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A technique for parallelising multiple loops in a heterogeneous computing system is presented. Loops are first unrolled and then
broken up into multiple tasks which are mapped to reconfigurable hardware. A performance-driven optimisation is applied to find
the best unrolling factor for each loop under hardware size constraints. The approach is demonstrated using three applications:
speech recognition, image processing, and the N-Body problem. Experimental results show that a maximum speedup of 34 is
achieved on a 274 MHz FPGA for the N-Body over a 2.6 GHz microprocessor, which is 4.1 times higher than that of an approach
without unrolling.

1. Introduction

Microprocessors are commonly used to implement comput-
ing systems as they have the advantages of low cost and fast
development time. In performance-critical applications, per-
formance can be improved by introducing larger degrees of
spatial parallelism via reconfigurable hardware implemented
on field programmable gate arrays (FPGAs). Heterogeneous
computing systems using both microprocessors and FPGA-
based custom function units can combine advantages of both
for many applications.

Computational intensive tasks in digital signal processing
algorithms are usually iterative operations. Scheduling such
loops in a heterogeneous computing system to fully utilise
the available resources is difficult due to their complex
nature. Techniques which have been previously proposed
tend to address single loop only and are summarised as
follows.

(i) Control flow based [1, 2]. This approach divides a
control flow graph into various subgraphs based on
control edges, and each subgraph is scheduled inde-
pendently, typically list scheduling technique is used.

A complete scheduling is generated by combining
all the schedulings of subgraphs. This approach only
analyses one iteration of the loop body, it does not
target generating higher parallelism implementation
for multiprocessor systems.

(ii) Modulo scheduling [3]. Generates a schedule for one
iteration of a loop so that all iterations repeat at a
fixed interval, that is, a software pipelined design.
Since only a single iteration is analysed, limited
parallelism is achieved.

(iii) Graph conversion [4]. An application with loop can
be characterised as a cyclic graph, this approach
attempts to find a better scheduling of the loop body
by using a graph traversal algorithm to convert the
cyclic graph to an acyclic one with minimised critical
path. Depth-first search technique is used to traverse
the cyclic graph and remove the feedback edge; an
acyclic graph scheduling technique is then used to
form a scheduling of the loop body. This approach
does not analyze task dependency in different itera-
tions which may result in reduced parallelism.
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Table 1: Some approaches to address mapping/scheduling.

References Approach Examples of applications Comments

[1, 2] Control flow based GCD, counter, Filtering Multiprocessors system not addressed
[3] Modulo scheduling DCT, FFT Analyze one iteration, single loop
[4] Graph conversion Random graphs Less parallelism, single loop
[5–7] Loop unrolling Random graphs, FFT, solver equalizer Single loop unrolling
[8] Dynamic scheduling Fractal generation Loop unrolling not addressed, single loop
[9, 10] Loop fission JPEG compression, DCT, BPIC Loop unrolling not addressed, single loop

This work Multiloop unrolling Speech system image processing, N-Body
Global unrolling factors determining,

coarse-grained, heterogeneous systems

(iv) Loop unrolling [5–7]. This is a common technique to
generate an implementation with greater parallelism.
It involves unrolling a loop and extracting parallel
tasks from different loop iterations. These references
have only been applied to parallelise a single loop.

(v) Dynamic scheduling [8]. This approach schedules
tasks at run-time making use of both online and
offline parameters. The loop condition is checked
dynamically at runtime. Loop parallelisation is not
addressed in this approach.

(vi) Loop fission [9, 10]. This approach breaks a loop
into multiple tasks and maps each individual one to
FPGA. Implementing applications which exceed the
size constraint on FPGA thus becomes feasible. Since
loop unrolling is not involved, this approach results
in limited parallelism.

A comparison between this work and different ap-
proaches is shown in Table 1. Previous work has focused on
parallelising a single loop [3–7], and multiloop optimisation
has not been adequately addressed. Since reconfigurable
hardware in a heterogeneous system is capable of supporting
parallel execution of tasks, a major challenge is to develop
techniques which can effectively exploit this capability.

This work explores techniques to optimise applications
with multiple loops in a heterogeneous computing system.
Our recent work has shown that an integrated mapping and
scheduling scheme with multiple neighborhood functions
[11], and combining mapping and scheduling with loop
unrolling [12] can achieve considerable performance gains.
This work complements those results through a method for
optimising the unrolling factors in multiple loops. The novel
aspects of this work are as follows:

(i) a performance-driven strategy, combined with an
integrated mapping/scheduling system with multiple
neighborhood functions, to find the best unrolling
factor for each loop (Section 2.4),

(ii) a static mapping and scheduling technique capable of
handling cyclic task graphs for which the number of
iterations is not known until run-time (Sections 3.1
and 3.3),

(iii) The introduction of additional management tasks
for dynamic data synchronisation while maintain-
ing near optimal performance when an accurate

compile-time prediction of the run-time condition is
made (Section 3.2).

The remainder of this paper is organised as follows. The
proposed multiloop parallelisation scheme is presented in
Section 2. Section 3 introduces the loop unrolling technique
and provides an overview of the multiple neighborhood
function based mapping/scheduling system. Experimental
results are given in Section 4, and finally, concluding remarks
are given in Section 5.

2. Multi-Loop Parallelisation

2.1. Reference Architecture. The reference heterogeneous
computing system contains two processing elements (PEs):
one microprocessor and one FPGA. Each processing element
has a local memory for data storage during task execution,
and the communication channel between these two pro-
cessing elements is being assigned a weight which specifies
the data transfer rate. Results of a task’s predecessors must
be transferred to the local memory before this task starts
execution.

2.2. Notations. Given an application containing a loop
(Figure 1(a)), the followings are various notations used in
this paper:

(i) Loop Unrolling and Unrolling Factor. Loop unrolling is a
process to duplicate the body of a loop multiple times and
use them to replace the original body, where the loop-control
code is adjusted accordingly. The number of copies being
duplicated is called unrolling factor. For example, Figure 1(b)
shows an unrolled loop with an unrolling factor of N.

(ii) Loop Fission and Sub-Loop. Loop fission is a process to
split a loop that contains multiple instructions into a number
of loops with the same loop control. Each splitted loop is
called a sub-loop which contains a portion of instructions
of the original loop body. For instance, Figure 1(c) shows
multiple sub-loops after fission.

(iii) Task. A task is a block of consecutive instructions
derived from task partitioning stage for a given application
[13], for example, a loop in Figure 1(a) is a task.
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for (i=0; i<R; i++) {
a[i]=b[i]+c[i];

}

for (i=0; i<R; i+=N) {
a[i]=b[i]+c[i];

a[i+1]=b[i+1]+c[i+1];

...

...

a[i+N-1]=b[i+N-1]+c[i+N-1];

}

for (i=0; i<R; i+=N) {
a[i]=b[i]+c[i];

}

for (i=0; i<R; i+=N) {
a[i+1]=b[i+1]+c[i+1];

}

for (i=0; i<R; i+=N) {
a[i+N-1]=b[i+N-1]+c[i+N-1];

}
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Figure 1: Examples showing various notations: (a) Loop. (b) Unrolled loop. (c) Obtained loop after fission. (d) Task graph representing the
original loop, where the loop is a node L in the graph. (e) Task graph representing the loops after fission.

(iv) Task Graph. A task graph is an acyclic graph representing
the data flow dependencies of tasks, where a task in the task
graph is only executed once and it cannot be executed prior
to its predecessors due to the data dependency. For instance,
Figures 1(d) and 1(e) are two task graphs of Figures 1(a) and
1(c), respectively, where each loop is a node in the graph.

2.3. Overview. Figure 2 gives an overview of the proposed
multi-loop parallelisation strategy. A search strategy is
employed where the goal is to find an optimal unrolling
factor for each loop so that the overall performance is
maximised. This section focuses on the search of unrolling
factors; the calculation of quality score will be introduced in
Section 3.

Given an application containing a set of loops LP =
{lp1, lp2, . . . , lpn}, let UC = {uc1,uc2, . . . ,ucm} be a set of
unrolling configurations with each uci = {u f1,u f2, . . . ,u fn}
designating an instance of the unrolling factors of all loops,
where u f j is the unrolling factor of loop j. Each unrolling
configuration uci thus contains all unrolling factors for all
loops in this application. In each iteration of the search,
a set of unrolling configurations UC is firstly generated,
and a quality score is then calculated for each configuration
after loop unrolling and fission, task graph generation, and

mapping/scheduling processes have been applied. The best
unrolling configuration uci with highest quality score is
selected and used for the next iteration. This process is
repeated iteratively until a termination condition is reached,
the goal being to find a solution with the maximum quality
score.

The advantage of considering unrolling and fission of all
loops globally is that unrolled sub-loops from various loops
can be potentially executed in parallel. This allows for a better
mapping/scheduling solution to be found after unrolling and
fission. Figure 3 shows an example of unrolling two loops
which have no data dependencies between iterations. In the
original graph, B and Q represent two loops, B1, B2, and
B3 are the three unrolled sub-loops of B; Q is unrolled as
Q1, Q2, and Q3. Before unrolling and fission, B and Q are
mapped to two processing elements PE1 and PE2. Hardware
resources are not fully utilised and the processing time for
three iterations using this mapping is 90 time units (Figure
3(c)). After unrolling and fission, the first two sub-loops (Q1
and Q2) are mapped to PE2 and PE3, respectively, and other
unrolled sub-loops are mapped to PE1. Processing time is
reduced to 50 time units (Figure 3(d)). Tasks SB and SQ
are two generated management tasks to synchronise results
produced by different sub-loops which will be introduced in
Section 3.2.
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Figure 2: Overview of the proposed multi-loop parallelisation
strategy.

Unrolling and fission can still achieve higher parallelism
for loops with data dependency between iterations. As a
loop may be executed in parallel with other tasks in an
application, after unrolling and fission, execution sequence
of unrolled sub-loops can be better combined with other
tasks. Figure 4 shows the unrolling/fission of two loops with
data dependencies between iterations. Before unrolling and
fission, B is mapped to PE1 and Q is mapped to PE2.
The overall processing time for three iterations is 90 time
units (Figure 4(c)). After unrolling, the first sub-loop of
Q (i.e., Q1) is mapped to PE2, and the remaining sub-
loops (Q2 and Q3) can be executed in PE1. The overall
processing time becomes 70 time units (Figure 4(d)). A
better mapping/scheduling solution with higher inter-loop
parallelism is thus obtained.

2.4. Generation and Selection of Unrolling Configuration. If
an application contains only one loop it obviously should
be selected for unrolling. For the multiple loop case, the
number of loops to unroll and the corresponding unrolling
factors need to be determined. Since unrolling a loop without
data dependencies between iterations is likely to achieve
more performance gain than unrolling a loop with data
dependencies, a performance-driven strategy (Algorithm 1)
is proposed in this work.

Given an application containing a set of loops LP =
{lp1, lp2, . . . , lpn}, an initial unrolling configuration ucbest is
generated with all unrolling factors u fi being set to 1, that

is, uc = {u fi}, where u fi = 1 for 1 ≤ i ≤ n. A new set
of unrolling configurations new uc = {uc1,uc2, . . . ,ucn} is
generated by incrementing each u fi in turn, for example,
uc1 = {2, 1, . . . , 1} and uc2 = {1, 2, . . . , 1}. For each unrolling
configuration uci, a quality score qsi is calculated by first
applying the unrolling factors specified in uci followed by
fission to break the new loop into sub-loops over the same
loop count with each loop having the same loop body as the
original loop. A task graph is then generated with each sub-
loop being treated as a task. The task graph is then passed
to the mapping and scheduling process, where a complete
mapping/scheduling solution is generated and a quality
score is calculated (Section 3). As a result, a set of quality
scores QS = {qs1, qs2, . . . , qsn} is produced. Afterward the
corresponding quality improvement qii is calculated as:

qii = qsi − qsbest, (1)

where qsbest is the best quality score to date. The best
unrolling configuration uci with highest quality improve-
ment qii is chosen, the best quality score qsbest is updated as
qsi, and the unrolling configuration ucbest is replaced by uci.
This process is repeated until the resources on the FPGA are
exhausted, causing termination of the algorithm.

3. Quality Score Calculation

3.1. Unrolling, Fission, and Task Graph Generation. Given
a set of loops LP = {lp1, lp2, . . . , lpn} and an unrolling
configuration uc = {u f1,u f2, . . . ,u fn}. The following steps
are used to generate a task graph:

(i) Unroll each loop lpi according to u fi.

(ii) Break each unrolled loop lpi into u fi subloops by
fission, each subloop performs the same operations
as the original loop body before unrolling.

(iii) Construct a new task graph by treating each subloop
as a task, each having the same parent and child tasks
as the original task before unrolling.

(iv) Generate a management task to synchronise results
produced by different sub-loops (Section 3.2), and
insert this task to the tails of all unrolled sub-loops
in the task graph (tasks SB and SQ in Figure 3(b)),
that is, predecessors of the management task are the
unrolled sub-loops, and successors of the manage-
ment task are the successors of the original loop.

The produced task graph is then presented to the
mapping and scheduling tool to generate a quality score
(Section 3.3), which guides the search.

3.2. Management Task. One of the problems introduced after
unrolling is data synchronisation: since results are produced
by unrolled iterations in parallel, they need to be reorganised
in the correct sequence (Figure 5). Another problem is loop
count uncertainty, for example, a loop may be unrolled n
times but the actual loop count at run-time may not be
a multiple of n. In this case some results must be discarded.
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Figure 3: Mapping/scheduling example for loop unrolling and fission without data dependencies between iterations: (a) Task graph
containing two parallel loops. (b) Task graph after unrolling the two loops for three iterations. (c) Mapping and scheduling solution before
unrolling and fission, overall processing time for 3 iterations is 90 time units. (d) Mapping and scheduling solution after unrolling and
fission, overall processing time is 50 time units. (e) Execution time of one iteration of the loop body for different processing elements.
Higher interloop and intraloop parallelism are achieved by unrolling two loops.

To handle these problems, a management task which collects
data from different unrolled tasks, keeps track of the actual
loop count at run-time, organises the collected data into the
correct sequence, and discards unneeded data is introduced.
The management task is treated as a normal task, inserted
into the task graph and presented to the mapping/scheduling
tool. For loops without data dependencies, the following
pseudo-code shows the data synchronisation process:

for (i = 0; i < (M-1); i++) {
for (j = 0; j < N; j++) {

rst[i∗N+j] = d[j][i];

}
}
tc = R − (M−1) ∗ N;

for (i = 0; i < tc; i++) {
rst[(M−1)∗N+i] = d[i][M−1];

}

where M is the actual count of the unrolled loop being
executed, R is the required loop count for the loop before
unrolling, and N is the number of iterations being unrolled.
d is the result produced by different unrolled iterations, for
example, d[0] is the result produced by the first iteration.
rst is the original array to store results. The second loop is

used to collect the results of the last iteration and discard
unneeded data, where tc is the number of data remaining.

If there are data dependencies between iterations, the
management task must select the correct result from the
unrolled iterations:

tc = M ∗ N - R;

switch(tc) {

case 0:

rst = d[N-1];

break;

case 1:

rst = d[N-2];

break;

...

...

case N-1:

rst = d[0];

break;

}
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Figure 4: Mapping/scheduling example for loop unrolling and fission with data dependencies between iterations: (a) Task graph containing
two parallel loops having data dependency between iterations. (b) Task graph after unrolling the two loops for three iterations. (c) Mapping
and scheduling solution before unrolling and fission, overall processing time for 3 iterations is 90 time units. (d) Mapping and scheduling
solution after unrolling and fission, overall processing time is 70 time units. (e) Execution time of one iteration of the loop body for different
processing elements. Higher inter-loop parallelism is achieved by unrolling two loops.

(1) used f pga area⇐ 0
(2) ucbest = {u fi}, where u fi = 1 for 1 ≤ i ≤ n
(3) qsbest ⇐ 0
(4) while used f pga area < total f pga area do
(5) for all loops lpi do
(6) uci[u fi] = uc[u fi] + 1
(7) end for
(8) for all unrolling configurations uci do
(9) for all loops lpi do
(10) unroll lpi for u fi iterations, where u fi ∈ uci
(11) loop fission
(12) end for
(13) generate new task graph
(14) generate complete mapping/scheduling msi
(15) calculate quality score qsi for msi
(16) qii ⇐ qsi − qsbest

(17) end for
(18) find loop i with maximum qi
(19) qibest ⇐ qii
(20) qsbest ⇐ qsi
(21) msbest ⇐ msi
(22) ucbest ⇐ uci
(23) update used f pga area
(24) end while
(25) return ucbest and msbest

Algorithm 1: Search the best unrolling configuration.

The generated mapping/scheduling solution does not
require the designer to know the exact loop termination
conditions using these management tasks. However, users
can specify an estimated loop count at compile time.
Loops are unrolled using this information and a map-
ping/scheduling solution is generated. If the estimated loop
count matches the actual value at run-time, maximum
performance can be achieved. However, if the loop count
is different, the data management task can handle data
synchronisation dynamically, which means that the gen-
erated mapping/scheduling solution is still feasible. These
management tasks can easily be implemented in software or
in hardware state machines.

3.3. Mapping and Scheduling Overview. A heuristic search-
based approach is used to find the best mapping/scheduling
solution for an input task graph as shown in Figure
6. Given a task graph and a target architecture speci-
fication which includes information concerning the pro-
cessing elements and communications channel, a tabu
search is used to iteratively generate different map-
ping/scheduling solutions (neighbors). For each solution,
a speedup coefficient is calculated and used to guide the
search with the goal being to find a solution with maximum
speedup.
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3.4. Integrated Scheduling Technique. Given a set of tasks
TK = {tk1, tk2, . . . , tkn} and a set of task lists PL = {pl1,
pl2, . . . , plm}, where each task list pl j = (asj1, asj2, . . . , asjq)
is an ordered task sequence to be executed by processing
element pej , each task in pl j will be processed by pej in
sequence when it is ready for execution, that is, when all of
its predecessors are finished. Task mapping and scheduling
is thus integrated in a single step that deals with assigning
tasks to task lists. A task assignment function is defined
as A: TK → PL, for example, A(tki) = asrq denotes
task tki being assigned to asrq of list plr . This means that
tki is the qth task to be executed by processing element
per . A mapping/scheduling solution is characterized by
assignments of all tasks to processing elements, that is, for
every task tki ∈ TK , A(tki) = asrq for a plr ∈ PL.

3.5. Multiple Neighborhood Functions. Tabu search is used
to find the best mapping/scheduling solution. It is based on
neighborhood search, which starts with a feasible solution
and attempts to improve it by searching its neighbors, that
is, solutions that can be reached directly from the current
solution by an operation called a move. Tabu search keeps
a list of the searched space and uses it to guide the future
search direction; it can forbid the search moving to some
neighbors. In the proposed tabu search technique with
multiple neighborhood functions, after an initial solution
is generated, two neighborhood functions are designed to
move tasks between task lists and used to generate various
neighbors simultaneously [11]. If there exists a neighbor
better than the best solution so far and it cannot be found in
the tabu list, this neighbor is recorded. Otherwise, a neighbor
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Table 2: Profiling results for major processes of the isolated word
recognition system.

Process % of exe time

vq 71.19
autocc 15.4
hmmdec 6.11
windowing 4.39
lpc analysis 0.95
lpc2cep 0.93
find max 0.39
others 0.64

that cannot be found in the tabu list is recorded. If all the
above conditions cannot be fulfilled, a solution in the tabu
list with the least degree, that is, a solution being resident in
the tabu list for the longest time, is recorded. If the recorded
solution has a smaller cost than the best solution so far, it
is recorded as the best solution. The searched neighbors are
added to tabu list and solutions with the least degrees are
removed. This process is repeated until the search cannot
find a better solution for a given number of iterations.

3.6. Quality Score. For each mapping/scheduling solution,
an overall execution time is calculated, which is the time to
process all tasks using the reference heterogeneous comput-
ing system and includes data transfer time. The processing
time of a task tki on processing element pek is calculated as
the execution time of tki on pek plus the time to retrieve
results from all of its predecessors. The data transfer time
between a task and a predecessor is assumed to be zero if they
are assigned in the same processing element.

A speedup coefficient is defined and used to measure the
quality of a mapping/scheduling solution, it is calculated as
the processing time using a single microprocessor divided
by the processing time using the heterogeneous computing
system:

speedup = processing timesingle CPU

processing timeReference system
. (2)

A higher speedup means that a mapping/scheduling
solution is better as the application can be finished using
less time. This score is used to guide the tabu search and
the goal is finding a solution with maximum speedup. This
maximum speedup is used as the final output and defined as
the quality score to measure the quality of the input unrolling
configuration.

4. Results

4.1. Experimental Setup. The reference heterogeneous com-
puting system used in work has one 2.6 GHz AMD
Opteron(tm) Processor 2218 and one Celoxica RCHTX-XV4
FPGA board with a Xilinx Virtex-4 XC4VLX160 FPGA. The
FPGA board and microprocessor are connected via an HTX
interface with maximum data transfer rate of 3.2 GB/s.

Table 3: FPGA resources of different speech process, the total area
is calculated by counting two “hmmdec12”.

Process Area (slice)

vq3 21819
autocc12 10272
hmmdec12 15948
Total 63987

find max CPU

Windowing

Synchronisation

lpc2cep

lpc analysis hmmdec12

vq3 hmmdec12

autocc12
FPGA

Figure 7: Mapping the speech recognition system to the hetero-
geneous computing system. “vq3” are the unrolled 3 iterations of
vector quantisation. “autocc12” are the unrolled 12 iterations for
autocorrelation. “hmmdec12” are the unrolled 12 iterations for
HMM decoding. Two “hmmdec12” mean the outer loop of HMM
decoding is unrolled for 2 iterations, that is, decoding of two words
is executed in parallel.

An isolated word recognition (IWR) system [14] is used
as an application. It uses 12th order linear predictive coding
coefficients (LPCCs), a codebook with 64 code vectors, and
20 hidden Markov models (HMMs), each with 12 states. One
set of utterances from the TIMIT TI 46-word database [15]
containing 5082 words from 8 males and 8 females is used
for recognition. Table 2 shows the profiling results of major
processes of the isolated word recognition system on the
AMD processor. It is found that loops in vector quantisation
(vq), autocorrelation (autocc), and hidden Markov model
decoding (hmmdec) consumed the most CPU resource,
which are 71.19%, 15.4%, and 6.11%, respectively.

4.2. Multi-Loop Unrolling and Fission. In this experiment,
the proposed unrolling strategy is applied. Figure 7 shows
the mapping of different processes in the speech system. It
is found that vector quantisation is unrolled 3 times (vq3)
and mapped to the FPGA; all 12 iterations of the auto-
correlation process are unrolled (autocc12); inner loop of
hidden Markov model decoding is unrolled for 12 iterations
(hmmdec12) which is equal to the number of HMM states;
the outer loop is further unrolled for 2 iterations which
means two HMM decoding are executed in parallel. The
corresponding FPGA resource usage is shown in Table 3 and
the operating frequency is 318.7 MHz, a speedup (quality
score) of 10 is obtained for this configuration. In contrast,
the speedup obtained without unrolling is 4.7, where vector
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Figure 8: Quality scores (speedups) for different unrolling factors
of vector quantisation.
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Figure 9: Quality scores (speedups) for different run-time LPCCs,
the estimated LPCC order during compile-time is 12.
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Figure 10: Quality score (speedup) comparison between unrolling
and without unrolling for different applications.

Table 4: FPGA resources and operating frequency for IWR,
SUSAN, and N-Body.

Application Area (slice) Frequency (MHz)

IWR 63987 (94.7%) 318.7
SUSAN 60106 (88.9%) 274
N-Body 62139 (91.9%) 274

quantisation, autocorrelation, and HMM decoding are exe-
cuted in FPGA without unrolling. An improvement of 2.1
times is hence obtained using the proposed strategy.

Figure 8 shows the speedups for different vector quan-
tisation unrolling factors, where all other processes are
executed on the CPU. It is found that the speedup increases
with unrolling factor and saturates. This figure explains why
only three iterations of vector quantisation are unrolled in
the final mapping/scheduling solution.

4.3. Run-Time versus Compile-Time Parameters. In the above
experiment, mapping/scheduling solutions are generated
by assuming that the LPCC order is 12 at compile-time.
However, this value may be modified to cope with different
circumstances at run-time. Using a mapping/scheduling
solution generated with 12 LPCCs, Figure 9 shows the
performance of this system for different run-time LPCC
orders. It is found that maximum performance is achieved
at 12 LPCCs, and the performance drops when the run-
time LPCC order is different from compile-time value, for
example, a 5% drop at 10 LPCCs.

4.4. Quality Score Comparison. In addition to the IWR
example, two other applications are employed to evaluate
the proposed approach: the SUSAN corner detection image
processing algorithm [16] and the N-Body problem [17].
Figure 10 shows the quality score comparison between
strategies with and without unrolling. The FPGA resource
usage and operating frequency are shown in Table 4. The
proposed strategy can achieve 10, 19.7, and 34.3 times
speedup for IWR, SUSAN, and N-Body, respectively, the
corresponding improvements are factors of 2.1, 3.9, and 4.1
over the approach without unrolling. The improvements for
SUSAN and N-Body are much higher than the 2.1 times
improvement obtained using the IWR application because
there is a critical loop in each of these two applications: in
SUSAN, the loop to compute the similarity of pixels and for
N-body, the loop to compute velocity. Unrolling these loops
significantly improves the performance of those cases.

5. Conclusions

A multi-loop parallelisation technique involving fission and
unrolling is proposed to improve intra-loop and inter-
loop parallelism in heterogeneous computing systems. The
utility of this approach is demonstrated in three practical
applications and a maximum speedup of 34.3 times is
obtained using a computing system containing an FPGA and
a microprocessor. It is 4.1 times higher than the case where
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unrolling is not applied. The generated system is tolerant
to run-time conditions, and its performance is closer to
optimum when there is a more accurate prediction of run-
time condition during compile-time.
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