
111

A Scalable Systolic Accelerator for Estimation of the Spectral
Correlation Density Function and its FPGA Implementation

XIANGWEI LI, Nanyang Technological University, Singapore
DOUGLAS L. MASKELL, Nanyang Technological University, Singapore
CAROL JINGYI LI, The University of Sydney, Faculty of Engineering, School of Electrical and Information
Engineering, Australia
PHILIP H.W. LEONG, The University of Sydney, The University of Sydney Nano Institute, Faculty of
Engineering, School of Electrical and Information Engineering, Australia
DAVID BOLAND, The University of Sydney, Faculty of Engineering, School of Electrical and Information
Engineering, Australia

The spectral correlation density (SCD) function is the time-averaged correlation of two spectral components,
used for analysing periodic signals with time-varying spectral content. Although the analysis is extremely
powerful, it has not been widely adopted in real-time applications due to its high computational complexity. In
this paper, we present an efficient FPGA implementation of the FFT accumulation method (FAM) for estimating
the SCD function and its alpha profile. The implementation uses a linear systolic array with a bi-directional
datapath consisting of DSP-based processing elements (PEs) with a dedicated instruction schedule, achieving
a PE utilization of 88.2%.

The 128-PE implementation achieves a clock frequency in excess of 530 MHz and consumes 151K LUTs,
151K FFs, 264 BRAMs, 4 URAMs and 1054 DSPs, which is less than 36% of the logic fabric on a Zynq UltraScale+
XCZU28DR-2FFVG1517E RFSoC device. It has a modest 12.5W power consumption and an energy efficiency
of 4832 MOPS/W which is 20.6× better than the published state-of-the-art GPU implementation. In terms
of throughput, it achieves 15340 windows/s (15340 windows/s × 2048 samples/window = 31.4 MS/s), which
is a 4.65× improvement compared to the above-mentioned GPU implementation and 807× compared to an
existing hybrid FPGA-GPU implementation.

CCS Concepts: •Hardware→ Reconfigurable logic applications;Hardware accelerators; • Computer
systems organization→ System on a chip.

Additional Key Words and Phrases: FPGA, systolic array, spectral correlation density, FFT accumulation
method

Authors’ addresses: Xiangwei Li, xli045@e.ntu.edu.sg, Nanyang Technological University, 50 Nanyang Avenue, Singapore,
639798; Douglas L. Maskell, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, asdouglas@ntu.
edu.sg; Carol Jingyi Li, The University of Sydney, Faculty of Engineering, School of Electrical and Information Engineering,
Sydney, New South Wales, Australia., Sydney, Australia, jingyi.li@sydney.edu.au; Philip H.W. Leong, The University of
Sydney, The University of Sydney Nano Institute, Faculty of Engineering, School of Electrical and Information Engineering,
Sydney, New South Wales, Australia., Sydney, Australia, philip.leong@sydney.edu.au; David Boland, The University of
Sydney, Faculty of Engineering, School of Electrical and Information Engineering, Sydney, New South Wales, Australia.,
Sydney, Australia, david.boland@sydney.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1936-7406/2022/6-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

HTTPS://ORCID.ORG/0002-1963-6354
HTTPS://ORCID.ORG/0000-0001-7638-6323
HTTPS://ORCID.ORG/0000-0002-3923-3499
https://orcid.org/0002-1963-6354
https://orcid.org/0000-0001-7638-6323
https://orcid.org/0000-0002-3923-3499
https://doi.org/10.1145/1122445.1122456

111:2 Li, et al.

ACM Reference Format:
Xiangwei Li, Douglas L. Maskell, Carol Jingyi Li, Philip H.W. Leong, and David Boland. 2022. A Scalable Systolic
Accelerator for Estimation of the Spectral Correlation Density Function and its FPGA Implementation. ACM
Trans. Reconfig. Technol. Syst. 1, 1, Article 111 (June 2022), 25 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
A signal exhibits cyclostationarity if and only if the signal is correlated with certain frequency-
shifted versions of itself [10]. It is used for the analysis of a wide range of periodic phenomena in
applications, such as signal detection and modulation classification; noise analysis of periodic sys-
tems; synchronization problems; signal parameter and waveform estimation; channel identification
and equalization; autoregressive (AR) and autoregressive moving average (ARMA) modeling; and
source separation [13].
A well-known technique to interpret the underlying periodicity of a cyclostationary signal is

the spectral correlation density (SCD), also referred to as the cyclic spectral density or spectral
correlation function, which describes the cross-spectral density of all pairs of frequency-shifted
versions of a time-series. The SCD function represents the time-averaged statistical correlation
of two spectral components at frequencies 𝑓 and 𝑓 − 𝛼 , as the bandwidth approaches zero [13]. It
performs exceptionally well in cognitive radio systems such as modulation classification, under
low signal to noise ratio (SNR) conditions [24]. For instance, different modulation types such as
BPSK, QPSK and MSK can be easily detected by their distinct SCD functions [10, 22].

We comment that there has been an increasing body of work studying the use of deep learning
methods for various signal processing applications, such as spectrum sensing or cognitive radio. To
date, these have mostly worked with raw IQ. An excellent survey of this work is provided by Wong
et al. [32]. Nevertheless, the performance of deep learning algorithms can often be improved by
providing relevant information. With this in mind, our work seeks to develop the ability to generate
a key feature with a very low latency. A deep learning algorithm could then realistically use our
implementation to calculate this feature, without considerable processing delay, to potentially
improve its overall performance.

While the implementation of the SCD function can be done either via time or frequency smooth-
ing, we consider time smoothing as it has been shown to be more computationally efficient in
general [25]. One of the most popular time smoothing methods to estimate the SCD is the FFT
accumulation method (FAM) [25, 26]. The FAM technique is suitable for hardware implementa-
tion due to its parallel FFT-based computations and regular data access patterns. However, the
algorithm’s diamond-shaped computation pattern and the large amount of output data present
a considerable hardware acceleration challenge. The first problem we address through the use
of a bi-directional systolic array, the second by following the technique of computing the alpha
profile [21]. This technique captures the most significant information from the full SCD function
by taking the peak values along the 𝛼 axis of the bi-frequency (𝑓 -𝛼 domain) feature map, reducing
the two dimensional SCD to a one dimensional vector of alphas.

In this paper, a scalable high-speed FPGA accelerator is proposed for estimating the SCD function
and alpha profile using FAM. A linear systolic array is used with programmable processing elements
(PEs). The PEs operate on complex-valued data and are optimized for high clock frequency. Inter-PE
data dependencies are minimized by maximising intra-PE data cohesion. The proposed FPGA
accelerator is evaluated by comparing it to existing hardware accelerator implementations in terms
of throughput, area and energy efficiency. The novel contributions of this work are as follows:
• A novel, systolic array for efficient computation of the SCD function and alpha profile using
a bi-directional datapath. This allows a sustained PE utilization of 88.2% while that of a single
directional datapath is merely 50.4%.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

https://doi.org/10.1145/1122445.1122456

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 111:3

• A highly pipelined, programmable RISC-like load–store architecture with a complex arith-
metic ALU based on Xilinx DSP48E2 slices which enables the efficient implementation of the
FAM method.
• An optimized microarchitecture and FPGA implementation which maximizes clock frequency
through heavy pipelining. Our 128-PE configuration operates at a frequency of 530 MHz on
a Zynq UltraScale+ XCZU28DR-2FFVG1517E RFSoC device. An open source FPGA imple-
mentation for the systolic array is available at GitHub1.

The remainder of this paper is organised as follows. In Section 2, the FAM method for cyclo-
stationary signal processing is presented. In Section 3, we analyse the FAM algorithm to exploit
the calculation of the computationally intensive kernel in parallel. In Section 4, a bi-directional
linear systolic array as an FPGA accelerator for FAM is proposed and its mapping scheme is thor-
oughly explained. This section also details the implementation of our proposed FPGA accelerator,
including the PE microarchitecture and the array of PEs connected via linear interconnect. Section
5 evaluates the proposed FPGA accelerator by comparing it to a state-of-the-art hybrid FPGA-GPU
implementation and a state-of-the-art GPU implementation, in terms of throughput and resource
utilization. Finally, We draw conclusions and discuss our future work in Section 6.

2 BACKGROUND
2.1 Spectral Correlation Density Function
The time smoothed cyclic cross periodogram [11] of two complex-valued sequences 𝑥 (𝑛) and 𝑦 (𝑛)
over a time interval of Δ𝑡 seconds is defined by (1).

𝑆𝛼0
𝑥𝑦𝑇
(𝑛, 𝑓0)Δ𝑡 =

1
𝑇

〈
𝑋𝑇 (𝑛, 𝑓1)𝑌 ∗𝑇 (𝑛, 𝑓2)

〉
Δ𝑡

(1)

Here ⟨·⟩ is the inner product operation, while 𝑋𝑇 (𝑛, 𝑓1) and 𝑌𝑇 (𝑛, 𝑓2) are complex demodulates
centered at frequency 𝑓1 = 𝑓0 + 𝛼0/2 and 𝑓2 = 𝑓0 − 𝛼0/2, with 𝛼0 the frequency delay between two
complex demodulates. The demodulates, defined by (2), are computed over a windowing function
𝑎(𝑟) of length𝑇 = 𝑁𝑝𝑇𝑠 seconds from the original time interval Δ𝑡 , where𝑇𝑠 is the sampling period
and 𝑁𝑝 is the number of samples.

𝑋𝑇 (𝑛, 𝑓) =
𝑁𝑝/2∑

𝑟=−𝑁𝑝/2
𝑎(𝑟)𝑥 (𝑛 − 𝑟)𝑒−𝑖2𝜋 𝑓 (𝑛−𝑟)𝑇𝑠 (2)

To compute the digital implementation of SCD function of inputs 𝑥 (𝑛) and𝑦 (𝑛), we first compute
demodulates for 𝑋𝑇 (𝑛, 𝑓1) and 𝑌𝑇 (𝑛, 𝑓2). We then correlate these demodulates using a complex
multiplier followed by a low pass filter (LPF) with bandwidth approximately 1/Δ𝑡 [25]. Altogether,
the SCD estimate at (𝑓0, 𝛼0) given by (3).

𝑆𝛼0
𝑥𝑦𝑇
(𝑛, 𝑓0)Δ𝑡 =

∑
𝑟

𝑋𝑇 (𝑟, 𝑓1)𝑌 ∗𝑇 (𝑟, 𝑓2)𝑔(𝑛 − 𝑟) (3)

where 𝑔(𝑛) is a windowing function with length Δ𝑡 = 𝑁𝑇𝑠 . For the special case of auto-correlation
studied in this paper, 𝑦 (𝑛) is a time-delayed version of 𝑥 (𝑛). For a reliable estimate, Δ𝑡 >> 𝑇 .

2.2 Estimating Spectral Correlation Density
While direct application of Equation (3) is computationally inefficient, decimation and the fast
Fourier transform (FFT) can be used to reduce the complexity [8]. Decimation, involves reducing the
number of complex demodulates computed from 𝑁 to 𝑃 = 𝑁 /𝐿 by using an 𝐿 sample stride. 𝐿 is set
1https://github.com/louislxw/pe_array

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

https://github.com/louislxw/pe_array

111:4 Li, et al.

as𝑁𝑝/4 to have a good tradeoff betweenmaintaining computational efficiency andminimizing cycle
leakage and aliasing [8], producing a new sequence of demodulates𝑋𝑇 (𝑝𝐿, 𝑓) for 𝑝 = {0, 1, ..., 𝑃−1}.
To use the FFT, the following substitutions are implemented to Equation (2): 𝑑 = 𝑁𝑝/2 − 1, 𝑟 =

𝑑 − 𝑘, 𝑓𝑚 = 𝑚/(𝑁𝑝𝑇𝑠) and −𝑁𝑝/2 < 𝑚 < 𝑁𝑝/2 [12]. This results in Equation (4), where the
summation in brackets can be efficiently computed by the FFT.

𝑋𝑇 (𝑝𝐿, 𝑓𝑚) = [
𝑁𝑝−1∑
𝑘=0

𝑎(𝑑 − 𝑘)𝑥 (𝑝𝐿 − 𝑑 + 𝑘)𝑒−𝑖2𝜋𝑚𝑘/𝑁𝑝]𝑒−𝑖2𝜋𝑚𝑝𝐿/𝑁𝑝 (4)

The SCD function can then be estimated from the decimated complex demodulates 𝑋𝑇 (𝑟𝐿, 𝑓ℎ)
and 𝑌𝑇 (𝑟𝐿, 𝑓𝑙) at center frequency of 𝑓ℎ and 𝑓𝑙 , as in Equation (5).

𝑆𝛼0
𝑥 (𝑓0) = 𝑆𝛼0

𝑥 (𝑝𝐿, 𝑓ℎ𝑙)Δ𝑡 =
∑
𝑟

𝑋𝑇 (𝑟𝐿, 𝑓ℎ)𝑌 ∗𝑇 (𝑟𝐿, 𝑓𝑙)𝑔𝑑 (𝑝 − 𝑟) (5)

where 𝑔𝑑 (𝑟) = 𝑔(𝑟𝐿). However, a frequency shift 𝜖 = 𝑞Δ𝛼 , where Δ𝛼 = 1/Δ𝑡 for each point estimate
𝑞 ∈ {1, ..., 𝑃}, can be introduced into the complex demodulate product in Equation (5). This enables
the SCD function to also be efficiently evaluated by a 𝑃-point FFT of the complex demodulate
product, as in Equation (6). In this equation, we also make the following substitutions: 𝑎ℎ𝑙 = 𝑓ℎ − 𝑓𝑙 ,
𝑓0 = 𝑓ℎ𝑙 = (𝑓ℎ + 𝑓𝑙)/2, 𝛼0 = 𝑎ℎ𝑙 + 𝑞Δ𝛼 and Δ𝛼 = 𝑓𝑠/𝑃 [12].

𝑆𝛼0
𝑥 (𝑓0) = 𝑆

𝑎ℎ𝑙+Δ𝛼
𝑥 (𝑝𝐿, 𝑓ℎ𝑙)Δ𝑡 =

∑
𝑟

𝑋𝑇 (𝑟𝐿, 𝑓ℎ)𝑌 ∗𝑇 (𝑟𝐿, 𝑓𝑙)𝑔𝑑 (𝑝 − 𝑟)𝑒−𝑖2𝜋𝑟𝑞/𝑃 (6)

2.3 Example of Spectral Correlation Density and Alpha Profile
Figure 1 is an example of a real signal 𝑥 (𝑛) in OOK modulation, its decimated complex demodulate
𝑋𝑇 (𝑟𝐿, 𝑓𝑚), the estimated SCD function 𝑆𝛼0

𝑥 (𝑓0) , and the alpha profile. The alpha profile is the
vector of peak values along the 𝛼 axis of the bi-frequency feature map. This is valuable because
the diamond-shaped SCD function is of size 2𝑁 × 2𝑁𝑝 for a signal of length 𝑁 , decimated into
P subsequences of length 𝑁𝑝 . The alpha profile captures key information with greatly reduced
storage requirements compared with the full SCD matrix.
The SCD function can be used to extract the spectrum features, with the alpha profile able to

retain critical information sufficient to classify different signals. To demonstrate this, we provide
a comparison of these features for two signals from the DeepSig [15] benchmark with different
modulations in Figure 2.

2.4 Comparing FFT-based Methods for Estimating SCD Function
Several methods exist to estimate the SCD function of cyclostationary signals. These include
averaged cyclic periodogram (ACP) [1], cyclic modulation spectrum (CMS) [2], FFT accumulation
method (FAM) [25], strip spectral correlation algorithm (SSCA) [27] and fast spectral correlation
(Fast-SC) [4].

The ACP [1] is an extended "Weighted-Overlapped-Segment-Averaging" [31] method for cyclo-
stationary signals which produces the SCD function with a high resolution. However, the accurate
estimation of SCD comes at the cost of substantial computational complexity when the signal length
grows. This is mainly due to the massive amount of direct complex multiplications introduced by
the traditional implementation of the discrete-time Fourier transform (DTFT).

The CMS [2, 3] utilizes the short-time Fourier transform (STFT) and has low complexity. Despite
its efficiency, it is a biased SCD estimator and its approximation error increases significantly when
the cyclic frequency exceeds the frequency resolution.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 111:5

Δt = NTs

time
n

| T = NpTs |

(a) A real signal x(n) with a sample period of 𝑇𝑠 .

time

n
frequency

Δt=1/Δα

Δf=1/T
α
f

(b) Decimated complex demodulates of signal x(n).

f (Hz)

α
(H

z)

(c) The SCD function of signal x(n).

α (Hz)

M
ax

 a
m

pl
itu

de
 o

f

(d) Alpha profile: peak values across 𝛼 axis of SCD.

Fig. 1. The SCD function and alpha profile of OOK signal from DeepSig [15] at SNR = -8 dB.

The FAM [25] and SSCA [27] techniques are the most popular time smoothing methods to
estimate the SCD function from the decimated complex demodulates. Both are recognized as being
computationally efficient algorithms in the specialized literature, with FAM generally requiring a
smaller FFT size in the most computationally intensive part.
In recent years, Fast-SC [4] was proposed as an improved version of CMS which estimates the

SCD at a higher cyclic frequency resolution, by trading off moderate computational cost. However,
the complexity of Fast-SC algorithm increases notably when there is a need to enlarge the maximum
range of cyclic frequencies for study [7].

Whilemost of the surveyed approaches (except for ACP) are based on bi-frequency FFT operations,
FAM is one of the most favorable algorithms for hardware implementation due to its parallel
computations and regular data access patterns. A detailed, algorithmic description of the FAM
technique is presented in Section 3.1.

2.5 Existing Implementations of the FAMMethod
Early research has focused on the serial CPU implementations of the FAM method [9, 26]. However,
they were generally written in sequential software languages such as C and MATLAB, and the
performance is far from that of real time requirements. To be suitable for real world applications, it
is essential that the parallelism of the SCD estimators is exploited. Where the output of the alpha
profile could be used as a feature in a broader modulation classification system, the former must
operate at rates up to the throughput of the design.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

111:6 Li, et al.

Δt = NTs

time
n

| T = NpTs |

(a) A complex-valued OOK signal.

Δt = NTs

time
n

| T = NpTs |

(b) A complex-valued QPSK signal.

f (Hz)

α
(H

z)

alpha
profile

(c) SCD matrix and alpha profile of the OOK signal.

f (Hz)

α
(H

z)

alpha
profile

(d) SCD matrix and alpha profile of the QPSK signal.

Fig. 2. A comparison of SCD estimation between OOK and QPSK signals from DeepSig [15] at SNR = 28 dB.

In 2008, Ge et al. [14] designed a parallel FAM algorithm, running on a cell broadband engine of
a PlayStation 3. It is comprised of a power processor element (PPE) acting as the controller and
eight synergistic processing elements (SPEs) for parallel computing, which runs 7.6× faster than
sequential FAM on a general purpose processor. Similarly, GAEA [29] was proposed as a hybrid
parallel architecture which supports very long instruction word (VLIW) and single instruction,
multiple data (SIMD) instructions. It runs at 350 MHz and requires only 78.8 ms to execute the FAM
algorithm for a signal of 32K samples.

Recently, there is a growing interest in developing high-performance hardware implementations
of the FAM method. Lee et al. [18] developed a GPU implementation of the FAM method and
achieved a speedup of 39× over the serial implementation running on a 2.94 GHz Intel Core 2
CPU. The University of Arizona proposed high throughput GPU implementations [20, 21] and
a heterogeneous FPGA-GPU implementation [5] of FAM. While they reported a state-of-the-art
throughput of 3300 windows/s on a Tesla K40 GPU, the hybrid FPGA-GPU implementation was
significantly less optimised, achieving only 19 windows/s. This was due to the use of a relatively
low-end Tegra K1 GPU and a Zynq-7000 FPGA which consumed less than 3% of hardware resource
while running at just 140 MHz.

2.6 Systolic Array Processors
The high performance of our design mainly arises through parallel processing of the FAM algorithm
in a systolic array. Systolic processor arrays are regular architectures with local interconnection
between processing elements (PEs). This design structure facilitates an architecture that operates
at a high clock frequency. The main challenge is to ensure the PEs are utilised efficiently. There is
seemingly continual research in VLSI and FPGA systolic array processors. For example, this includes
an early discussion provided by Kung [17] and more recent FPGA designs for deep learning [30].
Common issues that must be addressed include I/O constraints, memory limitations, pipelining,

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 111:7

challenging compute patterns and efficient PE design. Instead of exploring this entire research area,
we highlight examples from the field of solving systems of linear equations that highlight each of
these problems and different techniques employed to overcome them. We then discuss how this
inspired our own approach.

When designing a systolic array, it is important to ensure that computation overhead is greater
than or equal to I/O limitations. For example, in block-based LU factorisation with blocks of size
𝑀 ×𝑀 , the number of computations are 𝑂 (𝑀3), but the number of clock cycles to load a block
from memory to the accelerator is𝑂 (𝑀2). This means the maximum number of parallel operations
is 𝑂 (𝑀). A simple solution, as presented by Zhang et al. [33], is to preload four blocks of a large
matrix into on-chip memory, three of which are reused for an entire row. After this double-buffering
can be used to overlap loading the next block from memory while computing the current block.
This essentially is pipelining the load phase for the next block in an alternative memory so the
systolic array can be fully utilised.

Challenging compute patterns occur when an algorithm does not easily fit into a 1D or 2D array.
For example, QR-based solution of a system of linear equations typically results in a triangular
compute pattern. Folding the dataflow to reuse the PEs of a linear or 2D array is one of the main
techniques to address this. However, the chosen folding approach either increases the complexity
of the PE or the interconnect. For example, the approach by Rader [23] required a PE that supported
CORDIC operations. A more general approach outlining various options to fold an array for QR-
based solutions and their trade-offs is presented by Lightbody et al. [19]. An alternative solution for
challenging compute patterns is to modify the underlying algorithm that utilises the systolic array.
For example, Boland [6] presents a way to restructure LU decomposition with partial pivoting
such that it maintains numerical performance, fits onto a systolic array with minimal memory
overhead and maintains trivial PEs to maximise clock frequency. However, this method sacrifices
some efficiency, reaching only 66%.
In this work, I/O is not an issue because the algorithm, described in Section 3.1, converts a

streaming input into a matrix through the use of overlapping windows, essentially performing a
serial to parallel conversion. However, we do experience a challenging triangular compute pattern.
We considered a folding approach, but decided the additional hardware required was non-trivial.
Instead we added a novel modification to the interconnect to support a bi-directional datapath
to pipeline successive problems in opposite directions. This achieves a utilisation of 88.2% with
minimal overhead.

3 ALGORITHM
3.1 FFT Accumulation Method
In this paper, we focus on the FFT accumulation method (FAM) as it is one of the most computation-
ally efficient methods. The algorithm can be generally decomposed into four steps, i.e., decimation
and windowing, first stage FFT, down conversion, SCD matrix and alpha profile generation [5].
There are a few parameters in this algorithm which have been discussed in Section 2. Our design is
both scalable and general. It can be readily applied to any parameter setting, subject to available
FPGA resources, by changing the PE microcode.

3.1.1 Step 1: Decimation and Windowing. The first step is to decimate the input signal and filter it
using a window function, as given in Equation (4). The signal of length 𝑁 is divided into 𝑃 channels
with sub-sequences of 𝑁𝑝 elements and a nonoverlap offset of 𝐿 = 𝑁𝑝/4. After the decimation, a
Hamming window is applied to eliminate the artificial high frequency components. The output of
this step is referred to as 𝑋𝑊 .

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

111:8 Li, et al.

3.1.2 Step 2: First Stage FFT. The windowed frames generated from the first step are then applied
to a 𝑁𝑝-point fast Fourier transform (FFT), as described by the square brackets in Equation (4).
Since the FFT size is the same as that of one frame in 𝑋𝑊 , the 𝑁𝑝 -point FFT output 𝑋𝐹 maintains
the size of 𝑁𝑝 × 𝑃 . Figure 3 describes the process of step 1 and step 2 in sequential blocks.

Signal x(n) of length N samples

L=Np/4

Hamming Window

Np-point FFT

Decimation

F
R
A
M
E

0

F
R
A
M
E

1

F
R
A
M
E

2

F
R
A
M
E

P-1

Np X P

XF =

F
R
A
M
E

0

F
R
A
M
E

1

F
R
A
M
E

2

F
R
A
M
E

P-1

Np X P

XW =

F
R
A
M
E

0

F
R
A
M
E

1

F
R
A
M
E

2

F
R
A
M
E

P-1

Np X P

XDe =

Fig. 3. FAM algorithm step 1-2: decimation, windowing and 𝑁𝑝 -point FFT.

3.1.3 Step 3: Down Conversion. Down conversion (frequency shifting) is then performed on 𝑋𝐹 to
obtain the complex demodulate sequences 𝑋𝐷 , which is detailed in Equation (7). To control cycle
leakage and aliasing, 𝐿 is set to 𝑁𝑝/4 meaning the exponential function 𝑒−𝑖2𝜋𝑘𝑚𝐿/𝑁𝑝 can only take
the values from (i, -i, 1, -1).

𝑋𝐷 [𝑘,𝑚] = 𝑋𝐹 [𝑘,𝑚] ∗ 𝑒−𝑖2𝜋𝑘𝑚𝐿/𝑁𝑝 = 𝑋𝐹 [𝑘,𝑚] ∗ [cos(2𝜋𝑘𝑚𝐿/𝑁𝑝) − 𝑖 sin(2𝜋𝑘𝑚𝐿/𝑁𝑝)] (7)

3.1.4 Step 4: SCD Matrix and Alpha Profile Generation. The last step of FAM is to calculate the SCD
matrix, which corresponds to Equation (6), and the alpha profile. This is the most computational
expensive part as the iterative 𝑃-point FFT constitutes ≈ 86% of the whole execution time on a

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 111:9

serial CPU implementation [21]. The pseudocode of the SCD matrix and alpha profile computation
is described in Algorithm 1.
Algorithm 1: Compute kernel of SCD matrix and alpha profile.
Input: Two matrices 𝑋 = 𝑋𝐷 and 𝑌 = 𝑋 ∗

𝐷
with a size of 𝑁𝑝 × 𝑃 .

Output: A vector 𝑎𝑙𝑝ℎ𝑎_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 with a size of 2𝑁 × 1.
for 𝑖 ← 0 to 𝑁𝑝 − 1 by 1 do

for 𝑗 ← 0 to 𝑁𝑝 − 1 by 1 do
𝐾 [𝑖 ∗ 𝑁𝑝 + 𝑗, :] ← 𝑋 [𝑖, :] ∗ 𝑌 [𝑗, :]
𝑀 [𝑖 ∗ 𝑁𝑝 + 𝑗, :] ← 𝑎𝑏𝑠 (𝑃-point 𝐹𝐹𝑇 (𝐾 [𝑖 ∗ 𝑁𝑝 + 𝑗, :]))
𝑟𝑜𝑤 ← ((𝑗 − 𝑖)/𝑁𝑝 + 1) ∗ 𝑁
𝑃𝑎 ← 𝑀 [𝑖 ∗ 𝑁𝑝 + 𝑗, 𝑃/4 : (𝑃/2 − 1)]
𝑃𝑏 ← 𝑀 [𝑖 ∗ 𝑁𝑝 + 𝑗, 𝑃/2 : (3𝑃/4 − 1)]
𝑆𝐶𝐷 [(𝑟𝑜𝑤 − 𝑃/4) : (𝑟𝑜𝑤 + 𝑃/4 − 1), 𝑖 + 𝑗] ← {𝑃𝑎, 𝑃𝑏}

end
end
𝑎𝑙𝑝ℎ𝑎_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 ← max(𝑆𝐶𝐷, [], 2)
where 𝑋 ∗

𝐷
represents for an element-wise complex conjugate of matrix 𝑋𝐷 .

The structure of the SCD matrix and alpha profile is shown in Figure 4. As explained in Algo-
rithm 1, half of the iterative 𝑃-point FFT outputs (in the middle range) are used to build the SCD
matrix, formed by multiple 𝑃𝑎 and 𝑃𝑏 elements in a staircase fashion, as in Figure 4a. Thus, a huge
number of FFT outputs are required to form the full SCD matrix with a size of 2𝑁 × 2𝑁𝑝 , which
imposes a significant memory and communications bottleneck on the implementation making
it impractical in a real-time scenario. In order to resolve this issue, a row-wise MAX operation,
namely the alpha profile, is applied to the SCD matrix so that only the peak values of each row are
used as the final outputs for classification.

According to Algorithm 1, the calculation of the 𝑃𝑎 and 𝑃𝑏 blocks in the down staircase direction
are independent, which means the SCD matrix can be efficiently generated by mapping different
blocks in the down staircase direction to different parallel processing elements (PEs). Besides, the
PEs should be interconnected with their neighbors to support the distributed computation of the
alpha profile in the horizontal view. All these inspirations bring us to an idea of developing a linear
systolic array of PEs to support the hybrid dataflow of the SCD matrix and alpha profile.

3.2 Exploiting Similarity in SCD
In Section 2 we have shown that the representation of SCD estimation 𝑆𝛼𝑥 (𝑓) is a 2-D feature map
in 𝑓 and 𝛼 axes. It is symmetrical in the bi-frequency dimension [10] as indicated in Equations (8)
and (9).

𝑆𝛼𝑥 (𝑓) = 𝑆𝛼𝑥 (−𝑓) (8)

𝑆−𝛼𝑥 (𝑓) = 𝑆𝛼𝑥 (𝑓)∗ (9)

Thus, it is sufficient to compute just one quadrant of the SCD function 𝑆𝛼𝑥 (𝑓) (marked as the
shaded triangle in Figure 5). For the alpha profile, only half need be computed as the final output.
Thus, the complexity of the FAM method can be reduced by around 75% compared to that of the
full SCD computation. The number of individual PEs can also be reduced by 50%.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

111:10 Li, et al.

FFT output

Pb Pa

staircase
direction

of dataflow

2N X 2Np

(a) Staircase SCD matrix formation.

2N X 2Np 2N X 1

MAX

MAX

MAX

MAX

MAX

(b) Row-wise alpha profile calculation.

Fig. 4. SCD matrix and alpha profile generation.

In the following sections, we focus on the calculation of one quadrant of the SCD function
and refer it to as QSCD. We also customize a few parameters of FAM algorithm to match with
the literature [5, 21] for the illustration of the microarchitecture in Section 4.2 and evaluation in
Section 5. Specifically, in this work 𝑁 = 2048, 𝑁𝑝 = 256, 𝐿 = 𝑁𝑝/4 = 64 and 𝑃 = 𝑁 /𝐿 = 32.

4 ARCHITECTURE
Due to the straightforward nature of step 1 to step 3 of the FAM algorithm, we implemented these
steps in HLS. We then connected this to our optimized systolic array, implemented in RTL, which
is described in the following subsection.

4.1 QSCD Mapping Scheme
Themethodology formappingQSCD to the linear systolic array is illustrated in Figure 6. Algorithm 1
is parallelized by mapping the independent complex multiplications (MULs) and FFTs to the
corresponding PEs (each PE is represented by a different color in Figure 6).

Initially, each PE has an input of (𝑋𝑖 , 𝑌𝑖). After the PE computes the MUL and FFT operations for
one iteration, it then calculates and transfers the partial alpha results to its adjacent PE (as indicated
by the horizontal red dashed line) so that the MAX operation can be split and allocated evenly
to each PE. This makes effective use of the systolic array. The PE then changes the input source
from (𝑋𝑖 , 𝑌𝑖) to (𝑋𝑖 , 𝑌𝑖+𝑗) by shifting in the new Y component from the adjacent PE (as indicated by
the blue dashed line), upon which the PE proceeds to compute the next iteration and so on. The
purpose of the “SHIFT” function is to to shift the Y components from the current PE (𝑃𝐸 [𝑖]) to the
previous 𝑃𝐸 [𝑖 − 1] in the shift register array. The “TX” function is responsible for the transmission
of partial alpha results from the current PE (𝑃𝐸 [𝑖] to the next 𝑃𝐸 [𝑖 + 1]). In the end, two vectors
of length 𝑁 are calculated by the systolic array (as indicated by the green dashed line) and are
compared along the aligned region to generate the final alpha profile.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 111:11

(1,1)

(1,2)

(1,3)

(2,2)

(2,3)

(1,
253)

(1,
254)

(2,
253)

(2,
252)

(1,
253)

(1,
254)

(2,
253)

(2,
252)

(1,0)

(2,0)

(2,1)

(253,1)

(253,2)

(253,0)

(253,3)

(254,1)

(254,2)

(255,3)

(2,2)

(2,3)

(254,0)

(255,0)

(2,1)

(253,
255)

(254,
255)

(255,
254)

(255,
255)

(255,
252)

(255,
253)

(253,
254)

(253,
253)

(253,
252)

(254,
254)

(254,
253)

(254,
252)

(0,1)

(0,2)

(0,0)

(0,3)

(0,
253)

(0,
254)

(0,
255)

(0,
252)

(127,
128)

(127,
127)

(127,0)

(127,0)

(127,
255)

(127,
254)

PE[0] to PE[N
p -1]

ite
rat

ion
 0

to
N p-

1

Fig. 5. An example of SCD generated from 256 PEs by processing 256×256 32-element complex demodulates.

Algorithm 2 shows how Algorithm 1 has been modified to exploit the parallelism, showing how
the calculations can be performed using a systolic array implemented by a number of PEs, and how
the dataflow in between adjacent PEs matches with the mapping scheme in Figure 6. Note that
the outer 𝑓 𝑜𝑟 loop represents the PE index (the parallel architecture) and the inner 𝑓 𝑜𝑟 loop is the

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

111:12 Li, et al.

(2,4)

(1,4)

(0,1)

(0,2)

(0,0)

(0,3)

(1,1)

(1,2)

(1,3)

(2,2)

(2,3)

(3,3)

(0,
253)

(0,
254)

(0,
255)

(1,
253)

(1,
254)

(2,
253)

(127,
128)

(127,
127)

(126,
127)

(126,
128)

(126,
129)

(126,
126)

(3,4)

(0,4)

𝛼_2
[0]

𝛼_2
[1]

𝛼_2
[2]

𝛼_2
[127]

𝛼_2
[126]

𝛼_1
[0]

𝛼_1
[1]

𝛼_1
[127]

𝛼_1
[126]

(3,
252)

(2,
252)

(1,
253)

(0,
252)

𝛼

out

𝛼_1
[2]

𝛼_2
[3]

MAX

TX

SHIFT

OUT

Fig. 6. An example of QSCD generated from 128 PEs by processing a quadrant of 256×256 32-element complex
demodulates.

iterative sequential process of an individual PE. The parameterized number of clock cycles required
by each sub-process for a single PE is also indicated.
Algorithm 2: Pseudocode for the proposed systolic array.
Input: Two matrices 𝑋 = 𝑋𝐷 and 𝑌 = 𝑋 ∗

𝐷
with a size of 𝑁𝑝 × 𝑃 .

Output: A vector 𝑎𝑙𝑝ℎ𝑎_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 with a size of 𝑁 × 1.
for 𝑖 ← 0 to 𝑁𝑝/2 − 1 by 1 do

// Process of the 𝑖th PE (PE[i])

IDLE:𝑤𝑎𝑖𝑡 𝑓 𝑜𝑟 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎 // (2 ∗ 𝑃 + 1) ∗ 𝑖 cycles

LOAD: 𝑙𝑜𝑎𝑑 𝑋 [𝑖, :] 𝑎𝑛𝑑 𝑌 [𝑖, :] // 2 ∗ 𝑃 cycles

COMPUTE(i, i): 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑓 𝑜𝑟 𝑋 [𝑖, :] 𝑎𝑛𝑑 𝑌 [𝑖, :] // 𝑃 + 𝑃 log2 𝑃 cycles

for 𝑗 ← (𝑖 + 1) to (𝑁𝑝 − 2 − 𝑖) by 1 do
// 𝑗 times iterative process on PE[i]

TX: 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 𝛼 [𝑖, :] 𝑓 𝑟𝑜𝑚 𝑃𝐸 [𝑖] 𝑡𝑜 𝑃𝐸 [𝑖 + 1] // 𝑃/2 cycles

SHIFT: 𝑌 [𝑖, :] ← 𝑌 [𝑖 + 1, :] // 𝑃 cycles

COMPUTE(i, j): // 𝑃 + 𝑃 log2 𝑃 cycles

end
OUT: 𝑜𝑢𝑡𝑝𝑢𝑡 𝛼_1[𝑖, :] // 𝑃/2 cycles

COMPUTE(𝑖, 𝑁𝑝 − 1 − 𝑖)): // 𝑃 + 𝑃 log2 𝑃 cycles

OUT: 𝑜𝑢𝑡𝑝𝑢𝑡 𝛼_2[𝑖, :] // 𝑃/2 cycles

end
return 𝑎𝑙𝑝ℎ𝑎_𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 ← max{𝛼_1, 𝛼_2} // 𝑁 cycles

Function COMPUTE(𝑖 , 𝑗):
𝐾 [𝑖, :] ← 𝑋 [𝑖, :] ∗ 𝑌 [𝑗, :] // 𝑃 cycles

𝑀 [𝑖, :] ← 𝑃-point 𝐹𝐹𝑇 (𝐾) // 𝑃 (log2 𝑃 − 1/2) cycles

𝛼 [𝑖, :] ← max{𝑀 (𝑖, [𝑃/4 : 3𝑃/4 − 1]), 𝑀 (𝑖 − 1, [𝑃/4 : 3𝑃/4 − 1])} // 𝑃/2 cycles

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 111:13

4.2 Processing Elements
Processing elements (PEs) perform the fundamental compute operations for the iterative transitions:
TX, SHIFT and COMPUTE in the inner loop of Algorithm 2. The datapath for a single PE is a highly
pipelined, load–store architecture, as shown in Figure 7. It comprises an instruction memory
(IMEM), a data memory (DMEM), a complex arithmetic ALU and a controller. The signals in bold
font represent the inputs and outputs of the PE.

WN

ROM32X1

decoder

[2:0]
opcode

en

dout_alu

[15:0] alumode
[19:0] inmode
[27:0] opmode

out

din_pe

dout_tx

dout_pe

dout_ctrl

IMEM
ROM

ALU
(4-DSP)

BRAM0

raddr0

rdata0

wdata0

waddr0

BRAM1

raddr1

rdata1
wdata0

waddr0

shift_v

tx_v

ouput_v

cmpt_v out_v

re

re

FSM

PC

addr

dout_shift

din_shift

RAMB18E2
s_shift

m_shift

DC

BRAM2

raddr2

wdata1

waddr1

re

rdata2

BRAM3

raddr3

wdata1

waddr1

re

rdata3

din_tx
din_pe

din_shift

rvs_v

reverse

done

Fig. 7. Microarchitecture of the proposed PE.

4.2.1 Instruction Memory. The instruction memory (IMEM) is implemented using a LUTRAM-
based ROM of size 32-bit × 192 deep, which contains all the necessary instructions for one full
computation, including the complex multiplication, 32-point FFT and the partial alpha profile. Each
32-bit instruction consists of a 3-bit opcode, a single unused (reserved) bit and a 28-bit address
(split into three source address fields and one destination address), as shown in Table 1. Table 2 lists
some representative instructions such as the complex multiplication and the butterfly operators for

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

111:14 Li, et al.

the radix-2 decimation-in-time (DIT) FFT. Note that the operands in Table 2 are all complex values
and each instruction takes one clock cycle for execution. Instructions are reused for each iteration,
controlled by the finite state machine (FSM).

Table 1. Instruction format.

Opcode Reserved Address

arithmetic null source 31 source 22 source 13 destination4
31:29 28 27:24 23:16 15:8 7:0

1 Read address of ROM32X1 for source 3 in range of [0:15].
2 Read address of BRAM1 or BRAM2 for source 2 in range of [0:255].
3 Read address of BRAM0 for source 1 in range of [0:255].
4 Write address of BRAM0 and BRAM1 for destination in range of [64:255].

Table 2. Instruction examples.

Instruction Hex representation Assembly1 Operation2

Multiplication 32’h80_20_00_40 MUL $64, $32, $0 𝑅64 = 𝑅32 ∗ 𝑅0
Butterfly (up) 32’hA0_50_40_60 MULADD $96, $64, $80, $0 𝑅96 = 𝑅64 + 𝑅0 ∗ 𝑅80
Butterfly (down) 32’hC0_50_40_61 MULSUB $97, $64, $80, $0 𝑅97 = 𝑅64 − 𝑅0 ∗ 𝑅80

1 The format of assembly code is 𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑅𝐷, 𝑅𝑆1, 𝑅𝑆2, (𝑅𝑆3) . 𝑅𝑆3 is only valid for three-operand instructions.
2 All the operations are in complex values and the register/memory stores a 32-bit fixed-point complex number by
concatenating the 16-bit real part and the 16-bit imaginary part.

4.2.2 Complex Arithmetic ALU. The input signals from the DAC on our target board (ZCU111)
are normalized 14-bit fixed-point in-phase and quadrature-phase (I/Q) samples. These are aligned
on the 16-bit word boundary and grouped into a single 32-bit complex value. By pre-normalizing
them to between -1 and 1, it makes it easy to keep intermediate results within this range by right
shifting. For internal operations, we constrain the quantization error to 2−16 by using maximum
bitwidth during the arithmetic operations and truncating the results in the end.
We develop a customised PE based on a RISC-like load–store architecture, which includes

four complex arithmetic instructions (𝑀𝑈𝐿,𝑀𝐴𝑋,𝑀𝑈𝐿𝐴𝐷𝐷,𝑀𝑈𝐿𝑆𝑈𝐵) are required for the full
computation of the kernel, i.e. complex multiplication, the butterfly operators for the radix-2 DIT
FFT and the calculation of the maximum of the intermediate alphas.

The complex arithmetic instructions can be decomposed into multiple real-valued multiplications
with additional logic units. To achieve this, we integrate four DSP48E2 slices to build a complex
ALU and multiplex the sources of the ALU with specific output logic units based on the runtime
configuration. While a complex multiplication could be performed using just 3 real-valued multipli-
ers, it requires a pre-adder on both inputs to the third multiplier, which is not supported by the
DSP48E2 slice.
Figure 8 gives an example of how our ALU from Figure 7 is configured to implement the

𝑀𝑈𝐿𝐴𝐷𝐷 𝑅𝐷, 𝑅𝑆1, 𝑅𝑆2, 𝑅𝑆3 instruction, which represents the upstream butterfly operator. For
the input source, 𝑅𝑆1 and 𝑅𝑆2 are two 32-bit complex-valued inputs, while 𝑅𝑆3 is a 32-bit complex-
valued FFT twiddle factor. 𝑅𝐷 is a 32-bit complex-valued output, whose real part is generated by
the upper two DSP blocks and the imaginary part is derived from the lower two DSP blocks. After
the multiplication and addition/subtraction operations, a right-shift operation is added to avoid

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 111:15

overflow when converting back to a 16-bit result. The 16-bit real and imaginary parts are then
concatenated to reconstruct a 32-bit complex number that will be written back to the data memory.

Complex ALU

RD [31:0]

DSP

DSP

DSP

DSP

-

+

Wr

Wr

c

c

Wi
d

d

Wi

+
a

+
b

>>1

>>1

RD[31:16]

RD[15:0]

CATRS2

RS1

RS3

32-bit

32-bit

32-bit

RS1[31:16] = a

RS1[15:0] = b

RS2[31:16] = c

RS2[15:0] = d

RS3[15:0] = Wi

RS3[31:16] = Wr

Fig. 8. The complex ALU configuration for a𝑀𝑈𝐿𝐴𝐷𝐷 instruction.

4.2.3 Data Memory. The data memory (DMEM) consists of four RAMB18E2 primitives, to support
a 2-write, 4-read RAM and 16 ROM32X1 primitives to support a 1-read ROM. The RAM is used to
store the 32-bit complex-valued input signals and the intermediate results either from the complex
ALU or an adjacent PE, while the ROM is used to store the 32-bit fixed-point FFT twiddle factors.

The Xilinx block RAM (BRAM) can be used as a true dual port (TDP) RAM or a simple dual
port (SDP) RAM. The SDP mode is more flexible than the TDP mode when multi-port independent
write/read processes are required. As the PE needs to write back the output of the 3-operand
complex ALU (𝑑𝑜𝑢𝑡_𝑎𝑙𝑢) to the DMEM, the DMEM needs to support at least 1-write and 3-reads.
However, in our design, the partial alpha profile transmitted from the prior PE (𝑑𝑖𝑛_𝑡𝑥) and the 𝑌𝑖
component shifted to the next PE (𝑑𝑜𝑢𝑡_𝑠ℎ𝑖 𝑓 𝑡) could be valid during the operation of the complex
ALU. This leads to the requirement for an additional independent write and read. To support this, we
configure all the RAMB18E2 primitives as SDP RAMs to support up to four concurrent write/read
processes. While this requires two 36Kb BRAMs, the PEs are designed such that each of the four
DSP48E2 slices aligns horizontally with an 18K block RAM. This provides optimal connectivity and
speed between resources within a PE [16].

4.2.4 Controller. The controller (indicated by the shaded boxes in Figure 7) consists of two parts:
a) a finite state machine (FSM) for generating essential signals to determine the state of the PE
for a specific iteration index, and b) a decoder which translates the 3-bit opcode into the 64-bit
configurations for the four DSP blocks.
Figure 9 shows a Moore FSM with the required 8 states for an arbitrary PE. Each PE starts in

the IDLE state. When the input signal is valid, the FSM moves to the START macro state which is
comprised of LOAD and COMPUTE states. At the LOAD state, a 32-bit × 32 deep block of X and Y
values are loaded into the DMEM of the PE. The FSM then moves to the COMPUTE state and runs
the computation once. Next, there are two possible branches that can be taken, the first is to the
ITERATE macro state which is an iterative state transition from the TX state to the COMPUTE state
and the other directly jumps to the END macro state. The path taken depends on whether the PE
has a iterative process or not (all PEs with the exception of 𝑃𝐸 [𝑁𝑝 − 1] have ITERATE cycles). The
OUT state will be triggered twice, once for the results generated by either the START or ITERATE

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

111:16 Li, et al.

macro and then following the COMPUTE state of the END macro state. After the second output,
the system returns to the IDLE state for the next input sequence.

loop_cnt: 0 -> TX_NUM + SHIFT_NUM + INST_NUM - 1

IDLE

LOAD
(Xi,Yi)

COMPUTE
/cmpt_v

OUT
/output_v

(alpha_cnt = 15) AND

(output_cnt =1)

load_cnt = 63

iterate (254-2i) times

din_pe_v

Moore FSM

(cmpt_cnt = 191) AND
(iter_cnt = 254-2i)cmpt_cnt = 191

COMPUTE
/cmpt_v (alpha_cnt = 15) AN

D
(output_cnt =0)cm

pt
_c

nt
 =

 1
91

(cmpt_cnt = 191) AND
(iter_cnt = 254-2i)

ITERATE

START

END

TX
/tx_v

cmpt_cnt = 191

tx_cnt = 15
SHIFT

/shift_v
shift_cnt = 31

COMPUTE
/cmpt_v

Fig. 9. The FSM of an arbitrary PE.

4.3 Single-direction Datapath Vs. Bi-direction Datapath
An analysis of the systolic array operation using a cycle-aware system flowchart is shown in
Figure 10. The execution time can be estimated by determining the number of cycles in this
flowchart (or from Algorithm 2). A detailed description of each state and its required number of
clock cycles is explained in Table 3, which can be used as the basis for cycle estimation in the
system flowchart.

Table 3. The detailed explanation of each state in the FSM.

State Description No. of cycles

IDLE Wait for the input of vector 𝑋𝑖 and 𝑌𝑖 (2𝑃 + 1) ∗ 𝑖
LOAD Load P-element 𝑋𝑖 and P-element 𝑌𝑖 in a stream 2𝑃
COMPUTE 𝑃 element-wise complex multiplication and 𝑃-element FFT 𝑃 + 𝑃 log2 𝑃
TX Transfer 𝑃/2 partial alphas from PE[i] to PE[i+1] 𝑃/2
SHIFT Shift in vector 𝑌𝑖+1 from PE[i+1] to replace 𝑌𝑖 𝑃

OUT Output 𝑃/2 alpha results 𝑃/2

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 111:17

START

IDLE

IDLE

IDLE

PE[0]

PE[1]

PE2

3P+Plog2P

2P+1

(2P+1)X2

IDLEPE3

Np cycles

(Np-2) cycles

(Np-4) cycles

(Np-6) cycles

2 cycles

5P/2+Plog2P

(2P+1)X(Np/2-1)

IDLEPE[Np/2-2] 4 cycles

(2P+1)X(Np/2-2)

ITERATE ITERATE

5P/2+Plog2P

START ITERATE ITERATE

START ITERATE ITERATE

START ITERATE ITERATE

START ITERATE ITERATE END

START END

ITERATE END

5P/2+Plog2P 2P+Plog2P

𝛼

𝛼

𝛼

𝛼

Y1

Y2

Y3

YNp/2-1

PE[Np/2-1]

(2P+1)X3

IDLE

IDLE

IDLE

IDLEITERATE END

ITERATE END

ITERATE END IDLE

t / clk cycle0

LOAD
X0,Y0

COMPUTE COMPUTE OUTOUT

2P P+Plog2P P/2 P P+Plog2P

TX
SHIFT

Y1
COMPUTE

P/2 P+Plog2P P/2

Fig. 10. A cycle-aware system flowchart.

The first PE (𝑃𝐸 [0]) performs 𝑁𝑝 different computational processes corresponding to each of
the 𝑁𝑝 element sub-sequences. These are: one START state (2𝑃 clock cycles for the LOAD process
and (𝑃 + 𝑃 log2 𝑃) clock cycles for the first COMPUTE kernel), (𝑁𝑝 − 2) ITERATE states (one
ITERATE state comprises TX, SHIFT and COMPUTE, requiring 5𝑃/2 + 𝑃 log2 𝑃 clock cycles) and
one END state (comprising OUT, COMPUTE and OUT, requiring 2𝑃 + 𝑃 log2 𝑃 clock cycles). For
each increase in the PE index, the number of computational processes is reduced by two, with
the last PE, 𝑃𝐸 [𝑁𝑝/2 − 1], only requiring two computational processes (START and END, or just
10𝑃 + 2𝑃 log2 𝑃 clock cycles).

It should be clear that 𝑃𝐸 [0] requires the most computation time in the system, and has an
initiation interval (II) of (5𝑃/2 + 𝑃 log2 𝑃) ∗ 𝑁𝑝 clock cycles, whereas the final PE remains idle for
most of the time. As a result, while the proposed systolic architecture adopts a fully pipelined
implementation of the iterative process, the average PE utilization is just 50.4%. To make better use
of the PE resource, we investigate two methods to balance the computation of the different PEs.

One simple solution is to fold QSCD along the anti-diagonal direction and map the additional FFT
blocks to the complimentary PEs. In this way, each PE is responsible for (𝑁𝑝 + 2)/2 computational
processes. While this balances the number of iterative computations across different PEs, the total
number of IDLE cycles are unchanged and the utilization is unchanged. This is because there is a
dependency in the computation that cannot be removed. For instance, 𝑃𝐸 [𝑁𝑝/2− 1] has to wait for
𝑃𝐸 [0] to complete (5𝑃/2+𝑃 log2 𝑃)∗(𝑁𝑝/2−1)−(2𝑃+1)∗(𝑁𝑝/2−1) = (𝑃/2+𝑃 log2 𝑃−1)∗(𝑁𝑝/2−1)
clock cycles before it can start the remaining (𝑁𝑝/2−1) processes, resulting in the same PE utilization
as in the original schedule in Figure 10.

Assuming there is continual input data, a superior approach is to reverse the datapath direction
when computing the SCD for independent sequences. As can be seen in Figure 10, 𝑃𝐸 [𝑁𝑝/2 − 1]
completes its operation, then stays idle waiting for 𝑃𝐸 [0] to finish. Instead, it can begin computing

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

111:18 Li, et al.

the next SCD immediately. This not only balances the workload between PEs, but minimises idle
time, resulting in a PE utilization of 88.2%.
We evaluate the performance of the two solutions by estimating the total clock cycles of pro-

cessing two successive signals in Figure 11. It takes (5𝑃/2 + 𝑃 log2 𝑃) ∗ (2𝑁𝑝) clock cycles for the
unidirectional datapath to complete, however, due to overlapping of computation the bi-directional
datapath reduces this to only (5𝑃/2 + 𝑃 log2 𝑃) ∗ (𝑁𝑝 + 2) + (2𝑃 + 1) ∗ (𝑁𝑝/2 − 1) clock cycles.
Clearly (5𝑃/2 + 𝑃 log2 𝑃) >> (2𝑃 + 1), meaning the bi-directional solution is much more efficient.

Np cycles from (X0, Y0) to (X0,YNp-1)

IDLE

IDLE

IDLE

PE[0]

PE[1]

PE[2]

(5P/2+Plog2P) X Np

2P+1

IDLEPE[3]

IDLEPE[Np/2-2]

(Np-2) cycles from (X1, Y1) to (X1, YNp-2)

(2P+1)X2

(2P+1)X3

(2P+1)X(Np/2-2)

(2P+1)X(Np/2-1)

(Np-4) cycles from (X2, Y2) to (X2, YNp-3)

(Np-6) cycles from (X3, Y3) to (X3, YNp-4)

4 cycles from (XNp/2-2, YNp/2-2) to
(XNp/2-2, YNp/2+1)

2 cycles from (XNp/2-1, YNp/2-1)
to (XNp/2-1, YNp/2)

(5P/2+Plog2P) X (Np/2-1)

5P/2+Plog2P

(5P/2+Plog2P) X 2

(5P/2+Plog2P) X (Np/2-2)

(5P/2+Plog2P) X (Np/2-3)

IDLE

IDLE

PE[Np/2-1]

IDLE

IDLE

IDLE

Np cycles from (X'0, Y'0) to (X'0,Y'Np-1)

(Np-2) cycles from (X'1, Y'1) to (X'1, Y'Np-2) IDLE

(Np-4) cycles from (X'2, Y'2) to (X'2, Y'Np-3) IDLE

(Np-6) cycles from (X'3, Y'3) to (X'3, Y'Np-4) IDLE

4 cycles from (X'Np/2-2, Y'Np/2-2) to
(X'Np/2-2, Y'Np/2+1) IDLE

2 cycles from (X'Np/2-1, Y'Np/2-1)
to (X'Np/2-1, Y'Np/2) IDLE

(5P/2+Plog2P) X Np

t / clk cycle0

(a) A unidirectional datapath for the process of two successive signals. Total cycles: 2(5𝑃/2 + 𝑃𝑙𝑜𝑔2𝑃)𝑁𝑝

Np cycles from (X0, Y0) to (X0,YNp-1)

IDLE

IDLE

PE[0]

PE[1]

(5P/2+Plog2P) X Np

2P+1

IDLEPE[Np/2-2]

(Np-2) cycles from (X1, Y1) to (X1, YNp-2)

(2P+1) X (Np/2-2)

(2P+1) X (Np/2-1)

4 cycles from (XNp/2-2, YNp/2-2) to
(XNp/2-2, YNp/2+1)

2 cycles from (XNp/2-1, YNp/2-1)
to (XNp/2-1, YNp/2)

IDLE

(2P+1) X (Np/2-1)
2 cycles from (X'Np/2-1, Y'Np/2-1)

to (X'Np/2-1, Y'Np/2)

IDLE

(2P+1) X (Np/2-2)

4 cycles from (X'Np/2-2, Y'Np/2-2)
to (X'Np/2-2, Y'Np/2+1)

Np cycles from (X'0, Y'0) to (X'0,Y'Np-1)

(5P/2+Plog2P) X Np

(5P/2+Plog2P) X (Np-2)

(5P/2+Plog2P) X 2

(5P/2+Plog2P) X 4

(5P/2+Plog2P) X 4

(5P/2+Plog2P) X 2

IDLE

2P+1

(Np-2) cycles from (X'1, Y'1) to (X'1, Y'Np-2)

(5P/2+Plog2P) X (Np-2)

PE[Np/2-1]

IDLEPE[2]

(2P+1) X 2

(Np-4) cycles from (X2, Y2) to (X2, YNp-3)

(5P/2+Plog2P) X (Np-4)

IDLE

(2P+1) X (Np/2-3)

6 cycles from (X'Np/2-3, Y'Np/2-3)
to (X'Np/2-3, Y'Np/2+2)

(5P/2+Plog2P) X 6

IDLEPE[3]

(2P+1) X 3

(Np-6) cycles from (X3, Y3) to (X3, YNp-4)

(5P/2+Plog2P) X (Np-6)

IDLE

(2P+1) X (Np/2-4)

8 cycles from (X'Np/2-4, Y'Np/2-4)
to (X'Np/2-4, Y'Np/2+3)

(5P/2+Plog2P) X 8

0 t / clk cycle

(b) A bi-directional datapath for the process of two successive signals.

Fig. 11. Parameterised flowcharts indicating the required number of clock cycles using different datapaths.
Total cycles reduced to: (5𝑃/2 + 𝑃𝑙𝑜𝑔2𝑃) (𝑁𝑝 + 2) + (2𝑃 + 1) (𝑁𝑝/2 − 1)

4.4 Bi-directional Linear Systolic Array Architecture
To support the approach of Figure 11b, we perform a minor modification of our systolic array to
support bi-directional dataflow, as shown in Figure 12.

The physical realisation minimises resource utilisation between adjacent PEs by using two 2-to-1
multiplexers to form the forward and reverse direct connections. The datapath direction for each

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 111:19

PE is then controlled by a reverse signal generated by the controller. In this bi-directional system
design, there is no data dependency between the different input signals and the reverse datapath is
just a mirror of the forward one with the PE utilisation being better balanced. Processing can start
immediately after the next sub-sequence has been loaded.

The input data stream, comprising the 𝑋𝑖 and 𝑌𝑖 data blocks, is FIFO buffered and connected to
the input of each PE by a series of 32-bit registers. The register chain needs to be replicated and
reversed to achieve the forward and reverse direction data load. To stream out the 𝑎𝑙𝑝ℎ𝑎 𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 ,
we need to gather the partial alpha results from each PE and combine them. As there is no data
overlap, we can propagate the output in a sequential manner by connecting a 2-to-1 multiplexer
plus a 32-bit register to the output of each PE. The multiplexers are controlled by the output valid
signal (𝑑𝑜𝑢𝑡_𝑝𝑒_𝑣) which is also propagated and synchronized with the 𝑎𝑙𝑝ℎ𝑎 𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 via a series
of OR logic gates and 1-bit registers. In the end, the output stream and its valid signal are sent back
using a standard FIFO, similar to that of the input port. The implementation of the load and output
circuits are shown at the top and bottom of Figure 12.

X/Y stream in

din_tx

din_shift

dout_tx

dout_pe

clk

rst

din_tx dout_tx

dout_pe

clk

rst

PE_0 PE_1

alpha_profile
stream out

din_pe

din_shift

din_pe

dout_shift dout_shift

PE_125

32-bit

din_tx dout_tx

dout_pe

clk

rst

PE_126

din_pe

din_shift dout_shift

dout_pe_v

din_tx dout_tx

dout_pe

clk

rst

PE_127

din_pe

din_shift dout_shift

dout_pe_v

din_tx dout_tx

dout_pe

clk

rst

PE_2

din_pe

din_shift dout_shift

dout_pe_v

0

PE3

32-bit

FIFO

0

PE3

PE125

0

0 PE125dout_pe_vdout_pe_v

FIFO
32-bit

32-bit32-bit32-bit32-bit32-bit

0

0

wr_en

Fig. 12. A linear systolic array with bi-direction datapath support.

5 RESULTS
Most state-of-the-art parallel SCD estimators have been implemented on GPUs [5, 21]. Instead,
our proposed architecture is a linear systolic array of processing elements (PEs), with multiple
instruction multiple data (MIMD) parallelism. While the description that follows uses specific
embedded blocks for a Xilinx UltraScale+ FPGA, we believe that an equivalent design with similar
performance could be made on the Intel FPGA architecture. We evaluate the performance of our
proposed linear systolic accelerator by comparing with the state-of-the-art hybrid FPGA-GPU
implementation [5] and state-of-the-art GPU implementation [21], which both perform the same
alpha profile calculation, in terms of resource utilization, throughput and power consumption.
The proposed systolic array is implemented on a Zynq UltraScale+ XCZU28DR-2FFVG1517E

RFSoC device using Xilinx Vivado 2020.2. A single PE can achieve a clock frequency of 600 MHz,
with a resource usage of 721 LUTs, 615 FFs, 2 BRAMs and 4 DSP blocks. To validate the efficiency
of our proposed PE design, a direct HLS-based compute unit is implemented. The HLS-based unit
runs at a clock frequency of 500 MHz, with a much larger area overhead of 2894 LUTs, 1973 FFs,

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

111:20 Li, et al.

6 BRAMs and 12 DSP block. The linear systolic array is scalable from a single PE to 256 PEs. We
have chosen to focus on 128-PE array for direction comparison to the state-of-the-art GPU-based
implementations [5, 21].
In terms of resources, the number of logic slices and coarse grained modules (ie. BRAMs and

DSPs) grows linearly when the array size increases, as in Figure 13a. For example, the 128-PE
bi-directional array consumes around 96K LUTs, 88K FFs, 258 BRAMs and 512 DSP blocks, which
is less than 24% of the available resource.
In terms of clock frequency, while it achieves an 𝑓𝑚𝑎𝑥 of 600 MHz for configurations from a

single PE to 16, the clock frequency gradually drops to 500 MHz as the array size is increased to
256 PEs, as shown in Figure 13b. A sustained 𝑓𝑚𝑎𝑥 of 530 MHz is achieved when configuring the
systolic array into 128 PEs for comparison with the existing works. Table 4 summarises how the
size of the proposed systolic array and the PE memory architecture scale for the FAM method,
which is consistent with Algorithm 2.

A break down of the total clock cycles required by the processing of two successive signals
is shown in Table 5, which can be also derived from Algorithm 2 with the specific parameters
(𝑁 = 2048, 𝑁𝑝 = 256, 𝐿 = 𝑁𝑝/4 = 64 and 𝑃 = 𝑁 /𝐿 = 32). It is obvious that the PE utilization of the
proposed systolic array is 88.23% as the 𝐼𝐷𝐿𝐸 state only accounts for 11.77% of the total execution
time. Since FPGAs are cycle accurate, the number of cycles has been verified by simulation, the
operating frequency is calculated post place-and-route, the algorithm requires a straightforward
streaming input (it is not I/O constrained), and the FPGA resources are not completely exhausted,
the throughput estimates are likely to be highly accurate.

50 100 150 200 250
0

20

40

60

re
so
ur
ce

ut
ili
az
tio

n
(%
)

LUTs
FFs

50 100 150 200 250
0

20

40

60

Number of PEs

LUTs
FFs
BRAMs
DSPs

(a) Area overhead.

0 2 4 6 8
400

450

500

550

600

650

log2 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑃𝐸𝑠)

𝑓 𝑚
𝑎
𝑥
(𝑀
𝐻
𝑧
)

(b) Clock frequency.

Fig. 13. Array scalability on Zynq UltraScale+ XCZU28DR-2FFVG1517E RFSoC.

Table 4. Proposed systolic array scales with parameters of FAM method.

Signal length Array size PE IMEM depth QSCD size Stream I/Os

𝑁 = 𝑃 × 𝑁𝑝/4 𝑁𝑝/2 𝑃 + 𝑃 log2 𝑃 2𝑁 × 2𝑁𝑝 3𝑁 /2

Table 6 shows a comparison of the FPGA resource usage and operating frequency between the
hybrid FPGA-GPU design [5] and our work. Table 6 also shows the total resource, in terms of LUTs,
FFs, BRAMs and DSPs, available on the respective FPGA devices. From this table it can be seen that

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 111:21

Table 5. A break down of total clock cycles consumed by different states.

State No. of clock cycles Percentage

IDLE 8255 11.77%
LOAD 128 0.18%
COMPUTE 49536 70.62%
TX 4064 5.79%
SHIFT 8128 11.59%
OUT 32 0.05%
Total 70143 100%

the hybrid FPGA-GPU design uses very little FPGA resource as the FPGA is only responsible for a
small portion of the full algorithm and it runs at a much lower clock frequency. In contrast, our
proposed systolic array achieves the highest clock frequency at 530 MHz, and the FPGA resource
usage is better proportioned to the available resource. This is due to the well-designed PEs with a
fully pipelined datapath and a lightweight linear interconnect with minimum area overhead.

Table 6. Comparison of FPGA resource usage and operating frequency for the same configuration of FAM.

LUTs FFs BRAMs URAMs DSPs 𝑓𝑚𝑎𝑥

Hybrid FPGA-GPU design [5] 69 (0.1%) 153 (0.1%) 4 (2.9%) 0 (0%) 0 (0%) 140
Available on ZedBoard 53,200 106,400 140 0 220 –
Proposed full system 150,802 (35.5%) 150,824(17.7%) 264 (24.4%)1 4 (5%)1 1,054 (24.7%) 530
– 128-PE array 96,259 (22.6%) 88,239 (10.4%) 258 (23.9%) 0 (0%) 512 (12.0%) 530
– HLS implementation 54,543 (12.8%) 62,585 (7.3%) 4 (0.4%) 0 (0%) 542 (12.7%) 530
Available on ZCU111 425,280 850,560 1,080 80 4,272 –

1 The addtional 2 BRAMs and 4 URAMs are introduced by the buffering circuits between the HLS implementation and 128-PE array.

Table 7 gives a comparison of our work with state-of-the-art GPU-based implementations. All
the listed works share the same configuration of FAM and use alpha profile of the SCD/QSCD
function as the output. To ensure a fair comparison, the preprocess (step 1 to step 3) of the FAM
algorithm is also implemented in Vitis HLS 2020.2 and connected to our proposed systolic array
with a double buffering scheme, as shown in Figure 14a. Two UltraRAM (URAM) blocks are used
to buffer the adjacent windows from the Preprocess module, ensuring a fully pipelined process in
the systolic array. According to Figure 14b, throughput of the proposed architecture is determined
by process 2 which is mapped on the systolic array. In this paper we use the term windows/s as it
better describes that we are dealing with windowed signals of size 2048 samples/window. This is
similar to the use of signals/s in [5, 21]. The proposed systolic array achieves a throughput of 15340
windows/s, which is 4.65× better than the fastest GPU implementation and 807× better than the
hybrid FPGA-GPU implementation. While the proposed systolic accelerator may not be the lowest
power implementation, its power consumption is significant less than the throughput oriented
GPU implementation. It also achieves the best energy efficiency at 4832 million operations per
Watt (MOPS/W), which is 20.6× better than the highest throughput GPU implementation. While
the latest GPU work [21] adopts a Tesla K40 which was dated to 2013, one could perform a rough
performance estimate based on the following (K40: 2880 CUDA cores, base clock 745 MHz. RTX
3080 Ti: 8960 CUDA cores, base clock 1365 MHz). It follows that one could estimate a potential
performance improvement by a factor of 5.5×, which would be in line with the performance

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

111:22 Li, et al.

achieved on our FPGA, albeit at a maximum power draw of 350W. This implies our FPGA design is
still likely to significantly outperform the GPU in performance per watt.

URAM 1

URAM 2

0

1

S0

Mux

0

1

S0

DemuxFIFO
Preprocess

(step 1 to step 3)

SCD Matrix and Alpha
Profile Generation

(step 4)
FIFO

Process 1

Systolic Array

FIFO FIFO

Process 2

HLS

(a) The double buffering scheme between HLS implementation and the systolic array.

70145 cycles

32064 cycles 32064 cycles 32064 cycles 32064 cycles

70145 cycles

window 1 window 2 window 3 window 4

window 1 & window 2 window 3 & window 4
Process 2

Process 1

(b) The cycles of process 1 (HLS implementation) and process 2 (systolic array).

Fig. 14. Block diagram and timing diagram of the proposed full system.

Table 7. Comparison of throughput and power consumption for the same configuration of FAM.

GPU [5] GPU [5] GPU [21] FPGA+GPU [5] Ours

Platform Tegra K1 Tesla K20 Tesla K40 ZedBoard+Tegra K1 ZCU111
Initiation Interval (ms) 111.61 8.98 0.303 50.95 0.065
Throughput (windows/s) 9 111 3300 19 15340
Speedup – 12.3 366.7 2.1 1704.4
Computational Performance (GOPS) 0.14 1.75 13.0 0.30 60.4
Power (W) 3.5 51 55.51 5 12.52
Energy Efficiency (MOPS/W) 40 34 234 60 4832

1 The power consumption is estimated by scaling to the result of [5].
2 The power consumption is calculated from Vivado.

We evaluate the proposed systolic array across the DeepSig RADIOML 2018.01A dataset [15] and
demonstrate the alpha profile results of four different signals generated by an FPGA implementation
of the systolic array and those generated by MATLAB in Figure 15. In each subfigure, the plot on
the left is double precision floating point output generated by MATLAB and the plot on the right is
the 16-bit fixed-point output obtained from the systolic array. Intuitively, the distribution of the
alpha profile coming from the fixed-point systolic accelerator is consistent with that of the “golden”
MATLAB floating point output for the same modulation type. To evaluate the accuracy of alpha
profile with different scales, we calculate the normalized root mean squared error (NRMSE) of each
signal in Equation (10) and get an average number of 0.0148.

𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸/[𝑚𝑎𝑥 (𝑎𝑙𝑝ℎ𝑎) −𝑚𝑖𝑛(𝑎𝑙𝑝ℎ𝑎)] (10)

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 111:23

(a) OOK. (b) FM.

(c) GMSK. (d) OQPSK.

Fig. 15. The alpha profile of four different signal types.

6 CONCLUSION
In this paper, we presented an optimised implementation of the FAM method to compute the
SCD/QSCD function and its alpha profile. A scalable linear systolic array of programmable PEs is
proposed as an FPGA accelerator, which operates at a clock frequency of 530 MHz and, through
massive parallelism, achieves a sustained PE utilization of 88.2% with a bi-directional datapath.
The proposed systolic implementation achieves a significant 807× throughput improvement over a
hybrid FPGA-GPU implementation and a speedup of 4.65× over the state-of-the-art GPU imple-
mentation. It also attains the best energy efficiency at 4832 MOPS/W, which is 20.6× better than the
highest throughput GPU implementation. The alpha profile outputs are accurate and the average
NRMSE over all signals is 0.0148.
Though this work is customized for the alpha profile computation of QSCD algorithm, our

proposed systolic array can be adapted to different applications such as CNNs by changing the
instruction set on the PEs. In future work we plan to generalise the systolic array presented
as a similar architecture can be used for other multiply-add intensive problems including: deep
neural network inference and training, compressed sensing and signal/image compression. We
also plan to study how to integrate this accelerator as a feature extractor within a deep learning

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

111:24 Li, et al.

approach for real-time cyclostationary analysis of radio-frequency signals to enhance modulation
classification [28].

ACKNOWLEDGMENTS
This research was funded by the Ministry of Education (MOE), Singapore under grant MOE2017-
T2-1-002.

REFERENCES
[1] Jérôme Antoni. 2007. Cyclic spectral analysis in practice. Mechanical Systems and Signal Processing 21, 2 (2007),

597–630.
[2] Jérôme Antoni. 2009. Cyclostationarity by examples. Mechanical Systems and Signal Processing 23, 4 (2009), 987–1036.
[3] Jerome Antoni and David Hanson. 2012. Detection of surface ships from interception of cyclostationary signature

with the cyclic modulation coherence. IEEE Journal of Oceanic Engineering 37, 3 (2012), 478–493.
[4] Jérôme Antoni, Ge Xin, and Nacer Hamzaoui. 2017. Fast computation of the spectral correlation. Mechanical Systems

and Signal Processing 92 (2017), 248–277.
[5] Nilangshu Bidyanta, G Vannhoy, M Hirzallah, A Akoglu, B Ryu, and T Bose. 2015. GPU and FPGA based architecture

design for real-time signal classification. In Proceedings of the 2015 Wireless Innovation Forum Conference on Wireless
Communications Technologies and Software Defined Radio (WInnComm’15). Springer, San Diego, CA, 70–79.

[6] David Boland. 2016. Reducing memory requirements for high-performance and numerically stable gaussian elimination.
In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 244–253.

[7] P Borghesani and J Antoni. 2018. A faster algorithm for the calculation of the fast spectral correlation. Mechanical
Systems and Signal Processing 111 (2018), 113–118.

[8] William A Brown and Herschel H Loomis. 1993. Digital implementations of spectral correlation analyzers. IEEE
Transactions on signal processing 41, 2 (1993), 703–720.

[9] Evandro L Da Costa. 1996. Detection and Identification of Cyclostationary Signals. Technical Report. NAVAL POST-
GRADUATE SCHOOL MONTEREY CA.

[10] William A Gardner. 1986. The spectral correlation theory of cyclostationary time-series. Signal processing 11, 1 (1986),
13–36.

[11] William A Gardner. 1989. Statistical Spectral Analysis: A Nonprobabilistic Theory. Prentice-Hall, Englewood Cliffs, NJ.
[12] William A Gardner. 1994. Cyclostationarity in communications and signal processing. IEEE Press, New York.
[13] William A Gardner, Antonio Napolitano, and Luigi Paura. 2006. Cyclostationarity: Half a century of research. Signal

processing 86, 4 (2006), 639–697.
[14] Feng Ge and Charles W Bostian. 2008. A parallel computing based spectrum sensing approach for signal detection

under conditions of low snr and rayleigh multipath fading. In 2008 3rd IEEE Symposium on New Frontiers in Dynamic
Spectrum Access Networks. IEEE, Chicago, IL, 1–10.

[15] DeepSig Inc. 2018. RF Datasets For Machine Learning. https://www.deepsig.ai/datasets.
[16] Xilinx Inc. 2020. UltraScale Architecture DSP Slice User Guide.
[17] Sun Yuan Kung. 1988. VLSI array processors. Englewood Cliffs (1988).
[18] Chu-Han Lee, Chia-Jen Chang, and Sao-Jie Chen. 2012. Parallelization of spectrum sensing algorithms using graphic

processing units. In CSQRWC 2012. IEEE, New Taipei, Taiwan, 35–39.
[19] Gaye Lightbody, Roger Woods, and Richard Walke. 2003. Design of a parameterizable silicon intellectual property core

for QR-based RLS filtering. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 11, 4 (2003), 659–678.
[20] Scott Marshall, Garrett Vanhoy, Ali Akoglu, Tamal Bose, and Bo Ryu. 2018. GPU based quarter spectral correlation

density function. In 2018 Conference on Design and Architectures for Signal and Image Processing (DASIP). IEEE, Porto,
Portugal, 88–93.

[21] Scott Marshall, Garrett Vanhoy, Ali Akoglu, Tamal Bose, and Bo Ryu. 2020. GPGPU based parallel implementation of
spectral correlation density function. Journal of Signal Processing Systems 92, 1 (2020), 71–93.

[22] Alexandru Martian, Bogdan Tudor Sandu, Octavian Fratu, Ion Marghescu, and Razvan Craciunescu. 2014. Spectrum
sensing based on spectral correlation for cognitive radio systems. In 2014 4th International Conference on Wireless
Communications, Vehicular Technology, Information Theory and Aerospace & Electronic Systems (VITAE). IEEE, 1–4.

[23] Charles M Rader. 1996. VLSI systolic arrays for adaptive nulling [radar]. IEEE Signal Processing Magazine 13, 4 (1996),
29–49.

[24] Barathram Ramkumar. 2009. Automatic modulation classification for cognitive radios using cyclic feature detection.
IEEE Circuits and Systems Magazine 9, 2 (2009), 27–45.

[25] Randy S Roberts, William A Brown, and Herschel H Loomis. 1991. Computationally efficient algorithms for cyclic
spectral analysis. IEEE Signal Processing Magazine 8, 2 (1991), 38–49.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

https://www.deepsig.ai/datasets

An FPGA-based Systolic Accelerator for Estimation of the SCD Function 111:25

[26] Steven R Schnur. 2009. Identification and classification of OFDM based signals using preamble correlation and cyclosta-
tionary feature extraction. Technical Report. NAVAL POSTGRADUATE SCHOOL MONTEREY CA.

[27] Dorde C Simic and JR Simic. 1999. The strip spectral correlation algorithm for spectral correlation estimation of
digitally modulated signals. In 4th International Conference on Telecommunications in Modern Satellite, Cable and
Broadcasting Services. TELSIKS’99 (Cat. No. 99EX365), Vol. 1. IEEE, Nis, Yugoslavia, 277–280.

[28] Stephen Tridgell, David Boland, Philip HW Leong, Ryan Kastner, Alireza Khodamoradi, and Siddhartha. 2020. Real-
time Automatic Modulation Classification using RFSoC. In 2020 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, New Orleans, LA, 82–89.

[29] Shixian Wang, Botao Zhang, Hengzhu Liu, and Lunguo Xie. 2010. Parallelized cyclostationary feature detection on a
software defined radio processor. In 2010 International Symposium on Signals, Systems and Electronics, Vol. 1. IEEE,
Nanjing, China, 1–4.

[30] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu, Yun Liang, and Jason Cong. 2017.
Automated systolic array architecture synthesis for high throughput CNN inference on FPGAs. In Proceedings of the
54th Annual Design Automation Conference 2017. 1–6.

[31] Peter Welch. 1967. The use of fast Fourier transform for the estimation of power spectra: a method based on time
averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics 15, 2 (1967), 70–73.

[32] Lauren J Wong, William H Clark IV, Bryse Flowers, R Michael Buehrer, Alan J Michaels, and William C Headley. 2020.
The RFML Ecosystem: A Look at the Unique Challenges of Applying Deep Learning to Radio Frequency Applications.
arXiv preprint arXiv:2010.00432 (2020).

[33] Wei Zhang, Vaughn Betz, and Jonathan Rose. 2012. Portable and scalable FPGA-based acceleration of a direct linear
system solver. ACM Transactions on Reconfigurable Technology and Systems (TRETS) 5, 1 (2012), 1–26.

ACM Trans. Reconfig. Technol. Syst., Vol. 1, No. 1, Article 111. Publication date: June 2022.

	Abstract
	1 Introduction
	2 Background
	2.1 Spectral Correlation Density Function
	2.2 Estimating Spectral Correlation Density
	2.3 Example of Spectral Correlation Density and Alpha Profile
	2.4 Comparing FFT-based Methods for Estimating SCD Function
	2.5 Existing Implementations of the FAM Method
	2.6 Systolic Array Processors

	3 Algorithm
	3.1 FFT Accumulation Method
	3.2 Exploiting Similarity in SCD

	4 Architecture
	4.1 QSCD Mapping Scheme
	4.2 Processing Elements
	4.3 Single-direction Datapath Vs. Bi-direction Datapath
	4.4 Bi-directional Linear Systolic Array Architecture

	5 Results
	6 Conclusion
	Acknowledgments
	References

