
Redundancy-reduced MobileNet Acceleration on
Reconfigurable Logic For ImageNet Classification

Jiang Su, Julian Faraone, Junyi Liu, Yiren Zhao, David B. Thomas, Philip H. W. Leong,
and Peter Y. K. Cheung

Imperial College London, University of Sydney
j.su13@ic.ac.uk

Abstract. Modern Convolutional Neural Networks (CNNs) excel in image clas-
sification and recognition applications on large-scale datasets such as ImageNet,
compared to many conventional feature-based computer vision algorithms. How-
ever, the high computational complexity of CNN models can lead to low system
performance in power-efficient applications. In this work, we firstly highlight
two levels of model redundancy which widely exist in modern CNNs. Addition-
ally, we use MobileNet as a design example and propose an efficient system
design for a Redundancy-Reduced MobileNet (RR-MobileNet) in which off-chip
memory traffic is only used for inputs/outputs transfer while parameters and inter-
mediate values are saved in on-chip BRAM blocks. Compared to AlexNet, our
RR-mobileNet has 25× less parameters, 3.2× less operations per image inference
but 9%/5.2% higher Top1/Top5 classification accuracy on ImageNet classification
task. The latency of a single image inference is only 7.85 ms.

Keywords: Pruning, quantization, CNN, FPGA, algorithm acceleration

1 Introduction

Modern CNNs have achieved unprecedented success in large-scale image recognition
tasks. In order to obtain higher classification accuracy, researchers proposed CNN mod-
els with increasing complexity. The high computational complexity present challenges
for power-efficient hardware platforms like FPGAs mainly due to the high memory band-
width requirement. On one hand, the large amount of parameters leads to an inevitably
off-chip memory storage. Together with inputs/outputs and intermediate computation
results, current FPGA devices struggle to provide enough memory bandwidth for suf-
ficient system parallelism. On the other hand, the advantages of the large amount of
flexible on-chip memory blocks are not sufficiently explored as they are mostly used as
data buffers which have to match with off-chip memory bandwidth. In this work, we
address this problem by reducing CNN redundancy so that the model is small enough
to fit on-chip and our hardware system can benefit from the high bandwidth of FPGA
on-chip memory blocks.

There are existing works that have explored redundancy in CNNs on model-level
and data-level separately. Model-level redundancy leads to redundant parameters which
barely contribute to model computation. For example, a trained AlexNet may have
20% to 80% kernels with very low values and the computation can be removed with

2 J. Su, J. Faraone et. al.

very limited effect to the final classification accuracy [1]. Data-level redundancy, on the
other hand, refers to unnecessarily high precision for data representation to parameters.
However, there are very limited work that quantitatively consider both redundancy at the
same time, especially in a perspective of their impacts to a hardware system design. The
contributions of this work is as follows:

– We consider both model-level and data-level redundancy, which widely exist in
CNNs, in hardware system design. A quantitative analysis is conducted to show the
hardware impacts of both types of redundancy and their cooperative effects.

– We demonstrate the validity of the proposed redundancy reduction analysis by
applying it to a recent CNN model called MobileNet. Compared to a basedline
AlexNet model, our RR-MobileNet has 25× less parameters, 3.2× less operations
per image computation but 9% and 5.2% higher Top1/Top5 accuracy on ImageNet
classification.

– An FPGA based system architecture is designed for our RR-MobileNet model where
all parameters and intermediate numbers can be stored with on-chip BRAM blocks.
Therefore, the peak memory bandwidth within the system can achieve 1.56 Tb/s. As
a result, our system costs only 7.85 ms on each image inference computation.

About this topic, several works have explored in one perspective or another. In
terms of data-level redundancy, [2] [3][4] and several other works explores FPGA based
acceleration system for CNN models with fixed point parameters and activation values.
But model-level redundancy is not considered for further throughput improvement. On
the other side, works like [1][5] explored model-level redundancy in CNN hardware
system design, but these works are presented without quantitative discussion about
hardware impacts of reduced-precision parameters used in CNN models. In this work,
we consider both types of redundancy and report our quantitative consideration for a
MobileNet acceleration system design.

The two-level redundancy in neural networks and its impacts to hardware system
design are introduced in Section 2. Section 3 introduces an FPGA system design for our
Redundancy-Reduced MobileNet for ImageNet classification tasks. The experimental
results are discussed in Section 4 and Section 5 finally concludes the paper.

2 Accelerating Redundancy-Reduced Neural Networks on FPGA

In this section, we firstly give a brief introduction to MobileNet [6]. Then, our redun-
dancy reduction strategy is introduced with an explanation of how redundancy affects
the hardware resource requirements. Next, we show a system architecture design for
accelerating our Redundancy-Reduced MobileNet (RR-MobileNet).

2.1 MobileNet Complexity Analysis

MobileNet [6] is a recent CNN model that aims to present decent classification accu-
racy with reduced amount of parameters compared to CNN models with conventional
convolutional (Conv) layers. Figure 1 shows the building blocks of MobileNet called

RR-MobileNet Acceleration on FPGA 3

depthwise separable convolutional (DSC) layer, which consist of a depthwise convolu-
tional (DW Conv) layer and a pointwise convolutional (PW Conv) layer. A DW Conv
layer has a K × K × N kernel which is essentially consist of a K × K kernel for
each Input Feature Map (IFM) channel. So 2 dimensional convolutions are conducted
independently in a channel-wise manner. Differently, PW Conv layer is a special case of
a general Conv layer and it has kernel size of 1× 1×N ×M while a general Conv layer
may have kernels with a more general size of K ×K ×N ×M . MobileNet models, as
shown in Table 2, can be formed by several general Conv layers and mostly DSC layers.

…

Input Feature Maps Output Feature Maps
(DW_Conv layers)

Output Feature Maps
(PW_Conv layers)

𝐼/𝑇𝑖

𝑀

𝐼/𝑇𝑖

𝑁/𝑇𝑛

𝑁

𝐼

𝐼

𝑘 × 𝑘 × 𝑁

1 × 1 × 𝑁 ×𝑀

𝑀/𝑇𝑚

𝑁
𝑂/𝑇𝑜

𝑂/𝑇𝑜

Fig. 1: Tilling in Depthwise Separable Layer for MobileNet

For a general Conv layer, below equations show the resulting operation count CConv

and parameter amount PConv given that a IFM is I × I ×N and an Output Feature Map
(OFM) size is O ×O ×M :

CConv = 2×K2 ×O2 ×N ×M,

PConv = K ×K ×N ×M,
(1)

where 2 in Eq. 1 indicates that we consider either a single multiplication or an
addition as a fundamental operation in this work. On the other side, the operation count
and parameter amount of a DSC layer are as listed below:

CDSC = 2× (K2 ×O2 ×N +O2 ×N ×M),

PDSC = K ×K ×N +N ×M.
(2)

As shown in Eq.2, the amount of parameters in a DSC layer is an addition of the
parameters in both DW Conv and PW Conv layers. In practice, a DSC layer has a
parameter complexity of O(n3) while a Conv layer has O(n4) and this leads to a much
smaller model for MobileNet compared to conventional CNNs [6].

2.2 Model-level Redundancy Analysis

As mentioned in Section 1, there are several works that address model-level redundancy,
we use an iterative pruning strategy. Firstly, a quantization training process, which will be
shortly described in Algorithm 1, is conducted on the baseline MobileNet model (Table

4 J. Su, J. Faraone et. al.

2). Then, an iterative pruning and re-training process is conducted. In each iteration
of such process, Prune(∗) is applied to remove the model kernels according to β by
layer-wisely thresholding the kernels values. Noticeably, our iterative pruning process is
similar to strategy in [7]. However, in our strategy, a kernel is either removed or kept
as a whole according to the summation of its values rather than turning it into a sparse
kernel. This is called kernel-level pruning in [8]. By doing such structured pruning,
we avoid using extra hardware resources to build sparse matrix formatting modules as
needed in unstructured pruning strategies [5]. Finally, each pruning step inevitably leads
to model accuracy loss although only less important kernels are removed. So we conduct
re-training to compensate the lost model accuracy.

What pruning essentially does is changing M in equation 1 and 2 to β ×M . Corre-
spondingly, such kernel pruning leads to a reduction of sizes of the OFM and kernels,
which results in a smaller memory requirement to hardware. For example, βl is the
pruning rate of l-th layer. Kernel parameters are represented by DWp-bit numbers while
feature maps are represented byDWa-bit numbers. For a pruned Conv layer, the memory
footprint required to store kernel parameters Memp

l is as below:

Memp
l = K ×K ×N ×M ×DWp × βl. (3)

While to an SDC layer, the memory footprint is changed to following:

Memp
l = (Kl ×Kl ×Nl × βl−1 +Nl ×Ml × βl)×DWp. (4)

Eq.4 implies that the reduced parameters in the DW Conv of a DSC layer is de-
termined by the pruning rate of its preceding layer βl−1 while the the PW Conv layer
memory saving is from βl. Specially, β0 is 1 for the input layer.

Meanwhile, the memory footprint for storing IFMs MemI
l and OFMs MemO

l for
both types of layers are as following:

MemI
l = Il × Il ×Nl ×DWa × βl−1,

MemO
l = Ol ×Ol ×Ml ×DWa × βl,

(5)

Additionally, kernel pruning also reduces computational complexity in a proportion
of β. The reduced operation counts can be illustrated by Eq.1 and 2 with M displaced
by its discounted value M ∗ β when calculating CConv and CDSC separately for Conv
and DSC layers.

In the next part, we will show the relationship between data-level redundancy and
above-mentioned model-level redundancy as well as their cooperative effects to the
hardware resources.

2.3 Data-level Redundancy Analysis

Data-level redundancy studied in this work, mainly aims to use reduced-precision
parameters to replace their high-precision alternatives such as single/double-precision
floating numbers that are widely used in CPU/GPU computing platforms. Instead, we

RR-MobileNet Acceleration on FPGA 5

explore fixed point representations with arbitrary bitwidth for parameters and activation
values and quantitatively analyse their hardware impacts. Firstly, we introduce our
quantization training strategy in Algorithm 2, which is used in this work for training
reduced-precision neural networks.

Specially, the training procedure is completed off-line with GPU platforms. Only
the trained model with reduced-precision parameters is loaded to our FPGA system for
inference computation, which is the focus of this work.

Algorithm 1 Quantization Training Process for A L-layer neural network
Require: Inputs a0, labels a∗, kernel parametersW , batch normalization parameters θ, maximum

iteration number MaxIter, lower bound value min, upper bound value max.
Ensure: W and θ at MaxIter iteration.

for iter = 1 to MaxIter do
// Forward Propagation
aQ0 ← Quantize(a0)
for l = 1 to L do
WQ
l ← Quantize(Wl)

al ← layer forward(aQl−1,W
Q
l);

aQl ← Quantize(al);
end for

// Backward Propagation
for l = L to 1 do
gal−1 , gWQ

l
← layer backward(gal ,W

Q
l)

θl ← Update(θl, gθl)
Wl ← Clip(Update(Wl, gWQ

l
),min,max)

end for
end for

Based on the quantization training strategies proposed in [9], we extend their training
strategy to support arbitrary parameter precision as shown in Algorithm 1. In forward
pass, both model parameters, or weights, W and feature map values, or activations, a are
quantized before actual computations during inference. The Quantize(∗) function con-
verts real values to the nearest pre-defined fixed point representation. layer forward(∗)
conducts the inference computation we described in Section 2.1.

In backward propagation, parameters are updated with the gradient in terms of
the quantized weights gWQ so that the network learns to do classification with the
quantized parameters. However, the updating is applied to the real-valued weights W
rather than their quantized alternatives WQ so that the training error can be reserved
in higher precision during training. Additionally, Clip(∗) helps the training to provide
the quantized parameters within a particular range where values can be presented by a
pre-defined fixed point representation. Concrete data representation will be introduced
in Section 4. At last, we use the same hyper-parameters for training provided by [9].

Particularly, our iterative pruning and quantization training strategy (Algorithm 1) is
different from the pruning and weight sharing method proposed in [7] in several ways.

6 J. Su, J. Faraone et. al.

Their method highlights weight sharing rather than changing the data representation.
Their iterative training for pruning purposes is a separate process before weight sharing
while in our approach, we do iterative pruning together with quantization training process
so that model-level and data-level redundancy are both considered during training.

Above training process eventually generates a model with fixed point representations
for parameters and feature map values represented with DW ′p and DW ′a bits separately.
So the memory ratio between a pruned value and the its high-precision alternative are
αp = DW ′p/DWp and αa = DW ′a/DWa. Based on Eq.3 - 4, the memory requirement
for parameters after removing both model-level and data-level redundancy is shown
below for Conv layers:

Memp
l = K ×K ×N ×M ×DWp × βl × αp. (6)

For DSC it is:

Memp
l = (Kl ×Kl ×Nl × βl−1 +Nl ×Ml × βl)×DWp × αp, (7)

and for feature maps:

MemI
l = Il × Il ×Nl ×DWa × βl−1 × αa,

MemO
l = Ol ×Ol ×Ml ×DWa × βl × αa.

(8)

We refer α as data-level memory saving factor and β as model-level memory saving
factor. These two factors affects memory requirement for parameters in a multiplication
way (Eq.6-8). This effect can be represented as a final saving factor of αp × βl−1 for
DW Conv and αp×βl for PW Conv and general Conv layers as shown in Eq.6 and Eq.7.
Similarly, feature map values are affected by a factor of αa×βl−1 for IFMs and αa×βl
for OFMs as shown in Eq.8. In Section 4, we will further show that the cooperative
effects of α and β are vital to our FPGA hardware architecture implementation on FPGA
that provides high system performance.

3 RR-MobileNet FPGA Acceleration System Design

Based on the model-level and data-level redundancy analysis in the preceding sections,
we introduce in this part what values of α and β can lead to a high-performance archi-
tecture design. In this work, we aim to achieve On-Chip Memory (OCM) storage for
both parameters and feature map values. This can be achieved only with careful memory
system design which is supported by a corresponding redundancy removal strategy.
Firstly, we introduce the building block module design. Next, we show the conditions
its memory system design should satisfy in order to implement the architecture within
given FPGA resources.

RR-MobileNet Acceleration on FPGA 7

3.1 System Architecture

We design a loop-back architecture, which processes our RR-MobileNet model layer
by layer. Only neural network inputs, such as images, and the classification results are
transferred to external of the programmable logic. So all parameters, feature maps and
intermediate values are stored on FPGA OCM resources. The overall system architecture
is shown in Fig.2

Ext. Memory

DW

RAM

PW

RAM

DW

Conv
Conv

FM buffer P FM buffer Q

Computing Engine

Cache

CPU system

BN

Programmable Logic

AXI

ReLU FC

DMA

Fig. 2: System Architecture Design for RR-MobileNet

Network inputs are stored in external memory and streamed into our acceleration
system by DMA through AXI bus. After Computation, the classification results are
transfered back to the external memory for further usage. Within the system on the
programmable logic, there are two on-chip buffers for storing feature map values. They
are Feature Map (FM) buffer P and Q. Initially, the inputs from external memory are
transferred to the FM buffer P and the computation can be started from this point. The
computing engine module is the computational core that can process one layer at a time.
Once the computing engine completes the computation of the first layer, the OFMs of
the first layer will be stored in FM buffer Q. Noticeably, FM buffer P and Q are used for
storage of IFMs and OFMs in an alternating manner for consecutive layers due to the
fact that the OFMs of a layer are the IFMs of its following layer.

DW and PW RAMs are for parameter storage. As the module names suggested, DW
RAM is for DW Conv layer parameters while PW RAM is for ones in PW Conv layers.
There are also non-DSC layers in MobileNet structure, whose parameters are also stored
in these two memory blocks. Due to the fact that DW Conv layers have much smaller
amount of parameters compared to PW Conv layers, the DW RAM is hence used for
Conv layer parameters as well as batch normalization parameters. More details about
OCM utilization will be intruduced in Section 4.

The computing engine consists of DW Conv, Conv, BN and ReLU modules, which
conduct the computation of either a Conv or a DSC layer. For DSC layers, its DW Conv
layer is computed by the DW Conv module followed by a BN module for batch normal-
ization and ReLU for activation function computations. Meanwhile, its PW Conv layer
is computed in the Conv module and its following BN and ReLU modules. Due to the

8 J. Su, J. Faraone et. al.

…

…

…

…

…

…

BN

BN

…

…

ReLU

ReLU

…
 N’

…
 N’

0

DW_1

FM_P_1

DW_2

FM_P_2

DW_N

FM_P_N

FM_Q_1

FM_Q_2

FM_Q_N

N’ N’

Fig. 3: PE of DW Module

…

…

…

…

…

…

…

…
 M’

…
 M’

PW_1

FM_P_1

PW_2

FM_P_2

PW_M

FM_P_N

FM_Q_1

FM_Q_2

FM_Q_M

Patch

Buffer

…
 N’

…

M’

…

…

Fig. 4: PE of Conv Module
fact that PW Conv layer is a special case of a Conv layer with all 1× 1×M kernels,
the Conv module is also used for general Conv layer computation.

The DW module and its following BN/ReLU blocks are an array of Processing
Elements(PE) as shown in Fig.3. Each PE has 32 parallel dataflow paths that are capa-
ble of processing 32 channels in parallel. As we use pre-trained batch normalization
parameters, each BN module essentially takes inputs and apply a multiplication and an
addition for scaling operations defined in batch normalization [10]. ReLU simply caps
negative input values with 0. The Conv module is designed by conducting loop unrolling
based on output feature channels M , i.e. M dataflow paths can produce outputs for the
output channels in parallel. Similarly, Conv module is also consist of an array of PEs as
shown in Fig.4. Each PE can produce values for 32 OFM channels in parallel. The patch
buffers are used for loading the feature map numbers involved in each kernel window
step and broadcasting these numbers to all computational units within the PE for OFM
computations. Finally, FC modules are designed for the output layer, which essentially
are parallel multiplier and adder trees for efficient computation of the last Conv layer
that behaves as a Fully-connected (FC) layer.

In the next section, we specially introduce our design principles for FM buffers and
parameter OCM storage mentioned in above system description.

3.2 Memory Usage

In order to avoid the time spent on off-chip memory traffic for parameters and feature
map values, we aim to map both data onto the available OCMs given an FPGA device.
Based on the layer-wise memory requirement analysis in Eq.6 and 7, the overall memory
requirement for our Redundancy-reduced MobileNet (RR-Mobi), which contains I Conv
layers and J DSC layers, is shown below:

Memp
RR−Mobi =

I∑
i=1

Ki ×Ki ×Ni ×Mi × βi × αp ×DWp+

J∑
j=1

(Kj ×Kj ×Nj × βj−1 +Nj ×Mj × βj)×DWp × αp.

(9)

This indicates that the memory reuse is impossible among for parameter storage
among all layers in a MobileNet and the overall requirement is a summation of individual

RR-MobileNet Acceleration on FPGA 9

layers. Differently, the memory for feature map storage can be reused among layers
because of the fact that the OFMs of layer i are only used to compute IFMs of layer
i+ 1. Therefore, the memory accolated for OFMi can be reused for storing the feature
maps of the following layers. So the memory requirement for feature map storage is
capped by the layer with the largest feature map values:

Mema
RR−Mobi =

l=I+J⋃
l=1

(I2l ×Nl × βl−1 ×DWa × αa +O2
l ×Ml ×DWa × βl × αa),

(10)

where
⋃l=I+J

l=1 returns the maximum memory requirement for feature maps of any single
layer among all I + J layers. If MemOCM represent the OCM resources available on a
particular FPGA device, below condition should be valid in a memory system design:

Mema
RR−Mobi +Memp

RR−Mobi < MemOCM . (11)

So our redundancy removal strategy should ideally provide values of α and β for
each layer that satisfies Eq.11. In the experiments in Section 4, we will show our resulting
strategy of redundancy removal for above-mentioned purposes.

3.3 Layer Tilling

As introduced in section 3.1, feature maps are organized based on channels for parallel
access. However, some layers have just a few channels but with large amount of numbers
in each channel or the other way around, which lead to an efficient storage. For example,
the IFMs of the first Conv layer in MobileNet can be images in the ImageNet dataset
and the size can be 224×224×3. However, our proposed system architecture would
have higher efficiency if the feature maps have many channels but only reasonably
small amount of numbers in each, like the DSC hidden layers in the middle part of the
MobileNet topology. So we do tilling to balance the memory for layers like the first Conv
layer by divide the IFMs along the channel direction and break them down to smaller
blocks that can fit the memory system more efficiently.

An example of applying tilling to a DSC layer is shown in Fig.1. I× I×N IFMs are
tilled into Ti×Ti×Tn components, which can be computed in parallel in the computing
engine. Similarly, for the PW Conv layer, OFMs can be divided into To × To × Tm
parallel tiles. In the Section 4, we will show our tilling strategy for our RR-MobileNet
system.

4 Experimental Evaluation

4.1 Experimental Results

In this section, we report implementation details of our RR-MobileNet redundancy
removal strategy and acceleration system. Meanwhile, we compare our restuls with
several other works to demonstrate the validity of our proposed method.

10 J. Su, J. Faraone et. al.

4.2 Experimental Settings

The system is implemented with Vivado HLS complied in Xilinx SDx v2016.3 version.
The working clock frequency is 150 MHz. We use Xilinx Zynq UltraScale+ MPSoC
as our design hardware platform. Its quad-core ARM Cortex-A53 and a XCZU9EG
FPGA chip are separately corresponding to the CPU and programmable logic in Figure
2. We train and predict our RR-MobileNet model on ImageNet dataset and report the
results from predicting on the validation set for the Top1/Top5 classification accuracy.
The overall system resource utilization is shown in Table 1. Our system is mainly limited
by on-chip memory resources which are used for storing all quantized parameters and
feature maps. Considering the data access based on Eq.11, the resulting number of PEs

0

2

4

6

8

10

12

14

16

18

20

0

2

4

6

8

10

12

14

16

18

20

Conv1 DSC2 DSC3 DSC4 DSC5 DSC6 DSC7 DSC8 DSC9 DSC10 DSC11 DSC12 DSC13 DSC14 Conv15

MobileNet RR-MobileNet

Parameter Mem. (Mb)

0
2
4
6
8
10
12
14
16
18
20

0
2
4
6
8
10
12
14
16
18
20

Conv1 DSC2 DSC3 DSC4 DSC5 DSC6 DSC7 DSC8 DSC9 DSC10 DSC11 DSC12 DSC13 DSC14 Conv15

Feature Map Mem. (Mb)

Fig. 5: Per-layer Memory Requirement With/Without Redundancy Removal

in DW conv and Conv moduls are 9. Therefore, up to 9× 32 = 288 kernel channels can
be computed in parallel. According to this information, the final RR-MobileNet topology
and our redundancy removal strategy are described in Table 2. Meanwhile, a resulting
layer-wise memory requirement before and after pruning is shown in Fig.5. It is shown
in the figure that the layers towards the input and output layers are both memory-heavy
layers but for different reasons. The input side layers are because of massive feature maps
numbers while the output side layers are due to the large amount of parameters. In order
to handle this, we apply tilling especially with higher factors to these layers as shown
in Table 2. Meanwhile, we apply β to the hidden layers in the middle to further bring
down the memory requirements. Specially, our design finally uses a αa of 0.25 and αw

of 0.5 for data representation. we found this α and β combination gives us fittable design
with reasonable model accuracy presented. So the determined data representations for
parameters and feature maps are Q2.6 and Q2.2 fixed point values with setting min
and max in Algorithm 2 to -1 and 1 separately. We adopt TensorFlow implementation
running on an Nvidia Titan X GPU for iterative pruning and quantization training. Only
inference is accelerated on FPGA. The final classification accuracy is shown in Table 3.

As shown in Table 3, we compare our RR-MobileNet with several other CNN hard-
ware accelerators as well as the baseline MobileNet without any redundancy reduction.

RR-MobileNet Acceleration on FPGA 11

Table 1: Resource Utilization
BRAM 18K DSP FF LUT

Usage 1729 1452 55K 139K
Total 1824 2520 548K 274K
Util. 95% 58% 11% 51%

Table 2: Redundancy Reduction and Tilling
Conv1 DSC2 DSC3 DSC4 DSC5 DSC6 DSC7-12 DSC13 DSC14 Conv15

M 32 64 128 128 256 256 512 1024 1024 1000
Pruned M 32 64 128 128 256 256 288 576 768 1000
β 0 0 0 0 0 0 0.56 0.56 0.75 0
Tilling
(Ti/Tj/Tn/Tm) 4/4/1/1 2/2/1/1 2/2/1/1 1/1/1/1 1/1/1/2 1/1/1/3 1/1/1/4

It shows that our re-training strategy can reserve the original model accuracy to some
extend while reducing redundancy from the neural network. Our RR-MobileNet removes
42% of the original MobileNet parameters. Specially, compared to the baseline AlexNet
design, our model requires 25× less parameters and 3.2× less operations per image
computation to achieve about 9% and 5.2% higher Top1/Top5 accuracy.

Table 3: Comparison With Other Works

Work Model Params
(M) GOps/F FPGA Freq.

(MHz)
Prec.
(W/a)

#ms per
Inf. (ms) GOPS Top1

Acc.
Top5
Acc.

[2] AlexNet 62.4 2.27 Stratix-V 100 8/10 ∼13 114.5 55.6 79.3

[4] VGG-16 132 30.94
Zynq
XC7Z045

150 16/16 224.6 136.97 68 87.9

[6] MobileNet 4.2 1.13 -/- -/-
16/16
(FP)

-/- -/- 0.71 0.90

Ours RR-MobileNet 2.5 0.72 XCZU9EG 150 8/4 7.85 91.2 64.6 84.5

We also compare our results with several other state-of-the-art works as shown in
Table 3. Because our work is the first one that maps MobileNet on FPGA platforms, we
can only compare with existing works that focus on different CNN models. Our system
can achieve lower latency than other works mainly because of the high on-chip memory
bandwidth access, which can achieve a top 15.6 Tb/s. However, current memory system
design also limits the PE parallelism due to fixed data access pattern. So the throughput
is relatively lower than other works. This will be studied in our future works.

5 Summary and Conclusion

In this work, we present our quantitative analysis of both model-level and data-level
redundancy in MobileNet and implement an FPGA acceleration system for our RR-
MobileNet. Although we only focus on MobileNet model in this work, our redundancy
removal methods are general to a broad range of neural networks. In the future work, we
will focus on improving our system throughpout using orthogonal CNN loop manipula-
tion techniques. We will also extend our study to other types of neural networks.

Acknowledgments

The authors from Imperial College London would like to acknowledge the support of
UKs research council (RCUK) with the following grants: EP/K034448, P010040 and
N031768. The authors from The University of Sydney acknowledge support from the
Australian Research Council Linkage Project LP130101034.

Bibliography

[1] A. Parashar and et. al., “SCNN: an accelerator for compressed-sparse convolutional
neural networks,” CoRR, vol. abs/1708.04485, 2017.

[2] Y. Ma and et. al., “Scalable and modularized rtl compilation of convolutional neural
networks onto fpga,” FPL, 2016.

[3] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. H. W. Leong, M. Jahre,
and K. A. Vissers, “FINN: A framework for fast, scalable binarized neural network
inference,” CoRR, vol. abs/1612.07119, 2016.

[4] J. Qiu and et. al., “Going deeper with embedded FPGA platform for convolutional
neural network,” in Proc. ACM/SIGDA ISFPGA, pp. 26–35, 2016.

[5] S. Han and et. al., “EIE: efficient inference engine on compressed deep neural
network,” 2016.

[6] A. Howard and et. al., “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” CoRR, vol. abs/1704.04861, 2017.

[7] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing Deep Neu-
ral Network with Pruning, Trained Quantization and Huffman coding,” CoRR,
vol. abs/1510.00149, 2015.

[8] S. Anwar and et. al., “Structured pruning of deep convolutional neural networks,”
CoRR, vol. abs/1512.08571, 2015.

[9] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “DoReFa-Net: Training
low bitwidth convolutional neural networks with low bitwidth gradients,” CoRR,
vol. abs/1606.06160, 2016.

[10] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in Proc. ICML, pp. 448–456, 2015.

	Redundancy-reduced MobileNet Acceleration on Reconfigurable Logic For ImageNet Classification
	Introduction
	Accelerating Redundancy-Reduced Neural Networks on FPGA
	MobileNet Complexity Analysis
	Model-level Redundancy Analysis
	Data-level Redundancy Analysis

	RR-MobileNet FPGA Acceleration System Design
	System Architecture
	Memory Usage
	Layer Tilling

	Experimental Evaluation
	Experimental Results
	Experimental Settings

	Summary and Conclusion

