
A Fully Pipelined Kernel Normalised Least Mean
Squares Processor For Accelerated Parameter

Optimisation

Nicholas J. Fraser, Duncan J.M. Moss, JunKyu Lee, Stephen Tridgell, Craig T. Jin and Philip H.W. Leong
School of Electrical and Information Engineering, Building J03

The University Of Sydney, 2006, Australia

Abstract—Kernel adaptive filters (KAFs) are online machine
learning algorithms which are amenable to highly efficient stream-
ing implementations. They require only a single pass through
the data during training and can act as universal approximators,
i.e. approximate any continuous function with arbitrary accuracy.
KAFs are members of a family of kernel methods which apply an
implicit nonlinear mapping of input data to a high dimensional
feature space, permitting learning algorithms to be expressed
entirely as inner products. Such an approach avoids explicit
projection into the feature space, enabling computational effi-
ciency. In this paper, we propose the first fully pipelined floating
point implementation of the kernel normalised least mean squares
algorithm for regression. Independent training tasks necessary
for parameter optimisation fill L cycles of latency ensuring
the pipeline does not stall. Together with other optimisations
to reduce resource utilisation and latency, our core achieves
160 GFLOPS on a Virtex 7 XC7VX485T FPGA, and the PCI-
based system implementation is 70× faster than an optimised
software implementation on a desktop processor.

I. INTRODUCTION

Machine learning and data mining focus on the development
of mathematical ideas and algorithms to learn from data. Interest
in these fields has been steadily increasing in recent years as
advancements have addressed previously intractable problems
such as speech recognition, handwriting recognition, image
processing, credit card fraud and automatic fault detection.
One important class of machine learning algorithms are kernel
methods which include support vector machines (SVMs) [1],
Gaussian processes (GPs) [1], and kernel adaptive filters
(KAFs) [2].

Reconfigurable computing, the application of field pro-
grammable gate arrays (FPGAs) to computing problems, has
been successfully applied in accelerating certain classes of
problems. The following computational conditions are desirable
for efficient FPGA implementation: (1) static data structures
requiring small amounts of memory, (2) instruction and task
level parallelism, (3) high ratio of computation to memory ac-
cesses (arithmetic intensity) (4) modest precision requirements,
and (5) low input/output bandwidth.

SVMs and GPs are batch-mode algorithms which require
multiple passes over the training set and do not satisfy
conditions (1)-(3) because storage of the entire training set
is required; because the result of one iteration is required
before the next iteration can proceed; and because many
memory accesses are required per data input and processing
time increases with data size. In contrast, KAFs are recursive

algorithms which perform a small, fixed amount of computation
per data input, and meet all the above conditions, making them
amenable to efficient FPGA implementations.

Different KAF algorithms have been proposed for classifica-
tion, regression and anomaly detection tasks [2]. In this paper,
we describe a particularly efficient implementation of the kernel
normalised least mean squares (KNLMS) algorithm. KNLMS
was chosen because of its simple computational structure and its
ability to approximate any continuous function with arbitrary
accuracy [2]. The computational bottleneck for KNLMS is
the evaluation of an inner product in the feature space. Our
implementation is fully pipelined and uses single-precision
floating point which leads to high latency which is normally
undesirable. However, in machine learning, a parameter search
is usually performed over a grid, and if B different values of
each of P parameters are explored, the search space is BP .
In our implementation, we exploit this property to evaluate L
independent parameter settings in parallel, neatly filling the
KNLMS pipeline. As a result, our implementation achieves
very high computational efficiency. Although acceleration could
also be achieved using a GPU, FPGA implementations are
advantageous in large scale systems where power consumption
is an issue, such as data centres. Also, FPGA implementations
are preferred in embedded, real-time multichannel applications,
such as machine prognostics, where the proposed design could
also be applied.

The key contributions of this work are:

• The first description of fully pipelined datapaths
for KAFs. Compared with previous vector-processor
architectures, much higher performance can be attained
because all pipeline stages do useful work and never
stall. This is achieved by creating a deeply pipelined
module of a significant, non-recursive portion of the
KNLMS algorithm. A scheduler is then employed
to ensure that no data dependencies exist within the
pipeline, for L parallel problems.

• A number of optimisations for the KNLMS algorithm:
pipelining, memory optimisations, scheduling and
mixed-precision processing are combined to achieve
a 575× speedup over a naı̈ve implementation for
parameter optimisation.

• A complete PCI-based system implementation with
a speedup of 70× over a processor and a speedup
of 660× over a previous microcoded kernel recursive

least squares implementation, by Pang et al. [3].

This paper is organised as follows: Section II describes the
KNLMS algorithm [4] and summarises previous implementa-
tions of kernel based machine learning algorithms; Section III
describes the proposed architecture; Section IV shows the
performance and accuracy results of the proposed architecture
compared with a CPU implementation; and conclusions are
drawn in Section V.

II. BACKGROUND

A. Kernel Normalised Least Mean Squares

In this section, the KNLMS algorithm [4] is summarised
with particular attention to aspects which affect a hardware
implementation.

In a standard supervised learning problem training examples
are input/output pairs {xi, yi}, where xi ∈ RM is the input
vector and yi ∈ R is the output or target. In regression, the
goal is to estimate a function, f(xi), which maps xi → yi.
Kernel regression attempts to estimate this function by learning
a dictionary D, containing a subset of input vectors, and
corresponding weights, α. A prediction, ỹi, is then calculated
as follows: ỹi =

∑N
n=1 αnκ(xi, x̃n), where x̃n is the nth entry

in D, αn is the nth entry of α, N is the maximum size of D,
and κ(xi,xj) is the kernel function, specified at design time.
Although different kernels can be accommodated, in this paper
we focus on the commonly used radial basis function (RBF)
kernel, κ(xi,xj) = e−γ‖xi−xj‖2 , where γ is a free parameter
chosen to suit the problem at hand.

The KNLMS algorithm is a stochastic gradient descent
based algorithm which learns its model by taking small steps
in the direction of the instantaneous gradient, to minimise the
error in the current training example. Similar to algorithms
such as the least mean squares (LMS) algorithm [5], it slowly
converges to a solution over time.

The coherence criterion [4] is used to select the entries in
the dictionary. For unit norm kernel functions, the coherence
criterion is defined as follows: given a new input example at
iteration t, xt is added to the dictionary if max (|kt|) ≤ µ0,
where kt is the kernel vector with the nth element being given
by κ(xt, x̃n), µ0 is the coherence parameter chosen at design
time. The weights for each iteration are then calculated by
solving the instantaneous approximation to the following affine
projection problem:

min
α
‖α− α̂t−1‖2 subject to yt = k†tα , (1)

where α̂t−1 is the set of weights obtained from the previous
iteration and † denotes the vector transpose operation. Assuming
that the current input vector, xt, can be adequately represented
by the current dictionary and is not added to the dictionary,
Eq. (1) can be solved by minimising the following Lagrangian
function:

J(α, λ) = ‖α− α̂t−1‖2 + λ(yt − k†tα) . (2)

A solution, α̂t, is found by differentiating Eq. (2) with respect
to α and λ and setting the derivatives to zero, giving:

2(α̂t − α̂t−1) = ktλ

yt =k†t α̂t . (3)

Initialise the step-size, η, and the regularization factor, ε.
Insert x1 into the dictionary, denote it as x̃1. k1 = κ(x1, x̃1),
α̂1 = 0, n = 1.
while t > 1 do

Get {xt, yt}.
Calculate kt = [κ(xt, x̃1), · · · , κ(xt, x̃n)]†.
if max (|kt|) > µ0 then

Calculate α̂t using Eq. (4).
else
n = n+ 1.
Append κ(xt,xt) to kt.
Insert xt into the dictionary, denote it as x̃n.
Calculate α̂t using Eq. (5).

end if
end while

Fig. 1. KNLMS algorithm with coherence criterion.

Multiplying each term in the first equation by k†t and substi-
tuting in for yt, we get λ = 2(k†tkt)

−1(yt − k†t α̂t−1). This
yields the following recursive update equation:

α̂t = α̂t−1 +
η

ε+ k†tkt
(yt − k†t α̂t−1)kt (4)

where η is a step-size parameter and ε is a regularisation factor.

For the case where the current training example cannot be
adequately represented by the dictionary, the current input, xt,
is appended to the dictionary and the update equation becomes:

α̂t =

[
α̂t−1
0

]
+

η

ε+ k†tkt
(yt − k†t

[
α̂t−1
0

]
)kt (5)

Pseudocode for the KNLMS algorithm, adapted from [4]
and [6], is shown in Figure 1.

B. Literature Review

Kernel methods are eminently amenable to efficient hard-
ware implementations and several implementations of SVM
have been reported. Anguita et al. [7] described an SVM
core generator which allowed for different speed, resource
and accuracy tradeoffs and utilised fixed point arithmetic.
Papadonikolakis and Bouganis [8] described a scalable SVM
module generator which supported different kernel types. Their
design supported different numbers of parallel computing tiles
which allowed for performance/resource tradeoffs, and was
partitioned into fixed point and floating point sections to
achieve high performance while maintaining high accuracy. The
MAPLE architecture as described by Majumdar et al. [9] was
designed to improve many learning algorithms, including SVM.
MAPLE utilised two-dimensional vector processing elements
to accelerate linear algebra routines. The architecture also
supported off-chip memory, allowing it to accommodate large
learning problems. While much of the computation is similar
to KNLMS, SVM implementations are batch-mode and hence
lower speed than online algorithms.

Pang et al. [3] proposed a compact and low latency
microcoded soft vector processor. Parallelism was achieved
using up to 128 floating-point vector processing elements, and
kernel evaluations were accelerated through the inclusion of
a hardware exponentiation unit. An implementation of the

Kernel
Modules

Coherence
Criterion

Dot
Product

Update

x

y

D

α

η

γ

ε

n

μ0

y

D

α

n

Dot
Product

k

k
~

α

||k||2

Fig. 2. A high level diagram of the KNLMS processor showing the various submodules.

-

-

-

x2

x2

x2

+

+

+

k0

+

+

+ +

x1

x2

xm

-γ

ex

xm
~

x2
~

x1
~

Fig. 3. Dataflow diagram of a kernel module.

sliding window kernel recursive least squares (SW-KRLS)
algorithm [10] was used as an example in the paper. The
floating-point implementation of the quantized kernel least
mean squares (QKLMS) algorithm [11] utilising the survival
kernel [12] by Ren et al. [13] is most comparable to this
work. Differences include: (1) their work was limited to a
single dimensional kernel vs arbitrary dimensions, (2) they
employed the survival kernel compared to the much more
commonly used Gaussian kernel in this design, (3) they achieve
parallelism through pipelining and 128 parallel processing
elements whereas our efficiency is by virtue of a fully pipelined
design.

III. ARCHITECTURE

In this section, our fully pipelined KNLMS architecture
is described, highlighting areas suitable for optimisation. In
addition, scalability of the design is explored.

A. High Level Description

The idea behind the design is to create a module to
accelerate the forward path of the KNLMS algorithm. The
forward path consists of the mathematical operations required
to update the kernel regression model from time step t− 1 to
t, which are those within the while loop of Figure 1. A high
level diagram showing the basic structure of the processor is
shown in Figure 2. The submodules are responsible for the
following functions: (1) the kernel modules calculate the kernel

y

-

+

/ +
y~

ε

||k||2

η

+

+

+
+

k1

kN

α1

αN

αN

α1

Fig. 4. Dataflow diagram of the α update module.

vector, kt; (2) the coherence criterion module decides whether
to add the latest input example to the dictionary, and updates it
if necessary; (3) the dot product modules, which produce the
a-priori estimate of yt, denoted by ỹt, and the normalisation
term, ‖kt‖2; and (4) the α update module produces the updated
weights, αt. In order to compute multiple iterations of the
KNLMS algorithm, the forward path module needs to be
connected to a scheduler, which is described in Section III-E.

B. Kernel Module

Figure 3 shows the dataflow graph of a kernel module.
The kernel module computes the Gaussian kernel, given by:
κ(xi,xj) = e−γ‖xi−xj‖2 . Each kernel module requires 2M−1
adders, M + 1 multipliers and 1 exponential unit, where M
is the feature length. N kernel modules are required for a
design supporting a maximum dictionary size of N . The most
computationally expensive part of the KNLMS processor is the
calculation of the kernel vector.

C. Alpha Update Module

The α update module finishes the training step by calcu-
lating αt as shown in Eq. (4). The dataflow graph for the α
update module is shown in Figure 4. The α update module
first calculates the prediction error and the normalisation term.
This is followed by a scalar vector product and an elementwise
vector addition. The α update module operates on vectors of
length N and as such, requires N+1 multipliers, N+2 adders
and 1 divider.

D. Coherence and Dot Product Modules

The coherence module is a simple control module. It takes
kt, xt, µ0, n and D as inputs. kt is padded with zeros for each
unused entry in D. If max (|kt|) ≤ µ0, then n becomes n+ 1
and xt is appended to D. Otherwise, n and D are unchanged.

The two dot product modules are made using parallel
multipliers followed by an adder tree. Each module operates
on vectors of length N and as such, require N multipliers and
N − 1 adders.

E. Optimisations

In order to maximise performance, the optimisations de-
scribed in this subsection were implemented.

A fully pipelined design cannot be directly synthesised
from the algorithm in Figure 1, due to the dependency of the
updated dictionary D and weights α̂t on the new kernel vector
kt. By describing it in a non-recursive manner, we can turn
the datapath into an acyclic one. The feedback connection is
then made by externally connecting outputs to corresponding
inputs in Figure 2. This results in a fully-pipelined design
with initiation interval of 1. Dictionary and weight updates are
delayed by the total pipeline latency, L.

The main bottleneck in developing machine learning models
is parameter optimisation. Even if the kernel function is fixed
to be the Gaussian kernel, a search is required for the following
parameters: µ0, γ, η, and ε. This involves performing regression
over a test data set using different parameter settings. Since
these are independent problems, they can be executed in parallel
as batches of L independent tasks. Each task is executed in
a different pipeline slot so all hardware units in the KNLMS
forward path evaluation pipeline can be fully utilised.

In order to perform regression on L independent problems,
we require storage for L× dictionaries of size MN , and L×
length-M weight vectors. This is achieved by indexing them
with a counter l ∈ [0, . . . , L) so that every L cycles, we return
to the same dictionary and weight vector. This arrangement
removes the need for an L : 1 multiplexer per dictionary and
weight entry.

Computing the kernel function κ(xi,xj) for the Gaussian
kernel requires an M -input floating-point adder tree which
has a total latency of dlog2Me times the latency of a single
floating-point adder. We observe that: (1) the inputs to this
adder are strictly positive, so unsigned arithmetic can be used;
(2) the output is passed through a function e−γ

∑
x2

which is
not sensitive to small input errors; and (3) computation can
be done in fixed point. This can reduce latency and allow
accuracy-speed tradeoffs.

F. Estimated Growth and Latency

We estimated the scalability of the architecture with the
key parameters N and M . The number of required operators
and estimated latency is shown in Table I. The operator latency
is given in parentheses next to the operator symbol. In order
to estimate the latency for a given design, the operator latency
is multiplied by the expression in the latency row. In terms
of worst case scalability, the area of arithmetic operators is
O(MN), memory usage is O(MN), and latency O(log2N +
log2M).

TABLE I. FORMULAE FOR THE NUMBER OF FLOATING-POINT
OPERATORS REQUIRED AND LATENCY IN CYCLES

+ (11) × (7) / (30) exp (20) < (4)
Operation

2MN + 2N
MN+

1 N N − 1
4N + 1

Latency log2N+
5 1 1 log2Nlog2M + 3

TABLE II. SUMMARY OF PLACE AND ROUTE OUTPUT FOR EACH OF THE
KNLMS DESIGNS

Naı̈ve Float Fused
BRAM18K (2060) 8 (0.4%) 145 (7.0%) 145 (7.0%)
DSP48 (2800) 12 (0.4%) 1267 (45.3%) 787 (28.1%)
LUTs (304K) 4550 (14.9%) 150,494 (49.5%) 174,857 (57.5%)
Latency (cycles) 756 207 167
II (cycles) 757 1 1
Fmax(MHz) 96.7 314 289
GOPS 0.07 161.1 148.3

TABLE III. AREA UTILISATION OF DIFFERENT DESIGNS OBTAINED
FROM SYNTHESIS

Type M N LUTs DSPs L (Estimate) Fmax

Float

2 16 77K 595 185 (189) 385
4 16 109K 819 196 (200) 385
16 16 307K 2163 218 (222) 385
8 2 23K 161 162 (166) 385
8 4 46K 319 177 (181) 385
8 8 95K 635 192 (196) 385
8 16 173K 1267 207 (211) 385

Fused

2 16 102K 494 161 303
4 16 119K 595 163 303
16 16 440K 1171 175 303
8 2 33K 101 131 303
8 4 64K 199 143 303
8 8 130K 395 155 303
8 16 247K 787 167 303

IV. RESULTS

This section describes the resource utilisation, performance
and accuracy of the implementation written in C. The design
was synthesised and implemented using Xilinx Vivado HLS
2014.4. The target platform was a Xilinx VC707 evaluation
board using a Xilinx Virtex 7 XC7VX485TFFG1761-2 FPGA.

A. Simulation Results

Table II demonstrates the difference between three different
designs: (1) Naı̈ve - an unoptimised C implementation derived
from KAFBOX [14], representing a design without consider-
ation of the resulting hardware datapath; (2) Float - a single
precision floating point design which uses the Xilinx floating
point cores throughout and contains all optimisations described
in Section III except for the fixed point adder tree; and (3)
Fused - all optimisations including the fixed point adder tree.

Floating-point operations are single precision and IEEE-754
compliant with the exception that denormalised numbers are
not supported. Although our design is parameterised, results
for the settings N = 16 and M = 8, are reported unless stated
otherwise. The GOPS are estimated using Fmax, the initiation
interval (II) and the number of operations required for single
update. With reference to Table I, the number of operations
is 513. Note that for the Naı̈ve and Float designs, GOPS is
equivalent to GFLOPS.

Table III describes the relationship between the design
parameters M and N , and the latency and hardware resources.
The numbers in brackets refer to latency estimates, which are

10 15 20 25 30
10

−15

10
−10

10
−5

10
0

R
el

at
iv

e
E

rr
o

r

Fractional Bits

Fixed Point

Fixed + σ

Floating Point

Float + σ

Fig. 5. Relative error introduced by using a fixed point adder tree.

calculated using the equations in Table I. These numbers are
different to Table II because they are post-synthesis estimates
rather than place and route results. The latency in the design
increases in proportion to log2 of the dictionary or feature
length and is accurately predicted by the model of Table I.
While the area model in Table I accurately reflects the usage
of the total number of different operators, estimating individual
LUT and DSP usage is not straightforward so the simple model
can only be applied to total usage.

From Table III, it can be concluded that both latency and
DSP48 usage are improved in the Fused design, but for the N
and M values evaluated, the differences are not large. Fused
requires more LUT resources because of two data conversions
(to and from fixed point) which are not implemented efficiently
in Vivado HLS.

B. Learning Accuracy

For the experiments in this paper, the chaotic MG-30
Mackey-Glass benchmark modelling the differential equation
dx(t)/dt = ax(t) + bx(tτ)/(1 + x(tτ)10) with (a = 0.1, b =
0.2, τ = 30), as implemented in KAFBOX [14] was used.

To isolate and test the fixed point adder tree, uniformly
random input vectors were generated in the range of the MG-
30 data, i.e. [0, 2). The relative error compared with double
precision (i.e. (y− ỹ)/y) over 10,000 trials was then measured.
Figure 5 shows the mean and standard deviation (σ) for 8-input
Float and Fused adder trees. The x-axis refers to the number
of fractional bits of the Fused implementation, and sufficient
integer bits are included to avoid overflow. The relative error
and standard deviation of single precision floating point is also
shown for comparison. As expected, at 24 bits, the mean error
of both implementations are similar.

In terms of learning accuracy, Figure 6 shows the conver-
gence of the learning accuracy of the KNLMS using Fused
arithmetic, over 1100 examples of the MG-30 series, generated
using a feature length of 8. The first 1000 examples were used
as a training set and subsequent 100 examples as a test set.
After each training example was learned, the mean squared
error (MSE) of the predicting the test set was calculated.
The KNLMS algorithm was configured with the following
parameters: γ = 0.5, η = 0.1, ε = 0.001 and µ0 = 0.5. Using
a fractional length of 16 for the fixed point adder resulted in a

0 200 400 600 800 1000
10

−2

10
−1

10
0

M
S
E

Iteration

Fig. 6. Convergence of KNLMS using the fixed point adder tree.

maximum difference in MSE of less than 1× 10−5 between
single precision floating point and fused arithmetic. Since this
was around 0.1% of the learning MSE in Figure 6, the Fused
arithmetic design used 16 fractional bits for its fixed point
configuration.

C. Performance

An evaluation of the performance of this work compared
with other KAF implementations is challenging since designs
are not directly comparable. SW-KRLS [10] requires a matrix
inversion per update and has O(N2 +NM) time complexity.
This is in contrast to KNLMS which is O(NM) stochastic
gradient descent techniques [2]. Moreover, one should be careful
in comparing Altera and Xilinx LUTs and DSP blocks as
they are different. Nevertheless, a summary of previous online
KAF implementations of which we are aware is presented
in Table IV. Clearly, the different versions of our KNLMS
processor have much higher throughput when compared to
the other implementations. The KAFBOX implementation is
in MATLAB and hence inefficient since the vector length N
is insufficiently large for performance improvements through
vectorisation. The CPU (C) is a C version of the KNLMS
algorithm which uses the multithreaded Intel MKL for linear
algebra. However, while the linear algebra library utilised
multiple threads, the parameters were searched sequentially
for both CPU implementations. The system implementation is
described in detail in the following sub-section.

D. System Implementation

The Float KNLMS core was integrated with a RIFFA
2.2.0 [15] PCI Express (PCIe) interface as illustrated in Figure 7.
Data ingress and egress are controlled by 512-word FIFOs, and
a P -word memory (P must be a multiple of L) for each of the
4 parameters shown in the bottom left module of Figure 2 was
used to store the parameters to be searched. Separate memories
indexed by l (as detailed in Section III-E) are used to store
dictionary and weight values.

When the input FIFO becomes non-empty, the finite state
machine (FSM) will read it and convert it to an input vector of
the M most recent samples via the serial to parallel converter.
Then, a sequence of L independent optimisations with different
parameter values is streamed through the KNLMS processor
with the results being saved on the output FIFO. The FSM

TABLE IV. COMPARISON OF ONLINE KERNEL METHOD IMPLEMENTATIONS.

Implementation Algorithm Device M N DSPs LUTs BRAM Freq Time Slowdown rel.
MHz ns to Float

Naı̈ve KNLMS Xilinx XC7VX485-2 8 16 12 4550 8 96.7 7,829 2,462
Float KNLMS Xilinx XC7VX485-2 8 16 1267 150,494 145 314 3.18 1
Fused KNLMS Xilinx XC7VX485-2 8 16 787 174,857 145 289 3.46 1.1
System KNLMS VC707 dev board 8 16 691 212,665 146 250 13.6 4.3
CPU (C) KNLMS Intel i7-4790 8 16 - - - 3,600 940 296
CPU (KAFBOX) [14] KNLMS Intel i7-4790 8 16 - - - 3,600 73,655 23,162
Pang et al. [3] SW-KRLS Altera Stratix V 5SGXEA7C2 7 16 30 41,476 227 237 9,000 2,830

KNLMS

Memory

FIFO

FSM

Param.
Memory

Serial to
Parallel

FIFO

D ,α

FPGA card

Host

PCIe

l

Fig. 7. Block diagram illustrating system integration of the KNLMS processor.

disables the KNLMS core and output FIFOs appropriately, and
the host computer ensures that the FIFOs never overflow by
controlling the amount of data being sent to the board.

Using the above arrangement, the same MG-30 benchmark
set with 38000 samples was trained over a parameter space
of P = 280 values. Execution time was 136.4ms, this
corresponding to a processing time of 13.55ns per data per
parameter, and a speedup of 70× over the CPU version. While
this efficiency is only 23% of the highest achievable for the
core, the total throughput is still far higher than the other
implementations shown in Table IV. Note that, the system
implementation used a different clock constraint in Vivado
HLS in order to meet the timing requirements of the 250MHz
clock on the VC707 dev board. This accounts for the difference
in DSP and LUT utilisation between the float and system
implementations in Table IV. The main sources of inefficiencies
in our interface can be attributed to turnaround time of the
PCIe bus and overheads associated with the host computer.
Larger buffers should allow this to be greatly improved.

V. CONCLUSION

A fully pipelined FPGA implementation of KNLMS was
presented which achieves higher performance than any previ-
ously reported design. Pipeline stages are filled with multiple
independent tasks, corresponding to different machine learning
parameter values, allowing high utilisation of resources. Using
this approach a 70× speedup over an optimised software
implementation was measured. This work demonstrated the
feasibility of performing parameter search at nanosecond
periods and opens the way for Big Data applications which
were previously computationally intractable.

Future work will focus on techniques to further increase
parallelism, explore precision tradeoffs and reduce the latency
of the design. Other platforms will also be considered, such
as GPU and heterogeneous architectures. Future work also
includes systematically comparing KAFs in terms of their
computational complexity and arithmetic intensity.

ACKNOWLEDGMENT

This research was supported under the Australian Research
Councils Linkage Projects funding scheme (project number
LP130101034).

REFERENCES

[1] B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[2] W. Liu, J. C. Prı́ncipe, and S. Haykin, Kernel Adaptive Filtering: A
Comprehensive Introduction. John Wiley & Sons, 2011, vol. 57.

[3] Y. Pang, S. Wang, Y. Peng, N. J. Fraser, and P. H. Leong, “A low latency
kernel recursive least squares processor using FPGA technology,” in
FPT, 2013, pp. 144–151.

[4] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online prediction of
time series data with kernels,” Signal Processing, IEEE Transactions
on, vol. 57, no. 3, pp. 1058–1067, 2009.

[5] B. Widrow and M. J. Hoff, “Adaptive switching circuits,” in IRE
WESCON Convention Record, 1960, pp. 96–104.

[6] M. Yukawa, “Multikernel adaptive filtering,” Signal Processing, IEEE
Transactions on, vol. 60, no. 9, pp. 4672–4682, Sept 2012.

[7] D. Anguita, L. Carlino, A. Ghio, and S. Ridella, “A FPGA core generator
for embedded classification systems,” Journal of Circuits, Systems and
Computers, vol. 20, no. 02, pp. 263–282, 2011.

[8] M. Papadonikolakis and C. Bouganis, “A scalable FPGA architecture
for non-linear SVM training,” in ICECE Technology, 2008. FPT 2008.
International Conference on, 2008, pp. 337–340.

[9] A. Majumdar, S. Cadambi, M. Becchi, S. T. Chakradhar, and H. P. Graf,
“A massively parallel, energy efficient programmable accelerator for
learning and classification,” ACM Trans. Archit. Code Optim., vol. 9,
no. 1, pp. 6:1–6:30, Mar. 2012.

[10] S. Van Vaerenbergh, J. Via, and I. Santamaria, “A sliding-window kernel
RLS algorithm and its application to nonlinear channel identification,”
in Acoustics, Speech and Signal Processing, 2006. ICASSP 2006
Proceedings. 2006 IEEE International Conference on, vol. 5, 2006,
pp. 789–792.

[11] B. Chen, S. Zhao, P. Zhu, and J. C. Principe, “Quantized kernel least
mean square algorithm,” Neural Networks and Learning Systems, IEEE
Transactions on, vol. 23, no. 1, pp. 22–32, 2012.

[12] B. Chen, N. Zheng, and J. C. Principe, “Survival kernel with application
to kernel adaptive filtering,” in Neural Networks (IJCNN), The 2013
International Joint Conference on. IEEE, 2013, pp. 1–6.

[13] X. Ren, P. Ren, B. Chen, T. Min, and N. Zheng, “Hardware Implemen-
tation of KLMS Algorithm using FPGA,” in Neural Networks (IJCNN),
2014 International Joint Conference on. IEEE, 2014, pp. 2276–2281.

[14] S. Van Vaerenbergh, “Kernel methods toolbox KAFBOX: a Matlab
benchmarking toolbox for kernel adaptive filtering,” 2012, software
available at http://sourceforge.net/p/kafbox.

[15] M. Jacobsen, Y. Freund, and R. Kastner, “RIFFA: A reusable integration
framework for FPGA accelerators.” in Field-Programmable Custom
Computing Machines (FCCM), 2012 IEEE 20th Annual International
Symposium on. IEEE, 2012, pp. 216–219. [Online]. Available:
http://dblp.uni-trier.de/db/conf/fccm/fccm2012.html#JacobsenFK12

