
A Variable-Radix Systolic Montgomery Multiplier

K.H. Tsoi, O.Y.H. Cheung and P.H.W. Leong�
khtsoi,yhcheung,phwl � @cse.cuhk.edu.hk

Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, NT Hong Kong

Abstract

A variable radix systolic Montgomery multiplier, suit-
able for use in implementing the RSA public key cryptosys-
tem is presented. Measurements of the effect of increasing
radix on area and performance are given so that a designer
can determine the optimal radix and its associated perfor-
mance given the area requirements of the application. On
a Xilinx XCV1000E-6 FPGA, a 1024 bit modular multipli-
cation can be performed in ��� ���	� .
1 Introduction

RSA is the most widely used public key cryptosystem,
and is based on modular exponentiation, i.e. the compu-
tation of
��������� where M and N are numbers which
are of the order of ����������� bits in length. Most im-
plementations use Montgomery multiplication [1] to effi-
ciently compute ���! "����#� . The Montgomery algo-
rithm converts the input numbers to a special residual sys-
tem in which computations are made modulo ��$ instead of
modulo � , �&%'��$. Kornerup [2] proposed a systolic ar-
ray for the computation of Montgomery multiplication and
also extended it for higher radices [3]. Previous hardware
implementations of Montgomery multipliers would select
a small radix (usually either 2 or 4), and work with that
radix. In this work, we present a module generator for a
Montgomery multiplier in which the radix can be arbitrar-
ily chosen. Such a module generator can exploit the recon-
figurable nature of field programmable gate array (FPGA)
devices and be used to generate the design which maxi-
mally utilizes the given device.

Montgomery multiplication can be performed using the
below algorithm which computes ()�+*�����,� , where� is the number of bits, �.- is the / th digit of A, 0)�1�2$,
and N’ and R’ are chosen such that 03034	�)������5� and�#�,4�6+030�47�8�
for i := 0 to n/log 9 k

q := (S*N’) mod k; /* step1 */
S := (S + qN) div k + a : B; /* step2 */

end for

Step 2 above can be modified to be

; �)< ; =�>@?BA < � =�>@? ��-C* ? <�D ; ����
=�E ?!A

D �)����
=�E= >
(1)

which results in a simpler hardware design since it can be
shown that S and qN always sum up to a multiple of k (i.e.
the FG�IHKJ D

=�E
least significant bits are always 0), and the last

term (referred to as ’f’ in the rest of this paper) will be in
the range L �M�����

=
6N�PO .

2 Design

The block diagram of an n-bit radix-k Montgomery
multiplier is shown in Fig. 1. The s-cell computes the
first three terms of Equation 1. The r-cell is identical, ex-
cept that it has an additional input which is the last term of
Equation 1 (generated by the f-cell). In Fig. 2, the internal
structure of the r and s cells are shown. Let QB�RFG�IH�J

=
.

In each clock cycle, each cell computes j bits of S; passes
its result to the cell on the right hand side; and passes the
inputs, A and Q, to the cell on the left [3].

For an n-bit Montgomery multiplication, an D �
? �
E
-bit

multiplier is required to ensure that �BS ; ST��� at all
times. Correspondingly, U $KV JJXW#Y systolic cells are required
in our design. The number of cycles required for a radix-k,� -bit modular multiplication is � D U $KV JW�Y

? �
E
.

3 Results

The design was coded in VHDL and successfully tested
on an Annapolis Wildstar FPGA board using a Xilinx Vir-
tex XCV1000-6 FPGA. Figure 3(a) shows the number of

f-cellr-cells-cell

N’%kN/k

N%k

s-cell

a

f
q

s

0

B

Figure 1: Top level overview of multiplier. All signals in
this figure are FG�IH J D

=�E
-bits wide.

[(i+1)j, (i+2)j-1]B [ij, (i+1)j-1]B

[ij, (i+1)j-1]N/k[(i+1)j, (i+2)j-1]

2j

2j j+1

j+1

j

jj

j j

jj

j j

j

j
j

j
j

j

j

j j

jj

2j

N/k

2j

Add1

Add2 Add4

Add3

Reg

Reg

Reg

C1Mul Mul

Mul Mul

tf

os

tqt-1q

is

t-1

C2 C3

a ta

Figure 2: Circuit diagram showing the s-cell and r-cell
which are identical except that the s-cell does not have the���

input.

Virtex slices required for both n=512 and n=1024 as a func-
tion of the radix. The decrease in area with increasing radix
at radix- ��� occurs because although the area of each cell in-
ceases slightly, the total number of cells required is smaller.

Figure 3(b) shows the time required for a multiplica-
tion with increasing radix. Note that the execution time
does not improve linearly with

=
because the maximum

clock frequency of the design (as reported by the Xilinx
timing tools) decreases with increasing

=
since more levels

of logic and routing are required.
From Figure 3(b), it can be seen that higher radices lead

to better performance. Thus the highest performance that
can be achieved for �,��������� on a Xilinx XCV1000E de-
vice corresponds to the highest radix which lies under the
horizontal line in Figure 3(a) which represents the number
of slices in the XCV1000E, namely a radix- ��� implemen-
tation (��� ���	�).

0 2 4 6 8 10 12 14 16
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

A
re

a
(S

LI
C

E
s)

log2(radix)

1026−bit
514−bit
Xilinx XCV1000 capacity

0 2 4 6 8 10 12 14 16
2

4

6

8

10

12

14

16

T
im

e
fo

r
a

m
ul

tip
lic

at
io

n
(u

s)

log2(radix)

1026−bit
514−bit

Figure 3: (a) Area in slices as a function of radix and (b)
Multiplication time as a function of radix.

4 Conclusion

An FPGA based module generator for a systolic Mont-
gomery multiplier was presented. This generator gives de-
signers the flexibility to use multipliers of arbitrary radix,
depending on their area and performance considerations.

References

[1] P. Montgomery, “Modular multiplication without trial
division,” in Mathematics of Computation, vol. 44,
pp. 519–521, Apr 1985.

[2] P. Kornerup, “A systolic, linear-array multiplier for a
class of right-shift algorithms,” in IEEE Transactions
on computers, vol. 43, pp. 892–898, Aug 1994.

[3] P. Kornerup, “High-radix modular multiplication for
cryptosystems,” in Computer Arithmetic, 1993. Pro-
ceedings., 11th Symposium on, pp. 277–283, Jul 1993.

