'*()

!"#$%,'+()

!"#$%-'*()

!"#$%-'+()

!
"

!
"

!"#.$%&/0&'&() !"#.$%&/'&()

!"#$%&'()

!"#.$%&/0&'*()

!"#.$%&/0&'+()

!"#.$%&/'*()

!"#.$%&/'+()

!
"

!
"

 +  !"

!
"
#
$
!

 

!"

,94:32$26;4$+,-$%&&'$

%11 %11 %11 %11 %11 %11 

!"#$%&' 
 

!"$%'"()

*"+,- 
 

Fig. 3. Simplified architecture of ACC Unit, each Block RAM storing 2 weight tables (register and control logic omitted)

V. RESULTS

A fully-connected 800-neuron network was simulated us-
ing the Xilinx Virtex-5 XC5VLX155T target device. This
medium-size device has 424 18Kbit single port Block RAMs
(or 212 36Kbit dual port Block RAMs) and 128 DSP blocks.
Hence this device supports at most K = 128

4 = 32 PEs and
N = 848 neurons.

Xilinx ISE 9.2i was used to generate the implementation.
VHDL generic parameters are used throughout the design
so that most parameters including K and C can be easily
changed. An implementation using K = 32 and C = 25 was
made and a summary of the resource utilisation is given in
Table I. A general estimate of the resource utilisation ratio of
major components is given in the table along with a breakdown
of the percentage used by each of the LOD, GRNG, ACC and
CAL units.

The critical path is that of the LOD described in Section III.
Although this is reasonably well balanced with other near-
critical paths in the current implementation, for large C the
LOD may limit the performance of the system. As the design
does not require a new value from the LOD every cycle, a
multi-cycle implementation could be used to improve the clock
frequency of the LOD.

In the design presented execution time is a function of
the number of PEs used K. Since the ACC phase requires
K)AN

K
* cycles per timestep and CAL requires N

K
+ 12, the

total execution time per timestep is approximately equal to
their sum. Figure 6 shows the effect of increasing K. Initially,
the number of cycles required reduces dramatically due to
the increased parallelism. However, this value saturates at
approximately K = 10, after which hardware resources are

Resource Used (%)
Logic Blocks (CLB) 54540 (56%)

Flip Flops (FF) 31960 (32%)
LUT 35229 (36%)
DSP 128 (100%)

Block RAM 208 (98%)
Clock Rate 110.47MHz

TABLE I
RESOURCE UTILISATION FOR THE K = 32, C = 25 CASE.

Resource Complexity LOD GRNG ACC CAL
Flip Flop ∝ K, C 2% 16% 43% 39%
LUT ∝ K, C 14% 5% 55% 26%
Block RAM ∝ N2 0% 0% 96% 4%
DSP ∝ K 0% 0% 0% 100%

TABLE II
RESOURCE UTILISATION FOR THE GENERAL CASE. SOME NEURON STATES

AND PARAMETER ARE STORED IN BOTH BLOCK RAM AND DISTRIBUTED

RAM TO SAVE LUT USAGE.

increased with little improvement. The optimal value of K is
dependent on the dynamics of the network being simulated.

A randomly connected network of 800 neurons was sim-
ulated using the same parameters as Reference [4]. A 4:1
ratio of excitatory to inhibitory neurons was used. Excita-
tory neurons were created by initialising the ith neuron as
(ai, bi) = (0.02, 0.2) and (ci, di) = (−65, 8) + (15,−6)U2

i

where Ui is a uniformly distributed random variable in [0,1].
Inhibitory neurons initialised as (ai, bi) = (0.02, 0.25) and
(ci, di) = (0.08,−0.05)Ui + (−65, 2). The randomness intro-
duced by Ui allows the neuron population to have different
dynamics and emulate different cell types. They are regular

252



 

!""#$%&%'()*+#(*#

!""#,+)(#
!""#-.&/%#

0%/1*+#$(.(%#2#

3.1.4%(%15#6!7#

!"#$%&'(

0%/1*+#,89.(%#

3)8%&)+%#

/:#-:#.;:#<=.:#':#9#

!"#$%&'($

/:#-#

!"

!""# # /# <>?#

#"

-#

# # -#

$"

?@?>-#

?@?>#

$"

?@?>-
!

#

!"

A-B(#

!"

-C+%D# .;#

$"

E.;F-#

/# <=.#

$"

E<=.F/#

!"

/C+%D#

7,G#

!"

9#

/C+%D#

HI?J#

7,G#

0#K#0#

'#

K#

-C+%D#

+*)5%#

$"

A#

A-#

L)1%#

"#

!"

=A#

M*#NOP#

L)1%9#

Fig. 4. Datapath of the CAL Unit (pipeline stages not shown).

 

PE
0
 PE

1
 PE

2
 PE

3
 

PE
5
 PE

4
 PE

7
 PE

6
 

External RAM 

FPGA 

Fig. 5. A 8-PE Network using 4 FPGAs

 

Fig. 6. Graph showing cycles per timestep as a function of K, the number
of PEs used.

 

!"#!$!%&'()

*+,!%-%&'()

Fig. 7. Simulation showing synchronisation of firing activity in a spiking
neural network simulation involving 800 neurons.

cells when Ui = 0 and chattering cells for Ui = 1 with a bias
towards the regular cells. Synaptic connections to excitatory
neurons were positive uniform random numbers in the range
[0,0.5] and inhibitory neurons had negative strengths in the
range [-1,0].

A 1 s simulation of the system with a timestep of 1 ms
was made and the resulting output is shown in Figure 7. The
characteristic 10 Hz alpha and 40 Hz gamma rhythms which
are similar to that seen in the mammalian cortex are present.
This is due to neurons self-organising into assemblies with
collective rhythmic behaviour [4].

A total of 6107 firings in 1000 timesteps were observed,
supporting our assertion that the activity level is low. One or
more neuron firings were observed in 97% of timesteps, and
this limits the savings which can be enjoyed. Figure 8 shows
how the number of cycles per timestep changes with time in
the simulation. Timestep with heavy firing activity indicated in
Figure 7 takes more cycles to simulate. Total execution time is
approximately 0.73 ms which amounts to a speedup of 1370×
over real time.

VI. RELATED WORK

Research on spiking neural networks have traditionally
relied on simulations on conventional and parallel computers
and a survey of FPGA-based implementations is available in
Reference [11].

253



 

Fig. 8. Graph showing the number of cycles required per timestep for the
SNN simulation of Figure 7.

In 2006, Ros et. al. described a platform for simulating arbi-
trary networks of spiking neurons which used an event-driven
communications scheme to connect a software-based model of
spike routing and learning with FPGA-based computation of
the neural model [12]. The approach was developed to model
small to medium sized networks rather than large ones, and
the models were of much higher complexity than used in this
work, with correspondingly lower performance.

Our design is most similar to a recent pipelined implemen-
tation of Izhikevich’s model by Thomas and Luk [5] which
does not optimise for activity level. The following differences
between the two implementations are noted:

• Their implementation achieved a speedup of 148× real
time for N = 800, an order of magnitude slower than the
one described in this paper. This is because they require
N cycles per timestep whereas in our design, K)AN

K
*+

N/K + 12 are required.
• Approximately 55000 CLBs are used in this design for

N = 800, while their implementation only requires
33000 CLBs for N = 1000. In terms of the largest
network which can be simulated, both designs are limited
by the amount of Block RAM resources required to store
the synaptic values.

• Thomas and Luk’s implementation uses floating point
arithmetic whereas our design uses fixed point which
we believe is more biologically plausible as discussed
in Section IV-B.

• Finally, it may be difficult to scale their design to a multi-
FPGA system whereas our design can be easily extended
by virtue of its ring connected architecture.

VII. CONCLUSION

The performance of spiking neural network simulations can
be improved dramatically by utilising the fact that neurons
spike infrequently. An event-based architecture for implement-
ing spiking neural network simulations was proposed and can
achieve approximately 1400× real-time performance which is
an order of magnitude faster than the best previously reported
design.

In future work we intend to extend its functionality so it can
be used for large-scale simulations. For example, we hope to
use a model proposed by Izhikevich in a newer paper where
the entire cortex is simulated [13].

Ultimately, of course, we would like to use reconfigurable
computing to simulate networks which are intractable with
other technologies. We will also explore architectures which
allow for optimum use of hardware to be maintained in the
face of systematic changes during development. This is likely
to be an important issue, because as larger scale cortical
models are built, they will not come “pre-wired” as in the case
presented. The problem of wiring them up to perform partic-
ular tasks is going to be more and more a critical issue. The
way nature solves this problem involves initially allocating a
large number of synapses, which are eliminated during sensory
experience during the ”critical” developmental period. At the
same time, the firing rates of individual neurons begin quite
low, but increase during development. Some other properties
of neurons (such as temporal integration) also change. FPGA
architectures are thus ideally suited to this job, as they (through
reprogramming, perhaps periodically) allow the architecture to
be adjusted to maintain an efficient architecture for the balance
of number of synapses and activity level found at each stage
in the developmental process.

ACKNOWLEDGMENT

The authors gratefully acknowledge support from the Re-
search Grants Council of the Hong Kong Special Administra-
tive Region, China (Earmarked grant CUHK414308).

REFERENCES

[1] C. Blakemore, “Maturation of mechanisms for efficient spatial vision,” in
Vision: coding and efficiency, C. Blakemore, Ed. Cambridge University
Press, 1990, pp. 254–266.

[2] N. C. Rust, S. R. Schultz, and J. A. Movshon, “A reciprocal relationship
between reliability and responsiveness in developing visual cortical
neurons,” Journal of Neuroscience, vol. 22, pp. 10 519–10 523, 2002.

[3] H. T. Kung and C. E. Leiserson, “Systolic arrays (for VLSI),” in Proc.
SIAM Sparse Matrix Symposium, 1978, pp. 256–282.

[4] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions
on Neural Networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[5] D. Thomas and W. Luk, “FPGA accelerated simulation of biologically
plausible spiking neural networks,” in Proc. IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2009.

[6] E. de Lange and M. Hasler, “Predicting single spikes and spike patterns
with the Hindmarsh-Rose model,” Biological Cybernetics, vol. 99, pp.
349–360, 2008.

[7] Xilinx Inc., Virtex-5 FPGA Data Sheet, 2009. [Online]. Available:
www.xilinx.com

[8] P. B. Sargent, C. Saviane, T. A. Nielsen, D. A. DiGregorio, and
R. A. Silver, “Rapid vesicular release, quantal variability, and spillover
contribute to the precision and reliability of transmission at a glomerular
synapse,” Journal of Neuroscience, vol. 25, pp. 8173–8187, 2005.

[9] T. Sakaba, R. Schneggenburger, and E. Neher, “Estimation of quantal
parameters at the calyx of held synapse,” Neuroscience Research,
vol. 44, pp. 343–356, 2002.

[10] D. B. Thomas, W. Luk, P. H. Leong, and J. D. Villasenor, “Gaussian
random number generators,” ACM Comput. Surv., vol. 39, no. 4, p. 11,
2007.

[11] L. P. Maguire, T. M. McGinnity, B. Glackin, A. Ghani, A. Belatreche,
and J. Harkin, “Challenges for large-scale implementations of spiking
neural networks on FPGAs,” Neurocomput., vol. 71, no. 1-3, pp. 13–29,
2007.

[12] E. Ros, E. M. Ortigosa, R. Agı́s, R. R. Carrillo, and M. Arnold,
“Real-time computing platform for spiking neurons (RT-spike),” IEEE
Transactions on Neural Networks, vol. 17, no. 4, pp. 1050–1063, 2006.

[13] E. M. Izhikevich and G. M. Edelman, “Large-scale model of mammalian
thalamocortical systems,” Proc. Natl. Acad. Sci. USA, vol. 105, pp.
3593–8, 2008.

254


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Simon R. Schultz
	Also by Philip H.W. Leong
	------------------------------

