
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—As the density of FPGAs has greatly improved over

the past few years, the size of configuration bitstreams grows

accordingly. Compression techniques can reduce memory size

and save external memory bandwidth. To accelerate the

configuration process and reduce software start-up time, four

open-source lossless compression decoders developed using

high-level synthesis techniques are presented. Moreover, in order

to balance the objectives of compression ratio, decompression

throughput, and hardware resource overhead, various

improvements and optimizations are proposed. Full bitstreams

and software binaries have been collected as a benchmark, and 33

partial bitstreams have also been developed and integrated into

the benchmark. Evaluations of the synthesizable compression

decoders are demonstrated on a Xilinx ZC706 board, showing

higher decompression throughput than that of the existing lossless

compression decoders using our benchmark. The proposed

decoders can reduce software start-up time by up to 31.23% in

embedded systems and 69.83% reduction of reconfiguration time

for partial reconfigurable systems.

Index Terms—High-Level Synthesis, lossless compression,

compression decoder, FPGA bitstream, software binary.

I. INTRODUCTION

URING the last decade, the progress in silicon technology

has led to an enormous growth of resources on current

SRAM-based Field Programmable Gate Arrays (FPGAs). As

the amount of resources increases, the size of configuration

memory needed to store the bitstreams grows accordingly.

Bitstreams for high-end products from the leading FPGA

vendors have broken through the 300 megabits barrier [1][2].

Storing the bitstreams in FPGA-based systems becomes a

critical problem since it needs large external memory that could

increase the overall system cost [3]-[7]. In high radiation

This work was supported in part by the National Natural Science Foundation

of China under Grant 61131001.

J. Yan, J. Yuan, and L. Wang are with the State Key Laboratory of ASIC and

System, Fudan University, Shanghai 201203, China (e-mail: 13110720061@

fudan.edu.cn; 15110720075@fudan.edu.cn; llwang@fudan.edu.cn).

P. H. W. Leong is with the School of Electrical and Information Engineering,

The University of Sydney, NSW 2006, Australia (e-mail: philip.leong@

sydney.edu.au).

W. Luk is with the Department of Computing, Imperial College, London,

SW7 2AZ, U.K (e-mail: wl@doc.ic.ac.uk).

Digital Object Identifier XXXXXX

environments, continuing growth of bitstreams has become a

dramatic problem as nonvolatile memory required to store the

bitstreams must be radiation-hardened. Such memory has lower

density and is much more expensive than conventional memory,

resulting in very high system costs.

In addition to the hardware aspects, there is also an increase

in the size of software binaries or executable programs that are

executed in FPGA-based embedded systems. With the trend

towards more complex software systems with respect to code

size and the number of processors, the capacity of the external

nonvolatile memory needed to store the software binaries

grows accordingly. Furthermore, the required throughput for

reading software binaries needs to improve in order to meet the

limited start-up time of some systems [8].

To solve the above problems, bitstream and software binary

compression techniques are developed to reduce the external

memory usage and the required external memory bandwidth.

There have been several approaches investigating the

effectiveness of compressing bitstreams or software binaries.

However, there are still three limitations of existing methods.

First, there is no prior work that simultaneously addresses

compression ratio, hardware resource overhead, and

decompression throughput. Some compression techniques with

good compression ratio and few hardware resources, have poor

decompression throughput and hence are not competitive.

Second, benchmarks are not available for full bitstreams,

partial bitstreams, and software binaries, and do not represent

the statistical characteristics for a wide range of applications.

Third, there are substantial differences between

implementation results and simulation results.

To address these challenges, four lossless compression

decoders developed using High-Level Synthesis (HLS)

techniques are presented. At the decompression level, various

improvements and optimizations are applied to the

compression decoders in order to balance the objectives of

compression ratio, decompression throughput, and hardware

resource overhead simultaneously. At the benchmark level, 28

full bitstreams and 25 software binaries have been collected.

Thirty three partial bitstreams have been developed and

integrated into the benchmark. Moreover, since no specific

bitstream organizations and software binary data structures are

required, these decoders are applicable to other modern FPGA

Lossless Compression Decoders for

Bitstreams and Software Binaries Based on

High-Level Synthesis

Jian Yan, Junqi Yuan, Philip H. W. Leong, Senior Member, IEEE, Wayne Luk, Fellow, IEEE,

and Lingli Wang, Member, IEEE,

D

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

devices and software binaries. Implementations of the proposed

compression decoders can run at 200MHz. Evaluations of the

synthesizable compression decoders are demonstrated on a

Xilinx ZC706 board. The decompression throughput of the

proposed compression decoders are superior to the existing

lossless compression decoders on the benchmark by making

use of different kinds of optimizations.

To summarize, the following contributions are made in this

paper.

1) Four open-source lossless compression decoders are

developed using HLS. Various improvements and

optimizations are applied to these decoders in order to

balance the objectives of compression ratio,

decompression throughput, and hardware resource

overhead. Implementations of the synthesizable lossless

compression decoders can run at 200MHz.

2) A benchmark including full bitstreams, partial bitstreams,

and software binaries is provided. Comparison results

between the proposed compression decoders and the

existing compression decoders on the benchmark are

presented in respect of maximum frequency, as well as

compression ratio, decompression throughput, and

hardware resource overhead.

3) Evaluations of the synthesizable compression decoders

are demonstrated on a Xilinx ZC706 board, showing

higher decompression throughput than that of the

existing compression decoders on the benchmark.

Moreover, the proposed method can reduce software

start-up time by up to 31.23% in embedded systems and

69.83% reduction of reconfiguration time for partial

reconfigurable systems.

The rest of paper is organized as follows. Section II discusses

related work. Section III gives overall design considerations.

Section IV presents design and implementation of lossless

compression decoders in detail. Experimental results and

analysis are presented in Section V. Finally, Section VI

concludes this paper.

II. RELATED WORK

Existing compression techniques for bitstreams and software

binaries can be classified into two categories based on whether

they are device dependent during decompression.

A. Device Dependent Approaches

Some methods require special hardware features during

decompression, such as wildcard registers or configuration

mechanism, which are provided only in certain FPGAs.

Wildcard registers allow configuration memory within the

same row or column to be written simultaneously. Some

approaches that take advantage of the characteristics targeting

Xilinx XC6200 FPGAs are presented in [9][10]. By using these

registers, faster configuration could be achieved. In addition, a

subsequent approach [11] from the same authors takes

advantage of these registers based on Run Length Encoding

(RLE) for the same family of FPGAs. The use of “don’t cares”

for bitstream compression has been proposed in [12][13].

However, the method requires specific information regarding

the bitstream format and the internal structure of the FPGA,

This information is confidential in modern FPGAs, preventing

us from exploiting such techniques.

Some studies [13]-[16] investigate the ability to compress

bitstreams using the configuration mechanism. These studies

show that bitstreams can be compressed efficiently by utilizing

inter-frame or intra-frame regularity. In addition, some

researches [13][14] use frame reordering and runtime frame

read-back to achieve better redundancy, which are combined

with RLE, Huffman encoding, LZSS encoding or computing

the XOR difference between frames. These complex

compression technologies can produce excellent compression

results. However, not only do these methods require the

knowledge of the bitstream format and the internal structure of

the FPGA, but they do not address the problem of

decompression throughput and decompression hardware

resource overhead.

B. Device Independent Approaches

Altera incorporates a hardware compression decoder in

products, such as Stratix II FPGAs [17]. This decompression

feature allows FPGAs to receive a compressed configuration

bitstream and decompress it at run-time, reducing storage

requirements and configuration time. The Xilinx bitstream

generation tool (BitGen) includes an option called “-g

compress”, which uses multiple-frame write sequences to

minimize the size of bitstreams. This option is appropriate for

compression of full and partial bitstreams. Both Xilinx and

Altera have built-in hardware compression decoders in the

external configuration devices, such as the System ACE MPM

[18], Platform Flash PROM [19], and Enhanced Configuration

[20]. Using these devices, designers do not need the knowledge

of the bitstream format and the internal structure of the FPGA.

In fact, they can save the total solution cost including storage

memory, board space, configuration speed, and source of

supply. However, both Xilinx and Altera omit details on

decompression throughput and hardware resource overhead.

There are also other approaches in the field of bitstream

compression and decompression, which involve RLE methods,

statistical methods, dictionary-based methods, bitmask-based

methods, and other variations [3]-[7][21]-[26]. Since

configuration bitstreams are processed as raw data, these

proposed techniques are applicable to other SRAM-based

FPGA device, and do not depend on specific features of the

configuration mechanisms. A modified LZW dictionary-based

compression method has been proposed in [3][4]. Although the

decompression hardware is simple, the memory requirement is

high. The work presented in [5][6] tends to be more exhaustive

in terms of compression techniques. The authors discuss

different bitstream compression techniques, and also compare

their own compression methods with state-of-the-art software

programs like GZIP applied to different bitstreams. But the

decompression throughput is not competitive. The authors in [7]

compare their compression techniques with previous methods,

and the proposed compression decoder is designed carefully to

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

achieve less hardware resource overhead and higher frequency.

Unfortunately, they do not address the decompression

throughput. A detailed implementation of LZSS compression

decoder has been shown in [21]. The decoder can decompress

the compressed partial bitstreams at run-time, but the authors

do not provide decompression throughput. The LZSS approach

is also used to compress portable partial bitstreams in [22].

Reference [23] shows high compression efficiency of partial

bitstreams using the XOR operation and RLE. However,

BRAM is used to store partial bitstreams before configuration.

Larger partial bitstream files need more BRAMs and hence this

method is not suitable for large partial bitstream files. A wide

range of compression algorithms have been evaluated in [24]

based on eight benchmark circuits. Although the proposed

compression decoders can run higher than 200MHz, the

decompression throughput is compromised. The authors in [25]

propose an optimized RLE method to compress partial

bitstreams and use the corresponding compression decoder to

accelerate configuration process. However, the throughput is

low. A compression decoder based on LZ77 and bitmask

schemes has been proposed in [26], but the hardware resource

overhead is high and the decompression throughput is low. Not

only do these methods consider the compression ratio of each

algorithm, but also the frequency of compression decoders and

hardware resource overhead.

The organization of software binaries are very different from

FPGA bitstreams. Some methods are also appropriate for

software binaries. The LZSS compression technique is utilized

for software binaries minimization in [6]. Bitmask-based

compression approaches are proposed to compress software

binaries in [27][28]. However, the decompression throughput

of the proposed decoders in this paper are superior to these

lossless compression decoders.

Although compression techniques for bitstreams have been

proposed, all the above compression decoders are designed

using hand-written Register Transfer Level (RTL) descriptions.

In this paper, four lossless compression decoders are developed

using HLS. In order to balance the objectives of compression

ratio, decompression throughput, and hardware resource

overhead, various improvements and optimizations are applied

to these decoders. Furthermore, an extended benchmark is

provided, including full bitstreams, partial bitstreams, and

software binaries.

III. DESIGN CONSIDERATIONS

HLS is introduced in general, and then the process of

compression and decompression are discussed.

A. High-Level Synthesis

High-level synthesis tools perform automated translation of

high level language (e.g., C, C++, and SystemC) inputs to RTL

implementations. HLS tools perform scheduling of operations

to finite state machine states and binding of operations to

functional units. They also generate I/O interfaces to connect

with memory or other interface protocols. HLS tools include

pragmas to guide optimization of area and performance.

Efficient use of pragmas, together with code reorganizations to

make pragmas effective, are the key design and the

optimization technique for HLS. In a word, HLS bridges

hardware and software domains, which can improve both

productivity for hardware designers and system performance

for software designers [29][30].

In this paper, Xilinx Vivado HLS is used to develop and

verify the compression decoders at the C-level. Multiple

implementations based on the source code are created, using

optimization directives and exploring the design space, which

increase the possibility of finding an optimal implementation.

B. Process of Compression and Decompression

The goal of compression is to minimize the size of bitstreams

and software binaries. The compression of bitstreams and

software binaries is similar to data compression, taking

advantage of regularity and repetitions existing in the data

stream. The process of compression and decompression are

shown in Fig. 1. The original software binaries or full and

partial bitstreams are compressed at compilation-time as shown

in Fig. 1(a). The compressed full bitstream is transferred to the

off-chip decompressor, then the decompressed full bitstream is

transmitted to the FPGA configuration memory through the

configuration interface as shown in Fig. 1(b). For partial

reconfiguration, the compressed partial bitstream stored in

external memory is transferred to the on-chip decompressor,

which is connected to the internal configuration port directly.

Then the function implemented in the reconfigurable region is

modified by the decompressed partial bitstream as shown in Fig.

1(c). In embedded systems, the CPU reads the compressed

software binary stored in the external nonvolatile memory and

transfers it to the external memory ①, such as DDR SDRAM.

Then the compressed software binary is transmitted to the

on-chip decompressor ②. Finally, the decompressed software

binary is return to the external memory ③ as shown in Fig.

1(d).

There are two problems which must be resolved for the

process of compression and decompression. First, an efficient

compression encoder must be provided. The more efficient the

compression encoder is, the more memory it can save. Second,

since the decompression is performed at run-time, both

decompression throughput and hardware resource overhead

should be carefully considered. The resource overhead of the

compression decoder should be as small as possible. The

throughput of the decoder has to be higher than that of the

configuration interface; otherwise the compression decoder

will affect the configuration rates. In addition, any information

loss in bitstreams or software binaries may generate undesired

outputs, or even worse it may damage devices. Any lossless

compression technique has to satisfy the following condition:

the outputs of the decompressor must be the same as the

original inputs of the compressor. Lossless compression

techniques are well-studied with a lot of efficient methods. In

this paper, four lossless compression techniques are selected,

based on RLE [31], LZ77 [32], LZSS [33], and LZG [34]. The

details of designs and implementations are presented in the

following section.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Fig. 1. The process of compression and decompression. (a) Compression stage (compilation-time, off-line). (b) Decompression stage of full bitstreams (run-time,

off-chip). (c) Decompression stage of partial bitstreams (run-time, on-chip). (d) Decompression stage of software binaries (run-time, on-chip).

IV. DESIGN AND IMPLEMENTATION OF LOSSLESS

COMPRESSION DECODERS

Design and implementation metrics are introduced in general.

Then analysis of the benchmark and selections of reference

codes are presented. Design flow and optimization

methodology are discussed in more detail.

A. Design and Implementation Metrics

In this paper, compression techniques are compared and

analyzed using the following metrics:

1) The compression ratio is widely used as a metric in

[6][7]. It is defined as the ratio between the compressed

data size and the original data size.

 Compression Ratio =
Compressed Data Size

Original Data Size
 (1)

A smaller compression ratio means a better compression

technique and saving more memory of external

nonvolatile memory.

2) The decompression throughput is defined as the ratio

between the decompressed data size (the same as the

original data size) and the decompression time.

 Decompression Throughput=
Decompressed Data Size

Decompression Time
 (2)

In order to speed up the hardware configuration and

reduce software start-up time, higher decompression

throughput is required.

3) The decompression efficiency is the ratio of the

decompression throughput to the frequency and the data

width.

 Decompression Efficiency=
Decompression Throughput

Frequency ⋅ Data Width
 (3)

To measure the efficiency of the decompression

technique, the decompression efficiency is used as a

metric.

4) Hardware Resource Overhead. Since decompression is

performed at run-time, the hardware resource overhead

of the compression decoder should be as small as

possible.

Considering the above metrics, the required compression

technology should have better compression ratio, higher

decompression throughput, higher decompression efficiency,

and less hardware resource overhead.

B. Analysis of the Benchmark

The following characteristics of the benchmark are shown in

Fig. 2.

1) The probability of symbol (S) ‘0’ is much higher than

other symbols, especially for the partial bitstreams as

shown in Fig. 2(a-c).

2) The probability of each symbol decreases with the

increase of the symbol length (Ls) as shown in Fig.

2(a-c).

3) The average entropy of the 33 partial bitstreams is the

lowest. The average entropy of the 25 software binaries

is the highest as shown in Fig. 2(d).

Only one symbol consistently exhibits extremely high

frequency for each category of the benchmark. There are more

repetitive patterns in the 33 partial bitstreams and more random

symbols in the 25 software binaries. These characteristics

imply that partial bitstreams have a better compression ratio

than full bitstreams and software binaries. Details of the

compression ratio and the benchmark are presented in section

V.

C. Reference Codes Selection

As discussed in section III, the compression technologies for

bitstreams and software binaries have to be lossless. In the

selection of reference codes, although only software

compression decoders are the inputs to HLS, it is critical that

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Fig. 2. Characteristics of the benchmark. (a)-(c) Symbol probability of symbol (S) value. (d) Entropy of symbol length (Ls).

software compression encoders are used consistently in order to

generate the input data for the compression decoders. In

addition, in order to perform HLS, the reference codes cover

software compression decoders. Furthermore, the reference

codes should not include embedded assembly or

platform-dependent optimizations, which are not supported by

Xilinx Vivado HLS.

To summarize, the following characteristics should be

considered in the selection of reference codes.

1) Software implementations of both lossless compression

and decompression methods are available.

2) The reference codes cover software compression

decoders.

3) There are no embedded assembly or platform-dependent

optimizations.

Based on the above characteristics, RLE [31], LZ77 [32],

LZSS [33], and LZG [34] are selected.

In addition to the above considerations, RLE is simple and

very useful for data that contains many repeating patterns.

Three similar dictionary-based methods are selected for good

compression ratio and simple decompression schemes. LZ77

and LZSS are widely used for bitstream compression

[5][6][13][18][21][24]. Both methods can achieve good

compression ratio, but the decompression throughput is not

competitive. Compared with LZ77 and LZSS, the

decompression method of LZG is simpler and faster with

comparable compression ratio. Experimental results including

the benchmark are presented in section V.

RLE [31]: If a data item D occurs N consecutive times in the

input stream, replace the N occurrences with the single pair ND.

Actually there is also a flag item F which is required during the

RLE decompression. Thus, the compressed data stream is FND.

RLE decompression is also straightforward. When a flag item F

is read, the repetition count N and the actual data D are

immediately read, and the data item D is written N times on the

output stream.

LZ77 [32]: LZ77 is a dictionary-based text compression

scheme. The scheme works by defining a sliding window or a

fixed-size dictionary to hold data from an input stream, and

then referring to the sliding window when compressing the

remainder of the input stream. If a pattern in the input stream is

already in the sliding window, this pattern is replaced with a

length-distance pair. As compression progresses, the sliding

window is updated by shifting in more data from the input

stream, subsequently forcing earlier entries out. Decompression

is the inverse of the compression process. The same sliding

window is used to hold uncompressed data. When a

length-distance pair to the sliding window is encountered, the

decompressor simply copies the specified number of data from

the dictionary, shifts these data into the same sliding window,

and then continues processing the rest of the compressed input

stream.

LZSS [33]: LZSS is an efficient variant of LZ77. It holds the

look-ahead buffer in a circular queue and holds the search

buffer (the dictionary) in a binary search tree. Since the buffer

size is 4096 bytes, the position can be encoded in 12 bits. The

scheme also represents the match length in 4 bits, thus the

position-length pair is just two bytes long. If the longest match

is no more than two characters, then the scheme sends just one

character without encoding, and continue the process with the

next symbol. It also needs one extra bit each time to tell the

decoder whether it is sending a position-length pair or an

unencoded character.

LZG [34]: liblzg is a minimal implementation of an LZ77

class compression library. It implements an algorithm that is a

variation of the LZ77 algorithm, with the primary focus of

providing a very simple and fast decompression method. It

contains four unique marker symbols, which are used to

separate literal data from various forms of length-distance pair

encodings.

D. Design Flow and Optimization Methodology

Fig. 3 shows a brief overview of the design flow and

optimization methodology. The grey parts are the optimization

methodology. The functional correctness of the compression

decoder extracted from the reference code is verified with a C

testbench. After all nonsynthesizable constructs are eliminated

or converted for synthesizability, the initial hardware design of

the compression decoder is generated by HLS with the default

optimization. The initial design prepares for further

optimizations. These optimizations will be discussed latter in

more detail. In order to validate the optimized design, C/RTL

cosimulation is performed within Vivado HLS. During C/RTL

cosimulation, the same C testbench used in C simulation is

reused and the synthesized function is replaced by the RTL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

Fig. 3. Design flow and optimization methodology.

Fig. 4. I/O optimization of the RLE decoder.

design. Once the C/RTL cosimulation is completed, the design

is packaged as an IP. Detailed explanations of the design flow is

presented in [35]. Optimizations are shown below.

1) I/O optimization

In C-level design, all input and output operations are

performed in negligible time via a function call. In contrast, for

an RTL design, these same input and output operations

involves transferring data through I/O ports. Although Vivado

HLS supports various I/O protocols, AXI4-Stream Interfaces

without side-channels are used. These interfaces can be applied

to any input or output arguments, and can achieve high

performance. In addition, since the compression decoder

accesses data in a streaming manner, these interfaces will not be

the bottleneck. Furthermore, AXI4-Stream Interfaces are

industrial standard interfaces and easy to use during the system

design. Fig. 4 shows the I/O optimization of the RLE decoder.

Other decoders are nearly the same. Fig. 5 shows the

corresponding interfaces of the RLE decoder. The width of the

I/O can be modified easily by changing the arguments.

Fig. 5. Interfaces of the RLE decoder.

Fig. 6. Shift register function before optimization.

2) Structure optimization

C/C++ code can contain dependencies that prevent a

function or a loop from being pipelined. In these cases, code

improvements are needed to remove the dependencies. A shift

register function is synthesized as a slide window of the

dictionary-based compression method. Fig. 6 shows the data

dependency in the L1 loop. There is the dependency between

two shifting operations. Shifter writing Sreg.shift(tmp,0) cannot

be executed until shifter reading tmp = Sreg.read(offset-1) has

been executed. After structure optimization, Fig. 7 shows no

data dependency in the L2 and the L3 loops. Even though data

outputting dout.write(tmp), shifter reading and writing tmp1 =

Sreg.shift(tmp,offset-2), as well as assignment tmp=tmp1

appear serially in the code, these operations can be pipelined.

Therefore, the data dependency between two operations can be

removed by structure optimization. Although this optimization

increases the hardware resource overhead, it can achieve higher

performance.

3) Pipeline and dataflow optimizations

In order to improve the performance of the compression

decoders, more and more concurrent and parallel operations are

required. The pipeline optimization can be applied to functions

and loops. The dataflow optimization can be applied at the task

level that contains the functions and loops.

There is a tradeoff between area and performance when

loops are pipelined. L1 loops can be pipelined after code

conversion shown in Fig. 8. But it can be seen that bad pipeline

optimization may result in large hardware resource overhead

and long latency. Thus, it might make no sense to improve the

performance.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Fig. 7. Structure optimization of the shift register function.

Fig. 8. Pipeline optimization of the shift register function.

Fig. 9. Dataflow optimization of the RLE decoder. (a) Without dataflow optimization. (b) With dataflow optimization.

On the other hand, applying dataflow optimization can

pipeline sequential tasks and improve performance. Compared

with the RLE decoder shown in Fig. 4, we add another two

tasks shown in Fig. 9 (a). The three tasks run serially and

require 6 clock cycles without dataflow optimization shown in

Fig. 9 (a). During dataflow optimization, Vivado HLS

schedules each task to execute as soon as possible and allows

executions of the three tasks to overlap with only 4 clock cycles,

increasing the overall throughput of the design shown in Fig. 9

(b). Because the three tasks share the same interfaces, they

cannot be executed concurrently within 2 clock cycles.

4) Latency optimization

There is no need to apply latency optimization when the

loops or function are pipelined. However, if the loops or

functions are not pipelined shown in Fig. 7, the overall

throughput will be limited by the latency, because the task does

not start reading until the task has completed. In this case, the

maximum latency is needed to be constrained.

5) Code revision

In order to improve the decompression throughput further,

the reference code revision is required. For example, when a

data item occurs three consecutive times, RLE method

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Fig. 10. Code revision of the RLE decoder. (a) RLE decompression process

before code revision. (b) RLE decompression process after code revision. (c)

Code revision with dataflow optimization.

compresses the input stream with three characteristics

discussed in section IV-C. The corresponding RLE

decompression process is shown in Fig. 10 (a). The decoder

reads three times (flag item, repetition count, and actual data),

and then the actual data are written three times on the output

stream. The RLE encoder does not compress the input stream

until the data item occurs more than three consecutive times

after the code revision. Thus, this optimization does not affect

the compression ratio. The RLE decoder alternates reading

input stream and writing output stream presented in Fig. 10 (b).

Combining with the dataflow optimization, the decompression

throughput is improved, whereas the compression ratio is not

affected by the code revision shown in Fig. 10 (c).

6) Area optimization.

Different optimizations have different effects on the

hardware resource overhead. In order to increase the

throughput of the design, part of the codes are pipelined. Thus,

this optimization increases the hardware resource overhead.

Width improvement of I/O interfaces are also applied to these

decoders. Wider I/O interfaces mean higher performance and

larger hardware resource overhead. In order to achieve higher

performance and less hardware resource overhead, arbitrary

precision data types are used and the widths of variables can be

arbitrary. In standard C/C++ data types, the widths of variables

are 8, 16, 32 and so on. Thus, using the standard C/C++ data

types results in unnecessary hardware resource overhead.

Furthermore, it has a negative effect on the timing of the overall

design. Compared with the shift register function shown in Fig.

6, the area optimization of the shift register function is

illustrated in Fig. 11. As the depth of the shifter is 2048, the

11bit unsigned integer data type is used to reduce hardware

resource overhead compared to using the 32bit signed integer

data type for the variable offset.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A benchmark including full bitstreams, partial bitstreams,

and software binaries is presented. Then the general evaluation

system is introduced with four metrics. Finally, evaluations of

the embedded system and the partial reconfigurable system are

discussed.

Fig. 11. Area optimization of the shift register function.

A. Benchmark

In order to investigate different compression decoders, a

suitable benchmark is required. The benchmark should include

full bitstreams, partial bitstreams, and software binaries.

1) Full bitstreams

Bitstreams that represent the statistical characteristics for a

wide range of applications are collected. These applications are

cryptography applications (DES and RC5), signal processing

applications (FFT and FIR), system applications (SoC), and

communication applications (Xbar and Net). Both Altera and

Xilinx bitstreams are provided. These full bitstreams have a

high logic utilization of the available resources. More details

can be found in [5][36].

2) Partial bitstreams

TABLE I summarizes the partial bitstream benchmark. The

table lists the source of the modules, the register utilization, the

LUT utilization, the slice distribution, and the bitstream size for

different modules. These implementations are generated using

the default configuration of place and route methodology, with

no attempt to increase the structure regularity for partial

bitstreams by manual optimizations. Bitstreams of Blank are

automatically generated by the bitstream generation tool. Other

modules are chosen from different applications:

 Signal processing applications include a float point adder

or substrctor (Add/Sub), a coordinate rotational digital

computer (CORDIC), a Discrete Cosine Transform

module (DCT) [37], and a divider (Div).

 Cryptography applications contain an Advanced

Encryption Standard module (AES) [38], an AES

decryption module (AESI) [38], and a Data Encryption

Standard module (DES) [39]. These modules are all from

OpenCores.

 Communication applications include a cyclic

redundancy check module (CRC) [40], a FIFO module,

and a loopback module.

All partial bitstreams are generated by Xilinx Vivado 2015.4

with three different options. “Default” means the default option

of bitstream generator. The “Xilinx Compression” option uses

multiple-frame write sequences to minimize the size of

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

TABLE I

PARTIAL BITSTREAM BENCHMARK

Module source
Slice Utilization Slice

Distribution

Place and Route

Methodology

Bitstream Size (Bytes)

Register LUT Default Xilinx Compression CRC per Frame

Add/Sub(fp) Xilinx 12.45% 14.50% 29.13%

Auto 418,496

141,112

436,444

AES OpenCores 17.61% 41.50% 66.75% 142,568

AESI OpenCores 41.84% 61.56% 98.50% 142,568

Blank Xilinx 0.00% 2.19% 5.13% 87,120

CORDIC Xilinx 9.00% 17.81% 27.63% 142,748

CRC OpenCores 1.56% 4.53% 6.38% 117,356

DCT OpenCores 13.08% 47.31% 63.13% 142,568

DES OpenCores 6.19% 12.47% 22.63% 132,316

Div Xilinx 14.08% 12.44% 34.25% 140,788

FIFO Xilinx 2.91% 4.84% 7.00% 116,956

Loopback By hand 1.05% 0.16% 2.50% 82,952

Fig. 12. Architecture of the evaluation system.

bitstreams. This is the same as the “-g compress” option in the

previous Xilinx BitGen tool. It is device independent and

appropriate for both full and partial bitstreams. Whether the

slice distribution is high or low, the compressed size of the

partial bitstreams is similar. The bitstream generator adds an

extra CRC value after each frame by using the “CRC per frame”

option. Thus, the size of bitstream is larger than that of the

“default” option. In order to evaluate the influences of

bitstream generation options on the compression technologies,

the three types of partial bitstreams are used.

3) Software binaries

In order to evaluate the efficiency of compression

technologies for software binaries in embedded systems, 25

software binaries are collected. These software binaries are

Lightweight IP (lwIP) application examples, and can run on

both MicroBlzae and ARM processor based systems with

different cache size. The size of these software binaries varies

from 300KB to 2MB. One of these software binaries is the

initialization of the hard ARM processor. More detailed

information about the software binaries can be found in [41].

B. General Evaluation System

1) Evaluation system architecture

To evaluate the four metrics of compression techniques, the

Xilinx ZC706 board is adopted as the evaluation system. Four

compression decoders are developed with Xilinx Vivado HLS

2015.4. Logic synthesis and implementation of each design are

performed with Xilinx Vivado 2015.4. Fig. 12 shows the

architecture of the evaluation system, where the HP0 port,

Fig. 13. Compression ratio of the benchmark.

the AXI DMA controller, IN FIFO, and OUT FIFO, as well as

the Design Under Test (DUT) all run at 200MHz. The AXI

DMA controller, the DUT, and the Performance Monitor are

also connected to the GP0 port, which also runs at 200MHz.

Each compression decoder is mapped to the DUT block. The

compressed data and golden data are stored in the external SD

card before system power-on. After the system is power-on, the

ARM processor reads the data stored in the SD card and

transfers the data to the external DDR3 SDRAM ①. Then the

AXI DMA controller reads the compressed data from the

DDR3 SDRAM and transmits it to the compression decoder ②,

the decompressed data returns back to the DDR3 SDRAM after

decompression ③. Finally, the Performance Monitor reports

the result after checking the consistency between the

decompressed data and the golden data.

2) Compression ratio

Fig. 13 shows the compression ratio of the benchmark. The

first sub-graph shows the average compression ratio of 28 full

bitstreams. The second and third sub-graphs present the

average compression ratio of 33 partial bitstreams and 25

software binaries. The last sub-graph demonstrates the average

compression ratio of the whole benchmark. Lower compression

ratio means saving more memory and being more efficient.

Thus, using these compression methods, 23.77%-58.68%

(1-76.23% to 1-41.32%) memory can be saved for the

benchmark. 8bit compression methods are more efficient than

the 32bit compression methods. Because the partial bitstreams

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

Fig. 14. Compression ratio of both Xilinx and Altera bitstreams.

Fig. 15. Compression ratio of partial bitstreams.

have large amount of repetitive patterns, all the compression

methods are applicable to the partial bitstreams and the

compression ratio of the partial bitstreams is lower than 25%.

Nevertheless, there are more random symbols in the software

binaries, making RLE series unsuitable as they almost have no

effect. LZG series is more efficient than RLE series, especially

for software binaries. Compared with the state-of-the-art

compression methods, such as GZIP (version 1.2.4) [42] and

7-zip (version 16.02) [44], the proposed compression

technologies are less efficient, but the proposed decompressed

methods have higher decompression throughput and less

hardware resource overhead.

Compression ratios for 28 full bitstreams are presented in Fig.

14. Besides the bitstreams for different applications, we also

compare the average ratio (AV) of all the bitstreams. Compared

with the previous methods [6], the proposed compression

technologies, LZ77(8bit), LZG(8bit), and LZSS(8bit) achieve

better compression ratio on most of applications. Others are

less efficient than the approaches [6]. The position-length pair

in LZSS(8bit) [6] is one byte long, while the position-length

pair is two bytes long in this paper. More repetitive patterns can

be matched with the longer position-length pair, thus the

compression ratio of proposed LZSS(8bit) is better than that of

LZSS(8bit) [6] except for SoC applications. However, more

hardware resource are needed for the longer position-length

pair. A bitmask-based method is designed to encode random bit

changes and RLE is appropriate for large amount of repetitive

patterns. pBMC+RLE [7] takes advantage of using bitmask and

RLE to compress the Xilinx Virtex-2 bitstreams. As a result,

pBMC+RLE [7] has a better compression ratio on some

applications. Although some compression approaches have

exhibited favorable compression ratio, no single compression

method is efficient for the whole benchmark.

Furthermore, the proposed four compression techniques with

different input and output widths outperform the Xilinx

compression method by 14%-22% (30.17%-16.19 to

30.17%-8.04%) for the 11 “Default” partial bitstreams shown

in Fig. 15. Because of many repetitive patterns in the partial

bitstreams, the proposed four compression techniques are more

efficient than Xilinx compression method for partial bitstreams.

3) Decompression throughput

The decompression throughput of the benchmark is

illustrated in TABLE II. With the increasing data width of the

compression decoder, the decompression throughput increases

accordingly. Compared with LZG(8bit), LZG_x1(32bit) with

32bit input/output achieves about 2.7 times higher

decompression performance. On the other hand, applying

dataflow optimization can pipeline sequential tasks and

improve performance. Based on the design of LZG_x1(32bit),

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

TABLE II

IMPLEMENTATION RESULTS OF COMPRESSION DECODERS.

Type
LZ77

(8bit)

LZG

(8bit)

LZG

(16bit)

LZG_x1

(32bit)

LZG_x2

(32bit)

LZG_x3

(32bit)

LZSS

(8bit)

RLE

(8bit)

RLE

(16bit)

RLE_x1

(32bit)

RLE_x2

(32bit)

RLE_x3

(32bit)

Register 399 93 153 189 342 487 311 33 57 105 141 177

LUT 1197 688 1252 2354 2608 2899 365 41 79 121 198 276

Compression

Ratio
44.54% 43.08% 56.03% 68.13% 41.32% 71.51% 74.06% 76.23%

Average

Decompression

Throughput

(MB/s)

102.2 136.7 259.6 499.8 580.3 615.7 76.1 133.5 261.6 508.3 606.8 652.3

Decompression

Efficiency

(Normalized)

62.67% 83.85% 79.59% 76.62% 88.97% 94.39% 46.68% 81.89% 80.21% 77.93% 93.03% 100.00%

TABLE III

COMPARISON OF DIFFERENT COMPRESSION DECODERS.

LZG

(8bit)

RLE_x3

(32bit)
LZG_x3

(32bit)

LZSS
(8bit)
[5][6]

LZSS
(16bit)
[5][6]

pBMC
+RLE
[7]

LZSS
[21]

FDIC
[24]

LZSS
[24]

LZ77+
Bitmask
[26]

Bitmask
[27]

Bitmask
[28]

GZIP

[43]

Slice Usage medium low high low low low low low low high low N/A highest

BRAM 0 10.5

Fmax(MHz) 205 381 205 198 200 195 75 395 277 109 130 326.8 165

Compression

Ratio
good

not

good
general good good good good good good good good good best

Average

Decompression

Throughput

(MB/s)

136.7 652.2 615.7 198* 400* N/A N/A 424.6* 115.8* 211.5 N/A N/A 495

* This is the maximum decompression throughput.

LZG_x3(32bit) adds extra two tasks and performs dataflow

optimization. LZG_x2(32bit) contains two tasks and also

applies dataflow optimization. Although using this

optimization method increases hardware resource overhead,

LZG_x3(32bit) achieves 23% higher decompression

throughput than LZG_x1(32bit). This optimization also applies

to the RLE decoder.

4) Hardware resource overhead

TABLE II lists the hardware resource overhead of each

compression decoder. With the increasing data width of the

compression decoder, the hardware resource overhead increase

accordingly. Compared with RLE(8bit), RLE_x1(32bit) with

32bit input/output costs about 3 times registers and LUTs.

LZG_x1(32bit) costs 2.03 times registers using area

optimization method, but it costs 3.4 times LUTs compared

with LZG(8bit). The shift register in LZG decoders are

implemented by LUTs. According to the wider of the input and

output, the resource overhead of the LUT increases more than

that of the register.

5) Decompression efficiency

The decompression efficiency of the compression decoders

is shown in TABLE II. With the increasing data width of the

compression decoder, the decompression efficiency decreases.

However, decompression efficiency increases with the

dataflow optimization. The decompression efficiency of the

RLE_x3(32bit) is superior to other decoders. The reasons

behind these results come from the highest decompression

throughput and dataflow optimization.

The implementation results of the three similar

dictionary-based methods are shown in TABLE II. LZSS(8bit)

has better average compression ratio than LZ77(8bit) and

LZG(8bit). Since the decompression method of LZG is simpler,

LZG(8bit) achieves higher decompression throughput than

LZSS(8bit) and LZ77(8bit). LZG(8bit) costs the medium

hardware resource with the least number of registers and

medium number of LUTs. Thus LZG(8bit) is more efficient

than LZ77(8bit) and LZSS(8bit).

6) Comparison and analysis

A comparison of different compression decoders is shown in

TABLE III. Although the compression ratio of RLE_x3(32bit)

is worse than the existing compression decoders,

RLE_x3(32bit) can run at higher frequency and achieve higher

decompression throughput with less hardware resource

overhead. But RLE_x3(32bit)is not appropriate for software

binaries with large amount of random symbols. Nevertheless,

LZG(8bit) is efficient for software binaries with medium

hardware resource and good compression ratio.

In addition to the comparison given above, the

decompression throughput of RLE_x3(32bit) and

LZG_x3(32bit) is superior to the existing compression

decoders on the benchmark. The reasons behind these results

come from different kinds of optimizations.

7) Impact of FIFO depth on the decompression throughput

In order to estimate the impact of FIFO depth on the

decompression throughput, we perform measurements for

different depth of the IN_FIFO and OUT_FIFO shown in Fig.

12. The depth of both IN_FIFO and OUT_FIFO varies from 16

to 512. Experimental results show that FIFO depth has little

impact (less than 2%) on the performance of the DMA

controller. However, the FIFO depth does not have impact on

the decompression throughput. Larger FIFOs cannot achieve an

improvement in decompression throughput.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

Fig. 16. Start-up time ratio of different compression decoders.

Fig. 17. Comparison of start-up time ratio between hardware and software.

C. Embedded System

In order to evaluate the start-up time of the embedded system,

the same architecture shown in Fig. 12 is used. The SD card

controller runs at 50MHz with the maximum throughput of

25MB/s. The ARM processor runs at 666.66MHz and has a

32bit timer. The timer runs at 333.33MHz and is used to

measure the start-up time. The compressed software binaries

are stored in the external SD card before system power-on. In

this system, the software binaries are so large that they have to

run in the DDR3 SDRAM. The start-up time ratio is shown

below.

 Start-up Time Ratio=
Reading Time + Decompression Time

Original Start-up Time
 (4)

The original start-up time only includes reading

uncompressed software binaries from the SD card and writing

them to the DDR3 SDRAM. However, when using

compression methods illustrated in Fig. 12, the start-up time not

only contains the reading compressed software binaries from

the SD card ①, but also includes the decompression time

between the DDR3 SDRAM and the compression decoder②③.

The reading time of the compressed/uncompressed software

binaries is linear to the size of compressed/uncompressed

software binaries. The boot loader runs on the on-chip memory

with instruction cache and data cache enable. The

decompression time not only contains the communication time

between the DDR3 SDRAM and the compression decoder, but

also includes the initialization of the DMA. Fig. 16 presents the

average start-up time ratio (4) for different compression

Fig. 18. (a) Architecture of the partial reconfigurable system.

(b) FPGA floorplan.

decoders over the 25 software binaries. As the decompression

throughput of the hardware compression decoders is higher

than the maximum throughput of the SD card controller, the

hardware decompression time is less than 25% of the original

start-up time. Because of the compression of the software

binaries, the reading time of the compressed software binaries

is less than that of the original time. However, since the RLE

compression methods are not efficient for software binaries, the

total start-up time is more than original start-up time. The

results shown in Fig. 16 reveal that LZG(8bit) is the best

method to reduce the software start-up time. Because LZG(8bit)

has good compression ratio and high decompression

throughput, it can reduce 31.23% (1-68.77%) original start-up

time and save 48.98% (1-51.02%) external memory.

In the evaluation system shown in Fig. 12, the compressed

software binaries can also be decompressed by the software

compression decoder running on the hard ARM processor. Fig.

17 illustrates the comparison of the average start-up time ratio

between the hardware LZG(8bit) decoder and the software

LZG(8bit) decoder for the 25 software binaries. Compared with

the default software (SW) compression decoder, the optimized

software (Opt. SW) compression decoder can reduce about 30%

start-up time. However, hardware (HW) compression decoder

also can achieve speed-up compared with the optimized

software compression decoder.

D. Partial Reconfigurable System

Fig. 18 presents the architecture of the partial reconfigurable

system and the FPGA floorplan. Compared with the

architecture of the general evaluation system shown in Fig. 12,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

Fig. 19. Compression ratio of partial bitstreams.

the partial reconfigurable system adds another HP port and

includes a reconfigurable region. The RLE_x3(32bit) decoder

is applied to the partial reconfigurable system because of the

highest decompression throughput and less hardware resource

overhead. The Internal Configuration Access Port (ICAP) runs

at 100MHz. Overclocking of the ICAP is not recommended by

the device vendor. To run safely, the speed limit of the ICAP is

100MHz. Therefore, the maximum throughput of the ICAP is

400MB/s with 32bit mode. As discussed in section V-B, the

FIFO depth does not have impact on the decompression

throughput. The RLE decoder runs at 142.8MHz and the

maximum throughput of the RLE decoder is theoretically

higher than 400MB/s. Thus, the performance of the ICAP is not

affected by the RLE decoder and FIFO depth. Fig. 19 shows the

compression ratio of partial bitstreams. The average

compression ratio of the RLE_x3(32bit) for the “Default”

partial bitstreams is 12.86% and an 87.14% (1-12.86%)

memory saving is achieved. At the same time, 86% memory

bandwidth can be saved. Combining with the “Xilinx

Compression” method and RLE_x3(32bit), not only can 84.3%

(1-15.7%) memory and 83% memory bandwidth be saved, but

also 69.83% (1-30.17%) reconfiguration time can be reduced

by using multiple-frame write sequences.

VI. CONCLUSION

Compression techniques for bitstreams and software binaries

have been extensively studied, but the existing compression

decoders are designed using hand-written RTL descriptions and

provide low decompression throughput. In this paper, four

lossless compression decoders are developed using HLS. A

benchmark including 28 full bitstreams, 33 partial bitstreams,

and 25 software binaries is provided. Various improvements

and optimizations are applied to the compression decoders in

order to balance the objectives of compression ratio,

decompression throughput, and hardware resource overhead

simultaneously. Evaluations of the synthesizable compression

decoders are demonstrated on a Xilinx ZC706 board running at

200MHz, showing higher decompression throughput than that

of the existing compression decoders on the benchmark.

Moreover, the proposed decoders LZG(8bit) can reduce

software start-up time by up to 31.23% in embedded systems,

and RLE(32bit) can reduce 69.83% reduction of the

reconfiguration time for partial reconfigurable systems.

In addition, since no specific bitstream organizations or data

structures are required, LZG(8bit) is applicable to other full

bitstreams and software binaries. RLE(32bit) is efficient for

partial bitstreams with low hardware resource usage and high

decompression throughput. Although the proposed design

method was demonstrated on a Xilinx ZYNQ FPGA, it can be

applied to other FPGAs. The synthesizable lossless

compression decoders and the benchmark can be download

from the website [45].

Currently, we are exploring the combination of these

compression decoders for a wide range of applications.

Moreover, we plan to include error checking and error

reporting logic within the compression decoders to improve

reliability.

REFERENCES

[1] UltraScale Architecture Configuration User Guide, UG570 (v1.6), Xilinx

Inc., San Jose, CA, Dec. 16, 2015.

[2] Stratix V Device Datasheet, Altera Inc., San Jose, CA, Jun. 2016.

[3] A. Dandalis and V. K. Prasanna, “Configuration compression for

FPGA-based embedded systems,” in Proc. ACM/SIGDA Int. Symp.

Field-Program. Gate Arrays, 2001, pp.173-182.

[4] A. Dandalis and V. K. Prasanna, “Configuration compression for

FPGA-based embedded systems,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 13, no. 12, pp. 1394-1398, Jan. 2006.

[5] D. Koch, C. Beckhoff, and J. Teich. “Bitstream decompression for high

speed FPGA configuration from slow memories,” in Proc. IEEE Conf.

Field-Program. Technol., Dec. 2007, pp. 161-168.

[6] D. Koch, C. Beckhoff, and J. Teich, “Hardware decompression

techniques for FPGA-based embedded systems,” ACM Trans.

Reconfigurable Technol. Syst., vol. 2, no. 2, pp. 1-23, Jun. 2009.

[7] X., Qin, C. Muthry, and P. Mishra, “Decoding-Aware compression of

FPGA bitstreams,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 19, no. 3, pp. 411-419, Mar. 2011.

[8] J. Meyer, J. Noguera, M. Huebner, R. Stewar, and J. Becker, “Embedded

systems start-up under timing constraints on modern FPGAs,” in Proc.

21st Int. Conf. Field-Program. Logic Appl., Sep. 2011, pp. 103-109.

[9] S. Hauck, Z. Li, and E. Schwabe, “Configuration compression for the

Xilinx XC6200 FPGA,” in Proc. IEEE Symp. Field-Program. Custom

Com- put. Mach., Apr. 1998, pp. 138–146.

[10] S. Hauck, Z. Li, and E. Schwabe, “Configuration compression for the

Xilinx XC6200 FPGA,” IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 18, no. 8, pp. 1107–1113, Aug. 1999.

[11] S. Hauck and W. D. Wilson, “Runlength compression techniques for

FPGA configurations,” in Proc. 7th IEEE Symp. Field-Program. Custom

Comput. Mach., April 1999, pp. 286-287.

[12] Z. Li and S. Hauck, “Don't care discovery for FPGA configuration

compression,” in Proc. ACM/SIGDA 7th Int. Symp. Field-Program. Gate

Arrays, 1999, pp. 91-98.

[13] Z. Li and S. Hauck, “Configuration compression for virtex FPGAs,” in

Proc. 9th IEEE Symp. Field-Program. Custom Comput. Mach. 2001, pp.

147–159.

[14] J. Pan, T. Mitra, and W. Wong, “Configuration bitstream compression for

dynamically reconfigurable FPGAs,” in Proc. IEEE/ACM Int. Conf.

Comput.-Aided Des., Nov. 2004, pp. 766-773.

[15] F. Farshadjam, M. Fathy, and M. Dehghan, “A new approach for

configuration compression in Virtex based RTR systems,” in Proc. Conf.

Electrical Comput. Engineering, May 2004, pp. 1093– 1096.

[16] M. Martina, G. Masera, A. Molino, F. Vacca, L. Sterpone, and M.

Violante, “A new approach to compress the configuration information of

programmable devices,” In Proc. Conf. Des., Automation and Test in

Europe, May 2006, pp. 48–51.

[17] Stratix II Device Handbook, Volume 1, Altera Inc., San Jose, CA, May

2007.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

[18] A. Khu, “Xilinx FPGA Configuration Data Compression and Decompres-

sion,” WP152 (v1.0), Xilinx Inc., San Jose, CA, Sep. 2001.

[19] Platform Flash PROM User Guide, UG161 (v1.5), Xilinx Inc., San Jose,

CA, Oct. 26, 2009.

[20] Enhanced Configuration (EPC) Devices Datasheet, Altera Inc., San Jose,

CA, May 2016.

[21] M. Huebner, M. Ullmann, F. Weissel, and J. Becker, “Real-time

configuration code decompression for dynamic FPGA self-reconfig-

uration,” in Proc. 18th Int. Parallel and Distributed Proc. Symp., Apr.

2004.

[22] C. Beckhoff, D. Koch, and J. Torresen, “Portable module relocation and

bitstream compression for Xilinx FPGAs,” in Proc. Int. Conf.

Field-Program. Logic Appl., Sep. 2014.

[23] S. Bayar and A. Yurdakul, “A dynamically reconfigurable communi-

cation architecture for multicore embedded systems,” Journal of Systems

Architecture, Vol. 58, no. 3–4, pp. 140-159, Mar. 2012.

[24] R. Stefan and S. D. Cotofana, “Bitstream compression techniques for

Virtex 4 FPGAs,” in Proc. Int. Conf. Field-Program. Logic Appl., Sep.

2008, pp. 323-328.

[25] F. Duhem, F. Muller, and P. Lorenzini, “Reconfiguration time overhead

on field programmable gate arrays: reduction and cost model,” IET

Computers & Digital Techniques, vol. 6, no. 2, pp. 105-113, Mar. 2012.

[26] Y. Gao, H. Ye, J. Wang, and J. Lai, “FPGA bitstream compression and

decompression based on LZ77 algorithm and BMC technique,” in Proc.

IEEE Int. Conf. ASIC, Nov. 2015.

[27] S. Seong and P. Mishra, “Bitmask-based code compression for embedded

systems,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 27,

no. 4, pp. 673-685, April 2008.

[28] W. J. Wang and C. H. Lin, “Code compression for embedded systems

using separated dictionaries,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 24, no. 1, pp. 266-275, Jan. 2016.

[29] W. Meeus, K. V. Beeck, T. Goedeme, J. Meel, and D. Stroobandt, “An

overview of today’s high-level synthesis tools,” Journal Design

Automation for Embedded Syst., vol. 16, no. 3, pp. 31–51, Sep. 2012.

[30] S. Windh, X. Ma, R. J. Halsted, P. Budhkar, Z. Kuna, O. Hussaini, and

W.A. Najjar, “High-Level language tools for reconfigurable computing,”

Proceedings of the IEEE, vol. 103, no. 3, pp. 390-408, Mar. 2015.

[31] Run length encoding/decoding reference software. (2013) [Online] Avail-

able: https://sourceforge.net/projects/nikkhokkho/files/RLE64/

[32] LZ77 reference software. (2004) [Online] Available: https://sourceforge.-

net /projects/compressions/

[33] LZSS reference software. [Online] Available: https://oku.edu.mie-u.ac.-

jp/~okumura/compression/lzss.c

[34] liblzg reference software. (2014) [Online] Available: http://liblzg.-

bitsnbites.eu/

[35] High-Level Synthesis User Guide, UG902 (v2015.4), Xilinx Inc., San

Jose, CA, Nov., 2015.

[36] ReCoNets. [Online] Available: http://www.reconets.de/bitstreamcompre-

ssion/

[37] Pipelined DCT/IDCT Project. [Online] Available: http://www.open-

cores.org

[38] AES Project. [Online] Available: http://www.opencore.org

[39] DES Project. [Online] Available: http://www.opencore.org

[40] CRC Project. [Online] Available: http://www.opencore.org.

[41] A. Sarangi, S. MacMahon, and U. Cherukupaly, “LightWeight IP

Application Examples,” Xilinx Appplication Note, XAPP1026 (v5.1),

Xilinx Inc., San Jose, CA, Nov. 2014.

[42] GZIP. [Online] Available: http://www.gzip.org/

[43] GZIP/ZLIB/Deflate Data Compression Core, CAST Inc., Woodcliff Lake,

NJ, [Online] Available: http://www.cast-inc.com/ip-cores/data/zipaccel-d

/cast-zipaccel-d-x.pdf

[44] 7-zip. [Online] Available: http://www.7-zip.org/

[45] Synthesizable lossless compression decoders. [Online] Available:

https://github.com/jian1/lossless-compression-decoders

Jian Yan received the B.S. degree from the school of communication and

information engineering, Shanghai University, Shanghai, China in 2011, and

the M.S. degree from School of Microelectronics, Fudan University, Shanghai,

China, in 2013. He is currently pursuing the Ph.D. degree in School of

Microelectronics, Fudan University, Shanghai, China.

His research interests include the code compression, computer architecture,

computing resource virtualization, and the development of partially

reconfigurable systems.

Junqi Yuan received the B.S. degree from school of information science and

technology, Fudan University, Shanghai, China, in 2013.

His current research interests include field-programmable gate array (FPGA)

logic architecture and computer-aided design (CAD).

Lingli Wang (M’99) received the M.S. degree from Zhejiang University,

Hangzhou, China, in 1997, and the Ph.D. degree from Edinburgh Napier

University, Edinburgh, U.K., in 2001, both in electrical engineering.

He was with Altera European Technology Center for four years. In 2005, he

joined Fudan University, Shanghai, China, where he is currently a Full

Professor with the State Key Laboratory of ASIC and System in the School of

Microelectronics. His current research interests include logic synthesis,

reconfigurable computing, and quantum computing.

Philip H. W. Leong (SM’02) received the B.Sc., B.E. and Ph.D. degrees from

the University of Sydney. In 1993 he was a consultant to ST Microelectronics

in Milan, Italy working on advanced flash memory-based integrated circuit

design. From 1997-2009 he was with the Chinese University of Hong Kong. He

is currently Professor of Computer Systems in the School of Electrical and

Information Engineering at the University of Sydney, Visiting Professor at

Imperial College, and Chief Technology Advisor to ClusterTech. Dr. Leong

was the recipient of the 2005 FPT conference Best Paper as well as the 2007

and 2008 FPL conference Stamatis Vassiliadis Outstanding Paper awards.

Wayne Luk (F’09) received the M.A., M.Sc. and D.Phil. degrees in

engineering and computing science from Oxford University, Oxford, U.K.

Currently Professor of Computer Engineering at Imperial College, he

founded and leads the Computer Systems Section and the Custom Computing

Group in Department of Computing, and was Visiting Professor at Stanford

University and Queen’s University Belfast. He is a member of the Program

Committee of many international conferences such as FCCM, FPGA and

DATE. He has been an author or editor for 6 books and 4 special journal issues.

Dr. Luk had ten papers that received awards from the ASAP, FPL, FPT,

SAMOS, SPL and ERSA conferences, and he also won a Research Excellence

Award from Imperial College in 2006. He is a Fellow of the BCS, and is

founding Editor-in-Chief for ACM Transactions on Reconfigurable

Technology and Systems.

