
PIR-DSP: An FPGA DSP block Architecture for

Multi-Precision Deep Neural Networks

SeyedRamin Rasoulinezhad1, Hao Zhou2, Lingli Wang2 and Philip H.W. Leong1

1School of Electrical and Information Engineering, The University of Sydney, Australia 2006
2State Key Lab of ASIC and System, Fudan University, Shanghai 201203, China

Email: {seyedramin.rasoulinezhad,philip.leong}@sydney.edu.au

Email: {zhouhao,llwang}@fudan.edu.cn

Abstract—Quantisation is a key optimisation strategy to im-
prove the performance of floating-point deep neural network
(DNN) accelerators. Digital signal processing (DSP) blocks on
field-programmable gate arrays are not efficiently utilised when
the accelerator precision is much lower than the DSP precision.
Through three modifications to Xilinx DSP48E2 DSP blocks,
we address this issue for important computations in embedded
DNN accelerators, namely the standard, depth-wise, and point-
wise convolutional layers. First, we propose a flexible precision,
run-time decomposable multiplier architecture for CNN imple-
mentations. Second, we propose a significant upgrade to DSP-
DSP interconnect, providing a semi-2D low precision chaining
capability which supports our low-precision multiplier. Finally,
we improve data reuse via a register file which can also be
configured as FIFO. Compared with the 27 × 18-bit mode in
the Xilinx DSP48E2, our Precision, Interconnect, and Reuse-
optimised DSP (PIR-DSP) offers a 6× improvement in multiply-
accumulate operations per DSP in the 9 × 9-bit case, 12× for
4 × 4 bits, and 24× for 2 × 2 bits. We estimate that PIR-DSP
decreases the run time energy to 31/19/13% of the original value
in a 9/4/2-bit MobileNet-v2 DNN implementation.

I. INTRODUCTION

Recent progress with deep neural networks (DNNs) has

yielded significant improvement over conventional approaches

in cognitive applications like image, speech and video recog-

nition [1]. Utilising massively parallel architectures, DNNs

are much more memory and computationally expensive than

previous approaches and efficient implementations continue to

pose a challenge.

Modern CNN inference accelerators employ low preci-

sion arithmetic operations to decrease memory footprint and

computation requirements [2], [3], [4], [5]. Reference [1]

compared the implementation of multiply-accumulate (MAC)

units with different wordlengths on Xilinx and Intel FPGAs.

They reported that using fixed point 8×8-bit operations instead

of single precision floating point, logic resources are reduced

by 10− 50×. This idea has been taken to its conclusion with

ternary and binary operations which achieve extremely high

speed and low energy on FPGA platforms [6], [7].

Current FPGAs include hard digital signal processing (DSP)

blocks to allow efficient implementation of MAC operations.

Unfortunately, as for central processing unit (CPU), graphics

processing unit (GPU) and application specific integrated

circuit (ASIC) architectures, they are optimised for higher pre-

cision (8-18 bits) and do not efficiently support low precision

MAC operations, leading to inefficiencies in resource usage

and energy consumption. Using high precision DSPs for low

precision calculations is a waste of area and require additional

LUT resources to implement the remaining operations if the

DSPs are all utilised. In addition, researchers have proposed

strategies involving run-time selection of wordlengths, which

can not efficiently implemented in current FPGA architec-

tures [8].

Research on computer architectures for DNN accelerators

have extensively utilised 2D systolic architectures [9], [10].

Current FPGA DSP block layouts are based on 1D-DSP

columns. This is a mismatch to 2D systolic architectures

leading to inefficiencies and requiring that general purpose

rather than dedicated routing resources be used.

To address the issues raised above, this paper proposes a

novel precision, interconnect and reuse optimised DSP block,

(PIR-DSP), which is optimised for implementing area-efficient

DNNs. In particular, we make the following contributions:

• Precision: A parameterised MAC (MAC-IP) with run-

time precision control, utilising a novel combination of

chopping and recursive decomposition.

• Interconnect: A DSP interconnection scheme which pro-

vides support for semi-2D connections and low-precision

streaming.

• Reuse: Inclusion of register files within the DSP to

improve data-reuse and reduce energy.

• Evaluation of performance of the PIR-DSP, which in-

corporates the MAC-IP, interconnect and reuse optimisa-

tions, for implementing machine learning primitives in-

cluding standard, depth-wise (DW) and point-wise (PW)

convolution layers in recent embedded DNNs.

PIR-DSP is implemented as an open-source parameterised

module generator which can target FPGAs or ASICs. All

source code and data, along with a spreadsheet to reproduce

all the results in this paper are available from http://github.

com/raminrasoulinezhad/PIR-DSP.

II. BACKGROUND AND RELATED WORKS

In this section, we review recent embedded deep learning

models and optimisation, systolic array solutions and their

benefits, and FPGA DSP block architectures. A more thorough

review is available in [15].

TABLE I
SUMMARY OF THE ARCHITECTURES EMPLOYED IN A NUMBER OF STATE OF THE ART EMBEDDED DNNS

Metrics NASNet-A (4@1056)[11] MobileNetv2 1×[12] ShuffleNetv2 1×[13] SqueezeNet[14]

Top-1/5 error 26% / 8.4% 28% / - 30.6% / - 42.5% / 19.7%

of CONV Stages 22 20 20 14

of standard conv. / Filter sizes 800 / 3 32 / 3 24 / 3 1376 / 3,7

standard conv. MAC / Parameter (% Total) 3.5% / 16.8% 3.4% / ∼0% 5.7% / ∼0% 72.1% / 45.5%

of DW Conv.s 15290 7136 2426 0

DW Conv. kernel / input / channel / Strides 3,5,7 / 7-57 / 11-176 / 1,2 3 / 3-112 / 32-960/ 1,2 3 / 7,14,28 / 24-232 / 1,2 - / - / - / -

DW Conv. MACs / Parameter (% Total) 14.1% / 5.4% 6.5% / 1.9% 2.7% / 1.0% - / -

of PW Filters / Channel Depths 18465 / 11-1056 9920 / 16-960 5572 / 24-1024 2600 / 16-512

PW Conv. MACs / Parameters (% Total) 79.6% / 63.3% 88.7% / 61.2% 89.1% / 53.7% 24.5% / 54.5%

Global Pool Size 3×3 7×7 7×7 13×13

FC MACs / Parameters ∼0.8M / ∼0.8M 1.3M / 1.3M 1M / 1M - / -

standard+PW+DW+FC MACs (%) 97.63 99.03 98.28 96.68

Total MACs / Parameters 564M / 5.3M 300M / 3.5M 141M / 2.3M 833M / 1.25M

A. Embedded Deep Neural Networks

There has been considerable recent interest in memory and

computationally efficient CNNs for mobile and embedded

applications. Consider a standard convolutional layer which

takes a DF ×DF ×M feature map F as input, and produces

a DG × DG × N feature map G as output. The output is

generated via a convolution with a DK×DK×M×N kernel

K as follows:

Gk,l,n =
∑

i,j,m

Ki,j,m,nFk+i−1,l+j−1,m (1)

MobileNet [16], [12] proposed depth-wise separable convo-

lutions which first factorises Equation 1 into M depth-wise

convolutions

Ĝk,l,m =
∑

i,j

K̂i,j,mFk+i−1,l+j−1,m (2)

where K̂ is the DK ×DK ×M depth-wise kernel and the mth

filter of K̂ is applied to the mth channel of F to produce the

mth channel of Ĝ. Linear combinations of the M depth-wise

layer outputs are then used to form the N outputs, these being

called 1× 1 point-wise convolutions. A speedup of
N+D2

K

ND2

K

is

achieved and typical values are 8 − 9× (for DK = 3), with

a small reduction in accuracy. A study of the speed/accuracy

tradeoffs of convolutional object detectors compared the use

of the Inception, MobileNet, ResNet and VGG networks as

the feature extractor for object detection, with MobileNet

achieving excellent accuracy if low execution time on a GPU

is desired [17].

In order to manage the massive computation and storage

complexities of DNNs, efforts at reducing hardware resource

usage at all design levels have been undertaken, e.g. efficient

computational kernels [18], [19], [14], [20], [21], [22], data

pruning [23], [24], memory compression [25], [26] and quan-

tisation [27], [28], [29], [30], [31]. Table I provides a summary

of the architectures employed in a number of recent state of

the art embedded DNNs. From the last row, it can be seen that

standard, DW, PW and fully connected (FC) layers account for

almost all MACs.

Modern GPUs are presently the most popular solution for

high-performance DNN implementation and Google’s Tensor

Processing Unit (TPU) is an application specific integrated

circuit (ASIC) for accelerating DNNs [32]. In contrast, FPGA

architectures are more customisable and can support arbi-

trary precision MAC operations using fine-grained logic re-

sources [6], [7], [33], [34], [35].

Interest in quantisation has dramatically increased since

it was shown that binarised and ternary weights with low-

precision activations, suffer only a small decrease in accuracy

compared with floating point [36], [37]. Since FPGAs can

implement arbitrary precision datapaths, they have some ad-

vantages over the byte addressable GPUs and CPUs for these

applications. Moreover, the highest speed implementations on

all platforms use reduced precision for efficiency reasons.

B. DSP blocks

CPU architectures working at high clock speeds and are

efficient for highly sequential computations while GPU-based

systems have a massive number of parallel processing ele-

ments and are favoured for parallel computations. In contrast

to CPU and GPU architectures, FPGA systems are able to

efficiently implement a range of parallel and sequential com-

putations. They allow the data path to be better customised for

an application, enabling designs to be more highly optimised,

particularly in inference for processing single input feature

maps (to minimise latency) and to support low precision.

1) Xilinx DSP48E2: The Xilinx DSP48E2 DSP [38] in the

UltraScale architecture can perform 27×18 MAC operations

and is illustrated in Figure 1. It includes a 27-bit pre-adder,

48-bit accumulator, and 48-bit arithmetic logic unit (ALU). In

SIMD mode, dual 24-bit or quad 12-bit ADD/SUB operations

can be computed in the ALU, and other DSP48E2 features

D 27b

B1B0
ALU0
[11:0]

ALU3
[47:36]

ALU1
[23:12]

ALU2
[35:24]

P
A0 A1

A 30b

B 18b

C 48b

18

27
P 48b

A_COUT 30bB_COUT 18b P_COUT 48b

B
_
C

IN

A
_

C
IN

P
_
C

IN

Fig. 1. Xilinx DSP48E2 schematic.

include pattern matching and 1D unidirectional chaining con-

nections. The DSPs can be cascaded to form a higher precision

multiplier, and optional pipeline registers are present. In the

DSP48E2, the SIMD mode wordlength can be changed at run-

time.

2) Intel DSPs: Recent Intel DSPs [39] support one 27×27

or two 18×18 multiplications. Precision is compile-time rather

than run-time configurable and there is no pattern matching

unit. A pre-adder is implemented as well as two read-only reg-

ister files (RFs) which can be initialised at compile-time and

jointly operated as a higher precision RF. It is interesting that

the predecessors were more flexible, Stratix IV supporting one

36-bit multiplication and up to eight 9×9 multiplications [40].

3) Previous Work in Multi-precision DSPs: Previous re-

search has been conducted in supporting larger numbers of

low precision operations using existing DSP blocks. Xilinx

has proposed a method to use 8 DSP blocks to perform

7 × 2 8-bit multiply-add operations, achieving a 1.75× per-

formance improvement over a naive implementation [41].

Colangelo et. al. [42] proposed to use an 18 × 18 multiplier

as four different 2×2 multipliers. Multi-precision FPGA hard

blocks have been proposed by Parandeh-Afshar and Ienne [43].

This DSP variant, based on a radix-4 Booth architecture,

supports 9/12/18/24/36 multiplier wordlengths and multi-input

addition. Boutros et. al. [44] proposed a modification of the

Arria-10 DSP that can support 4× 9-bit or 8× 4-bit MACs. For

the AlexNet, VGG-16, and ResNet-50 DNNs, this architecture

improved speed by up to 1.6× while reducing utilised area by

up to 30%.

The proposed PIR-DSP differs from previous designs in

that it is a parameterised DSP block generator with improved

flexibility, considers buffering of within the DSP, and also

considers inter-DSP interconnect. This serves to improve the

speed and energy consumption of the standard, DW and PW

convolutions of Table I, with FC layer computations unaffected

by our changes.

III. PIR-DSP: ARCHITECTURAL MODIFICATIONS TO THE

XILINX DSP48E2 DSP BLOCK

We now present our three modifications to the Xilinx

DSP48E2 block (Figure 2).

A. Precision: Decomposable Multiplier

Our multiplier decomposition strategy is based on two

approaches: chopping and recursive decomposition.

1) Chopping: A signed 2’s complement number can be

represented as the sum of one signed (the most significant

part) and an unsigned term

As = [an−1an−2...ak+1]
s
2 × 2k + [akak−1...a0]

un
2

= As
H +Aun

L

(3)

where the kth bit is the dividing point and the As
H and Aun

L

are the signed and unsigned portions.

When applied to signed multiplication, this enables the

separation of lower-precision product terms

A
s
B

s = A
s
HB

s
H22k +A

s
HB

un
L 2k +A

un
L B

s
H2k +A

un
L B

un
L (4)

with each input being chopped at the kth bit.

Consider Equation 4 applied to an N×M-bit multiplier with

chopping size C, where N, M, and C are respectively 27,

18, and 9. As shown in Figure 3(a), standard multiplication

is done by summing the six partial results with appropriate

shifts. Figure 3(b) shows that by controlling the shift steps

for the first, fourth and fifth partial results, the summation can

be arranged into two separate columns, where each column

calculates a 3-C×C-bit-MAC operation with separated carry-

in signals

OutLSB = P0 + P1 + P2 + Cin0

OutMSB = P3 + P4 + P5 + Cin1.
(5)

2) Recursive Decomposition: We employ the twin-

precision technique [45] in a signed/unsigned N × N mul-

tiplier. Inputs are 1-bit extended according to the individual

sign control signals and their most significant bits (MSBs). The

extended inputs are then multiplied using a (N+1)× (N+1)
signed multiplier based on the Baugh-Wooley structure [46].

Figure 4(a) shows the baseline multiplier where A and B are 9-

bit numbers and each colored circle represents a logical func-

tion. By modifying the logic circuits of the PPs and preventing

carry propagation using mode control signals, the multiplier

can also operate as two half-precision multipliers. The required

modifications are depicted in Figure 4(b). Figure 4(c) shows a

recursive application of the technique to compute four quarter-

precision values in parallel, only small changes to the PP logic

and carry propagation paths being required.

Our multiplier is parameterised by chopping factors (sepa-

rately for each of the two inputs) and the depth. For an M×N

multiplier, we use the notation M×NCijDk where i and j are

chopping factors (the numbers of times we chop M and N),

and k is the recursive decomposition depth factor.

We applied our idea to the Xilinx DSP48E2 27 × 18
multiplier which produces two partial results (the following

ALU is responsible for adding these two outputs). To create

a 27×18C32D2 configuration, we chop A and B into i = 3
and j = 2 9-bit parts. As each smaller multiplication is a

signed/unsigned 9-bit multiplication, we then used recursive

D 27bit

ALU0 [12:0]

ALU1 [16:13]

ALU2 [22:17]

ALU3 [26:23]

ALU4 [30:27]

ALU5 [34:31]

ALU6 [40:35]

ALU7 [48:41]

PA 30bit

B 18bit

C 48bit

P 48bit

A0

B0 B1
B0

B0

B1

B1

A_COUT 30bitB_COUT 27bit P_COUT 48bit

B
_

C
IN

A
_

C
IN

P
_

C
IN

P
ip

e
li
n

e

54

54

B0 B1

FIFO/RF

Shift-Reg

L

H

M M

H

L

A1

A2
A3

A4
A5

A6
A7

48bit

Wide XOR

Pattern Detector

Pre-adder

Fig. 2. PR-DSP schematic using a 27×18C32D2 MAC-IP (all registers are bypassable).

P0 =

P1 =

P2 =

P3 =

P4 =

P5 =

P0

P1

P2

P3

P4

P5

b

a
P0

P1

P2

P4

P5

P0

P1

P2

P3 P3

P4

P5

c

P0

P1

P2

P4

P5

P0

P1

P2

P3 P3

P4

P5

d
P0

P1

P2

P0

P1

P2

P4

P5

P3 P3

P4

P5

A
M

un

B
H

s B
L

un

A
L

unB
L

un

B
H

s

A
M

un
B

L

un

A
L

un
B

H

s

A
H

s
B

L

un

B
H

s
A

M

un

A
H

s

A
L

un
A

H

s

SSSSign extensions:

SSSSSSSS

SSSS

SSSS

Fig. 3. High level presentation of chopping (a and b), and divide and conquer
techniques (c and d).

decomposition with depth k = 2 to change the 9 × 9
signed/unsigned multiplier to additionally support two 4×4 or

four 2×2 multiplications (Figure 4(c)). Extra bits are included

so that this is done without precision loss. Figures 3 (c) and (d)

show how the bit-level carry propagation from each column to

the next is arranged. Combining the six 9× 9 multipliers, we

can compute the following multi-precision MAC operations

without precision loss:

• One signed/unsigned 27× 18
• Two sets of signed/unsigned (9× 9 + 9× 9 + 9× 9)
• Four sets of signed/unsigned (4× 4 + 4× 4 + 4× 4)
• Eight sets of signed/unsigned (2× 2 + 2× 2 + 2× 2)

We have developed an IP generator which uses these tech-

niques to convert any size multiplier to a MAC-IP. A sign-

magnitude format is used so each operand can be signed or

unsigned, this being controllable at run-time.

B. Interconnect: Low-precision, Semi-2D DSP-DSP Commu-

nication

Low energy and high performance DNN accelerators have

been demonstrated using systolic array architectures [9], [10].

In this section, we focus on data movement among processing

elements (PEs), which are DSP blocks in this content. In

particular, 3 × 3 convolutions are of most interest as these

dominate the embedded DNNs reviewed in Section II.

Whereas in ASIC designs the PEs can be arranged in a

2D pattern, FPGA DSP blocks must be arranged in columns.

In each column, DSP inputs and outputs can be passed via

dedicated chain connections. This single-direction chaining is

highly efficient for their intended signal processing applica-

tions. Although general routing resources make it possible to

configure a 2D mesh network of PEs, this approach intro-

duces significant amounts of additional circuitry and latency

compared with direct connections.

In 2D systolic architectures, PE interconnections must for-

ward input and result data to two different destination PEs,

usually in different dimensions. Figure 5(a) shows a 2D

PE architecture, proposed in [9], which is a N×M mesh

network of PEs with unidirectional communications occurring

in horizontal, vertical and diagonal directions. In Figure 5(b)

a 3×3 convolutional layer is assigned to three rows of the

PEs. By rearranging this three-row architecture as shown in

Figure 5(c), we organise them as a column. When imple-

menting 2D systolic arrays solutions on conventional FPGA

column-based chains, it is impossible to use both the input and

output dedicated chain connections as they have same source

and destination. Figure 5(d) shows a column-based connection

which is capable of forwarding the data/result to the next

DSP block. This addresses the difficulty of implementing a 2D

interconnection on a 1D array, by supporting data forwarding

to two DSPs instead of a single one. This is particularly

0124567
A

A0 B0A1 B0A2 B0A3 B0A5 B0A6 B0A7 B0A8 B0A_ex B0

A0 B1A1 B1A2 B1A5 B1A6 B1A7 B1A8 B1A_ex B1

A0 B2A1 B2A2 B2A3 B2A5 B2A6 B2A7 B2A8 B2A_ex B2

A0 B3A1 B3A2 B3A3 B3A5 B3A6 B3A7 B3A8 B3

A5 B4A6 B4A7 B4

A0 B5A1 B5A2 B5A3 B5A4 B5A5 B5A6 B5

A0 B6A1 B6A2 B6A3 B6A4 B6A5 B6

A0 B7A1 B7A2 B7A3 B7A4 B7

A0 B8A1 B8A2 B8A3 B8

A0 B_exA1 B_exA2 B_ex

A_ex0

3

A_ex1

8

2

B

1

0

4

5

6

7

B_ex1 8

B_ex0 3

A4 B1

A
4

A
_
e

x
0

B
_

e
x
0

B
4

A
4

B3

A
_

e
x
0

A
4

B2

A
_
e

x
0

A
4

B1

A
_
e

x
0

A
4

B0

A
_

e
x
0

B
_
e

x
0

B
4

A3

B
_

e
x
0

B
4

A2

B
_

e
x
0

B
4

A1

B
_
e

x
0

B
4

A0

A

A0 B0A1 B0A3 B0A5 B0A6 B0A7 B0A8 B0A_ex B0

A0 B1A1 B1A5 B1A6 B1A7 B1A8 B1A_ex B1

A2 B2A3 B2A5 B2A6 B2A7 B2A8 B2A_ex B2

A0 B3A1 B3A2 B3A3 B3A5 B3A6 B3A7 B3A8 B3A_ex B3

A5 B4A6 B4A7 B4A8 B4A_ex B4

A0 B5A1 B5A2 B5A3 B5A4 B5A5 B5A6 B5A8 B5

A0 B6A1 B6A2 B6A3 B6A4 B6A5 B6A6 B6A8 B6

A0 B7A1 B7A2 B7A3 B7A4 B7A7 B7A8 B7

A0 B8A1 B8A2 B8A3 B8A4 B8A5 B8A6 B8A7 B8A8 B8

A0 B_exA1 B_exA2 B_exA3 B_exA4 B_ex

A_ex13

8

2

B

0

4

5

7

B_ex13 8

A4 B1

A
_

e
x

B5

A
_

e
x
1

A
_
e

x

B6

A
_
e

x
1

B
_
e

x
1

B
_

e
x

A6

B
_
e

x
1

B
_
e

x

A5

A
4

B1

A
_
e

x
0

A
4

B0

A
_

e
x
0

B
_
e

x
0

B
4

A1

B
_
e

x
0

B
4

A0

A_ex12 A_ex11 A_ex10

012457 36

B_ex12

B_ex11

B_ex10 1

6

3

A
_
e

x

A
_
e

x
1

A
_
e

x
1
3

B
_
e

x

B
_
e

x
1

B
_

e
x
1

3

A8

B
_

e
x
1

B
_

e
x
1

3

B
_

e
x

A7

B
_

e
x
1

B
_
e

x
1
3

B
_

e
x

A
_
e

x

B8

A
_
e

x
1

A
_

e
x
1

3

A
_

e
x

B7

A
_

e
x
1

A
_
e

x
1
3

A
7

B5

A
_
e

x
1
2

A
7

B6

A
_

e
x
1

2

B
_

e
x
1

2

B
7

A6

B
_

e
x
1

2

B
7

A5

A
4

A
_
e

x
0

A
_

e
x
1
1

B
4

B
_

e
x
0

B
_
e

x
1
1

A3

B
_
e

x
0

B
_
e

x
1
1

B
4

A2

B
_
e

x
0

B
_

e
x
1
1

B
4

A
4

B3

A
_
e

x
0

A
_

e
x
1
1

A
4

B2

A
_
e

x
0

A
_
e

x
1
1

A
2

B0

A
_
e

x
1
0

A
2

B1

A
_
e

x
1
0

B
_
e

x
1
0

B
2

A1

B
_

e
x
1

0

B
2

A0

SignA SignA

A_ex0

SignA

SignB

SignB

SignA SignA SignA

SignB

SignB

SignB

SignB

(b) (c)

2

B

1

0

3

4

5

6

7

B_ex

A0 B0A1 B0A2 B0A3 B0A4 B0A5 B0A6 B0A7 B0A8 B0A_ex B0

SignB

A0 B1A1 B1A2 B1A3 B1A4 B1A5 B1A6 B1A7 B1A8 B1A_ex B1

A0 B2A1 B2A2 B2A3 B2A4 B2A5 B2A6 B2A7 B2A8 B2A_ex B2

A0 B3A1 B3A2 B3A3 B3A4 B3A5 B3A6 B3A7 B3A8 B3A_ex B3

A0 B4A1 B4A2 B4A3 B4A4 B4A5 B4A6 B4A7 B4A8 B4A_ex B4

A0 B5A1 B5A2 B5A3 B5A4 B5A5 B5A6 B5A7 B5A8 B5A_ex B5

A0 B6A1 B6A2 B6A3 B6A4 B6A5 B6A6 B6A7 B6A8 B6A_ex B6

A0 B7A1 B7A2 B7A3 B7A4 B7A5 B7A6 B7A7 B7A8 B7A_ex B7

A0 B8A1 B8A2 B8A3 B8A4 B8A5 B8A6 B8A7 B8A8 B8A_ex B8

A0 B_exA1 B_exA2 B_exA3 B_exA4 B_exA5 B_exA6 B_exA7 B_exA8 B_exA_ex B_ex

0124567
A

3

A_ex

8

8

A_ex B3

A8 B4A_ex B4

A7 B5A8 B5

A6 B6A7 B6A8 B6

A5 B7A6 B7A7 B7A8 B7

A4 B8A5 B8A6 B8A7 B8A8 B8

A3 B_exA4 B_ex

A
_
e

x

B5

A
_
e

x
1

A
_

e
x

B6

A
_

e
x
1

A
_
e

x

B7

A
_
e

x
1

A
_

e
x

B8

A
_

e
x
1

A
_

e
x

A
_

e
x
1

B
_

e
x
1

B
_

e
x

B
_
e

x
1

B
_

e
x

A8

B
_

e
x
1

B
_
e

x

A7

B
_

e
x
1

B
_
e

x

A6

B
_
e

x
1

B
_

e
x

A5

Ai Bj

Ai Bj

Ai Bj

Ai Bj

Ai Bj

Ai Bj

SignA
(a)

Controllable/maskable NAND

Controllable NAND

Maskable NAND

Maskable AND

NAND

AND

Fig. 4. Recursive decomposition of a signed/unsigned 9×9 multiplier for depth factors (from left to right): (a) 0, (b) 1, and (c) 2. Maskable AND and NAND
gates are three-input AND and NAND gates respectively where the output can be masked using the 3rd input. Controllable NAND gates use an XOR gate
to pass or flip the AND gate output. Controllable and maskable NAND use both schemes.

1,0 1,1 1,2

0,0 0,1 0,2

1,3 1,4 1,5

0,3 0,4 0,5

4,0 4,1 4,2

3,0 3,1 3,2

4,3 4,4 4,5

3,3 3,4 3,5 2,0 2,1 2,2

1,0 1,1 1,2

0,0 0,1 0,2

2,3 2,4 2,5

1,3 1,4 1,5

0,3 0,4 0,5

(a)

(b)

(c)

0,0

0,1

1,0

1,1

1,2

2,0

2,1

2,2

(d)

2,0 2,1 2,2 2,3 2,4 2,5

0,2

Fig. 5. (a) Conventional 2D processing element architecture in [9] (b) 3×3
convolution layer implementation on 2D architecture (c) Our Semi-2D DSP
arrangement (d) conventional FPGA column-based arrangement.

effective for the case where one dimension is small (e.g. 3

elements for 3× 3 convolutional layers).

Current DSP columns are capable of streaming high-

precision data over the chains. To stream low precision inputs,

we make some minor modifications to the input B register and

chaining connections to support both high and low precision

data streaming. Also, we modified DSP both input A and B

chains to support run-time configurable input data forwarding

up to next two DSPs. This is done by bypassing the next

DSP to enhance the implementation capabilities for improving

data reuse via a small modification to current FPGAs. With

our changes, the 18-bit input B can feed both B 27-bit shift

registers and their 9-bit LSB portions via both A and B

chains. Furthermore, the design supports run-time configura-

tion (Figure 2) of stream precision. When used to implement

convolutional layers, these modifications support one high-

precision or two low-precision streams for the Stride = 1 and

2 cases.

C. Reuse: Flexible FIFO and Register File

In DNN implementations each input/parameter takes part in

many MAC operations, so it is important to cache fetched data.

Since data movement contributes more to energy consumption

than computation, this leads improved speed and energy [9],

[10]. Unfortunately, Xilinx DSP blocks do not support caching

of data (this is done using the fine-grained resources or hard

memory blocks). Intel DSPs do include a small embedded

memory for each 18-bit multiplier, but they cannot be con-

figured at run-time and hence can only be used efficiently for

fixed coefficients, making them unsuitable for buffering of data

for practical sized DNNs.

We propose a small and flexible first-in-first-out register file

(FIFO/RF) to enhance data reuse. This is a wide shift register

can be loaded sequentially and can be read by two standard

read ports. The two read port address signals can be provided

from outside the DSP block. The first is used inside the DSP

and brings the requested and the next data for multiplier

and multiplexer units (two 27-bit read ports are needed to

feed our multiplier). As RFs are mostly used to buffer a

chunk of data inside the DSP, writes always occur as a burst.

The other read port is used to select the data for DSP-DSP

chaining connections. Using this approach, we arrange the RF

as a flexible FIFO. By adjusting the FIFO length, systolic

array implementations with different buffering patterns can be

implemented. The schematic of our implemented FIFO/RF is

given in Figure 2, and operates on input A.

IV. EXPERIMENTAL STUDY

A. Baseline DSP48

As a baseline, we modeled the Xilinx DSP48E2 DSP block

using Verilog and synthesized it using SMIC 65-nm tech-

nology standard cell by Synopsis Design Compiler 2013.12.

Post-synthesis reports show that DSP48E2 timing is consistent

with reported speeds for DSP48E1 in Virtex 5 speed grade

-1, especially the critical path which is 3.85 and 3.94 ns

respectively for our DSP48E2 and Virtex-5 DSP48E1. A

comparison with DSP48E1 rather than DSP48E2 was made

as the former has generally the same DSP architecture and

65 nm process technology [47]. DSP48E2 is the most recent

version including three major architectural upgrades; wider

multiplier unit (27×18 instead of 25×18), pre-adder module,

and wide XOR circuit. We were not able to compare area since

no information is available for the DSP48E1/2 [48].

The baseline DSP48E2 multiplier produces two temporary

results, and these are added using the ALU to produce the final

MAC output. As a longer critical path is created by the PIR-

TABLE II
MAC-IP POST SYNTHESIS RESULTS (AREA RATIO 1 = 9224 um2).

MAC Model
Area Fmax # of MAC / Energy per MAC (pJ)

ratio MHz 27×18 9-bit 4-bit 2-bit

27×18-MAC 1 763 1/28.4 1/28.4 1/28.4 1/28.4

27×18C32D0 1.46 730 1/37.6 6/6.3 6/6.3 6/6.3

27×18C32D1 1.86 671 1/43.9 6/7.3 12/3.7 12/3.7

27×18C32D2 1.70 538 1/47.9 6/8.0 12/4 24/2.0

27×27C33D0 2.12 714 1/54.1 9/6.0 9/6.0 9/6.0

27×27C33D1 2.21 581 1/59.5 9/6.6 18/3.3 18/3.3

27×27C33D2 2.36 380 1/90.8 9/10.1 18/5.0 36/2.5

DSP partial product summation circuits, we applied parallel

computing and carry-lookahead techniques for both multiplier

and ALU. It was also necessary to add a new pipeline-register

layer to the multiplier unit to reduce the critical path our

more complex circuit. Modifications to the ALU also required

replacing the DSP48E2 12/24/48-bit SIMD add/sub operations

with a 4/8/18/48-bit SIMD which leads to smaller and width-

variant ALUs since they must be aligned with the carry

propagation blocking points, as shown in Figure 2. We note

that the multiplier in the DSP48 is not on the critical path so

adding a similar pipeline register does not affect its critical

path.

B. Precision (MAC-IP)

Figure 6 and Table II show post synthesis Area, Maximum

frequency, and energy per MAC operation results for different

configurations of the MAC-IP using the performance optimi-

sation synthesis strategy.

Table III Configuration #0 shows our synthesised DSP48E2

area and maximum frequency. Configurations #1 to #3 results

obtained by simply replacing the multiplier and ALU units

in the DSP48E2 with the MAC=IP. Upgrading the multiplier

to a 27×18C32D2 MAC-IP, leads to improvements in MAC

capabilities of ×6, ×12, ×24 times for 9, 4, 2-bit MAC

operations respectively, at the cost of a 14% increase in area.

C. Interconnect and Reuse (PIR-DSP)

Table III Configuration #4 is produced by adding the

interconnect optimisation to Configuration #3. Configuration

#5 is the final implementation of PIR-DSP which adds the

reuse optimisation. As in the DSP48 data sheet, the reported

Fmax to the P output omits the wide XOR and pattern detector

circuits of Figure 2.

To evaluate the effectiveness of our proposed data move-

ment modifications for low-precision computations, we fo-

cused on the total run-time energy required by implementing

low-precision versions of some well-cited embedded CNNs.

We extracted the read and write energy using Xilinx Power

Estimator (XPE) for BRAM and LUT blocks on the Virtex-5

FPGA. EBRAM, Read and EBRAM, Write per byte were estimated

for an 18-bit wide memory configuration (most efficient way to

use BRAMs). To estimate the energy associated with moving

data from an off-DSP register file (RF) and shift-register (SR),

TABLE III
PIR-DSP SYNTHESIS RESULTS FOR DIFFERENT MAC-IP

CONFIGURATIONS. THE PIR-DSP CASE INCLUDES ALL OUR

OPTIMISATIONS.

DSP Version
Area FMax

Post Synth. ratio (MHz)

0 DSP48E2 25419 1.00 463

1 + M27×18C32D0 MAC-IP 28638 1.13 520

2 + M27×18C32D1 MAC-IP 28838 1.13 463

3 + M27×18C32D2 MAC-IP 29097 1.14 358

4
+ M27×18C32D2 MAC-IP

29972 1.18 362
+ interconnect

5
PIR-DSP=MAC-IP+

32505 1.28 357
+ interconnect + reuse

1

1.13 1.13 1.14

1.18

1.28

0.9

1.0

1.1

1.2

1.3

A
re

a
 R

a
ti
o 463

520

463

358 362 357

300

350

400

450

500

550

F
m

a
x
 (

M
H

z
)

DSP48E2

+ M27×18C32D0 MAC−IP

+ M27×18C32D1 MAC−IP

+ M27×18C32D2 MAC−IP

+ M27×18C32D2 MAC−IP + interconnect

PIRDSP = MAC−IP + interconnect + reuse

Fig. 6. PIR-DSP synthesis results for different MAC-IP configurations. The
PIR-DSP case includes all our optimisations.

we configured the LUTs respectively as RAM with Fanout

= 4 (for broadcasting), and shift register with Fanout = 1

(streaming) (Table IV). Using results for small register files in

[49], [50], [51], we estimated our embedded 4×2 30-bit RF

read & write energy to be 1.1 pJ/byte. RF width and size are

selected respectively, to fully feed the multiplier/pre-adder in

high/low-precision and to be similar to Intel DSP block read-

only RFs which are configured in two 8×18-bit memories per

DSP. To estimate input B energy which operates as a SR and

a normal register we used results for high-performance [52]

and low energy flip-flops [53] (FF) to obtain estimates of

180 fJ and 90 fJ respectively. Energy required to transfer

data from DSP-DSP was obtained from [54], and scaled to

65nm technology, to obtain 2 pJ per byte. Using the energy

ratios from Table II, energy consumption for 9/4/2-bit MAC

operations are 89/44/22× that of a 9-bit register. Table V

summarises the estimated energy ratios for data movement.

We further assume that all elements (except the MAC) scale

linearly with wordlength.

D. Implementation of Convolutions

We now describe implementations of standard and DW

convolutional layers, using a 3×3 DW convolution layer as

a case study. According to Equation 2, output channels can be

computed in parallel. We assumed input and weight parameters

are located in BRAMs and results will be written back to

TABLE IV
ESTIMATION OF BRAM, OFF -DSP RF AND RS READ/WRITE ACCESS

ENERGY 9-BIT WORD ON A XILINX XC5VLX155T EXTRACTED FROM

XPE TOOL (PJ)

BRAM Metrics Method
BRAM Output width

18 9 4 1

ERead 100% Read usage 8.45 15.8 32.3 116

EWrite 100% Write usage 9.98 17.9 35.6 128

EBRAM (EB) ERead+EWrite 18.43 33.7 67.9 244

LUT Metrics Method
LUT FanOut

4 3 2 1

ERF (Off-DSP) LUT as RAM 3.60 3.28 2.96 2.64

ESR (Off-DSP) LUT as SR 4.92 4.59 4.27 3.95

TABLE V
DATA MOVEMENT ENERGY RATIOS IN 65 NM TECHNOLOGY (1× = 90FJ).

Energy FF SRe RFe Chain RF SR BRAM(B) MAC

Ratio 1 2 12.5 23 40 44 205 89-22

BRAMs. In an implementation on conventional DSPs [55],

weight stationary data flow was used, with each input feature

map element fetched once from BRAMs and then streamed

over off-DSP SRs. Weight parameters are fetched once from

BRAMs and saved in DSP registers. Each filter and input

element are respectively used Fh × Fw and Kh ×Kw times.

The average energy for the described data flow where EMAC

is the energy consumption of the MAC computation is

Econv. = EInput + EWeight + EMAC

= (
EB

KwKh

+ ESR + EFF) + (
EB

Fw

+ EFF) + EMAC

(6)

1) Depth-wise Convolution: For a PIR-DSP implementa-

tion, inspired by the Eyeriss architecture [9], we mapped

computation of multiple rows of output channels to a three-

cascaded PIR-DSP (Figure 7). Each PIR-DSP can compute

2/4/8 sets of three-MAC operations for 9/4/2-bit precision.

Each three-MAC operation can be used for a row of a 3×3

DW kernel. Cascading three PIR-DSPs, we can sum the partial

outputs to produce the final output feature map elements.

As illustrated in Figure 7 for 9-bit precision, each PIR-

DSP receives two streams of 9-bit data (as each PIR-DSP

can compute two parallel three-MAC operations). The three-

cascaded PIR-DSPs can forward two of their streams to the

next three-cascaded PIR-DSP over the DSP-DSP chains, and

we can implement K rows of 2/4/8 channels of the output

matrix for 9/4/2-bit precision using a column of 3K PIR-DSPs.

For this case, EInput becomes

EStream,Input =
EB + (NoF)EChain

KhKw

+ ESRe
(7)

where NoF is the number of forwarding over chains for each

input stream (2 in our case as each row of the input stream is

involved in three rows of output feature map). To implement

Row1

Row1’ Filter1 row1

Filter1 row1

Filter1 row2

Filter1 row3

Filter1 row2

Filter1 row3

Filter2 row1

Filter2 row2

Filter2 row3

Filter2 row1

Filter2 row2

Filter2 row3

Filter1 row1

Filter1 row2

Filter1 row3

Filter2 row1

Filter2 row2

Filter2 row3

Filter1 row3
Filter1 row3

Filter2 row3
Filter2 row3

Filter2 row2
Filter2 row2

Filter1 row2
Filter1 row2

Filter2 row1
Filter2 row1

Filter1 row1
Filter1 row1

Filter2 row3
Filter2 row3

Filter1 row3
Filter1 row3

Filter2 row2
Filter2 row2

Filter1 row2
Filter1 row2

Filter2 row1
Filter2 row1

Filter1 row1
Filter1 row1

Filter2 row3
Filter2 row3

Filter1 row3
Filter1 row3

Filter2 row2
Filter2 row2

Filter1 row2
Filter1 row2

Filter2 row1
Filter2 row1

Filter1 row1
Filter1 row1

Row2

Row2’

Row3

Row3’

Row4

Row4’

Row5

Row5’

Row3

Row3’

Row2

Row2’

Row3

Row3’

Row4

Row4’

OutRow1Ch1

OutRow1’Ch2

OutRow2Ch1

OutRow2’Ch2

OutRow3Ch1

OutRow3’Ch2

Row1

Row2

Row3

Row1’

Row2’

Row3’

Row1’

Row1

Row2

Row3

Row2’

Row3’

 Row1’

Row2’

Row3’

Row1

Row2

Row3

Filter1 row1

Filter1 row1

Filter1 row2

Filter1 row3

Filter2 row1

Filter2 row2

Filter2 row3

Filter2 row1
Filter2 row1

Filter4 ch4-6

Filter1 row1
Filter3 ch4-6

Filter2 row3
Filter4 ch1-3

Filter1 row3
Filter3 ch1-3

Filter2 row2
Filter2 ch4-6

Filter1 row2
Filter1 ch4-6

Filter2 row1
Filter2 ch1-3

Filter1 row1
Filter1 ch1-3

PartialOutRow1Ch1

PartialOutRow1Ch2

PartialOutRow1Ch3

PartialOutRow1Ch4

Fig. 7. Proposed implementation for standard and DW (left), and PW
convolution layers (right).

other kernel sizes, we use a kernel tiling approach with tile size

of 3×3, 2×3, and 1×3 which are respectively the computation

capabilities of a three-cascaded, two-cascaded, and a PIR-

DSP. Thus a 5×5 kernel can be implemented using 2× three-

cascaded DSPs and 2× two-cascaded DSP groups where NoF

is 6.

2) Standard Convolution: For the case of standard convo-

lution, our RF reuse reduces EInput by a factor of RFsize (last

line of Table VI). The calculated access energy ratio in the last

column indicates that PIR-DSP uses 31% of the data access

energy for a middle bottleneck layer of MobileNetv2 [12]

which applies 192 depth-wise 3×3 filters on an input feature

map of shape 562 × 192.

3) Point-wise Convolution: For a PW convolution, each

input channel can be streamed into a DSP to be multiplied

by corresponding weight parameter, producing a partial result

which is cascaded and summed to produce an entry of the

output feature map. In a PIR-DSP implementation, we assign

three channels of input and three corresponding channels of

2/4/8 PW kernels to a PIR-DSP, depending on precision. PIR-

DSP using 2, 4, or 8 three-MAC operations computes partial

results of each filter on the same input stream in parallel (the

stream includes an element of three channels of input feature

map in each cycle). By cascading we can compute 2, 4, or

TABLE VI
READ ACCESS ENERGY FOR STANDARD/DW/PW CONV. LAYER PER

MAC (BASELINE IMPLEMENTATION USES OFF-DSP RESOURCES TO

STREAM INPUT OVER SAVED WEIGHTS IN DSP REGISTERS).

Method EInput EWeight Ratio%

S
ta

n
d

ar
d

/D
W Baseline

EB

KhKw

+ESR+EFF

EB

FhFw

+EFF 100

Stream
EB+(NoF)EChain

KhKw

+ESRe

EB

FhFw

+EFF 45

Str.&RF
EB+(NoF)EChain

KhKwRFs=4×2

+ESRe

EB

FhFw

+PRFe
31

P
W

Baseline
EB

N
+ESR+EFF

EB

FhFw

+EFF 100

Stream
EB

N
+EChain+ESRe

EB

FhFw

+EFF 58

Str.&RF

EB

N
+EChain

RFs=4×2

+ESRe

EB

FhFw

+ERFe
44

TABLE VII
ENERGY RATIO OF PIR-DSP OPTIMISATIONS FOR 9/4/2-BIT PRECISION

(PERCENT)(BASELINE = 100/100/100).

Modification NASNetA4 Mobile Shuffle Squeeze

P I R @1056 [11] Net-v2 [12] Net-v2 [13] Net [14]

✗ ✗ ✗ baseline baseline baseline baseline

✓ ✗ ✗ 39/26/20 38/26/20 38/26/20 40/28/22

✓ ✓ ✗ 33/20/14 33/21/15 33/21/15 31/20/14

✓ ✓ ✓ 31/19/13 31/19/13 31/19/13 29/17/12

8 six-MAC operations (computing six elements of the PW

kernels). Also, as illustrated in the right hand part of Figure 7

for 9-bit precision, each two-cascaded PIR-DSP can forward

their streams to next two-cascaded DSP which leads to energy

reduction as summarised in Table VI. Thus, PIR-DSP uses

saved weights and performs a MAC with the 2/4/8 3-channel

weight parameters which are saved in two 27-bit registers.

Furthermore, the RF improves input data reuse. By applying

the equations to a middle bottleneck layer of MobileNet-v2

(which includes 192 PW 1× 1× 32 filters on 562 × 32 input

feature map), our proposed optimisations can reduce the read

access energy to 44% of the original value.

A similar analysis was applied to all layers of some com-

mon embedded DNN models, the results in Table VII are

obtained. For example, when applying all our optimisations

to MobileNet-v2 [12], energy is reduced to 31/19/13% of the

original value for 9/4/2-bit precision.

E. Comparison with Previous Work

BitFusion [56] is an ASIC DNN accelerator, supporting

multi-precision MACs. The reported area is for a computation

unit in 45-nm technology, comprising 16 BitBricks, each of

which is a 2-bit plus sign multiplier. This is similar to our

27×18C32D2 MAC-IP (Table II), although BitFusion is more

flexible as it supports more variations including 2×4, 2×8 and

4×8. Table VIII compares Performance per Area (PPA). We

used the maximum frequency reported for a same implemen-

tation, DSP48E1, in three FPGAs, Virtex5/6/7, normalized to

feature size [57] (area is scaled by 1/0.66/0.3 and maximum

TABLE VIII
COMPARISON WITH PREVIOUS WORK. ADR=AREA × DELAY RATIO,

MAIN ENTRIES ARE IN (# OF MAC PER CYCLE / MACS PER SECOND PER

DSP (GOPS/SEC)) FORMAT.

Module
BitFusion MAC

P
P

A
(r

a
ti

o
)

Boutros PIR

P
P

A
(r

a
ti

o
)

[56] IP [44] DSP

freq/Tech
500 / 45 537 / 65 600 / 28 357 / 65

(MHz/nm)

Area um2 2148 15759 9389 32505

ADr 0.17 1 0.17 1

ADr (norm) 0.24 1 0.77 1

2×2/Bin./Ter. (16/8) (24/12.9) 0.4 - (24/8.5) -

4×4 (4/2) (12/6.4) 0.7 (8/4.8) (12/4.2) 1.2

8×8 (1/0.5) (6/3.2) 1.4 (4/2.4) (6/2.1) 1.2

16×16 - (1/0.5) - (2/1.2) (1/0.36) 0.4

18×18 - (1/0.5) - (2/1.2) (1/0.36) 0.4

27×18 - (1/0.5) - (1/0.6) (1/0.36) 0.8

27×27 - - - 1/0.6 - -

frequency by 1/1.1/1.35 respectively for 65/45/28 nm). BitFu-

sion only applies the chopping technique, leading to high area

overhead. The introduction of recursive decomposition better

supports low and high-precision MAC operations.

Boutros et. al. proposed improvements to the Intel DSP

block [44], and is capable of 27×27 and reduced precision

MACs down to 4-bit. In comparison, PIR-DSP can support

precisions down to 2 bits, has better performance at 8 × 8
bits and lower, is generated using a flexible module generator,

but is worse at 16× 16 and higher PPA. It is not possible to

compare energy but we would expect Boutros to be similar to

the Baseline case in Table VI with PIR-DSP having significant

advantages due to the interconnect and reuse optimisations.

V. CONCLUSION

We proposed PIR-DSP which incorporates precision, in-

terconnect and reuse optimisations to better support 2-

dimensional low-precision DNN applications. When applied

to the implementation of embedded DNNs, for which the

bottleneck is the standard, PW and DW convolutions, it was

shown that our DSP block architecture can significantly reduce

the energy consumption of low-precision implementations,

albeit requiring an extra cycle of latency and a 28% area

overhead.

Future work will include optimising the critical path of the

PIR-DSP by providing a bypass path for the unused pre-adder.

This could enhance frequency by 25% or be used to remove

the extra cycle of latency introduced by our additional pipeline

stage.

REFERENCES

[1] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of FPGA
based neural network accelerator,” CoRR, vol. abs/1712.08934, 2017.
[Online]. Available: http://arxiv.org/abs/1712.08934

[2] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “FPGA-based accelerator for
long short-term memory recurrent neural networks,” in 22nd Asia and

South Pacific Design Automation Conference, ASP-DAC 2017, Chiba,

Japan, January 16-19, 2017, 2017, pp. 629–634. [Online]. Available:
https://doi.org/10.1109/ASPDAC.2017.7858394

[3] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang,
“A high performance FPGA-based accelerator for large-scale
convolutional neural networks,” in 26th International Conference

on Field Programmable Logic and Applications, FPL 2016, Lausanne,

Switzerland, August 29 - September 2, 2016, 2016, pp. 1–9. [Online].
Available: https://doi.org/10.1109/FPL.2016.7577308

[4] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y. Tai, “Exploring heterogeneous
algorithms for accelerating deep convolutional neural networks on
FPGAs,” in Proceedings of the 54th Annual Design Automation

Conference, DAC 2017, Austin, TX, USA, June 18-22, 2017, 2017,
pp. 62:1–62:6. [Online]. Available: https://doi.org/10.1145/3061639.
3062244

[5] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: towards
uniformed representation and acceleration for deep convolutional neural
networks,” in Proceedings of the 35th International Conference on

Computer-Aided Design, ICCAD 2016, Austin, TX, USA, November

7-10, 2016, 2016, p. 12. [Online]. Available: https://doi.org/10.1145/
2966986.2967011

[6] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. H. W. Leong,
M. Jahre, and K. A. Vissers, “FINN: A framework for fast, scalable
binarized neural network inference,” CoRR, vol. abs/1612.07119, 2016.
[Online]. Available: http://arxiv.org/abs/1612.07119

[7] A. Prost-Boucle, A. Bourge, F. Pétrot, H. Alemdar, N. Caldwell, and
V. Leroy, “Scalable high-performance architecture for convolutional
ternary neural networks on FPGA,” in 27th International Conference

on Field Programmable Logic and Applications, FPL 2017, Ghent,

Belgium, September 4-8, 2017, 2017, pp. 1–7. [Online]. Available:
https://doi.org/10.23919/FPL.2017.8056850

[8] L. Shan, M. Zhang, L. Deng, and G. Gong, “A dynamic multi-
precision fixed-point data quantization strategy for convolutional
neural network,” in Computer Engineering and Technology - 20th

CCF Conference, NCCET 2016, Xi’an, China, August 10-12, 2016,

Revised Selected Papers, 2016, pp. 102–111. [Online]. Available:
https://doi.org/10.1007/978-981-10-3159-5 10

[9] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,”
IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
2017. [Online]. Available: https://doi.org/10.1109/JSSC.2016.2616357

[10] Y. Chen, J. S. Emer, and V. Sze, “Eyeriss v2: A flexible and
high-performance accelerator for emerging deep neural networks,”
CoRR, vol. abs/1807.07928, 2018. [Online]. Available: http://arxiv.org/
abs/1807.07928

[11] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in 2018 IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake

City, UT, USA, June 18-22, 2018, 2018, pp. 8697–8710. [Online].
Available: http://openaccess.thecvf.com/content cvpr 2018/html/Zoph
Learning Transferable Architectures CVPR 2018 paper.html

[12] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Inverted residuals and linear bottlenecks: Mobile networks for
classification, detection and segmentation,” CoRR, vol. abs/1801.04381,
2018. [Online]. Available: http://arxiv.org/abs/1801.04381

[13] N. Ma, X. Zhang, H. Zheng, and J. Sun, “Shufflenet V2: practical
guidelines for efficient CNN architecture design,” in Computer Vision -

ECCV 2018 - 15th European Conference, Munich, Germany, September

8-14, 2018, Proceedings, Part XIV, 2018, pp. 122–138. [Online].
Available: https://doi.org/10.1007/978-3-030-01264-9 8

[14] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <1mb model size,” CoRR, vol. abs/1602.07360, 2016.
[Online]. Available: http://arxiv.org/abs/1602.07360

[15] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing
of deep neural networks: A tutorial and survey,” Proceedings of the

IEEE, vol. 105, no. 12, pp. 2295–2329, 2017. [Online]. Available:
https://doi.org/10.1109/JPROC.2017.2761740

[16] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/1704.04861,
2017. [Online]. Available: http://arxiv.org/abs/1704.04861

[17] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama, and K. Murphy, “Speed/accuracy
trade-offs for modern convolutional object detectors,” in 2017 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2017,

Honolulu, HI, USA, July 21-26, 2017, 2017, pp. 3296–3297. [Online].
Available: https://doi.org/10.1109/CVPR.2017.351

[18] B. Wu, A. Wan, X. Yue, P. H. Jin, S. Zhao, N. Golmant,
A. Gholaminejad, J. Gonzalez, and K. Keutzer, “Shift: A zero flop,
zero parameter alternative to spatial convolutions,” in 2018 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2018,

Salt Lake City, UT, USA, June 18-22, 2018, 2018, pp. 9127–9135.
[Online]. Available: http://openaccess.thecvf.com/content cvpr 2018/
html/Wu Shift A Zero CVPR 2018 paper.html

[19] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely
efficient convolutional neural network for mobile devices,” in 2018

IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2018, Salt Lake City, UT, USA, June 18-22, 2018, 2018, pp. 6848–
6856. [Online]. Available: http://openaccess.thecvf.com/content cvpr
2018/html/Zhang ShuffleNet An Extremely CVPR 2018 paper.html

[20] L. Lu, Y. Liang, Q. Xiao, and S. Yan, “Evaluating fast algorithms
for convolutional neural networks on FPGAs,” in 25th IEEE

Annual International Symposium on Field-Programmable Custom

Computing Machines, FCCM 2017, Napa, CA, USA, April 30

- May 2, 2017, 2017, pp. 101–108. [Online]. Available: https:
//doi.org/10.1109/FCCM.2017.64

[21] J. Faraone, G. Gambardella, N. J. Fraser, M. Blott, P. H. W.
Leong, and D. Boland, “Customizing low-precision deep neural
networks for FPGAs,” in 28th International Conference on Field

Programmable Logic and Applications, FPL 2018, Dublin, Ireland,

August 27-31, 2018, 2018, pp. 97–100. [Online]. Available: https:
//doi.org/10.1109/FPL.2018.00025

[22] C. Zhang and V. K. Prasanna, “Frequency domain acceleration of
convolutional neural networks on CPU-FPGA shared memory system,”
in Proceedings of the 2017 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, FPGA 2017, Monterey, CA,

USA, February 22-24, 2017, 2017, pp. 35–44. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3021727

[23] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” CoRR, vol. abs/1510.00149, 2015. [Online]. Available:
http://arxiv.org/abs/1510.00149

[24] B. Liu, M. Wang, H. Foroosh, M. F. Tappen, and M. Pensky,
“Sparse convolutional neural networks,” in IEEE Conference on

Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA,

USA, June 7-12, 2015, 2015, pp. 806–814. [Online]. Available:
https://doi.org/10.1109/CVPR.2015.7298681

[25] M. Samragh, M. Ghasemzadeh, and F. Koushanfar, “Customizing neural
networks for efficient FPGA implementation,” in 25th IEEE Annual

International Symposium on Field-Programmable Custom Computing

Machines, FCCM 2017, Napa, CA, USA, April 30 - May 2, 2017, 2017,
pp. 85–92. [Online]. Available: https://doi.org/10.1109/FCCM.2017.43

[26] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, Y. Wang, and H. Yang, “Going deeper with embedded FPGA
platform for convolutional neural network,” in Proceedings of the 2016

ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, Monterey, CA, USA, February 21-23, 2016, 2016, pp. 26–35.
[Online]. Available: https://doi.org/10.1145/2847263.2847265

[27] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
in Computer Vision - ECCV 2016 - 14th European Conference,

Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part

IV, 2016, pp. 525–542. [Online]. Available: https://doi.org/10.1007/
978-3-319-46493-0 32

[28] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie,
H. Luo, S. Yao, Y. Wang, H. Yang, and W. B. J. Dally, “ESE:
efficient speech recognition engine with sparse LSTM on FPGA,”
in Proceedings of the 2017 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, FPGA 2017, Monterey, CA,

USA, February 22-24, 2017, 2017, pp. 75–84. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3021745

[29] E. Nurvitadhi, D. Sheffield, J. Sim, A. K. Mishra, G. Venkatesh,
and D. Marr, “Accelerating binarized neural networks: Comparison of
FPGA, CPU, GPU, and ASIC,” in 2016 International Conference on

Field-Programmable Technology, FPT 2016, Xi’an, China, December

7-9, 2016, 2016, pp. 77–84. [Online]. Available: https://doi.org/10.
1109/FPT.2016.7929192

[30] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” CoRR, vol. abs/1606.06160, 2016. [Online]. Available:
http://arxiv.org/abs/1606.06160

[31] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary
quantization,” CoRR, vol. abs/1612.01064, 2016. [Online]. Available:
http://arxiv.org/abs/1612.01064

[32] N. P. Jouppi, C. Young, N. Patil, D. A. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of

the 44th Annual International Symposium on Computer Architecture,

ISCA 2017, Toronto, ON, Canada, June 24-28, 2017, 2017, pp. 1–12.
[Online]. Available: https://doi.org/10.1145/3079856.3080246

[33] L. Jiao, C. Luo, W. Cao, X. Zhou, and L. Wang, “Accelerating
low bit-width convolutional neural networks with embedded FPGA,”
in 27th International Conference on Field Programmable Logic

and Applications, FPL 2017, Ghent, Belgium, September 4-8, 2017,
2017, pp. 1–4. [Online]. Available: https://doi.org/10.23919/FPL.2017.
8056820

[34] D. J. M. Moss, E. Nurvitadhi, J. Sim, A. K. Mishra, D. Marr,
S. Subhaschandra, and P. H. W. Leong, “High performance binary
neural networks on the xeon+fpgaTM platform,” in 27th International

Conference on Field Programmable Logic and Applications, FPL

2017, Ghent, Belgium, September 4-8, 2017, 2017, pp. 1–4. [Online].
Available: https://doi.org/10.23919/FPL.2017.8056823

[35] H. Nakahara, T. Fujii, and S. Sato, “A fully connected layer
elimination for a binarizec convolutional neural network on an FPGA,”
in 27th International Conference on Field Programmable Logic

and Applications, FPL 2017, Ghent, Belgium, September 4-8, 2017,
2017, pp. 1–4. [Online]. Available: https://doi.org/10.23919/FPL.2017.
8056771

[36] J. Faraone, N. J. Fraser, M. Blott, and P. H. W. Leong, “SYQ: learning
symmetric quantization for efficient deep neural networks,” in 2018

IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2018, Salt Lake City, UT, USA, June 18-22, 2018, 2018, pp. 4300–4309.
[Online]. Available: http://openaccess.thecvf.com/content cvpr 2018/
html/Faraone SYQ Learning Symmetric CVPR 2018 paper.html

[37] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural
networks with weights and activations constrained to +1 or -
1,” CoRR, vol. abs/1602.02830, 2016. [Online]. Available: http:
//arxiv.org/abs/1602.02830

[38] Xilinx Inc, “UG579: UltraScale Architecture DSP Slice,” Tech. Rep.,
2018.

[39] Intel Corp, “UG-S10-DSP Intel Stratix 10 Variable Precision DSP
Blocks User Guide,” Tech. Rep., 2018.

[40] ——, “Stratix-IV Device Handbook Volume 1,” Tech. Rep., 2011.

[41] WP486: Deep Learning with INT8 Optimization on Xilinx Devices,
Xilinx Inc, 2017.

[42] P. Colangelo, N. Nasiri, E. Nurvitadhi, A. K. Mishra, M. Margala,
and K. Nealis, “Exploration of low numeric precision deep learning
inference using intel R© FPGAs,” in 26th IEEE Annual International

Symposium on Field-Programmable Custom Computing Machines,

FCCM 2018, Boulder, CO, USA, April 29 - May 1, 2018, 2018, pp.
73–80. [Online]. Available: https://doi.org/10.1109/FCCM.2018.00020

[43] H. Parandeh-Afshar and P. Ienne, “Highly versatile DSP blocks
for improved FPGA arithmetic performance,” in 18th IEEE Annual

International Symposium on Field-Programmable Custom Computing

Machines, FCCM 2010, Charlotte, North Carolina, USA, 2-4 May

2010, 2010, pp. 229–236. [Online]. Available: https://doi.org/10.1109/
FCCM.2010.42

[44] A. Boutros, S. Yazdanshenas, and V. Betz, “Embracing diversity:
Enhanced DSP blocks for low-precision deep learning on FPGAs,”
in 28th International Conference on Field Programmable Logic and

Applications, FPL 2018, Dublin, Ireland, August 27-31, 2018, 2018,
pp. 35–42. [Online]. Available: https://doi.org/10.1109/FPL.2018.00014

[45] M. Själander and P. Larsson-Edefors, “Multiplication acceleration
through twin precision,” IEEE Trans. VLSI Syst., vol. 17, no. 9, pp.
1233–1246, 2009. [Online]. Available: https://doi.org/10.1109/TVLSI.
2008.2002107

[46] C. R. Baugh and B. A. Wooley, “A two’s complement parallel array
multiplication algorithm,” IEEE Trans. Computers, vol. 22, no. 12,
pp. 1045–1047, 1973. [Online]. Available: https://doi.org/10.1109/T-C.
1973.223648

[47] Virtex-5 FPGA Data Sheet: DC and Switching Characteristics, Xilinx,
6 2016, v5.5.

[48] H. Wong, V. Betz, and J. Rose, “Quantifying the gap between FPGA
and custom CMOS to aid microarchitectural design,” IEEE Trans.

VLSI Syst., vol. 22, no. 10, pp. 2067–2080, 2014. [Online]. Available:
https://doi.org/10.1109/TVLSI.2013.2284281

[49] S. Hsu, A. Agarwal, M. Anders, S. Mathew, R. Krishnamurthy, and
S. Borkar, “An 8.8GHz 198mw 16x64b 1R/1W variationtolerant register
file in 65nm CMOS,” in 2006 IEEE International Solid State Circuits

Conference - Digest of Technical Papers, Feb 2006, pp. 1785–1797.
[50] K. Sarfraz and M. Chan, “A 65nm 3.2 GHz 44.2 mw low-v t register file

with robust low-capacitance dynamic local bitlines,” in European Solid-

State Circuits Conference (ESSCIRC), ESSCIRC 2015-41st. IEEE,
2015, pp. 331–334.

[51] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference

Digest of Technical Papers (ISSCC), Feb 2014, pp. 10–14.
[52] P. Bhattacharjee and A. Majumder, “A variation-aware robust gated

flip-flop for power-constrained FSM application,” Journal of Circuits,

Systems and Computers, vol. 0, no. 0, p. 1950108, 0. [Online].
Available: https://doi.org/10.1142/S0218126619501081

[53] J. Shen, L. Geng, G. Xiang, and J. Liang, “Low-power level converting
flip-flop with a conditional clock technique in dual supply systems,”
Microelectronics Journal, vol. 45, no. 7, pp. 857–863, 2014. [Online].
Available: https://doi.org/10.1016/j.mejo.2014.04.035

[54] S. Das, T. M. Aamodt, and W. J. Dally, “SLIP: reducing wire
energy in the memory hierarchy,” in Proceedings of the 42nd Annual

International Symposium on Computer Architecture, Portland, OR,

USA, June 13-17, 2015, 2015, pp. 349–361. [Online]. Available:
https://doi.org/10.1145/2749469.2750398

[55] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
“An opencl(tm) deep learning accelerator on arria 10,” CoRR, vol.
abs/1701.03534, 2017. [Online]. Available: http://arxiv.org/abs/1701.
03534

[56] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, J. K. Kim,
V. Chandra, and H. Esmaeilzadeh, “Bit fusion: Bit-level dynamically
composable architecture for accelerating deep neural networks,” CoRR,
vol. abs/1712.01507, 2017. [Online]. Available: http://arxiv.org/abs/
1712.01507

[57] A. Stillmaker and B. M. Baas, “Scaling equations for the accurate
prediction of CMOS device performance from 180 nm to 7
nm,” Integration, vol. 58, pp. 74–81, 2017. [Online]. Available:
https://doi.org/10.1016/j.vlsi.2017.02.002

