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1 ABSTRACT

This paper describes an analogue VLSI chip called
“Kakadu” which implements a trainable (10,6,4) multi-
layer perceptron. Kakadu is a classifier designed for low
power applications and has a typical power consump-
tion of 20 uW. Kakadu has been tested on many classi-
fication problems including XOR, 4 bit parity, character
recognition and arrhythmia classification.

2 INTRODUCTION

Artificial neural network (ANN) architectures use a
parallel interconnection of simple processing elements
in order to perform computation. ANNs have been suc-
cessfully applied to many classification problems and
several very low power implementations of analogue
neural networks have been reported [1, 2].

An implantable cardioverter—defibrillator (ICD) is
a permanently implanted device which monitors the
heart and delivers shock therapy in the event of life-
threatening arrhythmias. Current ICDs rely on very
simple classification techniques since the more sophis-
ticated techniques cannot be implemented in the strict
power budget that must be met.

This paper describes an analogue neural network
chip designed to meet these criteria. The chip, called
Kakadu, is an implementation of a three layer per-
ceptron which contains 84 synapses and has ultra low
power consumption. Although designed for the pur-
pose of arrthythmia classification, Kakadu is a reason-
ably general purpose classifier and classification results
on benchmark problems will be described in this paper.

3 KAKADU

The Kakadu neural network chip is a (10,6,4) percep-
tron implemented using 6 bit multiplying digital to ana-
logue converters as synapses and off—chip resistors as
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Figure 1: Photomicrograph of the Kakadu Test Chip. '

neurons. It was fabricated using the Orbit Semicon-
ductor 1.2 pm double metal single poly process on a
2.2 x 2.2 mm die. A photomicrograph showing the
main synapse blocks, row shift registers and the cur-
rent source is shown in Figure 1.

The synapses serve to multiply the inputs by a pro-
grammable weight, and all synapse outputs in a row
are summed using Kirchoff’s current law. The transfer
function of the Kakadu chip can be described by the
following equations

Ny )

up = Zwijtanh(n—gj—) (1)
j=1

a; = ou; (2)

where w;; represent the synapse connections to neuron
i, u; is the summed output of the synapses, a; is the
neuron output, « is the neuron gain (a 1.2M resistor
gives a value of 1.2 x 10°), x is a constant, ! denotes
the Ith layer (0 <1< L —1), L is the total number of
layers, N; is the number of neuron units at the /th level
and 7 is the neuron number (1 < ¢ < Np).
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Figure 2: Synapse and Neuron Circuitry.

By placing the nonlinearity inside the summation,
the tanh characteristic of a Gilbert multiplier can be
used to implement this function.

4 TRAINING

The Kakadu chip was tested using the “Jiggle” test
jig. Jiggle was designed by Sydney University Electrical
Engineering and is a general purpose chip tester having
64 12 bit analogue input/output channels as well as
64 digital input/output channels. Jiggle connects to a
VME bus, and the VME cage is interfaced to a Sun
SPARCstation IPC via a Bit 3 Model 466 SBUS to
VME converter. Jiggle allows arbitrary analogue or
digital signals to be presented to the pins of the test chip
and thus allows software control of the weight updating
and training of the Kakadu chip. All results in this
paper were obtained at a bias current of 6.63 nA and a
supply voltage of 3 V.

The training approach was one of optimisation in
which the mean squared error of all the patterns was
reduced. The Combined Search Algorithm [3] (CSA)
was used for all of the results in this paper. CSA
employs two minimisation strategies namely modified
weight perturbation [4] and random search. Modified
weight perturbation is a local search and the random
search algorithm is a non-local search technique. CSA
can be described by the following pseudocode

while not converged

{
/* modified weight perturbation */
for i = 1 to 10
{

for each weight w
{

wsave = Ww;

4.5.2

w=w+1;
evaluate error;
if error has not improved

W = wsave;

3
3
/* random search algorithm */
for i = 1 to 30
{
for each weight w
{
wsave = W;
w = random number;
evaluate error;
if error has not improved
W = wsave;
}
}

5 RESULTS

5.1 Power Consumption

It is useful to be able to estimate the power consump-
tion of the Kakadu chip. This is a function which is
linear with the weight values since Ip 4¢ in Figure 2 is
the current drawn for that particular synapse. A num-
ber of current consumption measurements were made
for different weight values and then a least squares fit
was used to derive the current consumption formula

N
Ikaxapu = 0.842+0.00736 ) lwi| (ud)  (3)

=0

where w; is the ith weight, i indexes through all of
the weights in the chip and Ix g apu is the current
consumption in pA.

Figure 3 shows the measured current dissipation of
the chip and the curve fit of Equation 3 to this data.
Note that the maximum current consumption of this
chip occurs when all the weights are set to the maxi-
mum value and this value is 20 pA.

5.2 XOR

XOR has been a benchmark problem for neural net-
works because it is a simple yet highly nonlinear prob-
lem. The minimum network size which can solve this
problem is (3,2,1) with one input being a bias. To make
Kakadu behave like a smaller network, the weight values
for the unconnected synapses are set to zero. Kakadu
was successfully trained on this problem, results of this
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Figure 3: Current Consumption Curve fit (Bias Current

= 6.63 nA)
Input (Volis) | Desired Output | Output (Volts)
0.2}0.0]0.0 0.0 0.031
0.2]0.2]0.0 0.2 0.215
0.2 0.010.2 0.2 0.173
0210202 0.0 0.032

Table 1: Results of applying Kakadu to the XOR prob-

lem (6.9 uW).

Input Desired Outpnt Output
0.2 -G.1 -0.1 ~0.1 -0.1 -0.1 -0.071
0.2 -0.1 -0.1 -0.1 +0.1 +40.1 +0.071
0.2 0.1 -0.1 +0.1 -0.1 +0.1 +0.066
0.2 0.1 -0.1 +0.1 +40.1 -0.1 -0.085
0.2 -0.1 +0.1 ~0.1 -0.1 40.1 +0.061
0.2 -0.1 +0.1 ~0.1 +0.1 -0.1 -0.073
0.2 -0.1 +0.1 0.1 -0.1 -0.1 -0.059
0.2 -0.1 +0.1 0.1 4+0.1 +40.1 +0.071
c.2 +0.1 -0.1 0.1 -0.1 +0.1 4-0.141
0.2 +0.1 -0.1 ~0.1 +0.1 -0.1 -0.117
0.2 +0.1 -0.1 “+0.1 -0.1 -0.1 -0.103
0.2 =+0.1 -0.1 +0.1 +0.1 +0.1 +0.051
0.2 +0.1 +0.1 ~0.1 -0.1 -0.1 -0.056
0.2 +0.1 40.1 -0.1 +0.1 40.1 +0.022
0.2 +0.1 +40.1 +40.1 -0.1 +0.1 +4-0.085
0.2 +40.1 +0.1 +0.1 +0.1 ~0.1 -0.024

Table 2: Results of Applying Kakadu to

Problem (15.6 pW)

the Parity 4

test being shown in Table 1. The chip was considered
successfully trained if the difference between the mea-
sured and desired output less than a particular margin.
For the XOR function, this margin was set to be 0.08 V.

For XOR, the power dissipated was 6.9 uyW at 3 V.
The same problem has been successfully trained with
bias currents down to 3.5 nA. For bias currents lower
than this, training could not be achieved. It was de-
cided that further tests would be conducted with a bias
of 6.63 nA to be sure that sufficient DAC linearity was
achieved.

5.3 Parity (4 Bit)

A highly nonlinear benchmark test often used for neu-
ral networks and training algorithms is the 4 bit parity
problem. Given 4 bits of input, the ANN is trained to
calculate whether the input is even or odd parity. This
test was guccecsfully trained ucing a (5,4,1) network.
The margin was set to 0.08V. The quiescent power con-
sumption for this problem was 15.6uW, and the results
of this test are shown in Table 2.

5.4 Character Recognition

Kakadu was applied to a simple character recognition
problem and the patterns and results are shown in Ta-
ble 3. A (10,6,4) network was divided into a bias unit
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Input QOutput Class
1 1 1 ~-0.12 -0.11 -0.09 +0.10 )
1 1
1 1 1
i 1 1 0.10 0.04 0.16 +0.09 [1]
1 1 1
1 1 1
1 -0.10 -0.10 +0.10 0.10 1
1
1
1 -0.05 -0.09 +0.00 -0.13 1
1 1
1
1 1 1 0.10 +0.09 -0.10 0.10 7
1
1
1 1 1 -0.16 +0.03 -0.10 -0.02 T
1
1 1
1 +0.10 0.10 -0.09 -0.09 -+
1 1 1
1
1 +0.06 -0.08 -0.02 0.15 +
1 1

Table 3: Results of Applying Kakadu to the Charac-
ter Recognition Problem (22.5 yW). In the “Input”
column a ‘1’ denotes an input voltage of 0.1 V and a
blank is -0.1 V. An additional bias input of 0.2 V was
used.

and a 3 x 3 pixel array. The network was trained (bias
current 4.4 nA) on the characters ‘0°, ‘1°, “7’ and ‘4,
each output being assigned to one character. Only four
characters were used because there are only four out-
puts on the Kakadu chip. After training, one or more
bits in each character was corrupted and the network
output passed through a “winner take all” decision to
determine the network’s classification of the corrupted
character. The results of this experiment show that
Kakadu was able to correctly classify patterns that it
had not been trained on. Kakadu draws 22.5 pyW dur-
ing this test.

5.5 MATIC

The MATIC algorithm [5] classifies arrhythmias based
on timing and morphological features. The timing fea-
tures are classified using a decision tree and a neural
network is used to recognise a certain class of arrhyth-
mias called ventricular tachycardia with 1:1 retrograde
conduction (VT 1:1) which can only distinguished by



Figure 4: Ventricular Tachycardia with 1:1 retrograde
conduction. Note how the morphology of the signal
changes between normal rhythm (on the left) and VT
1:1 (on the right).

morphological features. An example of this situation
can be seen in Figure 4, where the patient’s arrhyth-
mia changes from a normal rhythm to that of a VT
1:1, and a morphology change can be clearly seen.

The MATIC algorithin was tested on a database of
67 patients and the results of using Kakadu to per-
form morphology classification and a classification rate
of 99.2% was achieved. A standard floating point soft-
ware implementation of a neural network achieved a
classification rate of 99.6% and a standard arrhythmia
classification algorithm similar to those currently used
in implantable defibrillators achieved 75.9% [6].

The power consumption of Kakadu for the 10 VT
1:1 patients is shown in Table 4. The maximum power
consumption of the chip was 25 pyW for the patients
studied. The propagation delay of the Kakadu chip is
approximately 30 uS, a normal heart rate is approxi-
mately 1 Hz, and Kakadu has negligible (< 100 pA)
power consumption at zero bias. If we allow a con-
servative value of 1000 uS for propagation, the average
power consumption of the system can be reduced to less
than 25 nW by turning off the bias of the chip when it
is not being used.

6 CONCLUSION

We have designed, fabricated and successfully tested a
a trainable low power analogue VLSI neural network
chip. This chip can solve a wide range of classification
problems and has a typical power dissipation of tens of
microwatts.
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Table 4: Power consumption and Morphology Parame-
ters of Kakadu chip for the 10 VT 1:1 patients.
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