
FPGA BASED ACCELERATION OF THE LINPACK BENCHMARK: A HIGH LEVEL
CODE TRANSFORMATION APPROACH

Kieron Turkington, Konstantinos Masselos,
George A. Constantinides

Department of Electrical and Electronic
Engineering, Imperial College London, UK

e-mail: {kjt01, k.masselos,
g.constantinides}@imperial.ac.uk

Philip Leong

 Department of Computing, Imperial College

London, UK
e-mail: philip.leong@imperial.ac.uk

ABSTRACT

Due to their increasing resource densities, field
programmable gate arrays (FPGAs) have become capable
of efficiently implementing large scale scientific
applications involving floating point computations. In this
paper FPGAs are compared to a high end microprocessor
with respect to sustained performance for a popular
floating point CPU performance benchmark, namely
LINPACK 1000. A set of translation and optimization
steps have been applied to transform a sequential C
description of the LINPACK benchmark, based on a
monolithic memory model, into a parallel Handel-C
description that utilizes the plurality of memory resources
available on a realistic reconfigurable computing platform.
The experimental results show that the latest generation of
FPGAs, programmed using Handel-C, can achieve a
sustained floating point performance up to 6 times greater
than the microprocessor while operating at a clock
frequency that is 60 times lower. The transformations are
applied in a way that could be generalized, allowing
efficient compilation approaches for the mapping of high
level descriptions onto FPGAs.

1. INTRODUCTION

The vast majority of engineering and scientific applications
running on conventional computers employ floating point
arithmetic for accurate modeling and to reduce
experimentation requirements [1]. Recently, technology
scaling has made possible the fabrication of FPGA devices
with resource densities that allow efficient
implementations of floating point algorithms. Significant
research effort has been spent on studying floating point
arithmetic for FPGAs. The use of custom floating point
formats in FPGAs is discussed in [2, 3]. Other works focus
on the development of optimized floating point operators
for FPGAs [4] and features that can improve floating point
performance are described in [5]. The work presented in
[6] studies single precision floating point matrix
multiplication on FPGAs, compares it to a microprocessor

and proves that FPGAs can achieve competitive sustained
floating point performance. Performance comparisons
between FPGAs and microprocessors for double precision
floating point linear algebra functions are discussed in [7].

 Although FPGAs and microprocessors are quite
competitive in terms of performance, a large gap still exists
in terms of design flows. FPGA programming is still
performed to a large extent using conventional HDL based
design flows. This approach is quite inefficient for
exploiting the large resource densities of modern FPGAs
within strict development time constraints. Higher level
hardware compilation approaches are required to create an
efficient, software-like design flow and allow the efficient
implementation of complex applications on modern
FPGAs. A number of commercial and academic
approaches have been proposed in this direction [8, 9].
 The main contribution of this work involves a design
methodology of applying a sequence of optimizations
before hardware compilation for coarse grained data level
parallelization (not limited to the innermost loops of loop
nests) and data transfer and storage optimization. These
optimizations involve identifying opportunities for: data
reuse, loop pipelining, loop level parallelism, parallel
memory assignment, fine grained (instruction level)
parallelism and pipelining. Such optimizations are not
automatically applied in existing hardware compilation
environments, especially in combination. Most existing
hardware compilation approaches focus on performance
optimization by applying loop unrolling and pipelining
optimizations in the inner loops of loop nests while data
transfers and storage issues are not aggressively optimized.
 Applying this methodology to the popular LINPACK
benchmark [10] we were able to achieve very high
performance on a complex benchmark, outperforming a
standard commodity processor. To the best of our
knowledge, this is the first reported FPGA-based
implementation of the LINPACK benchmark, and presents
an indication of the performance achievable using current
devices on real-world scientific benchmarks. The same
methodology could be applied to other applications,
though how successful the optimizations are will depend
on the regularity of the application’s data access patterns.

 begin
 -- generate linear system Ax = b --
 matgen (&A[][],&b[]);
 -- start timer --
 t1 = second();
 -- Solve system using LU decompositon --
 dgefa (&A[][], &ipvt[], 1000);
 dgesl (&A[][], &b[], ipvt[], 1000);
 -- store time taken --
 t1 = second();
 -- calc average FLOPs --
 ops = 2/3*(1000)^3 + (1000)^2;
 flops = ops / t1;
 x[] = b[];
 -- regenerate original A[] & b[] --
 matgen(&A[], &b[]);
 -- calculate b = Ax - b --
 b[] = -b[];
 dmxpy(A[][], &b[], x[], 1000);
 -- find residual and normalise --
 resid = max (b[]);
 residn = norm(resid);
 print(t1, flops, resid, residn);
end;

Fig. 1. Pseudo code for LINPACK 1000

The rest of the paper is organized as follows. Section 2
gives a brief description of the LINPACK 1000
benchmark. Section 3 describes the general platform this
work seeks to target and Section 4 describes how the
critical sections of the LINPACK benchmark are
implemented on an FPGA. In Section 5 the results for this
implementation are presented and Section 6 contains the
conclusions drawn from this work.

2. LINPACK 1000

The LINPACK family of benchmarks solves a system of
linear equations using LU decomposition and is typical of
many matrix-based scientific computations. It is widely
used to gauge the floating point performance of computer
systems. This work will focus on the LINPACK 1000
benchmark which is most commonly used to evaluate
general purpose microprocessors. LINPACK 1000 solves a
random linear system of order 1000, measures the average
floating point performance achieved and reports the
residual error produced.
 The pseudo-code for the operation of the LINPACK
1000 benchmark is given in Fig. 1. It first generates a
random 1000x1000 element matrix, A, and 1000 element
vector, b. The elements in A and b are all floating point
numbers. The dgefa and dgesl subroutines are then used to
find a 1000 element vector, x, such that Ax = b.
 The dgefa subroutine performs LU decomposition by
Gaussian elimination with partial pivoting on A. A brief
description of this method can be found in [11]. dgefa
modifies A and returns a vector, ipvt, containing the pivot
indices. The dgesl subroutine then solves the simplified LU
version of the original system. The time taken to complete
the dgefa and dgesl subroutines is measured, and the
average FLOPs calculated. The remainder of the algorithm
serves to estimate the normalized residual error in the
result vector x.

 Fig. 2. Target Platform

The true LINPACK 1000 benchmark uses double precision
floating point numbers. However, Celoxica’s floating
point library offers only single precision format. To enable
a fair comparison between the microprocessor and Handel-
C implementations, the benchmark must be modified to
use single precision.
 The single precision benchmark was profiled for an
Intel Pentium 4 processor (3GHz, 1Mbyte L2 cache)
running Windows XP using GCC 4.0.2 (running through
Cygwin). The entire single precision benchmark takes 1.70
seconds to complete, with an average floating point
performance of 427 MFLOPs across the dgefa and dgesl
subroutines. 93% of the execution time is spent in the
dgefa subroutine. dgefa calls a smaller function, named
daxpy, 499500 times with the result that the latter alone
accounts for 90% of the total execution time for the
benchmark.

3. TARGET PLATFORM

This work targets the general platform shown in Fig. 2. It
consists of a host microprocessor system linked to an
FPGA based coprocessor via a PCI interface. The
coprocessor features a high density FPGA, a PCI
interface/controller and on-board memory resources. In
this work the on-board memory is assumed to be SRAM
with between 4 and 6 banks giving a total of up to
32Mbytes of storage. The data width of the memories is
assumed to be 32 bits. Although this does not match any
existing development boards the features specified are
realistic and similar to those found on a number of boards
including the Celoxica RC300 [12] and RC2000 [13].
 This target platform has a key characteristic that affects
the implementation of the LINPACK 1000 benchmark,
namely that the benchmark must be partitioned between
the FPGA and the microprocessor to achieve good
performance. However, communication between the
microprocessor and the FPGA will be slow compared to
accessing the local SRAM. Hence a partition must be
chosen that limits the total communication required.

FPGA

PCI Controller

SRAM

SRAM

SRAM

SRAM

PCI Bus

Coprocessor

Host
Microprocessor

System

 For simplicity the benchmark is partitioned so that the
entire dgefa subroutine is implemented on the FPGA co-
processor. This partition limits the communication across
the PCI bus to two large block transfers of data (totaling
2001000 32-bit transfers), one at the start of the subroutine
and the other at the end. It also provides potential
opportunities for data reuse and parallelism on the FPGA
since dgefa contains a nested loop with three levels.
Finally, since dgefa accounts for 93% of the execution
time of the benchmark, there is good potential for overall
acceleration of the algorithm.

4. FPGA ACCELERATION OF THE DGEFA
ROUTINE

The design of LINPACK on FPGAs was done in Handel-C
and compiled in hardware using the DK Design Suite [14].
Compared with other HDLs, Handel-C allows
optimizations to be made at a high level, improving
programmer productivity.

With the benchmark partitioned, the next step is to
translate the dgefa subroutine to Handel-C and optimize it
with respect to data storage and parallelization. This work
uses an ANSI C version of the LINPACK benchmark as its
starting point. Before any optimizations are considered
some simple translation steps are performed such as
removing side effects and replacing ‘for’ loops with
‘while’ loops (which are implemented more efficiently in
Handel-C). Pointer-based array access is converted into
direct array addressing, and any floating point arithmetic is
replaced with Handel-C floating point macro procedures.
 To complete the translation to Handel-C, the problem
of assigning widths to all of the variables in the code must
be considered. Fortunately, since the main arithmetic in the
LINPACK benchmark is floating point, only the widths of
the control signals and array indices need to be considered.
These can be inferred relatively easily from loop bounds
and array sizes.
 The code can now be compiled as Handel-C and
synthesized to hardware. However, the hardware generated
will not be very efficient as no parallelism has been
exploited and no embedded memories specified. These
issues are tackled in the five optimization stages that
follow.
 Before any optimizations are considered, the arrays in
the algorithm are provisionally assigned to a layer of the
available memory hierarchy (registers, on chip memory or
off chip memory) depending on their sizes. This
provisional assignment establishes the maximum
bandwidth available for accessing each array. Data reuse
can then be focused on the most frequently accessed arrays
with the lowest available bandwidth.
 The dgefa subroutine uses two arrays. The first is used
to store the A matrix and the second stores the ipvt vector.
The A matrix has 1000 x 1000 floating point elements and

dgefa(*A[][], *ipvt[])
begin
 for (k = 0 : 998) -- loop 1 ---
 -- find the pivot index of column k --
 -- loop 4 in idamax --
 piv = idamax(A[][k], k) + k;
 ipvt[k] = piv;
 if (A[piv][k] != 0)
 -- swap matrix elements if k != piv--
 swap(&A[piv][k], &A[k][k]);
 -- floating point divide --
 t = -1/(A[k][k]);
 -- scale column k by t --
 --loop 5 in dscal --
 dscal(&A[][k], t, k);
 for (j = (k+1) : 999) -- loop 2 --
 -- swap matrix elements if k != piv --
 swap(&A[piv][j], &A[k][j]);
 t = A[piv][j];
 -- loop 3 in daxpy –
 --A[][j] = t*A[][k] + A[][j] --
 daxpy(&A[][j], A[][k], t, k);
 end for; -- end loop 2 --
 end if;
 end for; -- end loop 1 --
 ipvt[999] =999;
end;

 Fig. 3. Pseudo code for dgefa subroutine

therefore requires 32Mbits of storage. This is four times
greater than the total storage available on even the largest
FPGAs, so A must be assigned to off-chip memory. The
ipvt vector has only 1000 floating point elements and so
can be stored on the FPGA.

4.1. Data Reuse Exploitation

 In the first optimization stage the potential for data
reuse is investigated. The goal is to search for any reuse
pattern that could be exploited to reduce external memory
accesses or reduce array accesses within loop nests. This
could also allow greater parallelism to be exploited in later
stages of the implementation.
 The pseudo code for the dgefa subroutine is shown in
Fig. 3. It is possible to reuse (up to) a column of A matrix
data between iterations of both loop 1 and loop 2. The
daxpy function takes two matrix columns as inputs,
denoted as A[][j] and A[][k]. The same A[][k] data is
used for each iteration of loop 2 meaning that, if the
correct A[][k] data is buffered on the FPGA at the start of
loop 1, it can be reused for every iteration of loop 2. More
importantly, the A[][k] data for iteration k+1 of loop 1 is
calculated as a result column in iteration k. If this row of
data is stored on the FPGA as it is generated then only the
first A[][k] column will need to be read from the external
memory. As a result, inside the loop nest in Fig. 3, only the
A[][j] data must read from the external memory instead of
the A[][k] and A[][j] data. This effectively halves the
number of reads from the external memory and halves the
bandwidth required.
 This data reuse can be implemented using two new
arrays (provisionally assigned to on-chip RAM), each
capable of storing one column (32000 bits) of matrix data.
One array, called k_col, stores the A[][k] data for the
current iteration of loop 1. The second array, called k_next,

stores the A[][k] data needed for the next iteration as it is
generated. During the idamax and dscal functions the new
A[][k] data stored in k_next is modified and transferred
across to k_col.

idamax[0]
dscal[0]

idamax[1]
dscal[1]

idamax[2]
dscal[2]

idamax[3]
wait

dscal[3]

idamax[4]
dscal[4]

idamax[5]
dscal[5]

idamax[5]
wait

Processor 0

wait
wait
wait
wait

daxpy[1][2]
daxpy[1][3]
daxpy[1][4]
daxpy[1][5]

daxpy[1][998]
daxpy[1][999]

wait
daxpy[4][5]
daxpy[4][6]
daxpy[4][7]
daxpy[4][8]

wait
wait
wait
wait
wait
wait

daxpy[2][3]
daxpy[2][4]

daxpy[2][997]
daxpy[2][998]
daxpy[2][999]

wait
wait

daxpy[5][6]
daxpy[5][7]

Processor 1 Processor 2

wait
wait

daxpy[0][1]
daxpy[0][2]
daxpy[0][3]
daxpy[0][4]
daxpy[0][5]
daxpy[0][6]

daxpy[0][999]
daxpy[3][4]
daxpy[3][5]
daxpy[3][6]
daxpy[3][7]
daxpy[3][8]
daxpy[3][9]

Shared

4.2. Loop Pipelining

 Stage 2 of the optimization process explores the
possibility of single dimension software pipelining, using
the method presented in [15]. The potential for pipelining
at each level in the loop nest is considered, starting at the
outermost loop and working inwards. At each level data
the dependence constraints, the possible initiation rate of
the pipeline and the possibilities for data reuse are used to
determine the suitability of that level for pipelining.
 It is not possible to pipeline iterations of the outer loop
(loop 1 in Fig. 3) since there are loop carried dependencies
on all of the input data. For the idamax and dscal functions
this leaves only their internal loops as candidates for
pipelining. There are no loop carried dependencies within
idamax and dscal so their internal loops can be pipelined
into the single floating point resource present in each
function. idamax contains a floating point comparator with
a pipeline depth of 2 and dscal contains a floating point
multiplier with a pipeline depth of 7.
 The daxpy function contains a floating point multiplier
whose output feeds a floating point adder. This gives a
total pipeline depth of 17. Iterations of either loop 2 or
loop 3 (Fig. 3) can be pipelined into these resources, but
loop 2 is not perfectly nested. Since both have the same
bounds it makes sense to pipeline loop 3 since it is
perfectly nested and therefore more easily implemented.

4.3. Coarse Grained Parallelization

The goal of this optimization step is to exploit coarse
grained parallelism by scheduling blocks of code to
execute together, specifically entire loops and/or loop
iterations. In the LINPACK 1000 case the main focus is on
loops involving the daxpy function since it accounts for
99% of the time spent in the dgefa subroutine.
 The first step is to analyze the input data patterns and
data dependencies at each loop level in the dgefa
subroutine. There is a loop carried dependency in loop 1
(Fig. 3) such that all of the input data used by iteration n+1
is generated in iteration n. This means that, if multiple loop
1 iterations are run in parallel with their start times offset
correctly, then data could effectively flow from the output
of one iteration to the input of the next without going
through the external memory. This allows arbitrary daxpy
parallelism with only two ports to the external memory.
 Fig.4. shows how the loop 1 iterations can be scheduled
across multiple parallel loop processing units. The number
of processors can be varied using a ‘# define’ in the
Handel-C source code. In Fig. 4 idamax[k] and dscal[k]

Fig. 4. Schedule for 3 parallel processing units

represent the execution of the idamax and dscal functions
respectively in iteration k of loop 1. daxpy[k][j] represents
the execution of the daxpy function in iteration j of loop 2
and iteration k of loop 1. All of the rest of code in the dgefa
subroutine has been moved into one of these three
functions to simplify the system. idamax, dscal and daxpy
all contain loops iterating over the same bounds so they
take the same number of clock cycles to run (+/- 2%). This
allows instances of the three functions to be scheduled as if
they were individual instructions.
 idamax[k+1] operates on the data generated in
daxpy[k][k+1]. As the output data from daxpy[k][k+1] is
generated it is sent to idamax[k+1] through global
variables, allowing the two functions to run in parallel.
daxpy[k+1][k+2] runs in parallel with daxpy[k][k+3] but
uses the data generated by daxpy[k][k+2] during the
previous iteration of loop 2. Hence, each processor must
include a circular buffer (capable of storing a column of
matrix data) to store the data generated by the previous
processor in the chain until it can be used in the next
iteration of loop 2.
 As can be seen in Fig. 4, idamax and dscal are never
required by more than one processor at once, allowing
them to be shared across all of the processors. This means
that the k_next buffer (generated in Section 4.1) can also be
shared since only idamax and dscal access it. Each
processor must have its own k_col buffer however, since
each processor uses a different A[][k] column as its input.
 Only the last loop processor in the chain must write its
A[][j] output data to the external memory. However, the
A[][k] data stored in the k_col buffer in each processor
must be written to the external memory at some point since

 Table 1. Performance results for Altera Stratix II devices

these columns form part of the final result matrix.
Fortunately the final processor in the chain has sufficient
‘wait’ slots to output all the necessary data so only a single
write port to the external memory is required. Since there
are now multiple write sources an additional function must
be included to arbitrate over the memory bus. The
processors communicate with this function via global
variables, allowing it to run in parallel with the normal
operation of the system.

4.4 Memory Assignment

Memory assignment for the parallelized dgefa subroutine
is quite simple as there are no opportunities to share
memory resources between arrays since all of the arrays
are active all of the time. All of the local buffers generated
in the previous sections must be assigned to simple dual
port memory (M4K blocks for Altera devices and Block
RAM for Xilinx devices) as each is often accessed by two
processing units in parallel.
 The ipvt vector is assigned to a single port on chip
memory. The A matrix is assigned to two blocks of off
chip SRAM. The arbitration function which controls the
external write port can be written so that, when an element
from a row with an even number is being read, the element
being written belongs to an odd numbered row. There is
sufficient slack in the schedule to allow a write to be
delayed by a cycle when necessary to avoid conflict. This
scheme allows all even numbered rows to be assigned to
one block of SRAM while the odd rows are assigned to the
other. This allows the two blocks of SRAM to behave as a
simple dual port RAM.

4.5 Fine Grained Parallelism & Pipelining

A number of steps are executed to increase the maximum
clock frequency. These include breaking up complex
calculations into several smaller calculations, inserting
pipeline registers into the data paths and simplifying
control statements. The read ports of all the embedded
memory blocks are also pipelined to prevent Celoxica’s
Handel-C compiler from creating an inverted clock signal
and halving the maximum operating frequency. Once these
modifications have been made the final step is to go
through the code and find any instructions that can be
implemented in parallel and to enclose them in ‘par’ tags.

5. RESULTS

Table 1 shows the performance results achieved when
between 2 and 36 parallel processing units are targeted to
Altera Stratix II devices. 36 processors utilize 94% of the
largest device available. Table 2 shows comparable results
for Xilinx Virtex 4 LX devices. 28 processors occupy 99%
of the slices on the largest Virtex 4 LX device, but this is
without unrelated logic packing. Each test case is targeted
to the smallest device (fastest speed grade) that will
accommodate it, without filling the device to such an
extent that timing suffers adversely.
 The Handel-C source code was complied to EDIF
through Celoxica DK Suite 4.0. The Altera syntheses were
performed using Altera Quartus II 4.2 and the Xilinx
syntheses used Xilinx ISE 7.1i. All of the test syntheses
used single pass place and route and standard effort
settings. The functionality of dgefa coprocessor was

No. loop
processors

Device ALUTs Memory
(kbits)

DSPs Fmax
(MHz)

Cycles for
dgefa

Time for
dgefa (s)

Speedup
Total (dgefa only)

2 EP2S15 11704 160 24 67.7 172922066 2.58 0.63 (0.61)
3 EP2S30 15584 224 32 63.7 115453199 1.84 0.87 (0.86)
4 EP2S30 19195 288 40 63.4 86718956 1.40 1.12 (1.13)
8 EP2S60 33635 352 72 61.8 43618207 0.74 1.99 (2.15)

16 EP2S90 62095 1056 136 64.1 22069153 0.37 3.48 (4.27)
36 EP2S180 135487 1920 296 44.4 10104098 0.26 4.51 (6.14)

Table 2. Performance results for Xilinx Virtex 4 devices
 No. loop

processors
Device Slices Memory

(kbits)
DSP

Slices
Fmax
(MHz)

Cycles for
dgefa

Time for
dgefa (s)

Speedup
Total (dgefa only)

2 XV4LX25 9754 160 12 70.0 172922066 2.50 0.65 (0.63)
3 XV4LX40 13230 224 16 69.0 115453199 1.70 0.93 (0.93)
4 XV4LX40 16371 288 20 64.1 86718956 1.38 1.13 (1.15)
8 XV4LX100 28850 352 36 56.2 43618207 0.81 1.83 (1.96)

16 XV4LX200 52475 1056 68 53.8 22069153 0.44 3.04 (3.59)
28 XV4LX200 89086 1824 96 42.1 12837274 0.33 3.75 (4.72)

verified using the Handel-C simulator in DK suite. A four
processor version of dgefa was downloaded to a Stratix
EP1S40 device on a NIOS development board and verified
for a 32x32 matrix.
 The dgefa times listed in both tables are those taken to
complete the processing for the dgefa subroutine plus an
estimate of the time taken to transfer data between the
FPGA and the host microprocessor across a 66MHz PCI
bus. This has been estimated to take 0.03 seconds
(2001000 32 bit transfers at 66MHz). The speedup time
given inside the brackets is an estimate of the speedup over
the 3GHz Pentium 4 for just the dgefa subroutine. The total
speedup figure quoted is an estimate for the speedup factor
for the whole benchmark, assuming that the remaining
code is implemented on the Pentium 4 processor.
 The optimized Handel-C implementation can execute
the dgefa subroutine around 6 times faster than the
Pentium 4 when targeted to the largest Altera device, with
an average performance of 2570 MFLOPs. For the larger
designs it should be possible to improve these figures by
further pipelining the connections (global variables) used
to send data between processing units. However, it should
be noted that, up to 16 processors, the critical path for the
Altera devices lay within the Celoxica floating point
comparator. Hence these particular figures could not be
improved by further pipelining the LINPACK code.

6. CONCLUSIONS

An optimized Handel-C implementation of a coprocessor
for a single precision version of the LINPACK 1000
benchmark was produced through a series of optimizations
that identify opportunities to exploit data reuse, loop
pipelining, coarse grained parallelism, parallel memory
assignment, fine grained parallelism and pipelining. When
targeted to the latest generation of FPGAs this coprocessor
can execute parts of the benchmark up to 6 times faster
than a 3GHz Pentium 4 processor and accelerate the
execution of the complete benchmark by a factor of 4.5.
This suggests that it is currently possible to accelerate
scientific computing algorithms using FPGAs, even when
using high level design methods and tools.
 However, it has also been shown that significant effort
is required to convert the standard ANSI C algorithms into
efficient, parallel Handel-C. As a result the development
times for hardware are still much longer than those for
software, even when high level languages are used.
Furthermore, an awareness of how specific high level code
will be synthesized in hardware is still required to produce
efficient designs. This prevents software designers from
migrating seamlessly to hardware. It seems that further
design tools, possibly automating optimizations similar to
those presented here, are still required to make hardware
design run as quickly and efficiently as software design.

7. REFERENCES

[1] K. Underwood, “FPGAs vs. CPUs: Trends in Peak Floating
Point Performance”, Proc. Int. Symp. Field Programmable
Gate Arrays, pp. 171–180, February 2004.

[2] P. Belanovic, M. Leeser, “A library of parameterized
floating point modules and their use”, Proc. Int. Conf. Field
Programmable Logic and Applications, pp 657-666,
September 2002.

[3] J. Dido, et. al., “A flexible floating point format for
optimizing data paths and operators in FPGA based DSPs”,
Proc. Int. Symp. Field Programmable Gate Arrays, pp. 50-
55, February 2002.

[4] X. Wang, B. E. Nelson, “Tradeoffs of designing floating
point division and square root on Virtex FPGAs”, Proc.
IEEE Symp. Field-Programmable Custom Computing
Machines, pp. 195-203, April 2003.

[5] E. Roesler, B. Nelson, “Novel optimizations for hardware
floating point units in a modern FPGA architecture”, Proc.
Int. Conf. Field Programmable Logic and Applications, pp.
637 – 646, September 2002.

[6] W. Ligon, et. al., “A re-evaluation of the practicality of
floating point on FPGAs”, Proc. IEEE Symp. Field-
Programmable Custom Computing Machines, pp. 206–215,
April 1998.

[7] K. Underwood, K. Hemmert, “Closing the gap: CPU and
FPGA trends in sustainable floating point BLAS
performance”, Proc. IEEE Symp. Field Programmable
Custom Computing Machines, pp 219-228, April 2004.

[8] http://www.mentor.com/products/c-
based_design/catapult_c_synthesis/index.cfm

[9] M. Weinhardt, W. Luk, “Pipeline vectorization”, IEEE
Trans. Comput.-Aided Design, vol 20, no. 2, pp. 234–248,
February 2001

[10] J. Dongarra, P. Luszczek, A. Petitet, “The LINPACK
benchmark: Past, Present and Future”,
http://www.netlib.org/utk/people/JackDongarra/PAPERS/hp
l.pdf

[11] http://www.cs.toronto.edu/~bonner/courses/2006s/csc338/le
ctures/chap02.pdf, pp. 35-42.

[12] http://www.celoxica.com/products/rc300/default.asp

[13] http://www.celoxica.com/products/rc2000/default.asp

[14] http://www.celoxica.com/products/dk/default.asp

[15] H. Rong, Z. Tang, R. Govindarajan, A. Douillet, G Gao,
“Single-Dimension Software Pipelining for Multi-
Dimensional Loops”, Proc. IEEE Int. Symp. Code
Generation and Optimization, pp. 163-174, March 2000

ACKNOWLEDGEMENTS

This work was supported by the EPSRC (EP/C549481/1)

	1. INTRODUCTION
	2. LINPACK 1000
	3. TARGET PLATFORM
	4. FPGA ACCELERATION OF THE DGEFA ROUTINE
	5. RESULTS
	6. CONCLUSIONS
	7. REFERENCES
	ACKNOWLEDGEMENTS

