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 ABSTRACT 

H.264/AVC is the latest video coding standard adopting 
variable block size, quarter-pixel accuracy, motion vector 
prediction and multi-reference frames for motion 
estimation. These new features result in much higher 
computation requirements than previous coding standards. 
In this paper we propose a novel most significant bit (MSB) 
first bit-serial architecture for full-search block matching 
(FSBM) variable block size motion estimation. Since the 
nature of MSB-first processing enables early termination of 
the sum of absolute difference (SAD) calculation, the 
average hardware performance can be enhanced. The 
architecture has been simulated, synthesized and 
implemented on a Xilinx Virtex-II XC2V6000 FPGA. The 
maximum frequency achieved is 340 MHz and the 
throughput rate is around 18674 macroblocks per second 
within a -16 to 15 search range. The resource utilization is 
3345 LUTs and it can encode CIF resolution video in real 
time. 

1. INTRODUCTION 

H.264/AVC [1] video coding standard is the latest video 
coding standard developed by the Joint Video Team (JVC) 
of ITU-T VCEG and ISO/IEC MPEG. It is suggested that it 
can provide two times better performance than the previous 
coding standard MPEG-2, in terms of compression 
efficiency and picture quality [9]. Like previous coding 
standards, e.g. H.263 and MPEG-4, it employs block-based 
motion estimation to reduce temporal redundancy between 
frames. In H.264, block-matching efficiency is further 
enhanced by advanced features such as variable block sizes, 
multi-reference frames and motion vector prediction. 
Because of these features, the computational complexity of 
H.264/AVC is increased by a factor of four, creating 
challenges for engineers to achieve real time performance. 
 Many motion estimation architectures [2][3][7][9][16] 
have been proposed in the literature and most can achieve 
real time encoding. In many cases a full search strategy is 

chosen because of regularity, no data dependencies and it 
finds the optimal solution. Fast algorithms are employed in 
some cases, but the speedup is often not significant 
compared with full search, particularly for hardware 
implementations. For this reason we focus on full search 
(FS) hardware designs.  
 Most of the reported FS architectures were implemented 
using bit-parallel operations since they have the advantages 
of better performance, easier control and simpler design 
than a bit-serial approach and most of these were for ASIC 
rather than FPGA technology. Of previously reported 
FPGA implementations [13,6,14,11,5,12,8,15], only two 
[8,15] support variable block sizes, and both are bit-parallel. 
A most significant bit (MSB)-first bit-serial design with 
early termination was proposed for QCIF resolution video 
[5] which employed a FS within the range -15 to +16. Their 
experiments showed that on average, 50% of the 
computation, can be saved when an early termination 
scheme is employed, the savings depending on the video 
scene. A SAD engine employing on-line arithmetic was 
also reported [12]. This design has improved area-time 
product over previous bit-serial architectures, but only 
supports one block size and cannot be used for H.264/AVC 
or later standards.  
 In this work we propose a novel MSB-first bit-serial 
architecture for variable block size motion estimation that 
efficiently utilizes the high ratio of registers to logic present 
in FPGA devices which can be employed in H.264/AVC. 
The architecture makes it possible to eliminate certain 
unnecessary computations which are unavoidable in a bit-
parallel implementation, and has a higher performance per 
look-up-table (LUT) than all previously reported 
implementations.  
 Furthermore, the new architecture results in 
performance comparable to bit-parallel implementations but 
with greatly reduced area. The total execution cycle savings 
over a scheme that does not use the early termination 
scheme is dependent on the nature of the video but is on 
average 36.5%. The introduction of H.264 motion vector 
prediction mode further improves the saving by 3-5%. The 
proposed architecture not only reduces the computation 
time via optimizations in the arithmetic and early 



termination schemes, but also reduces resource utilization 
through a bit-serial architecture and power by eliminating 
unnecessary calculations. This makes it feasible to 
implement a motion estimation processor on a small FPGA 
device with high performance and low power dissipation. A 
similar scheme could be used for other algorithms that 
search an input space to optimize a given metric.  

 

The rest of this paper is organized as follows. Section 2 
gives an overview of motion estimation and the new 
features present in H.264/AVC. Section 3 presents the early 
termination technique employed in this work. Section 4 
explains the construction of a sum of absolute difference 
(SAD) adder tree which uses a signed-digit representation. 
Section 5 presents our 4-stage top level architecture and 
section 6 describes details concerning data allocation and 
scheduling. Results and a comparison will be given in 
section 7 and conclusions are drawn in section 8. 

2. MOTION ESTIMATION ALGORITHM 

In digital video, consecutive picture frames are combined to 
form a scene. The redundancy between frames is usually 
large due to a relative high frame rate to scene motion 
relationship in normal videos. Motion estimation (ME) 
techniques have been adopted since the first generation of 
digital video coding standards to reduce temporal 
redundancy between frames, hence improving compression 
rates. Block based matching techniques have been used 
because of their simplicity and high efficiency. Although, 
due to its limited search range, an optimal solution is not 
guaranteed, its hardware-friendly nature makes it the most 
common scheme for video coding standards.  

2.1. Block-based motion estimation 

A description of block-based matching techniques follows. 
Each picture is divided into a fixed number of square non-
overlapping blocks, called macroblocks. Typically, the 
block size is 16-pixel by 16-pixel. Each block in the current 
frame is compared to blocks in the reference frame within a 
predefined search window and the best match is found. A 
sum of absolute difference (SAD) between the current 
block and reference block is commonly used as the distance 
metric since it can be implemented efficiently. A SAD is 
calculated using equation (1) below. 
 

(1a) 
 

(1b) 
(1c) 

 
 
 In equation (1), c(i,j) and r(i,j) represent pixels in the 
current and reference block respectively. m, n are the 
horizontal and vertical displacement of the current block 
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Fig. 1.  Supported block sizes in H.264/AVC 
ithin search window. P, Q is the index indicating which 
bblocks/macroblock’s SAD is calculated. In total there 
e 7 types of subblocks/macroblocks shown in figure 1. 
e search window is confined to -16 to +15 in this 
ample and the rest of this paper. Lastly, MVmin is the 
otion vector with the minimum SAD value. 

2. Variable block size motion estimation 

 traditional motion estimation such as MPEG-1, only one 
otion vector is generated for a macroblock and the 
mputational complexity is relatively low. In recent 
vanced coding standards such as H.264/AVC, the motion 
timation process has been improved to exploit temporal 
dundancy as much as possible. Additional features add 
gnificant demand to hardware requirements, e.g. in 
.264/AVC, variable block sizes increase the number of 
otion vectors produced per macroblock and the quarter-
xel and multi-reference frame features add additional 
arch points to the original searching algorithm. In total, 
e overall complexity of H.264/AVC is raised by a factor 
 4 compared to the MPEG-2 standard and most of this is 
e to increased complexity in the motion estimation 
ocess.   

In H.264/AVC, each picture (frame) is segmented into 
acroblocks. Each macroblock is further divided into sub-
ocks with 7 different types of block sizes (4x4, 4x8, 8x4, 
8, 8x16, 16x8 and 16x16) as shown in figure 1. Each 
acroblock has in total 41 types of sub-blocks to cover the 
hole macroblock. In variable block size motion estimation, 
r each type of subblock a motion vector (MV) is 
oduced so in total 41 MVs are calculated per macroblock. 

The variable-block-size motion estimation feature is the 
ost challenging hardware implementation issue added in 
.264/AVC. The multi-reference feature can be solved at 
e algorithm level and by data scheduling techniques. 
uarter-pixel accuracy can be performed after the integer 
otion estimation process in a post-processing unit. Thus in 
is paper we restrict ourselves to the problem of how to 



Table 2.   Online signed-digit adder example      
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Cycle A+ A- B+ B-  R-      R+  
0 0   1   1  0  0        0 

1 0   0   1  0 0        0 
2 0   1   1  0 1        1 
3 1   0   1  0 0        1 
4 0   1   1  0 0        1 
5 1   0  0  1 0        0 
6 0   1   1  0 1        1 
7 0   1   0  1 0        0 
8 0   0   0  0 1        0 
9 0   0   0  0 0        0 
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able 1.   Online carry save adder example 
A=000101102(2210), B=101010112(17110),

C=111110102(25010), 
Result[C+S]=1101110112(44310)} 

Cycle Aj Bj Cj Cj+1    Sj+1  
0 0   1   1  1        0 

1 0   0   1 0        0 
2 0   1   1 1        1 
3 1   0   1 1        0 
4 0   1   1 1        0 
5 1   0  0 0        0 
6 1   1   1 1        1 
7 0   1   0 0        1 
8 0   0   0 0        1 
s 

result is produced. This results in wastage of hardware 
resources and power consumption. The bit-parallel partial 
distortion elimination technique (PDE) [15][16] has been 
proposed for the early termination of the SAD computation. 
 The disadvantage of this approach is a large increase in 
hardware requirements and reduction in the maximum 
operating frequency of the design. Also, the design must 
operate in a row-serial manner and maximum parallelism 
may not be achieved. In this section we describe an MSB-
first bit-serial technique that can address this problem. 
 

  On-line Carry save and signed-digit adder
 MVs within given search window and current 

 algorithm – full search 

algorithm, optimality can be guaranteed by 
 finding the absolute minimum SAD within a 

 typically ranging from -16 to +15. Thus, in our 
volves a total of 1024 searching positions. 
ith FS, techniques such as the three-step search, 

nd diamond search have reduced computational 
but their hardware implementations involve 
encies which makes it difficult to parallelize, 
ore, they produce sub-optimal results. 

LY TERMINATION SCHEME IN BIT-
ERIAL MOTION ESTIMATION 

el motion estimation, the SAD comparison must 
er the summation of all pixel differences. Thus, 
AD (for a 16x16 MV) must be produced before 
ison can be made. Even if the current SAD is 
r than the current minimum SAD, it is not 
terminate the SAD operation before the 16-bit 

3.1. MSB-first arithmetic (on-line arithmetic) 

MSB-first arithmetic [17], also called on-line arithmetic, is 
a bit-serial arithmetical technique in which all operations 
start from the most significant bit. It is particularly 
efficient for operations such as square root, division and 
comparisons. This can be used advantageously in motion 
estimation as some comparisons can be made without 
examining all the bits involved. Such early termination 
schemes can save computation.  

Compared to least significant bit (LSB) first 
techniques, the MSB-first approach produces results with 
more delays, this delay being called on-line delay. The 
number of delay cycles depends on the number of operands. 
Redundant number systems such as carry-save or signed-
digit representations are normally employed.  

We present an example of on-line addition using carry-
save operands. The addition consists of three operands and 
is done using the on-line full adder proposed in [17], as 
shown in figure 2. Referring to table 1, a 3 operand 8-bit 
addition can be done in 9 cycles with 1 cycle of on-line 
delay using an online carry-save full adder (ol-CSFA). 

In our adder tree for SAD, we make use of two kinds of 
adders. The first is the online carry-save full adder (ol-
CSFA) presented above. The other is an online signed-digit 
adder (ol-SDFA) to handle signed-digit addition. The ol-



Table 3.  Number of cycles to complete comparison 
stage for different scenes using different starting 
strategy (16 cycles for no termination scheme) 

Video 
type Sequential  Zero MV  Predicted 

MV 
news 6.95 5.39 5.4 

Flower 6.64 5.83 5.5 
stefan 7.26 6.54 6.46 

SAD4x4
 Adder tree

SAD4x4
 Adder tree

SAD4x4
 Adder tree

SAD4x4
 Adder tree

... ... ...

SAD Merger

Sixteen 4x4 adder tree

registers

4x8, 8x4, 8x8, 8x16, 
16x8, 16x16 SAD

4x4SAD

 

Fig. 4.  Signed-digit adder tree that generates 41 SADs 

Fig. 5.  A 16-operand carry save adder tree 

 

Fig. 3.  Motion vector prediction in H.264/AVC 

SDFA architecture is shown in figure 2. It can be 
constructed from ol-CSFAs with some inputs and outputs 
inverted. An example of signed-digit addition is shown in 
table 2 with 2 signed-digit pairs. The signed-digit result 
can be produced with 2 cycles of on-line delay.  

3.2. Early termination scheme and an enhanced method 

There are two related advantages to having a good initial 
value for the minimum SAD. The first is that early 
termination of comparisons to the current minimum can be 
effected more frequently, and the second is that updates to 
the minimum SAD value take extra cycles, and 
initialization can serve to reduce their occurrence.  
H.264/AVC uses MV prediction mode (figure 3) and 
initializes the search to the predicted location. In the typical 
case, this serves to reduce the number of SAD updates as 
the search is started with a near-minimum value.  Table 3 
shows our simulation results showing the number of  clock 
cycles needed to complete the comparison operation for 
different video scenes with different motion vector 

initialization strategies, a non early termination 
implementation requiring 16 cycles for the three 
initialization schemes. The news example is almost-still 
motion and zero–assumed (Initial MV = {0,0}) motion and 
predicted MV initialization performs better than a standard 
sequential scheme (Initial MV = {-16,15}). In fast motion 
scenes, such as flower and Stefan, the H.264/AVC 
predicted MV initialization scheme performs the best and 
has an average of 5.78 cycles. On average our scheme 
offers a (16-5.79)/16=63.8% savings in comparison 
operations. For the entire motion estimation computation, in 
total (12+16)=28 cycles are required in the worse case, and 
on average our scheme  offers a 36.5% improvement. 

4. MULTI-OPERAND SD-ADDER TREE 

The macroblock size of H264/AVC is 16 pixels by 16 
pixels with a 4x4-block as its smallest sub-block. To find 
all the minimum motion vectors of a 16x16-block and its 
subblocks, we make use of a SAD-reuse strategy [4]. As a 
result, the 4x4-SAD computation becomes our primitive 
element and this is reused to form other SADs. Since the 
different macroblock modes are overlapped in spatial 
domain (Figure 1), the SAD can be calculated using 4x4 
SAD and a sequence of merging steps to obtain other 
mode’s SADs. For example, 8x4-SAD and 4x8-SAD can be 
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Fig. 6.  16-operand sign-digit adder tree for 4x4 SAD.  

Table 4.  On-line delay of different SAD types 
SAD type Delay (cycles) 

4x4 16 
4x8, 8x4 19 

8x8 21 
8x16, 16x8 23 

16x16 25 

 

Fig. 7.  SAD merger  

formed by combining corresponding value of 4x4-SAD (e.g. 
4x4-SAD(Block 1, 2) in figure 1 to form 8x4-SAD(Block 
17)). Similarly, 8x8-SAD can be formed by 4x8-SAD. 
16x8-SAD, 8x16SAD can be calculated from 8x8-SAD and 
finally 16x16-SAD is combined from 16x8-SAD. The top 
level adder tree is shown in figure 4. 

4.1. SAD4x4 signed-digit adder tree 

The SAD of a 4x4-subblock involves a 16 pairs of operand 
summation in signed-digit format. Thus, effectively we 
need to add 32 bit operands in our adder tree. According to 
[10], we could implement a 16-operand signed-digit adder 
tree based on double ol-CSFA trees and ol-SDFA. Together, 
the hardware utilization is minimized [10]. This is 
illustrated in figure 5 and figure 6. It consists of 8 levels 
with 8 cycles of on-line delay. The total number of cycles to 
calculate the 12-bit summation result including the on-line 
delay is 8+8=16 cycles. The output of SAD4x4 adder tree is 
the SAD value of 4x4-subblock in signed-digit format. This 
value is passed to SAD Merger to calculate other necessary 
SADs. 

4.2. SAD Merger 

In our design we need sixteen SAD4x4 adder trees to 
compute the SAD of 16 subblocks in parallel. The sixteen 
SAD4x4 computed are passed to SAD merger as inputs 
shown in figure 7. The sixteen 4x4- SAD is fed to a series 
of ol-SDFAs called SAD merger and combined to form 4x8, 
8x4, 8x8, 16x8, 8x16 and 16x16 SADs. The number shown 
in figure 7 indicates which block’s SAD is calculated at that 
node. The block index can be referred to figure 1. In total, 
the number of ol-SDFAs in SAD merger i is 
8+8+4+2+2+1=25. Pipelining registers are added between 
SAD4x4 adder trees and SAD merger to split the 
combinatorial path and boost the operating frequency.  In 

our FPGA platform, one pipeline register obtains a good 
balance between maximum frequency and latency. 
 Finally, the 41 SAD values are passed to an on-line 
comparator for next stage processing. Since the arrival 
times of different SAD results are different, the completion 
times to determine the minimum SAD vary. Table 4 shows 
the delay for each type of SADs.  

5. TOP LEVEL ARCHITECTURE 

Motion estimation involves the calculation of SAD value 
between current block and reference block as shown in 
equation (1). By rewriting equation (1) in a bit-serial 
representation, we get the equation (2) with a triple 
summation.  
 

(2) 
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The double summation (0 to P,Q) are mapped to the adder 
tree and computed spatially while the innermost summation 
(0 to 7) of bit-serial part is computed iteratively. The 
remaining problem is how to generate signed-digit numbers 
from current and reference pixel values. Both current and 
reference pixels are positive 8-bit integers. The computation 
of their difference in signed-digit representation can be 
done easily by making the current pixel positive weighed 
and the reference pixel negative weighed. The absolute 
value operation can be done by on-the-fly checking of the 



Fig. 8.  SD-adder tree that generate 41 SADs 

 

Fig. 10.  Architecture of on-line comparator 

 

Fig. 9.  Flow chart of conventional number to signed-
digit conversion 

signed-digit number until 1 or -1 is detected for the first 
non-zero digit, then the positive weighing is interchanged 
with the negative weighing part to complete the absolute 
operation if  negative. 

In the following sub-session we describe the entire 
motion estimation process in 4 stages: conventional number 
to signed-digit number conversion, summation, comparison 
and early termination stage. The top level system is shown 
in figure 8. 

5.1. Conventional number to S.D. conversion stage 

As described above, the |ci – ri| operation, where ci and ri 
are 8-bit positive integers from current and reference blocks, 
can be converted to SD representation by setting ci and ri as 
being positively and negatively weighed respectively and 
finally doing a sign-detection to check if changing the sign 
of result is necessary. The circuit that implements this 
functionality requires few hardware resources and little 
computation delay is introduced. A finite state machine 

which detects the first non-zero digit is required for the 
absolute value. Together with a pair of multiplexers for 
interchanging the signed-digit, |ci – rj| in signed-digit form 
is produced. Figure 9 shows the flow chart for sign-
detection of the signed-digit number. In total there are  
16x16=256 absolute difference stages in our motion 
estimation processor.  

5.2. Summation stage 

The datapath for directly feeding all 256 pairs of signed-
digit numbers into our signed-digit adder tree is described 
in section 4 and figure 4.  41 SADs are calculated at the end 
of the adder tree stage.  

5.3. Comparison stage 

In the comparison stage, we compare the current SAD to 
current minimum SAD for each subblock type in a MSB-
first manner. A signed-digit comparator is used for this 
purpose. The architecture of the comparator suggested in [7] 
is shown in figure 10. If the number being compared has a 
difference of two or more, we can determine which SD 
number is bigger. The on-line comparator will stop when 
this situation arises. A proof for this algorithm is given in 
[7]. The on-line comparator can determine the result in 2 
cycles at a minimum. 

5.4. Early termination stage 

Early termination of the SAD computation allows the 
avoidance of redundant calculations. In terms of processor 
throughput, 100% speed-up can be achieved when 50% of 
calculations can be eliminated. In our case, we have to deal 
with the variable block size effect, which affects our early 
termination scheme. Since we have to compute 41 parallel 
comparisons, some can be terminated earlier than the others. 
There exists dependencies between successive types of 
SADs, e.g. 8x4 depends on 4x4, and we cannot terminate 



 

Fig. 11.  Timeline for whole motion vector computation process 

the 4x4 summation process even if we are sure the current 
4x4 SAD must be larger than the minimum. For the sake of 
simplicity, we check for early termination for all SADs and 
when all have terminated, the current summation can be 
terminated and begins next searching position. Termination 
can be detected by OR-ing all the comparator results. 

6. DATA SCHEDULING AND ALLOCATION 
TECHNIQUE 

In a bit-serial based architecture, we need to handle word-
to-serial conversion which is unnecessary in a bit-parallel 
design. In addition, we have to handle extra scheduling 
brought upon by MSB-first arithmetic. For example, 
summation of 16 8-bit signed-digit numbers results in a 12-
bit result, which involves 8 cycles of on-line delay. We 
have to generate 8 consecutive cycles of all-zero operands 
feeding into adder tree to compensate the online delay. 
Similarly, a 16x16 SAD requires 12 consecutive cycles of 
zeros as shown in figure 11. The 16-bit 16x16-SAD result 
is calculated in 28 cycles in the worse case.  
 The allocation of picture pixels in memory is different 
to that normally used in a bit-parallel case. 256x9-pixels of 
the search window are stored in 4 block rams. The ram 
address indexes the bit position instead of the pixel location. 
Before feeding the reference block pixels into the SD adder 
tree, 1-bit from 32x32 pixels are loaded from 4 block rams 
to 4-to-1 multiplexers. The multiplexers select the correct 
reference block from the search window. The reference 
block values from MSB to LSB are loaded in each cycle. 
The drawback of this approach is we need preprocessing to 
fetch search window pixels from the external bus to block 
memories, requiring shift registers before the block rams. 

The current block is stored similarly but no multiplexers are 
required. 

7. RESULTS AND COMPARISON 

The proposed bit-serial architecture was written in VHDL, 
implemented, simulated and verified for a Xilinx Virtex-II 
XC2V6000 -6 speed grade device. The ME processor was 
synthesized using Simplicity Pro 8.4 and place-and-route 
performed using Xilinx ISE tools. The area and speed 
obtained is shown in table 5. Performance per LUT is also 
indicated to show our improved efficiency on the FPGA. 
The LUT per flip-flop for this design is 3345/2733=1.22 
which matches the logic ratio in FPGA slices. 
 A comparison is also made between bit-parallel and bit-
serial implementations in table 5. Note that some of these 
designs do not support variable block sizes, e.g. 
[5][6][11][12][13][14], and hence occupy significantly less 
area than variable-block-size motion estimation processors. 
This is because they require only one comparator and their 
adder tree can optimized for one specific block size.  
 Compared with those designs that fully support 
H.264/AVC [8,15], our architecture occupies less area and 
has a performance per LUT 1.4 and 36 times higher 
respectively. In the worst case, our design needs 
28x1024=28672 cycles to complete a full search of a 
macroblock with -15 to +16 search range, which implies 
our architecture can process at least 11858 macroblocks per 
second. By employing early termination, our architecture 
can process 18674 macroblocks per second, achieving a 
36.5% savings on average over an approach that does not 
use early termination. The overall performance achieved is 
comparable to reported bit-parallel implementations. Thus 
we are able to process CIF images (352x288 resolutions) at 



Table 5.  Results and comparison of ME processor 
 [13] [6] [14] [11] [5] [12] [8] [15] Our design  

Design strategy Bit-
parallel 

Bit-
parallel 

Bit-
parallel 

Bit-
parallel 

Bit-
serial 

Bit-
serial Bit-parallel Bit-parallel Bit-serial 

Supported block 
size 16x16 8x8 16x16 16x16 4x4 16x16 

4x4,4x8,8x4, 
8x8,8x16, 

16x8,16x16 

4x4,4x8,8x4, 
8x8,8x16, 

16x8,16x16 

4x4,4x8,8x4,
8x8,8x16, 

16x8,16x16 

Area (LUT) 16541 37522 310601,3 16991 15105 1945 73811 19576 3345 
Speed (MHz) 103.84 191 380.7 197 352 425 120 51.49 340 
Throughput 

(MB[16x16]/sec) 18519 47522 371513 71254 50782 17456 29296 30366 18674  

Performance/LUT 11.2 1.265 12 4.19 3.36 8.97 3.97 0.155 5.59 
 1 Altera STRAIX family 2 Throughput normalized to 16x16 block size. 3 No comparator included 

 4 Fully parallized approach 5 Area in terms of gate  6 Normalized to search range (-15 +16) 

30 fps.  The performance per LUT is comparable to bit-
parallel implementations while having greatly reduced 
absolute area requirements, demonstrating the advantage of 
a variable block size.  

8. CONCLUSION 

We employ on-line arithmetic in an FPGA-specific 
implementation of variable block size motion estimation for 
H.264/AVC. The performance per LUT is improved over 
bit-parallel approaches; the small area and high speed 
nature of this motion estimation processor enables real time 
encoding of small frame sizes, and an early termination 
scheme serves to reduce power consumption. These 
combined features make the architecture particular suitable 
for FPGA-based implementations on mobile devices. 
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