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Abstract—Physically unclonable functions (PUF) are com-
monly used in applications such as hardware security and
intellectual property protection. Various PUF implementation
techniques have been proposed to translate chip-specific vari-
ations into a unique binary string. It is difficult to maintain
repeatability of chip ID generation, especially over a wide range
of operating conditions. To address this problem, we propose
utilizing configurable ring oscillators and an orthogonal re-
initialization scheme to improve repeatability. An implementation
on a Xilinx Spartan-3e FPGA was tested on nine different chips.
Experimental results show that the bit flip rate is reduced from
1.5% to approximately 0 at a fixed supply voltage and room
temperature. Over a 20 − 80

◦C temperature range and 25%
variation in supply voltage, the bit flip rate is reduced from
1.56% to 3.125× 10

−7.

Index Terms—ring oscillator, physically unclonable functions,
FPGA.

I. INTRODUCTION

CHip identification, in which unique binary strings are
associated with integrated circuits of the same de-

sign, has a wide range of applications including digital
intellectual property protection, integrated circuit counter-
feit detection/prevention, and public-key cryptography. Field-
programmable gate-arrays (FPGAs) are a mainstream hard-
ware implementation platform, and need to be equipped with
chip identification capabilities.
Today’s commercial FPGAs already contain such features.

For example, in Xilinx Virtex devices, a bitstream can be en-
crypted using a secret key. When the bitstream is downloaded,
a hardware decryption core decrypts the bitstream. The bit-
stream only operates correctly if the device was programmed
with the same key. This key is stored in RAM and it is not
possible to read back the value [1]. Unfortunately, the chip
identifier (ID) used for bitstream decoding is not available for
other applications since this value cannot be read.
Xilinx also provides “Device DNA” in Spartan-3A series

FPGAs to protect designs from cloning, unauthorized over-
building and reverse engineering. This feature is a unique
factory set FPGA ID hardwired into the device which can be
used to implement designs which only operate with a particular
ID.
Instead of stored identification information, a physically

unclonable function (PUF) utilizes physical variation to dis-
tinguish one chip from another. Using this concept, chip IDs
can be obtained from mismatch in the delay, voltage or current
values of an array of circuit structures of identical design. The
random variation can be extracted, averaged and thresholded
to produce a binary output. This technique can be applied

to any FPGA, in contrast to “Device DNA” which is only
implemented on certain FPGAs.
Chip IDs generated in this way should be unique and

repeatable. Uniqueness is required to avoid ID collisions
between devices, while repeatability is necessary to ensure
that a given device returns the same value every time. We use
the term unstable to describe a chip ID with low repeatability.
Ring oscillators (ROs) are often used to generate PUF IDs.

One common method is to use a cell consisting of two or more
ROs. Due to transistor delay variations, a random output for
cell i, Ri, can be obtained from the difference in period of
ROs with the same layout but different spatial locations. A
binary output can then assigned depending on the sign of Ri.
We show experimentally that Ri is normally distributed with
an expected value, E(Ri) of 0 [2]. When |E(Ri)| is large,
this scheme consistently gives the same output. Unfortunately,
when it is small, the repeatability is compromised, particularly
in the presence of temperature and supply voltage fluctuation.
By using configurable ring oscillators and a run-time re-

initialization scheme, the near-threshold residue values are
eliminated. This results in a change in the distribution of Ris
from normal to a desirable bimodal one. After thresholding,
the resulting IDs have very good statistical properties over
a wide range of temperature and voltage and therefore, the
reliability of chip ID generation is significantly improved.
The contributions of this work are summarized as follows:

• A cell which uses a number of ring oscillators with
slightly different, configurable delay paths. They are
arranged in a spatially overlapped fashion, saving sig-
nificant logic resources while maintaining good statistics
for ID generation.

• A power-up initialization and dynamic re-initialization
process which selects and stores paths with the largest
|E(Ri)|. Re-initialization serves to improve repeatability
in the presence of varying temperature and voltage.

• A postprocessing technique which generates a bimodal
distribution for E(Ri). This reduces the probability of
its value being near the threshold and greatly improves
the repeatability of the chip ID.

The rest of this paper is organized as follows. Section II
describes previous work on chip ID generation and physically
unclonable functions (PUF). An analysis of the chip ID
generation process is given in Section III. Then, we detail
our proposed techniques in Section IV. Experimental results
are presented in Section V. Finally, conclusions are drawn in
Section VI.
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II. BACKGROUND

PUFs have drawn considerable attention from the hardware
security research community since they were proposed in 2001
[3] [4]. Various PUF implementations on both ASICs and
FPGAs have been reported. A summary of relevant works are
given in the following subsections.

A. PUF on ASICs
Lofstrom et. al [5] used an array of addressable NMOS

transistors loaded with a common resistive load. Drain current
mismatch caused the voltage across the load to be different for
different transistors in the array. By addressing the transistors
in the array sequentially, a sequence of voltages was generated
and successive values converted to a binary sequence via an
auto-zeroing comparator to form an ID. A 112-bit ID circuit
was shown to have a drift of less than 4% over a wide
supply voltage and temperature range. Su et. al [6]. reported
on an improved circuit which used cross-coupled logic gates
to simultaneously generate, amplify and digitize transistor
mismatch. This circuit was able to produce a 128-bit, 96%
stable ID using only 1.6 pJ/bit. Helinski et. al proposed another
PUF design based on measured equivalent resistance variations
in the power distribution system of an integrated circuit (IC)
[7].

B. PUF on FPGAs
FPGA-based PUF implementations can be categorized into

the following types: memory-based, logic-based, arbiter-based,
and ring oscillator (RO)-based,
1) Memory-based PUF: Guajardo et. al utilized the initial-

ization state of static RAM cells in an FPGA and showed
that they had suitable statistical properties for producing an
ID [8][9]. His experiments showed that 4% of the startup bits
from the same RAM changed over time. Over a −20◦C to
80◦C temperature range, bit strings had a maximal fractional
Hamming distance of 12% compared to a reference at 20◦C.
Holcomb et. al [10] proposed a Fingerprint Extraction and

Random Numbers in SRAM (FERNS) extraction system that
harvests static identity and randomness from existing volatile
CMOS memory without requiring any dedicated circuitry.
2) Logic-based PUF: Patel et. al count variation-dependent

glitches on the output of a combinational multiplier to generate
unique identification [11]. They found that 6 out of 64 bits
are changed over a range of temperature. Anderson used an
FPGA’s carry chain to implement a PUF [12]. On average,
3.6% of bits are changed in high temperature.

  

  

 











Fig. 1. Arbiter-based PUF.

3) Arbiter-based PUF: Figure 1 shows an arbiter PUF,
comprising two parallel n-stage multiplexer chains feeding
a flip-flop. A transition is input to the arbiter which travels
through a series of 2-input/2-output switches. Each switch is
configured to be either a cross or a straight connection based
on its selection bit. The arbiter compares the arrival times of
its two inputs and generates a response bit. The path segments
are designed to have the same nominal delays but their actual
delays differ due to process variation. The difference between
the top and bottom path delays on the segment i is denoted
by ∆Di in figure 1. The PUF challenges are the selector bits
of the switches, Ci. The output of the arbiter is a function of
the challenge bits and different for different chips.
Suh and Devadas [13] generated binary outputs from a

difference in path pair delays. This technique achieved a 0.7%
unstable bit rate at room temperature and fixed supply voltage.
It remained less than 9% when temperature was increased by
100◦C and voltage varied by 33%. The fractional Hamming
distance achieved was 23% of the total bit width, whereas an
ideal value is 50%.
Majzoobi et. al. [14] proposed an improved arbiter-based

PUF which utilized multiple delay lines for each response bit,
transformations and combinations of the challenge bits and
combination of the outputs from multiple delay lines. This
scheme achieved lower predictability and higher resilience
against circuit faults, reverse engineering and other security
attacks.
4) RO-based PUF: A ring oscillator (RO) based PUF uses

differences in period between similar ROs. The RO is typically
encapsulated in a hard macro with fixed layout, and arranged
in different spatial locations on the FPGA. Since the logic cells
and routing are identical, the same nominal value of loop delay
is achieved.
Suh and Devadas [13] compared Arbiter and RO based

PUFs and found the latter achieved better performance. Ring
oscillators with vastly different periods were used to improve
the robustness of the generated ID. In particular, a 1-out-of-
k masking scheme with k = 8 so to generate N bits, kN
ROs are required. For each of k pairs, the pair with maximum
distance was chosen, and a bit vector of these selections is
saved so that the same pairs can be used to re-generate the
output. Experimental results show the intra-chip variation was
0.48% for temperatures from 20◦C to 120◦C and voltages from
1.2V to 1.08V.
Maiti and Schaumont [15] proposed a configurable ring

oscillator to achieve a higher reliability in an RO-based PUF.
Compared to 1-out-of-8 scheme used in [13], this approach
was more efficient in terms of hardware cost and N + 1 ROs
are required to generate N bits.
In contrast to references [13] and [15] which used pairs of

ROs, our previous work utilized a 2×2 RO array in a common
centroid arrangement to better counter spatial correlation [2].
Averaging and postprocessing were employed to accurately
determine the faster of two pairs of similar-frequency ring
oscillators in the presence of noise. To generate N bits, 4N
ROs were required. As described in the following section, the
hardware cost is reduced to (

√
N + 1)2 in this paper.

Merli, Stumpf and Eckert [16] showed that ring oscillator
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Fig. 2. One-bit ID generation.

frequencies strongly depend on the surrounding logic. Based
on these findings, they proposed a strategy for improving the
quality of RO PUF designs by placing and comparing ROs in
a chain-like structure.
Morozov et. al. [17] argued that symmetry requirements for

Arbiter and Butterfly PUF architectures cannot be satisfied
using available FPGA routing schemes despite the apparent
routing flexibility of FPGA devices, and suggest that RO based
schemes are preferable.

III. PRINCIPLE OF OPERATION
A. One-bit Generation
Our proposed bit generation is achieved via a 2×2 RO array.

The four ROs are placed in a common centroid layout, as show
in figure 2(a) to mitigate correlations due to spatial process
variations on the die. The effect of removing spatial correlation
by adopting a common centroid layout has been shown in
reference [18]. Such an arrangement is called a “cell” in this
work and generates a single bit. We adopt an overlapped cell
composition rather than the disjoint one used in our previous
work [2]. This serves to improve the resource efficiency of the
design by a factor of four. As an example, to generate a 64-bit
ID, the new scheme requires a 9×9 RO array compared to 16×
16. The randomness of the generated bits is not compromised.

−1000 −500 0 500 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x 10−3

Data

D
en

si
ty

 

 
Ri Distribution
Normal fit

Fig. 3. E(Ri) distribution over all chips and spatial positions [2].

A timer driven by a 10 MHz system clock, fclk is used to
measure the number of rising edges of the RO, NRO, over a
period of Ntimer cycles. The frequency of the RO is hence
given by

NRO =
fRO

fclk
×Ntimer (1)

For example, assuming Ntimer = 2000, the value of fRO

ranges from 170 MHz to 190 MHz at room temperature. This
resulted in an NRO in the range 34000 to 38000.
If NA, NB , NC and ND are the counter values for the four

ROs A, B, C and D respectively as shown in figure 2(b), the
residue is calculated as:

Ri = (NA +ND)− (NB +NC) (2)

If Ri is positive, the bit generated by this cell is 0, otherwise,
it is 1. We use the term “polarity” to denote this characteristic.

B. Sources of Instability
For the static RO design in figure 2(a), the Ri values

across all cells was observed to have a Gaussian distribution
as shown in figure 3. This was confirmed by an Anderson
Darling test [19]. Since the mean is zero, the most frequently
occurring residues are close to this value, making them likely
to become unstable. We propose to replace the static RO with
a configurable RO to amplify the residue.

IV. IMPLEMENTATION
A. Architecture
Figure 4 illustrates the architecture of our chip ID generator

design. It includes a 9×9 RO array providing 8×8 cells. This
can generate 64 separate bits (i = 0, . . . , 63).
The address generator together with the two decoders select

a single RO to operate over a given time interval. A 4-bit
global RO configuration signal, detailed in the next subsection,
is also sent to each RO. At any given time only one RO
can be activated and hence the configuration only affects the
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operating RO. Two levels of multiplexers are used to route the
output of the selected RO to the counter. Handshaking signals
connect the timer to the the ARM processor and the residue
is calculated in software according to equation 2.
To facilitate different experiments with the ID generator,

postprocessing is implemented on an external ARM processor
in software. The postprocessing could also be included in an
on-FPGA processor or finite state machine.

B. Configurable RO

The circuit implementation of the configurable RO is shown
in figure 5. In this work, a Xilinx Spartan-3e was used to
demonstrate the technique. The design could be easily ported
to different FPGA families. A 4-stage RO is used where three
of the stages are non-inverting and the final one is inverting.
Each occupies two Xilinx logic elements (LEs) within a slice
and a multiplexer is used to choose the signal path. The
entire RO occupies a single Xilinx configurable logic block
(CLB). By selecting different values of S0 − S3, 16 different
configurations can be chosen. Logic and interconnect delay
mismatch in the paths of the different configurations change
the frequency of the RO.
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Fig. 6. Counter values of RO components within a particular configurable
cell.

TABLE I
WIRE DELAYS FOR DIFFERENT PATHS WITHIN A CONFIGURABLE RO

EXTRACTED FROM CAD TOOLS.

s stg 0 stg 1 stg 2 stg 3
0 0.042ns 0.175ns 0.042ns 0.091ns
1 0.045ns 0.216ns 0.042ns 0.131ns

Figure 6 shows the variation in counter values, NRO, for
the four ROs of a cell as a function of the configuration
value. As one would expect, there is systematic variation as the
configuration is changed. Table I summarizes the wiring delay
of each path of the four stages. It can be seen that, particularly
for stage-1 and stage-3, there are significant differences which
account for the correlations. As an example, from table I,
comparing configuration “0000” to “0010”, the stage-1 delay
is increased, reducing the RO frequency and counter value.
Due to these expected systematic variations, generating

Ri using different configurations leads to correlated outputs.
Instead, we use the same configuration for all 4 ROs in a
cell, and choose the one with the largest |Ri|. This technique
employs one configurable RO to achieve a similar result to
choosing from 16 normal ROs as done in Suh and Devadas’s
work [13], resulting in a reduction in area.

C. Configuration Initialization
1) Power-up Initialization: Our proposed method requires

a set of configurations to generate stable IDs so a scheme is
required to initialize them upon power-up. One straightforward
approach is to determine configurations when the FPGA is
powered up the first time, and store them in non-volatile
memory or on an authorized server. Such an approach would
also need to carefully consider the possibility of information
leakage and susceptability to modelling attacks [20].
When the chip is subsequently powered up, configurations

are transferred to the chip for ID generation. Unfortunately,
for this scenario, a communication channel is required. even
though the configuration does not reveal relative speeds of
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Fig. 7. Residues for all configurations from 3 cells.

the ROs, it leaks information. For instance, if the same
configuration is used for overlapping cells, an adversary may
be able to infer a dependency between the ROs involved.
Moreover, if an adversary can see both the configuration and
the resulting ID, this provides additional information to could
aid modeling attacks [20].
A server-based approach is obviously not suitable for many

applications. In such cases, a standalone initialization scheme
is desired. To tackle this problem, a more sophisticated scheme
is required to ensure the chip ID generated based on such
configurations are the same.
We first analyse three types of cells as shown in figure 7.

Cell #1 produces negative Ri values for all configurations
(negative polarity), cell #2 all positive (positive polarity), and
cell #3 has both positive and negative Ri values (hybrid
polarity). The circles in the figure indicate the configurations
with maximum |Ri|. These are selected in our ID generation
scheme to maximize the stability.
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Fig. 8. SR for all cells, cell #4 and #59 are marginal, as their SR values
fall between ±500.

To better illustrate all situations, we sum residues over all
possible configurations (SR) for each cell as shown in equation
3, which c denotes the configuration value.

SR =
0xf
∑

c=0x0

Ri(c) (3)

If the residues for all configuration modes are of the same
polarity, the best configuration can be simply determined by
the largest absolute value. Although the best configuration may
change from time to time, the polarity does not. In figure 8,
we can see that residues of most cells in a particular chip are
far from zero and the polarity can be easily determined. If we
set ±500 as threshold values, only two cells (#4 and #59) are
in this range.
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Fig. 9. Residues over all configurations for Cell #59.

As an example, Figure 9 shows the residues for cell #59
over all configurations. It is difficult to decide between con-
figuration #3 and #12 and hence whether it has positive or
negative polarity.
We divide the configurations into two halves, 0000 to

0111 and 1000 to 1111 in figure 9. The plots in these two
ranges have a similar pattern. We consider the two halves
and also halve the threshold. The sum of residues in the
first half is larger than the new threshold and an evident
bias towards negative is observed. Therefore the polarity of
the cell can be easily identified. If the polarity still can not
be determined, this operation can be applied iteratively until
the polarity is identified. Figure 10 shows how the proposed
method handles for the extreme case where residues over all
configurations are identical in absolute value but opposite in
sign. The proposed initialization scheme iteratively shrinks the
configuration search range until configuration #0 is finally
selected. By applying this strategy, we can determine the
polarity even though there is no evident bias for such a
cell. Algorithm 1 presents the search technique. Note that
we assume the supply voltage and temperature do not change
when FPGA chip is powered up. If this is not the case, robust
IDs may not be possible.
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Algorithm 1 check polarity(N, T) //N is the end of search
range, T is threshold

1: SR = 0
2: for i = 0 to N do
3: SR = SR + residue(i)
4: end for
5: if abs(sum) < T then
6: check polarity(N/2, T/2)
7: return
8: else
9: if sum >= 0 then
10: polarity is positive
11: Search the configuration with largest residue within

range 0 to N
12: return
13: else
14: polarity is negative
15: Search the configuration with smallest residue within

range 0 to N
16: return
17: end if
18: end if

2) Run-time Re-initialization: RO frequency is affected by
temperature and supply voltage [21] [22] [23]. As they change,
|Ri| in the selected configuration may decrease and potentially
become unstable. Meanwhile, |Ri| in other configurations may
increase. We propose a dynamic re-initialization technique to
further improve reliability. Re-initialization could be triggered
by periodically measuring the frequency of a particular RO (or
embedded sensor) to track temperature or voltage variations. It
serves to find a configuration with larger |Ri| than the previous
one while maintaining polarity if possible. If the current
configuration still remains the best one, no modification is
made. Otherwise, a new configuration is stored.
An RO counter value can be monitored to detect environ-
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Fig. 11. Counter value vs. Voltage/Temperature

mental changes. We studied how the counter value changes
with temperature and supply voltage as shown in figure 11.
A linear fit revealed a rate of change of 3.33× 103 per 0.1V
and −35 per ◦C respectively. We use a threshold of 300 to
trigger re-initialization, corresponding to a 0.009V variation
in voltage or 7.7◦C temperature change. This threshold can
be obviously be changed for different requirements.

D. Flow of Chip ID Generation
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Fig. 12. Flowchart showing chip ID generation process.
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After power-up initialization, the overall process of the
proposed chip ID generation can be represented as shown in
figure 12. It is divided into two phases, generation and re-
initialization. During re-initialization, the configurations of all
cells are swept to determine which one generates the largest
|Ri| of the same polarity as the previous best configuration.
The information is stored for chip ID generation.

V. RESULTS

A. Summary of Hardware Resource Consumption

TABLE II
LOGIC UTILIZATION

Resource Consumption Total Percentage
Number of Slice Flip Flops 65 4,896 1%
Number of 4 input LUTs 772 4,896 15%
Number of BUFGMUXs 2 24 8%
Number of DCMs 1 4 25%

We implemented the system on a custom board with
a Xilinx Spartan-3e FPGA (xc3s250e-4pq208) and a NXP
LPC2131 ARM processor. Xilinx ISE Design Suite 12.1 and
µVision v3.62c are respectively used for FPGA design and
ARM C compilation. Nine identical boards are tested, each of
them assembled with identical devices. As shown in table II,
the resource consumption, even on a small FPGA, is minimal.

B. Statistical Analysis

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

40

45

50

Configuration

N
um

be
r

Fig. 13. Histogram of configurations selected over all cells and all chips.

1) Cell Configurations: Figure 13 shows the distribution
of selected configurations over all cells and all tested chips.
Although the distribution is not uniform, strong biases towards
some particular configurations were not evident.
2) One/Zero Ratio: The measured one-to-zero ratios of the

9 chips are listed in table III. On average, the one/zero ratio
is 1.06, confirming an equal likelihood for each value.

TABLE III
ONE/ZERO RATIO

Chip No. 1/0 ratio Chip No. 1/0 ratio
1 0.88 6 1.06
2 1.06 7 0.94
3 1.00 8 1.13
4 1.20 9 1.13
5 1.13

TABLE IV
HAMMING DISTANCE MATRIX.

1 2 3 4 5 6 7 8 9
1 0 31 28 29 30 35 33 32 28
2 31 0 27 28 29 28 22 29 23
3 28 27 0 35 32 35 27 34 26
4 29 28 35 0 33 24 34 35 31
5 30 29 32 33 0 25 37 30 32
6 35 28 35 24 25 0 28 33 31
7 33 22 27 34 37 28 0 25 29
8 32 29 34 35 30 33 25 0 34
9 28 23 26 31 32 31 29 34 0

3) Hamming Distance: The Hamming distances between
all pairs of chip IDs are summarized in table IV The average
value is 30, which is 47% of the bit width. This is very close
to the ideal of 50% for independent IDs.
Taken together, the Hamming distance analysis and one/zero

ratio demonstrate the generation scheme has very good sta-
tistical properties. It shows that the configuration selection
scheme and overlapped cell composition, do not come at the
cost of reduced randomness. In fact, the statistical properties
are improved compared with our previous work [2].

10
20

30
40

50
60

10
20

30
40

50
60

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X
Y

C
or

re
la

tio
n

Fig. 14. Ri correlation matrix.

4) Correlation Analysis: Figure 14 illustrates correlation
between different Ris. As each Ri is fully correlated with
itself, the diagonal values are equal to 1. A histogram of the
distribution is shown in figure 15. On average, the correlation
between different Ris is −4×10−3 and 90% of the correlations
are in the range -0.2 to 0.2 with a maximum absolute value of
0.44. From this analysis we conclude that there was no evident
correlation between bits in the ID generation process.



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. X, NO. X, JANUARY XXXX 8

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Correlation

D
en

si
ty

Fig. 15. A histogram of correlation between different Ris.
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Fig. 16. Overall E(Ri) distribution over all cells and all chips with
configuration selection.

5) Stability Analysis: Figure 16 shows the E(Ri) distribu-
tion over all chips and all cells. Compared to figure 3, the
configuration scheme modifies the distribution from Gaussian
to a bimodal one and the occurrence of residues whose
absolute values are close to zero are eliminated.
A bit flip occurs when a cell generates an Ri with sign

opposite of the mean value in figure 17. We define the “bit
flip rate” Pbf as the number of occurrences of bit flips Nbf

divided by the total number of bits generated Nall.

Pbf =
Nbf

Nall
(4)

For ease of analysis and expression, we modify all of the
residues Ri to be positive:

R̃i =

{

−Ri, if E(Ri) < 0

Ri, if E(Ri) > 0
(5)

This causes all the negative residue values (solid line in
figure 17) to be mirrored to the positive side (dotted line in
figure 17). For a particular cell i, “bit flip rate” Pbfi can be

0 Ri

Probability
Density

E(Ri) -E(Ri)

Fig. 17. Distribution of Ri values of a cell.
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Real Ri distribution
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Fig. 18. A Histogram of Ri and Gaussian pdf plots with tunable standard
deviation.

expressed as in equation 6, where pdf(Ri) is the probability
density function of Ri for a cell, i.e.

Pbfi =

∫ 0

−∞

pdf(R̃i)dR̃i (6)

For a W bit chip ID, the overall “bit flip rate” is then

Pbf =

W
∑

i=1

Pbfi

W
(7)

To estimate Pbf according to equation 6, the probability
density function of Ri of individual cells is required. Unfor-
tunately, most of them fail to pass the Anderson Darling test
at a significance level of 0.05 and half of them still fail at
a significance level of 0.10. This indicates that they are not
normally distributed and hence more difficult to analyze.
However, the individual Ri distributions are near-Gaussian,

Taking the cell with the smallest |E(Ri)| (about 160, with
standard deviation of 10) as an example, the histogram in
figure 18 is obtained. The measured Ri distribution is shown
as bars, while lines are used to illustrate Gaussian distributions
N(E(Ri), rσ(Ri)) for r = 1, 1.5, 2, 2.5, 3. It can be seen that
a value of r = 3 very conservatively covers the tails of the
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distribution. Denoting the probability density function of such
a Gaussian as fN(E(R̃i),3σ(R̃i))

, for each cell, we observe

Pbfi <

∫ 0

−∞

fN(E(R̃i),3σ(R̃i))
(x)dx.

∫ 0
−∞

fN(E(R̃i),3σ(R̃i))
(x)dx can be regarded as an upper

bound for Pbfi . The Pbfis values for different cells are small
and different in value. The largest Pbfi is 3.33 × 10−5 over
nine chips. Pbf is on average 5.72× 10−7 as calculated using
equation 7. If a static RO is used, assuming E(Ri) is normally
distributed, Pbf is estimated as 1.41%.

TABLE V
THEORETICAL STABILITY COMPARISON UNDER THE STATIC OPERATING

CONDITION (1.2V, 20◦C)

Method Theoretical Pbf Measured Pbf

Static RO 1.41% 1.53%
Configurable RO 5.72× 10−7 ≈ 0

Experimentally, under normal operating conditions (1.2V ,
20◦C), we did not detect any bit flips on the nine test chips
over 50000 ID generations. From equation 4, this makes Pbf <
3.125×10−7. This is consistent with the conservative estimate
of Pbf ≈ 5.72 × 10−7 made earlier. In fact, bit flips were
never recorded under normal operating conditions in any of
our testing.
To compare the reliability of the normal and configurable

RO schemes, we generate IDs with static configurations. This
is essentially equivalent to a normal RO design. The static
configurations are swept from 0000 to 1111. Results show that
bit flip rates range from 0.56% to 3.3%, and are on average
1.53%. This is very close to the estimate presented in table V.

C. Environmental Influences
In our measurements, we observed that for a particular chip,

by varying temperature from 20◦C to 80◦C, min(|E(Ri)|)
changes within a 10% range, and σ(Ri) is not significantly
changed. Within this temperature range, no benefits are offered
by re-initialization.
Figure 19 illustrates the residues for two different config-

urations in a cell under different static supply voltages. The
effect of dynamic changes in supply voltage is not considered
in this work although it could certainly affect ID reliability.
For the static case, it can be seen that since the maximum lines
cross, the best configuration is voltage-dependent. In such a
case, re-initialization can choose the maximum of the two and
improve repeatability under changes in supply voltage.
The effect of including re-initialization is demonstrated by

choosing a particular chip, and varying the nominal 1.2 V
supply voltage from 0.9 V to 1.5 V is shown in figure 20. We
note that according to the data sheet, the specified voltage
range of the device is from 1.14 V to 1.26 V [24]. Our
experiments are conducted over a much wider range to better
understand the effects of re-initialization. The top two lines
show the effect on the minimum of the mean value of the
residue. Re-initialization keeps it much higher, improving

1.201.181.161.141.121.101.081.06
140

160

180

200

220

240

260

Supply Voltage (V)

R
es

id
ue

 

 

Config. #1
Config. #2

Fig. 19. Residue vs supply voltage.
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Fig. 20. Effect of re-initialization.

repeatability. The bottom two traces show that the standard
deviations of the residue remain at the same level. At 0.9 V
and 1.5 V, there are respectively 8 and 22 cell configurations
updated.
To verify the effectiveness of re-initialization, configurations

are initialized under the normal operating condition (1.2 V and
20◦C). Chip IDs are then generated at 0.9 V and 80◦C, which
can be regarded as the worst-case operating condition. Without
re-initialization, one bit permanently flips as the sign of residue
is changed. Even without considering occasional bit flips from
other cells, the bit flip rate is 1

64 = 0.0156 from equation 4. In
this case, a unique ID generation cannot be achieved even with
post-processing. Using dynamic configuration re-initialization,
as illustrated in figure 20, the min|E(Ri)| can be kept at
similar level to the normal operating condition, implying that
the bit flip rate should be similar. Measurement shows that
for the worst case, one bit flip occurs every 50000 repetitions.
The rest of the chips maintain the same ID over this range,
as is consistent with table V. Thus re-initialization improves
stability by a factor of at least 50000.
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VI. CONCLUSION

We have demonstrated that a chip ID generation method
with configurable RO, power-up initialization and adaptive
re-initialization can considerably improve its repeatability.
Results show that a very stable ID generation can be achieved
over a wide range of operating conditions.
Since our design was completely implemented using stan-

dard digital circuits, it can also be implemented in an ASIC. As
future work, the authors would like to: develop more parallel
generation schemes to speed up chip ID generation; introduce
countermeasures to machine-learning and side-channel attacks;
and study the implications of storing configuration information
on an off-chip server.
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