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Abstract 
Due to the natural intermittency of renewable energy resources (such as wind and PV) and high 
variations in electricity consumption profiles, planning and scheduling optimisations generally 
require a large amount of historical energy data to produce accurate forecasts. Often in practical 
situations, historical data is not sufficient to capture the uncertainties in generation and 
consumption. A promising approach to solve this issue is to generate various generation and 
consumption scenarios, specifying possible trajectories of solar and load power. Then these 
scenarios can be incorporated into the optimisation models for infrastructure planning and power 
operation. 

In this paper, we propose a data driven Generative Adversarial Networks (GAN) based model to 
generate domestic solar production and electricity consumption scenarios. We train our generative 
model using historical solar and load data collected by Solar Analytics from Australian residential 
PV customers. Moreover, by using a conditional GAN, we demonstrate we can generate synthetic 
data conditioned on site specific conditions. By validating the distributions of our generated data 
against real-time data, we illustrate that we can produce realistic PV generation and consumption 
profiles. 

1. Introduction 
In recent years, the residential renewable energy penetration has increased significantly and the 
trend is expected to continue in the next few decades. Taking rooftop solar in Australia as an 
example, as of the end of 2017, 17% of electricity generation comes from renewable energy 
resources where 20.3% of the renewable generation is met by small-scale solar (CEC, 2018). By 
2050, 44% of all electricity is expected to be made by residential PV and behind-the-meter 
batteries (Bloomberg NEF, 2018). As a result, there is a growing interest in planning and 
scheduling optimisations of residential PV systems especially when integrated energy storage 
systems are also considered.  

One of the greatest challenges in the power system modelling domain is to work with limited 
amounts of real-time data, especially in the optimisations of storage integrated renewable energy 
systems where generally a large amount of historical / forecasted generation and consumption 
data is required. Although the rollouts of smart meters are expected to enable easier data access, 
most end-consumers, the tools and information are not available (Chandrashekeran, 2018). 
Moreover, for third parties including installers or researchers, accessing interval data is still difficult 
due to data protection regulations (e.g. the European Union’s General Data Protection Regulation 
(European Parliament, 2016)) and privacy concerns. As a result, publicly available smart meter 
datasets are quite limited. Furthermore, due to the intrinsic intermittency of energy resources such 
as wind or PV and high variations in residential electricity consumptions, a single deterministic 
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consumption/generation forecast or extrapolation model may be insufficient to capture 
uncertainties in real-time generation and consumption.  

One promising approach to address the above issue is to generate different generation and 
consumption scenarios, modelling possible trajectories of PV and consumption power. Then we 
could apply the generated data to optimise system configurations, demand-side management or 
power scheduling of storage integrated residential renewable energy systems. In the previous 
studies on power scenario generation, probabilistic models are widely adopted which require some 
certain statistical assumptions and sampling from fitted probabilistic models (Iversen & Arduin, 
2016; Wang & Tanabe, 2016). In recent years, as a type of generative model, Generative 
Adversarial Networks (GANs) have drawn a lot of attention in computer vision research due to its 
benefits of generating realistic images using less statistical assumptions and faster runtime without 
fitting a probabilistic model (Goodfellow et al., 2014; Radford & Chintala, 2016; Arjovsky et al., 
2017). 

In this paper, we propose a GAN-based tool to generate synthetic residential PV generation and 
electricity consumption data. The contributions are to: 

i. Provide a data driven and robust approach to residential generation and consumption 
scenarios in which no explicit probabilistic models are required. 

ii. Illustrate that the tool can be easily adjusted to generate data conditioned on PV system 
size, peak electricity consumption or site specific conditions such as consumption patterns. 

The remainder of the paper is organized as follows: Section 2 includes a review on GANs and 
related studies on generating synthetic solar and load data. Section 3 describes the proposed 
methodology and Section 4 demonstrate our results and a case study. Finally, Section 5 concludes 
the study and discusses some future work.  

2. Literature Review 
In previous studies, a few models have been proposed for renewable energy scenario generation. 
Some studies apply Copula models to construct a multivariate joint distribution using the historical 
data, then Latin Hypercube Sampling (LHS) or Monte Carlo sampling (MCS) is adopted to 
generate scenarios based on the obtained multivariate joint distribution (Iversen & Arduin, 2016; 
Wang & Tanabe, 2016; Tastu et al., 2015). Alternatively, Fourier series and autoregressive moving 
average (ARMA) models are applied to characterise the seasonality and autocorrelation in the 
residues of weather or load demand data, then synthetic data is generated using the trained ARMA 
models (Chen et al., 2017; Suomalainen et al., 2017). Pillai et al. (2014) applied an artificial neural 
network (ANN) approach to generate aggregated synthetic load data for a region using its typical 
meteorological year 2 (TMY2) weather data as model inputs. A Wasserstein Generative 
Adversarial Networks (WGAN) based model is proposed in Chen et al.’s work (2017) to generate 
synthetic commercial wind and solar generation data.  

Generative modelling is a type of machine learning approach which takes samples drawn from a 
specific data distribution, producing an estimation of that distribution (Goodfellow, 2016). 
Compared to discriminative models which have made a lot of progress in the last decade (e.g. in 
image classification), generative models had less of an impact due to the difficulty of approximating 
many intractable probabilistic computations in maximum likelihood estimation and the difficulty of 
leveraging the benefits of piecewise linear units in the generative context (Goodfellow et al., 2014). 
Generative Adversarial Networks (GAN) have drawn a lot of attention in the last few years as they 
overcome the above difficulties and are able to generate high quality samples without requiring 
Monte Carlo approximations or Markov chains. In the last couple of years, many modified versions 
of GANs have been proposed. Conditional Generative Adversarial Networks (CGAN) were 
proposed by Mirza & Osindero (2014) which allows GAN to generate samples conditioned on class 
labels. Radford et al. (2015) developed Deep Convolutional Generative Adversarial Networks 
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(DCGAN) which incorporate Convolutional Neural Network (CNN) structures in a GAN framework 
and are able to generate high quality images without a multi-stage generation process. 
Wasserstein Generative Adversarial Networks (WGAN) (Arjovsky et al., 2017) use Wasserstein 
distance to measure the distances between the generated and real data distributions instead of 
Jensen–Shannon Divergence adopted in the original GAN model (Goodfellow et al., 2014). As a 
result, it provides a more meaningful loss metric and better training stability.  

Overall, to the best of our knowledge, residential solar generation and load consumption scenario 
generation has not been previously explored. As GANs seem to be a promising generative 
approach, we propose a tool which generates synthetic residential load and generation data. 
Moreover, as variational autoencoders (Kingma & Welling et al., 2013; Rezende et al., 2014) are 
also one of the most popular generative models, we provide a comparison with GANs in this study. 

3. Methodology 

3.1. Data Collection 
The residential solar and consumption data used in this study is collected from 44 customers via 
Solar Analytics’ smart meters. The dataset includes one year of 5-minute power data from August 
2016 to July 2017 for each customer. We set the sampling length of our generative models to one 
day and apply a random split to divide the dataset into a training set comprising 80% of the data 
and a test set (20% of the dataset) to evaluate the performance of our generative models. It should 
be noted the splits are done separately for generation and consumption data. 

3.2. Data Normalisation 

To accelerate the training processes and to obtain good results in GAN or VAE, it is necessary to 
normalise our input data to a range between 0 and 1. In this study, we simply divide all the 5-
minute solar and load power values by the PV rated DC power and peak load power values 
respectively for each individual customer. Not only does this provide bounds for our data range, it 
also allows us to generate new solar and load data based on DC system sizes and peak 
consumption levels, achieving scale invariance.  

3.3. Generative Adversarial Networks (GAN) 
The framework of a GAN is presented in Figure 1. Generally, a GAN consists of two artificial neural 
networks (ANN) based functions, a generator (G) and a discriminator (D). The aim of a generator is 
to utilise random noise (z) to generate samples from a distribution modelling the training set, 
whereas the goal of the discriminator is to determine which samples are real (drawn from the true 
data distribution) or fake.  

 
Figure 1. A GAN Framework 
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The discriminator (D) is essentially a binary classifier with a sigmoid output, its cross-entropy cost 
can be defined in equation (1): 

!"#", #$=−12�%~&'()(log"%−12�*~&+log(1−"$(!)) (1) 

Where #", #$ are parameters of the discriminator and generator, &'()( is the targeted data 
distribution and &+ is an estimate of &'()( in a generative model. The discriminator attempts to 
minimise the cost function defined in Equation (1). On the other hand, the generator maximises the 
chance of the discriminator making a mistake by minimising the cost function shown in Equation 
(2): 

!$#", #$=−12�*~&+log"$(!) (2) 

When both generator and discriminator are optimised, &+ approaches &'()( and the discriminator 
outputs ~50% fake probability for both real and synthetic datasets. 

In this study, we adopt a DCGAN architecture (Radford et al., 2015) with the following adjustments: 

• We change the number of filters in each convolutional layer of the discriminator, empirically 
we found less filters are required for our dataset. 

• We use non-square feature maps in our convolutional and de-convolutional layers, this 
means we could easily adopt our input data dimension (288 data points for a single day) 
without scaling the input to a ,×, dimension. 

• We change the last activation layer of the generator to sigmoid instead of a hyperbolic 
tangent (tanh) function used in the original GAN and DCGAN papers (Goodfellow et al., 
2014; Radford et al., 2015), as our normalised training data is within the range of 0 to 1 and 
it avoids negative values that occur if tanh is used. 

Figure 2 illustrate the DCGAN architecture applied in this study. First a vector of 100 random 
values from a Gaussian distribution is fed into the generator and 5-minute data for a day is 
generated using de-convolutional layers. Then the discriminator which includes a few convolutional 
layers outputs the probabilities on the sample being real/fake. 

 
Figure 2. DCGAN Architecture used in this study. Numbers at the bottom of each layer indicate the 
output dimensions of each layer, a single number describes a dense layer whereas ℎ./+ℎ) ×0/')ℎ 
@ '.&)ℎ show dimensions of a convolutional or de-convolutional layer.  

Batch normalisation (Ioffe & Szegedy, 2015) is applied after each convolutional/de-convolutional 
layer to stabilise the learning process, except for the last generator layer and the first discriminator 
layer. Rectified linear unit (ReLU) (Nair & Hinton, 2010) and Leaky rectified linear unit (LReLU) 
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(Maas et al., 2013) activation layers are used for the generator and the discriminator respectively 
except for their output layers which both use sigmoid functions.  

We also adopted the same optimiser settings from the original DCGAN paper, where an Adam 
optimiser (Kingma & Ba, 2014) is used with learning rate and momentum 11 set to be 0.0002 and 
0.5. Dropout layers are also added for each convolutional layer in the discriminator to reduce 
overfitting and the dropout rate is set to be 0.25. The batch size is set to be 32, this means for each 
training iteration, we randomly select 32 days of real time data to train the DCGAN model. 

3.4.  Variational Autoencoder (VAE) 

A variantional autoencoder (VAE) (Kingma & Welling et al., 2013; Rezende et al., 2014) is another 
generative model that has been quite popular in recent years. It is a deep Bayesian model which 
models the relationships between latent variables (z) and observed data (x). Similar to a standard 
autoencoder, it consists of an encoder and a decoder which are both ANNs. The goal of the 
encoder is to derive the latent representation of x using z which is from a normal prior distribution, 
hence it models &#!" which is the posterior distribution of z. After that, the decoder which models 
&#"!, maps the latent points back to the original data x. The true posterior &#!" is analytically 
intractable therefore a variational posterior 23!" is used to approximate it using variational 
parameters 43" and 53". These two parameters, which can be trained by a neural network in VAE 
(see inference network in Figure 3), specify the mean and covariance of a multivariate Gaussian 
distribution that characterises 23!". The optimisation objective function of a VAE can be defined by 
the evidence lower bound (ELBO): 

67892=�23!" log&#"!−:723!"||&(!) (3) 

The first term of Equation (3) measures the reconstruction loss which pushes the decoded samples 
to match the original inputs. The second term :723!"||&(!) is used as a regularisation term which 
measures the Kullback–Leibler (KL) divergence between 23!" and &!. This makes sure 23!" is 
close to ;(0, 1) to allow us to sample it easily. After a VAE is trained, we could directly generate 
synthetic samples using its decoder.  

As illustrated in Figure 3, we implement a VAE for generating solar and load daily synthetic data. 
We tried to keep the same convolutional and de-convolutional layers used in the DCGAN model for 
the encoder and decoder, however we ran into an issue known as model collapse where the 
decoder generates very limited diversity of samples. Instead we just implement a few dense layers 
for both encoder and decoder.  

In contrast to the model structure of the DCGAN model, we did not use batch normalisation as 
empirically we found the model converges more quickly without it. We used ReLU activations for 
the decoder except the last output layer, in which we used a sigmoid function. ReLU and dropout 
functions are adopted for the encoder dense layers. RMSprop (Ruder, 2016) is used as the model 
optimiser for VAE instead of Adam.  
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Figure 2. VAE Architecture used in this study. Numbers at the bottom of each layer indicate the 
outputs dimensions of each layer. 

4. Results 
4.1. Model Training 

Both models were trained for 20000 training iterations, each using mini-batch of 32 samples. We 
use the same model structures for generating load and solar data, the whole training process using 
one type of data (solar or load) takes around one hour for the GAN model and approximately 50 
minutes for the VAE model on a 2.9 GHz Intel Core i7 CPU.  

Figure 4 demonstrates the batch training losses for each iteration when training our GAN and VAE. 
A few interesting points are summarised below based on the displayed training losses: 

• The batch ELBOs of VAE seems to be fairly stable after approximately 1000 training steps 
with no further improvements. 

• When training on solar data, the DCGAN’s performance becomes consistent after around 
5000 iterations. It is clear that the two functions reached a Nash equilibrium. 

• On the other hand, when feeding in load data to our DCGAN, the losses are stable for a 
few thousand steps but after that the training losses destabilise and oscillate heavily. This 
oscillatory behaviour is intuitively explained in the study done by Mescheder et al. (2018) 
where they conclude that sometimes the cost functions in GAN will not converge using 
gradient descent. Despite the unstable training losses, we still find the quality of generated 
samples slowly improving throughout the training process. 
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Figure 4: Training loss of GAN (left column) and VAE (right column) for generating solar (top row) 
and load (bottom row) scenarios. The plot label ‘d_loss’ indicates training loss for the discriminator 
(defined in Equation (1)), ‘g_loss’ is the loss for the generator (defined in Equation (2)) and 
‘m_loss’ is the VAE training loss (defined in Equation (3)). 

4.2. GAN vs VAE 

Figure 5 and Figure 6 illustrate examples of generated solar and consumption scenarios for the 
two evaluated models, some real-time 5-minute data from the evaluation set are also plotted. It 
should be noted these samples are randomly drawn, not cherry picked. We denormalise the 
outputs from GAN and VAE by generating the same amount of samples as the test set and 
multiplying the model outputs by DC rated solar power and peak consumption power recorded in 
the test set. 

A very rough manual grouping is done based on visualisations in Figure 5, where we put clear sky, 
partially cloudy and cloudy days in separate rows for easy visual comparison. Moreover, we added 
a column of the nearest training samples of the left neighbouring column to show that these 
evaluated generative models are not just memorising the training data. 

As shown in Figure 5, the GAN model generates realistic samples regardless of the weather 
condition. On the other hand, the solar power scenarios generated by the VAE model cannot fully 
capture the bell-shaped curve on a clear sky day where we observe some unexpected noise in the 
middle of a day. Furthermore, the cloudy-day synthetic data from VAE omits power spikes present 
in the test data. 

For generated load curves, it can be observed that the VAE model generates smoother plots 
compared to the GAN model. Compared to PV data, it is a bit more difficult to visually evaluate the 
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performance of these two models as every household can have very different load patterns. 
Moreover, these daily curves could come from any day of a year.    

 

 
Figure 5: Generated 5-minute solar data using GAN and VAE.  

 
Figure 6: Generated 5-minute load data using GAN and VAE. 
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In Figure 7, we compare the Cumulative Distribution Functions (CDFs) of generated 5-minute 
power values and the 5-minute historical power data in the training and test set. It can be observed 
that the GAN model produces almost identical CDFs whereas there are some noticeable 
differences between the power distributions of VAE generated data and train/test data. Overall, 
judging by the sample qualities and CDFs the DCGAN model outperforms the VAE model although 
a small amount of additional computational costs is required. 

 
Figure 7: Cumulative Distribution Functions (CDFs) for generated and historical power data of PV 
(top row) and load (bottom row) for GAN (left column) and VAE (right column). 

4.3. Case Study: Conditional GAN 

Conditional GAN (CGAN) (Mirza & Osindero, 2014) allows us to provide additional information 
such as class labels or desired characteristics to the generator and discriminator. As a result, we 
can generate solar and consumption scenarios based on site specific conditions such as shading 
and user consumption patterns. In this study, we illustrate a case study on generating consumption 
data conditioned on user load patterns by applying a CGAN model.   

We converted our DCGAN model to a conditional DCGAN by adding an input layer for both the 
generator and discriminator, therefore by feeding in load profile labels, the generator can generate 
corresponding scenarios and the discriminator receives more information to distinguish samples.  

To add consumption pattern labels, we applied K-means clustering (MacQueen, 1967) to partition 
normalised consumption data into four clusters where cluster group numbers are adopted as 
consumption pattern labels. Then we feed in these labels to our CGAN model, same as the above 
approach for DCGAN, we keep 20% of total data as a test set to validate our generated samples. 

Figure 8 illustrates samples generated by the CGAN, each column represents a separate clustered 
group. Although these synthetic profiles do have similar daily trends as the cluster centroids, we 
notice the qualities of these generated scenarios are not as good as the previous samples 
generated by DCGAN without any labels, where less noise occurs. We suspect the model is 
overfitting caused by insufficient data for each label: 1151 and 1915 samples for cluster 1 and 2, 
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3869 and 5519 samples for cluster 3 and 4. The CDFs for the train set, test set and generated 
samples are displayed in Figure 9. It can be observed that generated data CDF in cluster 4 where 
the most training samples are partitioned, has the closest distance to the train and test data. 
Overall, despite the limited amount of training data, the CGAN still captures most of the main time-
correlation characteristics, variabilities and power distributions of the cluster groups. 

 
Figure 8: Samples generated by CGAN. The first row shows the normalised clustered profiles from 
the training set (black lines) and cluster centroids (blue lines) for each cluster. The second and 
third rows show randomly drawn load samples from the test set for each cluster and the fourth and 
fifth rows display randomly selected generated samples for each cluster. 
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Figure 9: Cumulative Distribution Functions (CDFs) for CGAN generated and historical power 
consumption data, each subplot shows a different cluster label. 

5. Conclusion and future work 
In this study, a GAN-based tool is proposed to generate synthetic 5-minute solar generation and 
electricity consumption data. In contrast to other generative models, this approach is unsupervised, 
data-driven and simple to implement without requiring a complicated probabilistic model. More 
importantly, we demonstrate this tool can generate high quality generation and consumption 
scenarios within a reasonable amount of computational costs and with a small training set. 
Moreover, we illustrate that it is feasible to generate data conditioned on customer’s consumption 
patterns. 

It should be noted that even though we show that our GAN model outperforms the VAE model in 
terms of generated CDFs, it is still not concrete which approach is better as we used a simpler 
model architecture for VAE and currently there is no widely accepted metric to compare the 
performances between VAE and GAN. For future works, we believe it is important to develop a 
metric tailored for the end applications of the generated samples (e.g. power scheduling 
optimisation using solar and consumption data), given that most generative model metrics in the 
literature are still focused on images qualities and diversities. The training stability of GAN is also 
questionable due to the difficulty of achieving a Nash equilibrium and there are a lot of recently 
developed GAN models focusing on solving this problem. It would be interesting to see whether 
these new proposed models along with more training data could achieve a better performance on 
generating solar and consumption scenarios.  
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