

Abstract—Location tracking is being increasingly used across
many applications. While GPS is the most widely used location
tracking technology, it is unavailable in many environments such
as indoors and underground. Local positioning systems (LPS)
that use time of arrival based ranging can provide high accuracy
location tracking for many applications. Tracking location using
range measurements is a non-linear state estimation problem and
the measurement noise is often non-Gaussian in environments
where LPS are typically used. Hence a particle filter is an
appropriate state estimator for location tracking in LPS.

Particle filters are computationally complex and have a serial
bottleneck that prevents straightforward parallel
implementation. In this paper we present a parallel architecture
for the particle filter that can be efficiently implemented in a field
programmable gate array or a fixed-point digital signal
processor. We show that processing can be divided into up to
twenty parallel particle filters to massively increase the
processing speed. Mixing between the filters is essential and we
present a new algorithm for this that minimises computational
complexity and memory bandwidth. Finally, for efficient
hardware implementation fixed point arithmetic should be used
and we empirically determine the required precision.

Index Terms—Wireless Networks, Location Tracking, Time of
Arrival, Particle filtering, FPGA, Hardware architecture.

I. INTRODUCTION

Location awareness is a key feature requirement in many
applications. For example, high accuracy tracking of athletes
in both outdoor and indoor sports allows sports scientists and
coaches to develop new training and gaming strategies.
Accurately tracking vehicles and personnel in underground
mines improves the automation and safety of the mine.

The Global Positioning System (GPS) is the most widely
used localisation system primarily due to its global coverage
and free access. However, satellite based positioning systems
cannot provide tracking underground and in most indoor areas,
hence there is a need for Local Positioning Systems (LPS).
There are a number of technologies that have been used for a
LPS, and time of arrival (TOA) based tracking is widely
agreed to provide the most accurate tracking [7].

A TOA-based LPS typically consists of two types of nodes:
anchor nodes, whose locations are assumed known a priori;
and mobile nodes, whose locations are required to be
estimated. The range (or pseudo-range) between nodes is
calculated based on the measured TOA of radio signals
transmitted between the nodes. When a mobile node has range

measurements to multiple anchor nodes (at least three for two-
dimensional localisation) the location of the mobile node can
be calculated, and temporal tracking is typically used to
reduce measurement noise. The use of a non-linear filter, such
as a particle filter, is required to handle the non-Gaussian
range error distribution encountered in indoor and other
environments where multipath is encountered [8].

Particle filters are sequential Monte Carlo techniques that
approximate the optimal Bayesian recursion using a point
mass representation of the posterior densities [2]. This
representation consists of a set of random samples (particles)
and associated weights. Although the particle filter has been
shown to perform well for state estimation problems, it
typically requires a large number of particles, which leads to
high computational cost, particularly in applications where a
high update rate is required.

Particle filters apply simple operations to a large number of
particles (typically several hundreds or thousands), and most
of these operations can be performed independently, hence
parallel processing can be effectively exploited. Further these
operations can typically be performed using low precision
arithmetic. These properties make particle filters ideally suited
for implementation in field programmable gate arrays
(FPGA), multicore digital signal processors (DSP) and single
instruction multiple data (SIMD) processors such as the Sony
Cell. In particular, modern FPGA devices can have thousands
of dedicated multiply units and can support trillions of integer
operations per second in a single package at power levels
similar to a single processor in a personal computer.
Unfortunately there is a serial bottleneck in conventional
particle filter algorithms. The goal of our work is to develop
algorithms that overcome this bottleneck and allow efficient
implementation on low precision parallel computing
platforms.

Parallel implementations of particle filters have been
considered in the literature to improve execution of time [3–
6]. A typical implementation of the particle filter consists of
sampling, weight update, and resampling steps, all of which
are amenable to parallel implementation on their own. The
weights, which approximate the probability measure, however,
are normalised before executing the resampling step, which
introduces a serial bottleneck in the particle filter.

The literature on hardware implementation of particle filters
primarily considers improvements to the resampling algorithm

Hardware Efficient Parallel Particle Filter for
Tracking in Wireless Networks

YiQiao Zhang†, Thuraiappah Sathyan‡, Mark Hedley‡, Philip H.W. Leong†, Ahmed Pasha†
†School of Electrical and Information Engineering, The University of Sydney, NSW, Australia

‡Commonwealth Scientific and Industrial Research Organisation (CSIRO), Marsfield, NSW, Australia
yzha6371@uni.sydney.edu.au, tsathyan@ieee.org, mark.hedley@csiro.au, philip.leong@sydney.edu.au,

ahmed.pasha@sydney.edu.au

2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC)

978-1-4673-2569-1/12/$31.00 ©2012 Crown 1756

to improve execution time, and architectures to reduce the
memory requirement. For example, [5] considered
modifications to the resampling algorithm that avoided
normalisation of the weights. This, however, entails non-
deterministic and complicated data exchange patterns between
processing elements and the control unit. In [3] architectures
that reduce memory usage using a single dual-port memory
were proposed, along with modifications to the resampling
algorithm to improve the execution time. Effects of using
finite precision implementation on performance were analysed
in [4]. A parallel hardware implementation of particle filters
was considered in [6], where distributed resampling
algorithms with proportional and non-proportional allocation
of particles were proposed.

The parallel particle filter architecture that we consider in
this paper is the same as the distributed non-proportional
allocation technique of [6]. In this technique the particles are
divided into a number of groups with each group consisting of
a fixed number of particles and the standard operations of the
particle filter are performed in each group independently. Note
that if no data are exchanged between the groups, we cannot
expect the performance of the overall particle filter to be any
better than that of a single group. Whereas in [6] a
deterministic data exchange technique was considered, we
propose four different data exchange techniques and compare
their performance. We also discuss implications of the
different data exchange techniques for hardware
implementation in terms of memory utilisation and execution
time.

The novel aspects of the work presented in this paper are:
(i) explore the extent to which the tracking problem can be
parallelized; (ii) develop a novel algorithm for mixing
particles between the parallel filters that is efficient for fixed-
point DSP and FPGA implementation; and (iii) determine the
minimum precision arithmetic required to minimize the
implementation cost.

This paper is organised as follows. Section II describes
mobile node state estimation in wireless networks using the
standard sequential importance sampling resampling particle
filter and explains the serial bottleneck present in its
implementation. Section III describes the architecture that we
propose in this paper, along with simulation results comparing
several mixing algorithms that we consider. Section IV
discusses the hardware implementation issues, and Section V
provides concluding remarks.

II. SEQUENTIAL PARTICLE FILTER FOR STATE ESTIMATION OF
A MOBILE NODE

State estimation is formulated as an inference problem on
an appropriately defined state-space model. The state
transition model represents our prior knowledge of the motion
of the mobile node and the measurement model relates the
state of the node to the measurement.

A. State Model
The state vector for our application consists of the location
and velocity of a mobile node, as we assume that the state
transition of the mobile node is adequately represented by a
single nearly constant velocity (NCV) model. Let 𝐱(k) =
[𝑥(𝑘),𝑦(𝑘), �̇�(𝑘), �̇�(𝑘)]𝑇 denote the state of the mobile node
at time 𝑘, where (𝑥(𝑘),𝑦(𝑘)) denotes the position and
(�̇�(𝑘), �̇�(𝑘)) denotes the velocity components. The state
transition model can then be written as

 𝐱(𝑘) = 𝐹𝐱(𝑘 − 1) + 𝐯(𝑘) (1)
where 𝐹 is the state transition matrix and 𝐯(𝑘) is the process
noise, which is assumed to be a zero-mean Gaussian random
variable with covariance matrix 𝑄. For the NCV model we can
write 𝐹 and 𝑄 as [11]

 𝐹 = �

1 0 𝑇 0
0 1 0 𝑇
0 0 1 0
0 0 0 1

� 𝑄 = 𝑞

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑇3

3
0 𝑇2

2
0

0 𝑇3

3
0 𝑇2

2
𝑇2

2
0 𝑇 0

0 𝑇2

2
0 𝑇⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (2)

where T is the sample period and 𝑞 denotes the power spectral
density of the process noise.

B. Measurement Model
A mobile node measures the range to all the anchor nodes

that are within its communication range. The range
measurement between the 𝑖th anchor node and the mobile node
at x(k) is given by
 𝑧𝑖(𝑘) = ℎ𝑖(𝐱(𝑘)) + 𝜐𝑖(𝑘). (3)
The set of all measurements to anchor nodes can be written in
vector form as

 𝐳(𝑘) = ℎ�𝐱(𝑘)� + 𝛖(𝑘) (4)

where (𝑥𝑖(𝑘),𝑦𝑖(𝑘)) is the location of the 𝑖th anchor node,
𝜐𝑖(𝑘) denotes the measurement noise and the non-linear
mapping function is given by

 ℎ𝑖(𝐱(𝑘)) = �(𝑥(𝑘) − 𝑥𝑖)2 + (𝑦(𝑘) − 𝑦𝑖)2. (5)
Note that the measurement equation is non-linear. Hence,

even if the state transition model is linear, a non-linear
filtering algorithm such as an extension of the Kalman filter
(e.g., extended Kalman filter (EKF) and unscented Kalman
filter (UKF)) or a particle filter is required for state estimation.
The particle filter is the preferred choice since the range
measurement noise can be non-Gaussian. This can be seen in
Figure 1, which plots the outdoor and indoor range error
distributions measured using our wireless ad-hoc system for
positioning (WASP) [9]. The outdoor error distribution can be
adequately modelled using a zero-mean Gaussian distribution
(in this example, with mean 0.12 m), the indoor distribution is
clearly non-Gaussian. This distribution is clearly asymmetric
and biased.

1757

Figure 1. Range measurement noise characteristics in (a) outdoor and
(b) indoor environments. Outdoor error can be approximated well
with a Gaussian distribution, whereas the indoor distribution is
symmetric and biased.

Like the Kalman filter, the EKF and UKF approximate the
posterior density using a Gaussian distribution and propagate
the first two moments over time. The particle filter on the
other hand propagates samples of the posterior state
distribution. Although we have found that the UKF can
perform as well as the particle filter with outdoor data sets, its
performance degraded severely with indoor data sets, where
the performance of the particle filter is superior. Hence, from a
system implementation perspective, particle filter is preferred
for both outdoor and indoor tracking of nodes.

C. Particle Filter for State Estimation
Let {𝐱𝑖(𝑘 − 1),𝑤𝑖(𝑘 − 1)}𝑖=1𝑁 denote the 𝑁 particles and

their corresponding weights that represent the posterior
density at time 𝑘 − 1. With the availability of the range
measurements at time 𝑘, the particle filter approximates the
posterior density with a new set of particle-weight pairs
{𝐱𝑖(𝑘),𝑤𝑖(𝑘)}𝑖=1𝑁 , through sampling, weight update, and
resampling steps [2].

1) Sampling
New samples at time k are drawn from the importance

density 𝑞(.) according to

 𝐱i(𝑘) ~ 𝑞(𝑥(𝑘)|𝑥𝑖(𝑘 − 1), 𝐳(1:𝑘)) (6)
The importance density that is most often used is the prior

because it is easy to implement and intuitive. That is

 𝑞 �𝐱(𝑘)�𝐱𝑖(𝑘 − 1), 𝐳(1: 𝑘)� = 𝑝 �𝐱(𝑘)�𝐱𝑖(𝑘 − 1)� (7)

2) Weight Update
When the prior density is used as the posterior density it can

be shown that the updated weight is given by

 𝑤𝑖(𝑘) = 𝑤𝑖(𝑘 − 1)𝑝(𝐳(𝑘)|𝐱𝑖(𝑘)) (8)

where 𝑝(𝐳(𝑘)|𝐱𝑖(𝑘)) is the measurement likelihood. Note that
if resampling is used at every time step then the prior weights
will all be equal to 1/𝑁, and hence, the updated weight is
proportional to the likelihood.

3) Resampling

The sampling and weight update are repeated every time
new measurements become available. After a few iterations
the variance of the particles will increase such that there are
only a few particles with significant weights. This

phenomenon is referred to as sample degeneracy and will lead
to the divergence of the particle filter. The objective of the
resampling step is to remove the particles with insignificant
weights and to generate a new particle set by concentrating on
the particles with significant weights.

In the resampling step new samples {𝐱𝑖∗(𝑘)}𝑖∗=1𝑁 are drawn
from the newly proposed particles {𝐱𝑖(𝑘)}𝑖=1𝑁 . New samples
are drawn randomly according to their probabilities 𝑃𝑖 given
by

 () ()
()1

i
i

N l
l

w k
P k

w k
=

=
∑

 (9)

The resampled particles are independent and identically
distributed samples of a discrete density and hence their
weights are set to 𝑤𝑖(𝑘) = 1/𝑁.

III. PARALLEL PARTICLE FILTER
The particle filter is often implemented as a sequential

process. A parallel implementation of the particle filter can
achieve significant improvement in execution time. Although
the sampling and weight update states can be implemented in
parallel, in order to calculate the probabilities of the particles
used in the resampling step, calculated according to (9),
requires the weights of all the particles to be known. This
creates a serial bottleneck where each parallel path must wait
for the others to complete before the resampling step can
begin. In this section we look at different ways to overcome
this serial bottleneck. Note that the techniques that we look at
are approximations to the original serial implementation and
the objective is to find a parallel implementation that is
efficient in memory usage and complexity, while not
sacrificing tracking performance.

A. Structure of the Parallel Implementation
In the parallel particle filter implementation we consider

particles are divided in to 𝑀 groups with each consisting 𝑁/𝑀
particles. The sampling, weight update, and resampling steps
for each group are implemented as in the standard serial
implementation of the particle filter. One can think of just
combining the individual state estimates of different groups to
form a combined state estimate. The performance of such a
filter cannot be any better than that obtained by running a
single filter with 𝑁/𝑀 particles.

This necessitates a mixing step, where particles from
different groups are mixed prior to processing the
measurements from the next time step. The mixing step can be
performed before or after the resampling step in each group
and the final estimate of the parallel particle filter is the
combined estimate of all the groups after the mixing step.
Although the particle filter running in each group still has the
serial bottleneck, by reducing the number of particles by a
factor of M the speed of each particle filter can be increased
by the same factor M. It is important that the new step, mixing
between groups, does not introduce a new serial bottleneck.

We will now present four different mixing strategies in this
section then compare their performance.

1758

1) Full Random Mixing (FRM)
In this case we as the name suggests the mixing is

performed in a random order. After performing the resampling
step in each group we generate a random permutation of the
numbers between 1 and 𝑁 and swap the memory locations of
all the 𝑁 particles according to the random permutation prior
to processing the next set of measurements.

This technique follows the spirit of the particle filter, i.e.,
operations are performed randomly. As a result the mixed
particles will show good diversity and will lead to better
performance. This is the most complex to implement in
hardware.

2) Lowest Weight Replacement (LWR)
Mixing is implemented before the resampling step and uses

the weights as a guide to perform mixing. After performing
weight update, particles in each group are sorted according to
their weights. The highest weighted particle in each group is
then selected and the least weighted 𝑀 − 1 particles in each
group are replaced by the highest weighted particle in the
other 𝑀 − 1 groups. An example of LWR technique is shown
in Figure 2.

This technique requires additional processing to find the
particle with the largest weight, but has the lowest memory
bandwidth requirement of the proposed techniques.

3) Deterministic Mixing (DM)
Mixing is performed in a predetermined order after the

resampling step, at which point all particles have equal weight.
There are many ways in which DM can be done. In the
technique we implemented each group is numbered
sequentially and groups with consecutive numbers are
considered adjacent. We also consider the last and first groups
to be adjacent. Two particles from each group are swapped
with the correspondingly numbered particles in the adjacent
group. The DM technique that was implemented in the
simulations is illustrated in Figure 3.

This type of mixing is easy to implement due to its
deterministic nature and it is easy to devise optimized
hardware implementations. The memory bandwidth for each
group is low and independent of the number of groups.

4) Partial Random Mixing (PRM)
This is similar to FRM, however to reduce memory

bandwidth we only mix a randomly selected subset of particles
from adjacent groups. This is performed after resampling.
While enjoying simpler complexity compared to the full
random mixing, this still provides benefits of randomness.

B. Simulation Results
We conducted a simulation study to compare the

performance of the parallel particle filter implemented with
the different mixing techniques considered. The benchmark
performance was considered to be the one obtained using the
standard serial implementation.

Figure 2. Illustration of lowest weight replacement mixing. There are
four groups of 50 particles each and the highest weighted particles
from groups two to four replaces the lowest weighted three particles
from group 1.

Figure 3. Illustration of deterministic mixing. There are ten groups of
50 particles each and two particles from a group are swapped with
two particles in the adjacent group. First and last groups are assumed
adjacent.

In the scenario considered there were B=4 anchor nodes
located at the edges of a 100×100 m square. A single mobile
node was simulated whose initial position and velocity were
set to (4, 3.5) m and (0.25, 0.15) m/s, respectively. The mobile
node trajectory was generated using a NCV model with the
power spectral density of the process noise set to 0.05 m2/s3.
The range between the anchor nodes and the mobile node was
determined at each time step and the measurement noise was
generated from a zero-mean Gaussian distribution with
standard deviation 0.5 m. The simulation duration was 80 s.

A total of 500 particles were used in all implementations of
the particle filter. Through experiments we found this is the
minimum number of particles that is required in the standard
serial implementation to provide non-diverging tracks of the
mobile node. By using the minimum number of particles of
the serial implementation, any degradation of the performance
in the parallel implementations would immediately be
observable.

Figures 4-7 show the root mean square error (RMSE) of the
position and velocity of the mobile node calculated over 50
Monte Carlo runs for the four mixing techniques discussed in
this section. These plots compare the performance of two
parallel particle filter implementations with 10 and 20 groups
with that of a non-parallel implementation (i.e. one group).

1759

Figure 4. Full random mixing.

Figure 5. Lowest weight replacement.

Figure 6. Deterministic mixing.

Figure 7. Partial random mixing.

TABLE 1

COMPARISON OF MIXING TECHNIQUES PER GROUP
Technique Memory Accesses Extra Processing

FRM 2N/M random numbers
LWR M+1 largest number
DM 8 -

PRM 20 random numbers

C. Analysis of Results
The first important observation from the data is that it is

possible to have up to 20 parallel filters and still provide good
tracking performance, hence a speedup of almost twenty times
can be achieved.

Table 1 shows the number of memory accesses required for
each technique, where for this data N = 500 and M has values
10 and 20. The accesses are for each group, as an
implementation will require a separate memory for each
group. The least number of memory accesses is required by
DM and the most by FRM. For high levels of parallelization
LWR requires more memory accesses than PRM.

From the results it is seen that DM has the worst
performance, and FRM has the best performance, as expected
from the amount of mixing performed. PRM generally
performed better than LWR and does not require an extra
processing step to find the largest number. Hence it is the
preferred technique among other mixing strategies and was
finally chosen to be evaluated in hardware.

IV. FILTER IMPLEMENTATION
The previous section described the mixing operation

required between multiple particle filters. In this section we
focus on the implementation of the particle filter in each
group.

A breakdown of the arithmetic operations required per
iteration of a particle filter is given in Table 2, where N is the
total number of particles, and B is the number of base stations.
The weight update step is seen to dominate the computational
complexity.

1760

TABLE 2
BREAKDOWN OF OPERATIONS OF EACH STEP IN PARTICLE FILTER

Operations

Step

Add
Subtract Multiply Divide Exp Sqrt Random

numbers

Sampling 6N 2N - - - 4N

Weight

4BN 2(B + 2)N N N BN -

Resampling 3N - - - - N

Besides the basic operations (add, subtract, multiply), the

implementation also requires division (div), exponential (exp),
and square root (sqrt). Standard integer div and sqrt algorithms
are used since they are reasonably area efficient and produce
exact results. The exponential function is computed using the
CORDIC algorithm in rotation mode [1,4]. Moreover, four
independent, Gaussian distributed random numbers are
required per iteration. These can be efficiently generated in
software or hardware using the Ziggurat method [10].

Although floating-point arithmetic is convenient for
simulations on desktop computers, fixed-point designs are
superior in terms of silicon area, power consumption, speed
and latency. As our target implementation platforms are
FPGAs and low-cost DSPs, fixed-point is preferred.

A study of the effects of precision on accuracy was
undertaken. All arithmetic operations were implemented using
the MATLAB Fixed-Point Toolbox, with the exception of the
exp function, which used CORDIC. The signal was
represented as an integer and its word length was varied in
order to observe the effects of finite precision. Simulations
using a serial configuration of the particle filter at different
precisions were made and a double-precision accumulator was
used to calculate the position root mean square error (PRMSE)
of the mobile node. The results are shown in Figure 8. It can
be seen that 12-bit fractional precision has significant error
whereas 18-bit or higher precision results in similar accuracy
to a double precision implementation.

V. CONCLUSIONS
A good choice for tracking in wireless networks in GPS

denied spaces is range based localization using a particle filter.
Particle filters are computationally complex and have a serial
bottleneck. In this paper we described a parallel particle filter
design suitable for implementation in an FPGA or parallel
fixed-point DSP. The serial bottleneck is overcome by
dividing the particles between multiple particle filters
operating in parallel, and performing a mixing operation
between the filters at each time step. We showed that for
tracking up to twenty parallel particle filters works well,
hence, allowing a twenty-fold speedup. We evaluated four
techniques for particle mixing and found that partial random
mixing achieves good performance while significantly
reducing memory bandwidth.

We analysed the operations required in each particle filter
and proposed a fixed point implementation that leads to
efficient implementation with almost no loss in accuracy
compared to a double precision floating point implementation.

Figure 8. Effect of precision on location error (M=10).

Our future work will focus on FPGA implementations,

which combine the task-level parallelisation techniques
described in this paper with other hardware optimisations such
as pipelining, parallel arithmetic units and multi-ported
memories. Other techniques to further reduce precision
requirements while maintaining high accuracy will also be
investigated.

REFERENCES
[1] R. Andraka, “A survey of CORDIC algorithms for FPGA based

computers”, Proc. ACM/SIGDA Symp. on FPGAs, 1998, pp. 191-200.
[2] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial

on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking”, IEEE Trans. on Signal Processing, Vo. 50, No. 2, pp. 174 –
187, 2002.

[3] A. Athalye, M. Bolic, S. Hong, and P. M. Djuric, “Generic Hardware
Architectures for Sampling and Resampling in Particle Filters”,
EURASIP Journal on Applied Signal Processing, Vo. 17, pp. 2888 –
2902, 2005.

[4] M. Bolic, S. Hong, and P. M. Djuric, “Finite Precision Effect on
Performance and Complexity of Particle Filters for Bearing-Only
Tracking”, Signals, Systems and Computers, Vol.1, pp. 838 – 842, 2002.

[5] M. Bolic, A. Athalye, P. M. Djuric, S. Hong, “Algorithmic Modification
of Particle Filters for Hardware Implementation,” Proc. European
Signal Processing Conference, Vienna, Austria, 2004.

[6] M. Bolic, P. M. Djuric, and S. Hong, “Resampling algorithms and
architectures for distributed particle filters,” IEEE Trans. Signal
Processing, Vol. 53, No. 7, pp. 2442 – 2450, 2005.

[7] K. Pahlavan, X. Li, and J.-P. Makela, “Indoor geolocation science and
technology”, IEEE Communications Mag. Vol. 40, No. 2, 112–118,
2002.

[8] T. Sathyan and M. Hedley, “Efficient Particle Filtering for Tracking
Maneuvering Objects,” Proc. IEEE/ION Position Location and
Navigation Symp., Indian Wells, CA, May 2010.

[9] T. Sathyan, D. Humphrey, and M. Hedley, “A System and Algorithms
for Accurate Radio Localization using Low-cost Hardware,” IEEE
Trans. System, Man and Cybernetics – Part C, Vol. 41, No. 2, pp. 211-
222, 2011.

[10] D.B. Thomas, W. Luk, P.H.W. Leong and J.D. Villasenor, “Gaussian
random number generators,” ACM Computing Surveys, vol. 39, no. 4,
pp. 11.1-11.38, October 2007.

[11] Y. Bar-Shalom, X. Rong Li, and T. Kirubarajan, Estimation with
Applications to Tracking and Navigation, John Wiley & Sons, New
York, NY, 2001.

1761

