
MajorityNets: BNNs Utilising Approximate

Popcount for Improved Efficiency

Seyedramin Rasoulinezhad∗, Sean Fox∗, Hao Zhou†, Lingli Wang†, David Boland∗, Philip H.W. Leong∗

∗School of Electrical and Information Engineering, The University of Sydney, Australia 2006
†State Key Lab of ASIC and System, Fudan University, Shanghai 201203, China

Email:{seyedramin.rasoulinezhad, sean.fox, philip.leong, david.boland}@sydney.edu.au, {zhouhao, llwang}@fudan.edu.cn

Abstract—Binarized neural networks (BNNs) have shown
exciting potential for utilising neural networks in embedded
implementations where area, energy and latency constraints are
paramount. With BNNs, multiply-accumulate (MAC) operations
can be simplified to XnorPopcount operations, leading to mas-
sive reductions in both memory and computation resources.
Furthermore, multiple efficient implementations of BNNs have
been reported on field-programmable gate array (FPGA) im-
plementations. This paper proposes a smaller, faster, more
energy-efficient approximate replacement for the XnorPopcount
operation, called XNorMaj, inspired by state-of-the-art FPGA
look-up table schemes which benefit FPGA implementations. We
show that XNorMaj is up to 2× more resource-efficient than
the XnorPopcount operation. While the XNorMaj operation has
a minor detrimental impact on accuracy, the resource savings
enable us to use larger networks to recover the loss.

I. INTRODUCTION

Recent research on convolutional neural networks (CNNs)

has yielded a significant improvement over other techniques

in cognitive domains. This ability requires a massive number

of parameters and complex computations, which makes them

challenging to deploy in real-time.

Quantization techniques bring significant performance en-

hancement by reducing both memory footprint and resource

requirements of compute units. Binarized neural networks

(BNNs) are the most extreme case of quantization, using a

single bit for each activation and weight so the majority of

energy-hungry multiply accumulate (MAC) computations can

be replaced by the XnorPopcount operation [1]. Previous re-

search has suggested modifications to field-programmable gate

arrays (FPGAs) lookup-table (LUT) structures to enhance the

efficiency of popcount operation [2]. Wang et al. [3] exploited

the capabilities of FPGA LUTs to manipulate XnorPopcount

operation to save resources in an fully-unrolled manner.

To further improve the efficiency of FPGA-based BNN

architepoolingctures, we propose a smaller and faster ap-

proximation for XnorPopcount. We call this XNorMaj, based

on integrating Majority and popcount circuits. We report on

its efficiency on FPGA platforms, and show that it offers

significant reductions in area and critical path. This is the first

work focused on simplifying XnorPopcount operations in a

fold-able manner with consideration of FPGA architectures.

In summary, the contributions of this work:

• A novel approximate replacement for XnorPopcount,

called XNorMaj, leading to new BNN architectures,
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Fig. 1. a) an XnorPopcount operation and b) an XNorMaj-3 operation and
their following threshold layer (according to [4])

MajorityNets, using the proposed XNorMaj operation.

• A quantitative evaluation of impacts of the above tech-

niques on various BNN architectures, considering differ-

ent performance metrics such as accuracy, area, and delay.

Verilog models together with a training plat-

form are available as open source software on

github.com/raminrasoulinezhad/MajorityNets.

II. XNORMAJ-M POPCOUNT (XNORMAJ) OPERATION

A. XnorPopcount operation

In CNNs, convolution (Conv) and fully-connected (FC) lay-

ers comprise the majority of computations. Each single output

of both layers can be modeled by a neuron-like computation

as y =
∑N−1

i=0
xiwi + B. By constraining the activations and

weights to +1 and -1, and representing them by logic 1 and 0

respectively, multiplication of each pair can be done using an

XNOR gate, as proposed by Courbariaux et al. [1]. Thus, high-

precision MAC operations can be simplified to bit-wise XNOR

operations followed by a counter, called XnorPopcount (1).

y = 2×

N−1∑

i=0

Xnor(xb
i , w

b
i )−N +B (1)

By implementing XnorPopcount operation on different

FPGA architectures, we observed that the implementation of

Xnor gates and primary compressor circuits are fused. As

depicted in Figure 1(a), every three couples of activations and

weights are assigned to two LUTs to implement the three

XNOR gates and their following Full-Adder (FA) counter.

Then, the 2-bit answers of the mentioned blocks are summed



by a compressor tree. According to this structure, the first two

LUTs offer a compression rate of 3 input pairs:2.

B. XNorMaj technique

To achieve further compression, we first rewrite Equa-

tion (1) using a two-level hierarchical summation (assume

Ẑ = XNOR(x̂, ŵ)),

y = 2

N

M
−1∑

i=0

M−1∑

m=0

ẐiM+m −N +B (2)

We then approximate the inner loop in Equation (2) with

a scaled M -input Majority circuit (Maj-M ), which indicates

whether more than half of the inputs are True. This new op-

eration, called XNorMaj, involves a bit-wised XNOR applied

between the input activations and their corresponding weights,

with each M -grouped output passed to a Maj-M circuit to

generate a single bit result which is scaled by V 1
i and V 0

i .

ỹ= 2

N

M
−1∑

i=0

(MM−1

m=0 (ẐiM+m)×(V 1
i −V

0
i )+V 0

i )−N+B (3)

where Maj-M = M
M−1

m=0 =

{
1, if

∑M−1

i=0
xi ≥M/2

0, otherwise
. By

using a common scaling factor this simplifies to popcounting

the single bit outputs of the majority circuits and scaling

appropriately (Equation (4)).

ỹ=2(V 1−V 0)

N

M
−1∑

i=0

M
M−1

m=0 (ẐiM+m)+
N×V 0

M
−N+B (4)

In Equation (4), the majority circuit scale factors and bias

value implement a linear transform (LT) of the neuron output.

The transform is similar for all neurons in the same channel.

The computation of a batch normalization (BN) layer is also a

LT modeled as ŷ = γ(ỹ−µ)i+β, where (γ, µ, i and β) are the

BN layer parameters defined per channel [5]. In cases where

Conv or FC layers are followed by a BN layer, these two LT

functions can be merged into a single LT function. In practice,

a BN layer without separate scaling layer is sufficient and this

forces BN parameters to adapt scaling factors for majority

circuits in each output channel separately. Furthermore, by

following the assumption in [4], the new LT function can be

merged with activation function in a threshold layer. Because

of the mentioned reasons, we fixed the V 1 and V 0 values to

be 2.625 and 0.375 respectively, and used a BN layer after

each layer using XNorMaj operation.

Using the Majority circuit introduces new trade-offs. Since

majority circuits compress M -grouped inputs into a single

bit, the popcount is reduced by a factor of M , leading to

a smaller popcounter circuit. The comparator circuits and

threshold parameters are also simplified and hence smaller.

Unfortunately, the technique results in reduced accuracy. The

accuracy-performance trade-offs are therefore dependent on

TABLE I
FPGA IMPLEMENTATION EFFICIENCY OF XNORMAJ-M UNITE.

REPORTED DELAYS MEASURED BY REGISTERING INPUTS AND OUTPUTS.
EFF: COMPRESSION RATE /(LUTS×DELAY), COMPRESSION RATE =

(NUMBER OF INPUT PAIRS):(OUTPUT WIDTH), DELAY: ns

Device
Metrics XNorFA XNorMaj-3 XnorMaj-5 XnorMaj-7 XnorMaj-9

Comp. 3P:2 3P:1 5P:1 7P:1 9P:1

Xilinx

LUT 2 1 3 5 7

Delay 0.68 0.64 1.10 0.99 1.07

Eff. 1.11 4.67 1.52 1.41 1.20

Intel

ALMs 2 1 3 5 9

Delay 0.86 0.70 0.96 1.24 1.78

Eff. 0.87 4.26 1.74 1.13 0.56

the choice of parameter M ; for this paper, we focus on

XNorMaj-3 (M = 3) operations for the following reasons:

• Implementation efficiency for FPGA platforms: As

demonstrated in Figure 1.b, three XNOR gates, and the

following Maj-3 circuits can be combined and mapped

to a single 6-input LUT. This fused computation is fed

by the same input scheme comparing to the baseline

implementation of three XNOR gates and the following

FA, XNorFA (Figure 1.a). However, it produces a one-bit

output rather than two bits leading to smaller compression

trees. By synthesizing different XNorMaj-M circuits for

FPGAs in Table I, it can be seen that XNorMaj-3 unite

offers the best compression rate vs. complexity trade-off.

• Accuracy: by increasing the parameter M , the similarity

of the XNorMaj-M popcount and the baseline model is

reduced, and inference accuracy drops.

• Integration with Conv layer kernels: The number of

input pairs for a neuron in an convolution layer is multiple

of kernel spatial dimensions. Since M has to be an odd

number, by choosing M equal to the kernel size, which is

also an odd number, and applying majority logic on the

pairs placed in the same channel in a row or a column,

folding is possible. Also, three is the most common kernel

size for Conv layers in modern BNNs [6].

C. Majority Convolution and Fully-connected layers

Consider a standard convolutional layer which takes a DF×
DF ×M feature map F as input, and produces a DG×DG×
N feature map G as output. The output is generated via a

convolution with a DK×DK×M×N kernel K and addition

with a N -element bias vector B. Algorithm 1 describes the

computation for standard and majority convolution (MConv)

cases. Since binarization is applied on activations and weights,

we modeled the majority circuit and the previously mentioned

scaling factors using clip and scale functions. Scaling factor

should be selected to be consistent with Equation (4). Using

the same approach, a Majority fully-connected (MFC) layer

can be derived.

The back-propagation algorithm for majority layers can be

implemented by applying the chain rule as shown by the red

arrows in Figure 2. using a straight through estimator (STE) as



Algorithm 1: Standard/Majority-DK convolution layer

1 for n← 0 to N do

2 for k ← 0 to DG do

3 for l← 0 to DG do

4 for m← 0 to M do

5 for i← 0 to DK do

6 if XNorMaj is enabled then

7 array tin ← Fk+i−1,:,m

8 array tw ← Ki,:,m,n

9 td = tin · tw // Dot product

10 Gk,l,n += clip(td, (-1, 1))×Scale

11 else

12 for j ← 0 to DK do

13 tin ← Fk+i−1,l+j−1,m

14 tw ← Ki,j,m,n

15 Gk,l,n += tin × tw

16 Gk,l,n += Bn
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Fig. 2. Back-propagation computation for Majority layers

a proxy for the derivative of the clipping function (teal arrow).

Moreover, since the scale factor is fixed for a layer, it can be

applied directly on computed activation and weight gradients.

With these two modifications, Majority layer back-propagation

can be simplified as normal layer back-propagation.

III. RESULTS

A. Hardware efficiency of XNorMaj vs. XnorPopcount

We synthesized, placed, and routed a Verilog model of

XnorPopcount and XNorMaj circuits using several input sizes

for Aria-10 (10AX016E4F29M3SG) and Zynq UltraScale+

(xczu3eg-sbva484-1-e) using Quartus-II 2017.0 and Vivado

2018.2 respectively. As Figure 3 shows, XNorMaj is 20-

50% smaller, especially for the large input sizes. We also

observed that critical paths are dramatically reduced in Intel

architectures, with a smaller gain on Xilinx FPGAs.

B. Hardware Efficiency of MConv and MFC layers

Figure 4 demonstrates the Conv/FC layer implementation

used to measure the efficiency of XNorMaj-3. In this imple-

mentation, the input feature map is streamed over channels in
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parallel. Each stream is saved in a channel buffer to provide

a window of DK × DK × M activations to all processing

units (PU). Each PU is responsible for computing pixels of a

channel of the output feature map. For FC layers, we assume

inputs are available in parallel and there is no need for sliding.

If Conv/FC layers are followed by a pooling layer, with the

same buffering scheme, the pooling layer is implemented on

top of that layer. Also, a layer following pooling layers can

be folded to keep the same throughput rate, achieving full

utilization. For instance, a Conv layer after a Maxpool layer

with a 2 × 2 kernel size should be folded 4× more than the

previous layer. In our design, we fold the number of PEs rather

than their input size by folding factor (FF ). This approach

prevents high-precision MAC operations on partial results.

Table II summarises the implementation results for different

layers of the padded version of CNV [4] (CNV-P) network,

where all Conv layers are using padding. Using XNorMaj-3

reduces the required LUTs by 20-43% per layer and 30% in

total. By resynthesizing the layers regardless of throughput

balancing, the logic element (LE) reduction grows to 43%

which shows the affect of folding on reduction rate (last

column of the Table II). To measure the efficiency for highly-

folded implementations we increased the FF by 8× for all

layers which limits the resource reduction to 13%.

C. Accuracy

To explore the effect of using XNorMaj on the BNNs, we

trained different models on different datasets. The training

platform is available on the GitHub repository, which is based

on the open-source project in reference [7].



TABLE II
LE USAGE COMPARISON OF (M)CONV AND (M)FC LAYERS USING

CNV-P. (LAYER #1 IS NOT INCLUDED), ⋆ : PADDED TO BE MULTIPLE OF 3

Layer configurations Conv MConv LE Improvement

# Cin Cout FF /FC /MFC folded non-folded

Conv2 64 64 1 55k 40k 27% 27%

Conv3 64 128 4 38k 30k 20% 26%

Conv4 128 128 4 86k 63k 27% 36%

Conv5 128 256 16 43k 33k 27% 36%

Conv6 256 256 16 87k 50k 43% 56%

FC1 4096⋆ 512 64 96k 67k 30% 36%

FC2 512⋆ 512 64 11k 8k 22% 36%

FC3 512⋆ 10 10 1K 0.7k 29% 30%

Total 417k 291k 30% 43%

TABLE III
ERROR RATE (%) OF DIFFERENT BNNS

BNNs Dataset
Error(%) details LE

baseline Ours MConv MFC Improve

SFC MNIST 3.47% 3.75% - All 45%

LFC MNIST 2.66% 2.86% - All 35%

CNV-P SVHN 5.67% 6.28%
except 1st

-
23%

CNV-P CIFAR10 13.35% 15.01%
Conv

-

VGG-like CIFAR10 10.78% 11.24% - 30%

First, we applied the proposed idea on two multi-layer

perceptrons, SFC and LFC networks [4]. By replacing their

all three FC layers with MFC layers, the accuracy drop for the

MNIST dataset is 0.2% and 0.3% while reducing the LEs by

45% and 35% respectively for SFC and LFC in the mentioned

implementation method with no folding. In the same approach,

using CNV-P [4] and VGG-like [7] networks, by replacing

2nd-6th Conv layers with MConv, the LE reduction is about

23% and 30% with the cost of 1.7% and 0.5% accuracy drop

for CNV-P and VGG-like respectively (Table III).

The area reduction makes the CNV-P with majority layers

implementation the same cost as a non-padded with XnorPop-

count operation. However, by using padding, in CNV-P, con-

volution layers receive and produce larger feature maps which

increase the computations and keep the weight parameters the

same for those layers. It also affects the first FC layer, where

the number of inputs is increased, e.g., 16 times in the case

of in the first MFC layer of CNV-P network leading to 16

times more computation and parameters. Since the error rate

of adding padding and using majority layers is 2% less, we

recovered accuracy using the same area.

In addition, we explored the effect of arbitrary picking the

layers for deployment of XNorMaj-3 operation. We select

CNV-P network and the most contributor layers in terms

of LEs which are Conv2-6 and the first FC layers. We use

a six-character notation, where each character can be B or

M, representing whether a layer is using XnorPopcount or

XNorMaj. The first five characters specify the configuration

of Conv2-6 layers and the last character gives the FC1 layer
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Fig. 5. Comparison of accuracy vs. LE usage (points on the lower left
represent a Pareto set of efficient implementations)

with “+” being used to separate the last character. Figure 5

shows performance per LUT of different configurations using

our mentioned architecture, enabling a user to trade accuracy

for performance by following the Pareto-optimal curve. As an

example, the BBMBM+M configuration delivers saves 22%

of LEs with accuracy reduced by only 1%.

IV. CONCLUSION

We proposed XNorMaj-M popcount, a new approximate

XnorPopcount operation, that reduces resource requirements.

Compared to a conventional implementation using XNOR and

a compression tree, XNorMaj is 20-50% more area efficient

in FPGA platforms. Furthermore, the technique enjoys an

average 20% critical path reduction for Xilinx and Intel FPGA

architectures. Using XNorMaj, an semi-unrolled, padded ver-

sion of the CNV network with the same LUT utilization enjoys

2% better accuracy. In future work we will explore the effect of

using Maj-5/7/9 circuits. In addition to that, partially usage of

the XNorMaj in a layer would be explored. We will also show

the efficiency of XNorMaj operations on application specific

integrated circuits (ASIC) implementations.
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