An FPGA based SHA-256 Processor

Kurt K. Ting, Steve C.L. Yuen, K. H. Lee, and Philip H.-W. Leong

Dept. of Computer Science and Engineering
The Chinese University of Hong Kong
New Territories, Hong Kong
{kting,clyuen,khlee,phwl}@cse.cuhk.edu.hk

Abstract. The design, implementation and system level performance of
an efficient yet compact field programmable gate array (FPGA) based
Secure Hash Algorithm 256 (SHA-256) processor is presented. On a Xil-
inx Virtex XCV300E-8 FPGA, the SHA-256 processor utilizes 1261 slices
and has a throughput of 87 MB/s at 88 MHz. When measured on ac-
tual hardware operating at 66 MHz, it had a maximum measured system

throughput of 53 MB/s.

1 Introduction

Field programmable gate array (FPGA) devices provide an excellent technology
for the implementation of general purpose cryptographic devices. Compared with
application specific integrated circuits (ASIC), FPGAs offer lower non-recurring
engineering costs, shorter design time, greater flexibility and the ability to change
the algorithm or design in the field. They have been used in a number of high
performance cryptosystems including RSA [12], DES [13], Rijndael (AES) [6]
and IDEA [10]. FPGA implementations of cryptographic algorithms have appli-
cations as coprocessors for microprocessor based systems or in high performance
embedded applications.

The Secure Hash Signature Standard (SHS) was proposed by the US Na-
tional Institute of Standards and Technology (NIST) in 2001 [9]. The standard
describes four secure hash algorithms (SHA) and the version which outputs a
256-bit message digest is referred to as SHA-256. In this paper, only SHA-256
will be considered, although adapting the design to other digest sizes should be
trivial.

Applications of the SHS include generating and verifying digital signatures,
generating and verifying message authentication codes and also increasing the
entropy in pseudo random number generators.

In this paper, a novel architecture for the implementation of the SHA-256
hash algorithm is presented. Making extensive use of shift registers, the design
is compact yet achieves high performance. The system level performance of the
SHA-256 core was tested on the Pilchard reconfigurable computing platform [11].

Although FPGA based processors for the MD5 hash algorithm have been pro-
posed [4,5], we are not aware of any published designs for SHA-256 processors.
A NIST validated commercial SHA-1 and MD5 core is available from Tality

Corporation [1] which operates at 75MHz in 0.25um technology and achieves
59 MB/s throughput.

SecuCore [2] is a commercial SHA-256 TPcore, featuring a maximum fre-
quency of 166 MHz in a 0.18um process with a throughput of 156 MB/s. Both
the SecuCore processor and our FPGA-based SHA-256 processor use 0.18um
technology. The two designs require a similar number of clock cycles so the
higher performance of the SecuCore implementation is due to the higher clock
rate (166 MHz vs 88 MHz). One would expect an ASTC implementation to have
a higher clock rate than an FPGA due its customized logic and routing.

The rest of the paper is organized as follows: in Section 2, the SHA-256
algorithm is described. Section 3 describes the architecture of the processor.
Performance measurements are presented in Section 4, future work is described
in Section 5, and conclusions are drawn in Section 6.

2 SHA-256 algorithm

The SHA-256 algorithm takes a message of length less than 254-bits and produces
as output, a message digest 256-bits in length. The digest serves as a concise
representation of the message, and has the property that any change to the
message is very likely to result in a change to the corresponding digest. The
SHA-256 algorithm has a security of 128-bits, meaning that a birthday attack
[7] can produce a collision in O(2%8) time.

In the SHA-256 algorithm, six logical functions which operate on 32-bit values
are used:

Ch(z,y,z)=(zAy) D (~zAz)
Maj(z,y,2) = (2 Ay) ® (zA2) @ (yAz)
Yo(z) = ROTR?(z) @ ROTR™(z) @ ROTR*(z)

@ ROTR (z) ® ROTR**(z)
® ROTR'®(z) @ SHR?(z)

8
— e TN TN

where A, ~ and @ are the bitwise AND, NOT and XOR operations; and ROTR
and SHR are the rotate right and shift right functions respectively.
In order to hash a message M of [bits, a preprocessing step is first performed:

1. A “one” bit is appended to the end of the message, followed by k& “zero” bits
where k is the smallest non-negative solution to the equation [4+ 1 + &k =
448 mod 512. The binary representation of [as a 64-bit number is then
appended so the length of the padded message is a multiple of 512-bits.

2. The padded message is then divided into N 512-bit blocks M) AM(2) AN,

3. The initial values of eight 32-bit words HJ(.O) (7 =0,1,...7) are initialized
to the first thirty-two bits of the fractional parts of the square roots of the
first eight prime numbers.

The message blocks are then processed as follows for i = 1 to N:

1. The message schedule W; (¢ = 0...63) is prepared according to the equation

t:{M}“ 0<t<15)

o1 (Wia) + Wiz 4+ oo(Wi15) + Wii16 16 <t <63

2. Eight 32-bit working variables a, b, ¢, d, e, f, g, h are initialized to Héi_l),
H%Z_l), Hél_l), Hél_l), Hil_l), Hél_l), Hél_l), Hg,z_l) respectively.

3. The compression function is performed for t = 0 to 63:

Ty =h+Xi(e)+ Chle, fg) + Kt + Wy; Ty = Zo(a) + Maj(a, b, c)
h=g;,9=Ff,f=ee=d+Ti;d=cic=bb=a,a=T1 + T3

4. The intermediate hash H() is computed:
B =a+ B B8 =0+ HED g =4 507D HY) = a4+ HEY,
HD = e+ HEV, 1O = f 4 gD, 1O = g 4 gV, g = j 4 gi-
The final digest is formed by concatenating the final hash values

g™ g™ g™ g™ g™ g™ g™ gh

3 System Architecture

A shift register based approach was used to implement the SHA-256 algorithm
which results in a fast and compact design. This architecture was inspired by
NIST’s descriptions of secure hash algorithms [8]. By inspecting the algorithm
description in Section 2, it can be seen that the message schedule and compres-
sion function map naturally to a shift register structure.

The core contains three main components which implement the message
scheduler, compression function and intermediate hash. These are controlled
by a finite state machine which schedules the three blocks.

3.1 Message Scheduler

The message scheduler is implemented as a chain of sixteen 32-bit shift reg-
isters which store the intermediate message schedules W;. Figure 1 shows the
hardware architecture used to implement equation 1. It uses 16 cycles to load
sixteen initial 32-bit words, M;") for ¢ = 0 to 15. During the 64 iterations of
t = 0 to 63, it provides the message schedule W; for the compression function
by shifting the values in the chain from left to right. In the hardware imple-
mentation, W; 1s added to the constant K; to form W_K; before being sent to
the compression function. The rationale for moving the addition of K; from the
compression function to the message scheduler was to reduce the critical path
of the compression function. This scheme results in a speedup of approximately

20%.

Fig. 1. Message scheduler block diagram.

3.2 Compression Function

The compression function module was implemented using shift registers, in a
manner similar to the message scheduler. The 8 working variables a,b,...h
are stored in eight 32-bit shift registers and connected according to Figure 2.
The critical path in the design is the computation of a =)", +Maj(a,b, c) +
Y1 +Chie, f,g) + h+ W + K;. The path was therefore pipelined by inserting a
latch between), +Ch(e, f,g)+h+W _K; anda = 3", +Maj(a,b, c) (shown as

“L” in Figure 2, with functions before “L” taking inputs earlier along the chain).

By-pass logic was also added between registers d and e to allow the outputs
of the compression function, a,b,...h to be shifted out through h. The loading
of values into the message scheduler is fully overlapped with the operations of
the compression function, a new message block being loaded when the previous
message block is in the 48th round of the compression function.

output

I Sy

W_Kt
from message scheduler

input

Fig. 2. Compression function block diagram.

3.3 Intermediate Hash

After 64 iterations of compression function, eight 32-bit intermediate values
stored 1n the working variables a,b,...h are obtained. To compute the inter-
mediate hash H() the working variables are added to the previous intermediate
hash H(=1) and written back to the registers. In the hardware implementation,
H(=1) is stored in another 256-bit latch and updated before the 64 iterations
of the compression function begins. This is illustrated in Figure 3. The path in
dashed lines is used for updating H#~") and the path in solid lines calculates
the current intermediate hash H (),

T
-7
T
-7
T
-7
T
-7
T
iy
T
-7
T
-7
T
N

Compression Function

Fig. 3. Intermediate Hash from Compression Function.

3.4 PC Interface

The FPGA platform used was a Pilchard FPGA card (Figure 4) [11] populated
with a Xilinx Virtex XCV300E-8 FPGA. Pilchard uses a SDRAM memory bus
interface instead of the conventional PCI bus and has much improved latency
and bandwidth over the standard PCI bus.

The Pilchard platform provides a 64-bit wide memory mapped bus to the
FPGA. In the current configuration, PC reads and writes operate at 133 MHz,
which is the clock speed of the memory bus. The SHA core operates at a lower
clock rate (66 MHz). In order to interface the two, on-chip dual port Block RAM
was used. As shown in Figure 5, to compute a digest, the PC writes 64-bit data
at 133 MHz to the input Block RAM. The SHA core reads 32-bit data at 66 MHz
from the other port of the Block RAM and writes the resulting digest value to
the 32-bit output Block RAM.

Polling was used to ensure reliable communications between the host PC and
the SHA core. The PC signals the SHA core to start after it has filled the input
buffer and polls the core until 1t signals that it has finished. It then fills the
buffer again.

—— 3 1!‘-.‘3‘ et
_/ANI ANARNE BHS | RNZ e “RHIO-=RNI1 " RNE2
~fit =k E ; i i

o il
Rru:aﬂgj RANLA
F==3 rark i
FERE

Fig. 4. Photograph of the Pilchard board.

SHA-256 CORE
PC writes
through Compression
memory bus, [pyal Function Dual
64-bitwiath, | port | | | | | _____ Port
133MHz Input Message {7 omedmerasn) Output
Scheduler | }
Block e ~ Block PC reads
RAM T R RAM through
l\ Shift Registers /; memory bUS,
--------------- - 64-bit width,
133MHz
SHA CORE reads at SHA CORE writes final
66MHz, 32-bit width hash, 32-bit width

Fig. 5. PC interface block diagram.

4 Results

The design was synthesized and implemented using the Xilinx ISE 4 tools and
tested on the Pilchard platform. On a Xilinx Virtex XCV300E-8 FPGA| the
SHA-256 core has a maximum frequency of 88 MHz (as reported by the Xilinx
tools). Each 512-bit message block requires 8 cycles to load and 65 cycles to
process. This translates to a maximum throughput of ssx% x 88 x 105 = 87 MB/s
for an 88 MHz clock. In the actual implementation on Pilchard, the system clock
was 133 MHz and the SHA-256 core was operated using a half rate 66 MHz clock.

This configuration has a maximum throughput of 65 MB/s.

4.1 Resource Usage

A summary of the resource utilization of the SHA-256 implementation (includ-
ing interface logic) in shown below. According to the Xilinx tools, the design
(including host interface) uses 1,261 Virtex slices and has an equivalent gate
count of 167,190 gates.

60 T
Pilchard —+—
Intel PIll 533Mhz ---x---
Intel PIll 833Mhz ------
Sun enterprise e4500 &
50 B
40 - B
2
@D
=3
330 -
<
(=)
3
ﬁ *x*;(**% ----- KKK Ky x%%xx*x%x*
20 L Looex .
X IVIVE A e
X~ \
w0l o« emm 36X K- X i
DED‘DDBDBD B8 Ege BB g g geg.a.g 6800
Ik 15}
0 Il Il Il Il Il
0.001 0.01 0.1 1 10 100 1000

Message Size (MB)

Fig. 6. Measured throughput of the Pilchard and software-only implementations as a
function of the file size.

The SHA-256 processor was tested on a Pilchard card hosted on a 533 MHz
Intel Pentium IIT machine with 128MB RAM. Files containing randomly gener-
ated numbers with sizes between 1K and 200 MB were tested and the results

verified with the mhash software library [3]. For each different input file size, the
test was repeated 20 times and averaged.

The top trace of Figure 6 shows the measured system throughput in MB/s
verses the input file size on a log scale. The results include all file I/O and
operating system overheads as they are the times computed for computing a
digest of an actual file. The throughput quickly saturates to a maximum value
of 53 MB/s for file sizes greater than 200 KB. For the “uncacheable” memory
type range register (MTRR) that was used, Pilchard is capable of a throughput
of 132 MB/s, and the SHA-256 core 65 MB/s, thus the overall system throughput
was limited by the handshaking overhead associated with the SHA-256 core.

For file sizes larger than 30 MB, throughput drops to approximately 30MB/s.
A possible explanation for this strange phenomenon is that performance is
greater for the smaller files due to the operating system caching the file reads.

The mhash optimized software implementation of SHA-256 [3] was also used
for performance comparison purposes. Throughput measurements on Intel Pen-
tium and Sun Enterprise machines are shown in the bottom traces of Figure 6. It
is interesting to note a similar drop in throughput associated with large input file
sizes in the software implementation. The hardware performance is more than
double that of the 833 MHz Pentium III software implementation for file sizes
up to 20 MB, and for larger file sizes, the FPGA version is about 50% faster.

The FPGA design has approximately a two times speed improvement over an
833 MHz Pentium III processor. However, this was achieved using a single chip
compared with a workstation. FPGA based implementations have advantages in
terms of cost, memory, energy and size over a software implementation, which
may be important considerations in embedded applications.

5 Future Work

We are working on several improvements to the present design which could serve
to improve the performance and flexibility of the SHA-256 system.

— Padding of the message is currently performed in software. In some applica-
tions it might be necessary to perform the message padding in hardware.

— Multiple SHA-256 processors could be instantiated in the FPGA as each
only uses 40% of the resources. This would allow multiple files to be hashed
simultaneously.

— With better floorplanning, routing delays could be significantly reduced and
the performance of our design could be significantly improved.

— Larger buffers between the host and the SHA-256 core would serve to reduce
the overheads associated with handshaking, increasing system throughput.

— It is possible to reduce the number of cycles, hence improving both latency
and throughput via a parallel load facility so that several shift registers can
be loaded in a single cycle.

6

Conclusion

In this paper, a shift register based architecture for implementing a SHA-256
processor was presented. This approach combines modest hardware requirements
with high performance (87 MB/s). Detailed measurements of system level per-
formance were reported, the system being about to compute SHA-256 digests
with a throughput of 53 MB/s, the performance being limited by handshaking
overheads. Suggestions for further improving the throughput of the system were
given.

References

=W =

10.

11.

12.

13.

www.tality.com.

hitp://www.secucore.com/products.him.

hitp://mhash.sourceforge.net/.

J. Arnold. Mapping the MD5 hash algorithm onto the NAPA architecture. In
Proceedings of the IEFE Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 267-268, 1998.

. J. Deepakumara, H.M. Heys, and R. Venkatesan. FPGA implementation of MD5

hash algorithm. In Proceedings of the Canadian Conference on Flectrical and
Computer Engineering, volume 2, pages 919-924, 2001.

M. MclLoone and J. McCanny. High performance single-chip FPGA Rijndael al-
gorithm implementations. In Proceedings of the Cryptographic Hardware and Em-
bedded Systems Workshop (CHES), pages 65-76. LNCS 2162, Springer, 2001.

A. Menezes, P. van Oorschoot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

NIST. Descriptions of sha-256, sha-384, and sha-512. avatlable from
hitp://csrc.nist.gov/encryption/shs/sha256-384-512.pdf.

NIST. Secure Hash Signature Standard (FIPS PUB 180-2). 2001.

O.Y.H. Cheung, K.H. Tsoi, K.H. Leung, P.H.W. Leong, and M.P. Leong. Tradeoffs
in parallel and serial implementations of the international data encryption algo-
rithm IDEA. In Proceedings of the Cryptographic Hardware and Fmbedded Systems
Workshop (CHES), pages 333-347. LNCS 2162, Springer, 2001.

P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung, C.M. Kwok, M.Y. Wong,
and K.H. Lee. Pilchard — a reconfigurable computing platform with memory slot
interface. In Proceedings of the IEEFE Symposium on Field- Programmable Custom
Computing Machines (FCCM) — to appear, 2001.

M. Shand and J. E. Vuillemin. Fast implementations of RSA cryptography. In
E. E. Swartzlander, M. J. Irwin, and J. Jullien, editors, Proceedings of the 11th
IEEFE Symposium on Computer Arithmetic, pages 252-259. [EEE Computer Soci-
ety Press, Los Alamitos, CA, 1993.

S. Trimberger, R. Pang, and A. Singh. A 12Gbps DES Encryptor/Decryptor core
in an FPGA. In Proceedings of the Cryptographic Hardware and Fmbedded Systems
Workshop (CHES), pages 156-163. Springer, 2000.

