
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/

gramEvol: Grammatical Evolution in R

Farzad Noorian, Anthony M. de Silva, Philip H.W. Leong
The University of Sydney

Abstract

We describe an R package which implements grammatical evolution (GE) for automatic
program generation. By performing an unconstrained optimisation over a population of R
expressions generated via a user-defined grammar, programs which achieve a desired goal
can be discovered. The package facilitates the coding and execution of GE programs, and
supports parallel execution. In addition, three applications of GE in statistics and machine
learning, including hyper-parameter optimisation, classification and feature generation are
studied.

Keywords: evolutionary algorithms, optimization, grammatical evolution, R.

1. Introduction

Grammatical evolution (GE) (O’Neill and Ryan 2001) generates complete programs, opti-
mised towards performing a certain task by combining context-free grammars (CFG) (Knuth
1964) and genetic algorithms (GA) (Holland 1992). Specifically, syntactically correct pro-
grams are generated from a user-defined grammar, using a binary string to choose gram-
matical production rules. Through a formulation involving a user-defined cost function, the
fitness score of programs for solving a problem can be evaluated, and an optimisation process
is used to search through a subspace for the best program. This optimisation’s objective
function, i.e., mapping a binary string to a program and subsequently to a numeric score,
is often non-smooth and non-convex, precluding gradient-based optimisation algorithms and
favouring evolutionary optimisation techniques such as GA.

GE is an alternative to genetic programming (GP) (Koza 1992) for generating programs via
evolution. While GP directly operates on the actual program’s tree structure, GE applies evo-
lutionary operators on binary strings which are subsequently converted to the final program.
GP normally requires a custom search strategy to generate correct programs, whereas GE
can utilise an unconstrained evolutionary search, relying on the mapping to generate correct

http://www.jstatsoft.org/

2 gramEvol: Grammatical Evolution in R

programs.

GE allows quick and easy integration of domain specific knowledge into the optimisation
problem through a customisable grammar. It has been successfully applied to many research
areas in science and engineering, including computational finance, smart grid forecasting,
music, and robotic control. A survey by McKay, Hoai, Whigham, Shan, and O’Neill (2010)
discusses the range of GE research and applications.

In this paper, we present the R package gramEvol, which facilitates the construction and
execution of programs in R (R Core Team 2014) using GE. The rest of the paper is structured
as follows. In Section 2, evolutionary algorithms with emphasis on GE are briefly studied.
Section 3 introduces the package and describes its functions. Finally in Section 4, three
example problems are analysed and solved using GE. It is shown how a grammar can simplify
model selection, hyper-parameter optimisation, classification, and feature generation.

2. Background

2.1. Canonical genetic algorithms

Canonical GA (Holland 1992) is an optimisation algorithm which operates on a population of
chromosomess, performing evolutionary operations including selection, crossover, and muta-
tion as illustrated in Figure 1. Inspired by biological evolution, GA has been successfully used
in applications with complex fitness landscapes and multiple local optimas (Mitchell 1996).

.

.

.

.

Evaluation

Population

Selection

Cross-over

Mutation

Evolutionary operators

Fitness Score

Binary string (chromosome)

Figure 1: The evolutionary process and associated operators.

In canonical GA, a chromosome is represented by a binary string. Normally, modern GA
implementations do not directly operate on binary values. Instead, bits are grouped into n-
bit values creating a codon, each of which is used as a parameter in the optimisation problem.
If the problem is made of multiple building blocks, codons related to each block are grouped
together as a gene (Figure 2). This arrangement is a logical presentation of data and does
not affect the low level representation of the chromosome.

The initial population is created from randomly generated chromosomes, each representing a

Journal of Statistical Software 3

010100010110 . ..011100111001 Binary string

Codons

(4-bit)

Genes

 (3 codons per gene)

0101 0001 0110 ... 0111 0011 1001

5 1 6 ... 7 3 9

Figure 2: Chromosome representations in GA.

solution to the formalized problem. The chromosomes are then evaluated based on a given
cost function, φ(·). The objective is to minimise the cost function, or maximise the fitness
of the chromosome. The better scoring chromosomes are deemed to be more desirable, and
hence their data is retained. Conversely, the low scoring chromosomes are discarded from the
population and replaced with new chromosomes to form a new generation. Elitism, favours the
highest ranking chromosomes, and directly forwards them to the new generation’s population.
Others are created by recombination of selected chromosomes.

The selection operator is applied to select chromosomes with likelihood proportional to their
fitness score. Different selection schemes exist, including roulette wheel selection and tourna-
ment selection. In roulette wheel selection, the probability of selecting the ith chromosome,

denoted with bi, follows a Bernoulli distribution by p = φ(bi)/
n∑

j=0
φ(bj).

The crossover operator is applied on two randomly selected chromosomes. In canonical GA,
a single-point crossover is used, where a position in the binary string is chosen at random and
the opposing string sections of the two parents are exchanged, creating two new offsprings.

The mutation operator randomly flips single bits on a specific chromosome with a predefined
mutation probability. Mutation is necessary to maintain genetic diversity from one generation
of a population to the next.

The evolutionary process is repeated until a given termination criterion is satisfied. This
criterion may include reaching a predetermined number of generations, finding a chromosome
with fitness better than a certain minimum, or lack of improvement in the population fitness
despite evolution.

Since its introduction in 1975 (Holland 1975), other techniques and evolutionary algorithms
have been proposed to extend canonical GA. For example, to facilitate complex data repre-
sentation, GA is often implemented with integer or floating point codons and evolutionary
operators are applied directly to the codons instead of the underlying bit string. This method
also takes the advantage of the architecture of modern processors to speed-up computation.
For a review of other GA techniques, readers are referred to a survey by Srinivas and Patnaik
(1994).

2.2. Context-free grammar

A context-free grammar (CFG) is a mechanism to generate patterns and strings using hi-
erarchically organized production rules (Sipser 1997). A CFG is described by the tuple
(T ,N ,R,S) where T is a set of terminal symbols, N is a set of non-terminal symbols with
N∩T = ∅, and S ∈ N is the start symbol. A non-terminal symbol is one that can be replaced
by other non-terminal and/or terminal symbols, while terminal symbols are literals. N and

4 gramEvol: Grammatical Evolution in R

T form the lexical elements used in R, the production rules of a CFG. R is defined as a set of
relations (also referred to as production rules) in the form of x→ α with x ∈ N , α ∈ (N∪T)∗,
where ∗ is the Kleene star. If the grammar rules are defined as R = {x→ xa, x→ ax}, a is
a terminal symbol since no rule exists to change it.

CFGs are commonly described using Backus-Naur form (BNF) (Knuth 1964). To differenti-
ate between terminal and non-terminal symbols in the BNF, the non-terminal symbols are
enclosed within angle brackets (i.e., ‘<’ and ‘>’). Also in each production rule, possible
replacement sequences are separated by a vertical bar (i.e., ‘|’).
An example grammar in BNF notation is given in Table 1. In this grammar, the start symbol
(S) is <expr>. Each of the non-terminal symbols defined in N , <expr>, <op>, <coef>
and <var>, can be replaced by an appropriate terminal as specified in R. For example,
<expr> can either expand to (<expr>)<op>(<expr>) or <coef>×<var>, and <op> can
be replaced by one of the +, -, ×, or ÷ operators.

N = {expr, op, coef , var}
T = {÷, ×, +, -, v1, v2, c1, c2, (,)}
S = <expr>

R = Production rules:

〈expr〉 ::= (〈expr〉)〈op〉(〈expr〉) (1.a)
| 〈coef 〉×〈var〉 (1.b)

〈op〉 ::= + | - | × | ÷ (2.a), (2.b), (2.c), (2.d)

〈coef 〉 ::= c1 | c2 (3.a), (3.b)

〈var〉 ::= v1 | v2 (4.a), (4.b)

Table 1: An example grammar in BNF notation. The three first lines define the non-terminal
(N), terminal (T), and start (S) symbol sets respectively. The rest of the lines define the
production rules (R).

2.3. Genotype to phenotype mapping using grammar rules

In evolutionary biology, chromosome data is referred to as the genotype, while an organism’s
observable characteristics are called the phenotype. Biological organisms use complicated
methods to map their genotype to phenotype. Advanced evolutionary algorithms, such as
GE, use a similar notion to create complex objects from simple chromosome structures.

In GE, genotype to phenotype mapping is performed according to the production rules of a
CFG selected using the chromosome’s codon values. The usual mapping function used is the
mod rule defined as: (codon integer value) mod (number of rules for the current non-terminal),
where mod is the modulus operator. Mapping begins from the start symbol S, and continues
by replacing each non-terminal element N according to the production rule R chosen by the
mapping function. At each step, the resulting expression can contain terminal (i.e., T) or
non-terminal elements. The mapping continues until all non-terminal elements are replaced
with terminals.

Journal of Statistical Software 5

If the chromosome is too short, it may run out of codons with non-terminal elements still
remaining. A common approach is to wrap the chromosome and continue the mapping process
by reusing the codons from the beginning. However, in cyclic grammars, infinite recursion
may occur. This is addressed by introducing a limit on the number of allowed chromosome
wrappings and returning a poor fitness score if the limit is reached.

In this section, the grammar in Table 1 is used as an example of expression generation.
Consider the chromosome with a 16-bit genotype, [2|1|0|0|3|3|3|1], where the integer numbers
represent 2-bit codon values. There are two production rules to choose from for the start
symbol S = <expr>, (1.a) and (1.b). The mod operation on the current codon becomes 2
mod 2=0, hence rule (1.a) is chosen. The successive application of rules is demonstrated in
Table 2, showing how an expression is generated by the example chromosome. The resulting
phenotype, (c1 × v1) ÷ (c2 × v2), can be later evaluated in different contexts as a numerical
value.

Step Codon mod operator Rule Current element state

0 S <expr>

1 2 2 mod 2 0 (1.a) (<expr>)<op>(<expr>)
2 1 1 mod 2 1 (1.b) (<coef>×<var>)<op>(<expr>)
3 0 0 mod 2 0 (3.a) (c1 ×<var>)<op>(<expr>)
4 0 0 mod 2 0 (4.a) (c1 × v1)<op>(<expr>)
5 3 3 mod 4 3 (2.d) (c1 × v1) ÷ (<expr>)
6 3 3 mod 2 1 (1.b) (c1 × v1) ÷ (<coef>×<var>)
7 3 3 mod 2 1 (3.a) (c1 × v1) ÷ (c2 ×<var>)
8 1 1 mod 2 1 (4.a) (c1 × v1) ÷ (c2 × v2)

Table 2: Production of an expression using the grammar of Table 1. The process starts from
the start symbol S, and continues by replacing the first symbol present in N with another.
This later symbol is selected from the production rules R according to the value of the current
codon. In 8 steps, all of non-terminal symbols are replaced and the string [2|1|0|0|3|3|3|1] is
mapped to (c1 × v1) ÷ (c2 × v2).

GE uses the standard evolutionary operators from canonical GAs to evolve the chromosomes
and generate new programs. An in-depth explanation of GE can be found in the original GE
paper by O’Neill and Ryan (2001).

2.4. Software implementations of GE

Several open source software implementations of GE are available for different programming
languages. These include GEVA (O’Neill, Hemberg, Gilligan, Bartley, McDermott, and
Brabazon 2008) in Java, PonyGE (Hemberg and McDermott 2012) and PyNeurGen (Smi-
ley 2012) in Python, GEM (Hemberg 2011) for MATLAB, and GERET (Suchmann 2013) for
Ruby. gramEvol is the first package for R.

The design goal of this package is to evolve programs natively in R. While it is possible to
generate and call R code from other languages, a native implementation has the following
advantages:

• R’s expression objects are used to define a grammar, removing an error prone text-

6 gramEvol: Grammatical Evolution in R

based BNF interpretation or compilation step, allowing dynamic grammar manipulation
and rapid prototyping.

• Expression are created directly in R as expression objects, which removes the overhead
of calling R from an external program.

• Only R’s base packages are used for evolutionary operations and grammar processing
along with parsing and running generated programs. This eliminates the need for third-
party libraries and external dependencies.

A disadvantage of gramEvol is its speed compared to compiled GE libraries, such as libGE
(Nicolau 2006) or AGE (Nohejl 2011), which are written in C++. We assume that the
computational overhead of processing the cost function is greater than the overhead of GE
operators. Hence any major speed-up will be a result of moving the cost function compu-
tational bottleneck to C, C++ or Fortran. This is already a common practice in the design
and implementation of R packages. Furthermore, packages such as Rcpp (Eddelbuettel and
Francois 2011) are available to facilitate porting existing R code to C++.

3. Package gramEvol

The gramEvol package implements grammatical evolution (GE) for R. It offers facilities for
defining, creating, evaluating, and evolving programs based on context-free grammars, which
are introduced in this section.

3.1. Defining a grammar

In gramEvol, a grammar is defined by passing a list of productions rules to the function
CreateGrammar. CreateGrammar automatically determines the terminal, non-terminal and
start symbols based on the rules. gramEvol supports two type of rules: expression based
rules defined using grule, and character string rules defined using gsrule.

For example, the following commands will construct the CFG of Table 1 using gsrule:

R> library("gramEvol")

R> ruleDef <- list(expr = gsrule("(<expr>)<op>(<expr>)", "<coef>*<var>"),

+ op = gsrule("+", "-", "*", "/"),

+ coef = gsrule("c1", "c2"),

+ var = gsrule("v1", "v2"))

R> grammarDef <- CreateGrammar(ruleDef)

R> grammarDef

<expr> ::= (<expr>)<op>(<expr>) | <coef>*<var>

<op> ::= + | - | * | /

<coef> ::= c1 | c2

<var> ::= v1 | v2

Using R’s native expression objects require a change to the grammar, as expr op expr is
not valid in R. Instead, a functional form of op(expr, expr) is used with grule:

Journal of Statistical Software 7

R> ruleDef <- list(expr = grule(op(expr, expr), coef*var),

+ op = grule(`+`, `-`, `*`, `/`),
+ coef = grule(c1, c2),

+ var = grule(v1, v2))

R> CreateGrammar(ruleDef)

<expr> ::= <op>(<expr>, <expr>) | <coef> * <var>

<op> ::= `+` | `-` | `*` | `/`
<coef> ::= c1 | c2

<var> ::= v1 | v2

The grammar properties are reported via the summary function:

R> summary(grammarDef)

Start Symbol: <expr>

Is Recursive: TRUE

Tree Depth: Limited to 4

Maximum Rule Choices: 4

Maximum Sequence Length: 18

Maximum Sequence Variation: 2 2 2 2 4 4 2 2 2 4 2 2 2 2 4 2 2 2

No. of Unique Expressions: 18500

This summary reports that:

• The non-terminal symbol of the first production rule (i.e., <expr>) was selected as the
start symbol S.

• The grammar is cyclic, i.e., the non-terminal symbol <expr> expands to more <expr>s.
To avoid infinite recursion, the maximum recursion depth is limited to the number of
production rules.

• The grammar tree depth is limited to four.

• Maximum choices in a production rule is four, given by <op>.

• Maximum length of a chromosome, avoiding wrapping and limiting recursions, is 18.

• The maximum variation of each integer codon in the chromosome. This value depends
on the location of the codons and the grammar, and helps reduce the search space of
chromosomes.

• The grammar, with recursion limited to four, can create 18500 different expressions.

GrammarMap maps a sequence of integers (the genotype in evolutionary algorithms) to a sym-
bolic expression (the phenotype). The example below converts the numeric genome in Table 2
to its analytical phenotype, using the verbose argument to show the steps of the mapping.

R> genome <- c(2, 1, 0, 0, 3, 3, 3, 1)

R> expr <- GrammarMap(genome, grammarDef, verbose=TRUE)

8 gramEvol: Grammatical Evolution in R

Step Codon Symbol Rule Result

0 starting: <expr>

1 2 <expr> (<expr>)<op>(<expr>) (<expr>)<op>(<expr>)

2 1 <expr> <coef>*<var> (<coef>*<var>)<op>(<expr>)

3 0 <coef> c1 (c1*<var>)<op>(<expr>)

4 0 <var> v1 (c1*v1)<op>(<expr>)

5 3 <op> / (c1*v1)/(<expr>)

6 3 <expr> <coef>*<var> (c1*v1)/(<coef>*<var>)

7 3 <coef> c2 (c1*v1)/(c2*<var>)

8 1 <var> v2 (c1*v1)/(c2*v2)

Valid Expression Found

R> expr

(c1 * v1)/(c2 * v2)

The returned object is of class GEPhenotype. It can be cast to a character string or an
expression and subsequently evaluated using R’s eval function:

R> as.character(expr)

[1] "(c1 * v1)/(c2 * v2)"

R> c1 <- 1

R> c2 <- 2

R> v1 <- 3

R> v2 <- 4

R> eval(as.expression(expr))

[1] 0.375

To inspect some random expressions of the grammar, GrammarRandomExpression can be
used. For the purpose of reproducibility, the random generator seed value is first set to a
fixed value:

R> set.seed(0)

R> GrammarRandomExpression(grammarDef, numExpr = 4)

[[1]]

expression((c2 * v2) + (c1 * v1))

[[2]]

expression((c1 * v1) - (c1 * v2))

[[3]]

expression(c1 * v1)

Journal of Statistical Software 9

[[4]]

expression((((c1 * v2) - ((c1 * v2) - (c2 * v2))) + ((c1 * v1) +

(c1 * v2))) - ((c1 * v2) - (c2 * v2)))

From the example, it can be seen that this grammar is capable of generating both simple and
complex expressions.

3.2. Exhaustive and random search in grammar

Context-free grammars are a general way of describing program structures, not bound to evo-
lutionary optimisation. As a result, gramEvol additionally supports exhaustive and random
search.

The first step in any optimisation is defining a cost function. This function receives an
expression generated using the grammar, and returns an appropriate score. For example,
in order to find the numeric sequence that generates a certain expression, the following cost
function returns the generalized Levenshtein distance of the current expression and the target:

R> evalFunc <- function(expr) {

+ adist(as.character(expr), "(c1 * v1) - (c2 * v2)")

+ }

The objective is to find a suitable chromosome, and therefore the expression, that minimises
the cost function, i.e., the string distance. GrammaticalExhaustiveSearch performs an ex-
haustive search to find this expression:

R> GrammaticalExhaustiveSearch(grammarDef, evalFunc)

GE Search Results:

Expressions Tested: 18500

Best Chromosome: 0 1 0 0 1 1 1 1

Best Expression: (c1 * v1) - (c2 * v2)

Best Cost: 0

GrammaticalRandomSearch performs a similar albeit random search. The option terminationCost

allows the algorithm to terminate if the required minimum cost is found. In our example, the
optimal cost is zero:

R> GrammaticalRandomSearch(grammarDef, evalFunc, terminationCost = 0)

GE Search Results:

Expressions Tested: 1000

Best Chromosome: 0 1 2 0 2 3 1 1 0 3 1 1 0 0 1 1 1 2

Best Expression: (c1 * v1) * (c2 * v2)

Best Cost: 1

10 gramEvol: Grammatical Evolution in R

Both of these methods have their drawbacks: testing 18500 expressions requires extensive com-
putation, and a random search is ineffective. In such cases, considering the non-smoothness
and non-convexity of the search space, evolutionary algorithms are often an efficient choice.

3.3. Evolving a grammar

GrammaticalEvolution uses evolutionary optimisation to find the minima of evalFunc. Con-
tinuing the previous example, the best chromosome is determined by calling GrammaticalEvolution
with the grammar and the cost function as parameters. Other details, such as size of the pop-
ulation and number of iterations are automatically chosen by an internal heuristic:

R> result <- GrammaticalEvolution(grammarDef, evalFunc, terminationCost = 0)

R> print(result, show.genome = TRUE)

Grammatical Evolution Search Results:

No. Generations: 3

Best Genome: 2 1 0 0 1 1 1 1 0 3 3 1 2 1 2 0 2 1

Best Expression: (c1 * v1) - (c2 * v2)

Best Cost: 0

It is evident that the evolutionary algorithm has quickly converged to the optimisation ob-
jective.

GrammaticalEvolution allows monitoring the status of each generation using a callback
function. This function, if provided to parameter monitorFunc, receives an object similar to
the return value of GrammaticalEvolution. For example, the following function prints the
information about the current generation and the best chromosome in the current generation:

R> customMonitorFunc <- function(results){

+ print(results)

+ }

R> ge <- GrammaticalEvolution(grammarDef, evalFunc, terminationCost = 0,

+ monitorFunc = customMonitorFunc)

Internally, GrammaticalEvolution uses GeneticAlg.int, which is a GA implementation with
integer codons partially based on genalg package by Willighagen (2014):

• Using the information obtained about the grammar (e.g., number of possibles expres-
sions and maximum sequence length), GrammaticalEvolution applies a heuristic al-
gorithm based on the work of Deb and Agrawal (1999) to automatically determine a
suitable value for the popSize (i.e., the population size) and the iterations (i.e., the
number of iterations) parameters.

• The ordinary cross-over operator is considered destructive when homologous production
rules are not aligned, such as for cyclic grammars (O’Neill, Ryan, Keijzer, and Cattolico
2003). Consequently, GrammaticalEvolution automatically changes cross-over param-
eters depending on the grammar to improve optimisation results.

Journal of Statistical Software 11

• Each integer chromosome is mapped using the grammar, and its fitness is assessed by
calling evalFunc (i.e., the cost function).

• After reaching a termination criteria, e.g., the maximum number of iterations or the
desired terminationCost, the algorithm stops and returns the best expression found
so far.

• GrammaticalEvolution also supports multi-gene operations, generating more than one
expression per chromosome using the numExpr parameter.

The following psuedocode summarises the optimisation algorithm in GrammaticalEvolution:

1: create initial genotypes
2: determine crossover parameters based on grammarDef.
3: If not given, determine the optimal popSize and iterations

4: generation ← 1
5: genotypes ← Add suggestions

6: genotypes←Add popSize - len(suggestions) random chromosomes of length seqLen×numExpr
7: while generation < iterations do
8: for all genes in each genotype do
9: phenotypes ← GrammarMap (grammarDef, gene, wrappings)

10: end for
11: fitnesses ← evalFunction(phenotypes) [using plapply]
12: if terminationCost is given and min(fitnesses) < terminationCost then
13: terminate
14: end if
15: genotypes ← genotypes[sort by fitness]
16: newGenotypes ← genotypes[1:elitism]
17: for i := (elitism+1):popSize do
18: parent1 ← Select using Roulette Wheel operator
19: parent2 ← Select using Roulette Wheel operator
20: newGenotypes[i] ← Crossover(parent1, parent2, crossover parameters)
21: if random number > mutationChance then
22: Mutate newGenotypes[i]
23: end if
24: end for
25: genotypes ← newGenotypes
26: generation ← generation + 1
27: end while
28: bestExpression = EvalExpression(grammarDef, phenotype with best fitness)

3.4. Parallel processing option

Processing expressions and computing their fitness is often computationally expensive. The
gramEvol package can utilise parallel processing facilities in R to improve its performance.
This is done through the plapply argument of GrammaticalEvolution function. By default,
lapply function is used to evaluate all chromosomes in the population.

Multi-core systems simply benefit from using mclapply from package parallel (R Core Team

12 gramEvol: Grammatical Evolution in R

2014), which is a drop-in replacement for lapply on POSIX compatible systems. The following
code optimises evalFunc on 4 cores:

R> library("parallel")

R> options(mc.cores = 4)

R> ge <- GrammaticalEvolution(grammarDef, evalFunc,

+ plapply = mclapply)

To run gramEvol on a cluster, clusterapply functions can be used instead. The gramEvol
package must be first installed on all machines and the evaluation function and its data depen-
dencies exported to all cluster nodes before GE is called. The following example demonstrates
a four-process cluster running on the local machine:

R> library("parallel")

R> cl <- makeCluster(type = "PSOCK", c("127.0.0.1",

+ "127.0.0.1",

+ "127.0.0.1",

+ "127.0.0.1"))

R> clusterEvalQ(cl, library("gramEvol"))

R> clusterExport(cl, c("evalFunc"))

R> ge <- GrammaticalEvolution(grammarDef, evalFunc,

+ plapply = function(...) parLapply(cl, ...))

R> stopCluster(cl)

3.5. Non-terminal expressions

As demonstrated in Section 3.1, a cyclic grammar allows complex expressions to be derived
from a compact description. However, if the chromosome is too short, the expression may
still contain non-terminal symbols even after wrapping multiple times. For example:

R> chromosome <- c(0)

R> expr <- GrammarMap(chromosome, grammarDef)

R> expr

Non-Terminal Sequence:

(((<expr>)<op>(<expr>))<op>(<expr>))<op>(<expr>)

Non-terminal expressions are identified using GrammarIsTerminal function:

R> GrammarIsTerminal(expr)

[1] FALSE

GrammaticalEvolution and other search functions automatically filter non-terminal expres-
sions, and the user does not need to worry about them in practice.

Journal of Statistical Software 13

4. Grammatical evolution for machine learning

In this section, three applications of grammatical evolution in statistics and machine learning
are explored. Other applications, such as symbolic regression and regular expression discovery
using package rex (Ushey and Hester 2014) are explained in the package’s vignette.

4.1. Model selection and hyper-parameter optimisation

Selecting the best learning model in a machine learning task is often performed in three steps:

• Feature selection, where different features are selected as inputs to for a learning model.

• Model selection, where candidate learning models are compared and one of them is
selected.

• Hyper-parameter optimisation, where hyper-parameters of the model are optimised for
the current objective, (e.g., the kernel type and parameters for kernel methods).

Due to their importance, dedicated packages such as caret (Kuhn 2014) support feature
selection and hyper-parameter optimisation for many machine learning techniques. Extending
these packages to support new algorithms or combining additional steps into their operation,
however, require structural changes to the package’s code. In this section, we show how CFGs
can offer an easily extensible framework for a simultaneous feature selection, model selection
and hyper-parameter optimisation.

Here, the ChickWeight dataset (R Core Team 2014) is used to demonstrate these steps. The
objective is to learn the weight of a chicken based on the Time passed since its birth and its
Diet. The Chick identifier is also included.

We choose a linear model, an artificial neural network (ANN) from nnet (Venables and Rip-
ley 2002) and support vector regression (SVR) from e1071 (Meyer, Dimitriadou, Hornik,
Weingessel, and Leisch 2014) as the possible learning algorithms.

R> data("ChickWeight")

R> library("e1071")

R> library("nnet")

R> grammarDef <- CreateGrammar(list(

+ learner = grule(function(train.data) {

+ result <- NULL

+ features <- weight ~ F1 + F2 + F3

+ if (length(attr(terms(features), "variables")) > 2) {

+ capture.output({

+ result <- model

+ })

+ }

+ return(result)

+ }),

+ model = grule(lm(features, train.data),

+ nnet(features, train.data, size = nn.size),

+ svm(features, train.data, cost = svm.c, svm.hyperparam)),

14 gramEvol: Grammatical Evolution in R

+ F1 = grule(Time, 0),

+ F2 = grule(Chick, 0),

+ F3 = grule(Diet, 0),

+ nn.size = grule(4, 8, 16),

+ svm.hyperparam = grule(.(kernel = "linear"),

+ .(kernel = "polynomial", degree = svm.degree),

+ .(kernel = "radial", gamma = svm.gamma)),

+ svm.c = grule(0.1, 1, 10, 100, 1000),

+ svm.degree = grule(1, 2, 3, 4, 5),

+ svm.gamma = grule(0.1, 0.2, 0.5, 1.0)))

The start symbol, the <learner>, has only one production rule, which creates a function that
receives the training data and returns the trained model:

• It first selects the appropriate formula of features, and if there is at least one regressor
variable, it returns a <model>. The features formula is built by either selecting a
variable (i.e., Time, Chick, and Diet), or 0 using <F1>, <F2>, and <F3> rules.

• The <model> can be either a lm, an svm or a nnet and is wrapped in capture.output

to suppress the diagnostic but useless messages by nnet.

• Each learning algorithm has its own set of hyper-parameters: nnet’s hidden layer size is
determined using <nn.size>, and svm uses <sym.hyperparamm> to select its kernel and
its associated parameter in one-step. Here, .() is used to avoid premature interpretation
of assignment operator and comma (i.e., = and ,) by R.

The remaining rules, assign certain ranges of values to different hyper-parameters, similar to
an ordinary grid search.

An example of an expression generated by this grammar is:

R> GrammarRandomExpression(grammarDef)

expression(function(train.data) {

result <- NULL

features <- weight ~ 0 + 0 + Diet

if (length(attr(terms(features), "variables")) > 2) {

capture.output({

result <- nnet(features, train.data, size = 4)

})

}

return(result)

})

This uses Diet as a feature, and an ANN with four neurons in its hidden layer as its model.

The grammar can generate 432 unique models:

R> summary(grammarDef)

Journal of Statistical Software 15

Start Symbol: <learner>

Is Recursive: FALSE

Tree Depth: 4

Maximum Rule Choices: 5

Maximum Sequence Length: 8

Maximum Sequence Variation: 1 2 2 2 3 5 3 5

No. of Unique Expressions: 432

To assess each model, a cost function is required. In this example, we define a simple cross-
validation test, returning the out-of-sample mean square error (MSE):

R> set.seed(0)

R> data("ChickWeight")

R> total.samples <- nrow(ChickWeight)

R> train.ind <- sample(total.samples, trunc(total.samples * .8))

R> train.data <- ChickWeight[train.ind,]

R> test.data <- ChickWeight[-train.ind,]

R> eval.chicken <- function(expr) {

+ trainer <- eval(expr)

+ model <- trainer(train.data)

+

+ if (is.null(model)) {

+ return (Inf)

+ }

+

+ test.results <- predict(model, test.data)

+ cost <- mean((test.results - test.data$weight)^2)

+ return (cost)

+ }

The eval.chicken function, first evaluates the expression to get its underlying function. This
function is then applied to the training data to obtain a model. If the model is NULL, i.e.,
some error has occurred during the training, it returns a very high cost. Otherwise, the model
is used on the testing data, and the MSE of the results is returned.

To find the best combination of features, model and hyper-parameters, GrammaticalEvolution
is run with the appropriate grammar and cost function:

R> result <- GrammaticalEvolution(grammarDef, eval.chicken)

R> result

Grammatical Evolution Search Results:

No. Generations: 108

Best Expression: function(train.data) {

result <- NULL

features <- weight ~ Time + Chick + 0

if (length(attr(terms(features), "variables")) > 2) {

capture.output({

16 gramEvol: Grammatical Evolution in R

result <- svm(features, train.data, cost = 100, kernel = "radial", gamma = 0.1)

})

}

return(result)

}

Best Cost: 68.3212558249473

The optimal model uses only two of the available features with a radial kernel SVR, and is
identical to the result of an exhaustive search:

R> GrammaticalExhaustiveSearch(grammarDef, eval.chicken)

GE Search Results:

Expressions Tested: 432

Best Chromosome: 0 0 0 1 2 3 2 0

Best Expression: function(train.data) {

result <- NULL

features <- weight ~ Time + Chick + 0

if (length(attr(terms(features), "variables")) > 2) {

capture.output({

result <- svm(features, train.data, cost = 100, kernel = "radial", gamma = 0.1)

})

}

return(result)

}

Best Cost: 68.32126

To compare the performance of GE and exhaustive search, the GE was run 100 times, with
termination condition set to reaching the global optima obtained by the exhaustive search.
The error, number of generations and the duration of execution was measured. The tests
were performed on a single thread on a 3.40 GHz Intel Core i7-2600 CPU. To ensure repro-
ducibility, set.seed(0) was executed before running the code. The results are presented
in Table 3. Overall, the GE’s average execution time is better than that of the exhaustive
search. It must be noted that however, as the GE is an stochastic optimisation, on some
occasions it was unable to find the global minima before reaching the maximum number of
allowed iterations. In this example this was limited to 108 generations, set automatically by
GrammaticalEvolution. As a result, the optimisation terminated prior to reaching the global
optima.

Exhaustive search GE minimum GE median GE maximum

Error 68.32 68.32 68.32 988.45
No. of generations - 1 39.50 108
Time (s) 71.72 0.61 19.60 149.57

Table 3: Summary of GE’s performance for 100 runs of model selection example.

The final model can be constructed from the results of GE optimisation:

Journal of Statistical Software 17

R> train.func <- eval(result$best$expression)

R> final.model <- train.func(ChickWeight)

The machine learning approach used in this section was intentionally kept simple. Other
learning algorithms can be added as additional rules, each with their own hyper-parameters.
Different options, such as scaling or dimension reduction techniques can also be added to the
<learner> function, each described using separate rules.

4.2. Classification

In the second example, we use GE for classification. There are many ways that GE can be
adopted for classification, e.g., a model selection on classifiers similar to Section 4.1. Here,
we directly define a grammar which takes input variables and returns the classification result,
with a structure similar to a decision tree.

In this example, the objective is defined as separating Iris versicolor from other species in
the Iris flower dataset. Here the data is evaluated from a data-frame instead of the program’s
environment.

R> data("iris")

R> iris$Species <- ifelse(iris$Species == 'versicolor', 'versicolor', 'other')
R> ClassifyFitFunc <- function(expr) {

+ sum(EvalExpressions(expr, envir = iris) != iris$Species)

+ }

The grammar is defined using the following code:

R> ruleDef <- list(

+ result = grule(ifelse(expr, 'versicolor', 'other')),
+ expr = grule((expr) & (sub.expr),

+ (expr) | (sub.expr),

+ sub.expr),

+ sub.expr = grule(comparison(var, func.var)),

+ comparison = grule(`>`, `<`, `==`, `>=`, `<=`),
+ func.var = grule(num, var, func(var)),

+ func = grule(mean, max, min, sd),

+ var = grule(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width),

+ num = grule(1, 1.5, 2, 2.5, 3, 4, 5))

R> grammarDef <- CreateGrammar(ruleDef)

In this grammar, the start symbol, <result>, receives a TRUE/FALSE and returns either
‘versicolor’ or ‘other’. The TRUE/FALSE value is generated by recursively applying
boolean operators to <sub.expr>s. In turn, each <sub.expr> is created by a <comparison>
of a <var> in Iris features and another value created using <func.var>.

A few examples of the grammar generated expression, formatted through the pretty.print

function, are as follows:

R> pretty.print <- function(expr) cat(gsub("|", "|\n\t",

+ gsub("&", "&\n\t", as.character(expr), fixed = TRUE), fixed = TRUE),

18 gramEvol: Grammatical Evolution in R

Value Minimum Median Maximum

Error 4 8 22
No. of generations 1000 1000 1000
Time (s) 12.56 12.87 13.24

Table 4: Summary of GE’s performance for 100 runs of classification example.

+ "\n")

R> pretty.print(GrammarRandomExpression(grammarDef))

ifelse(((Petal.Width > Petal.Length) &

(Sepal.Length >= sd(Petal.Length))) &

(Petal.Length == 5), "versicolor", "other")

R> pretty.print(GrammarRandomExpression(grammarDef))

ifelse((Sepal.Width == min(Petal.Length)) |

(Sepal.Length <= sd(Sepal.Length)), "versicolor", "other")

The GE optimisation is performed by:

R> set.seed(10)

R> ge <- GrammaticalEvolution(grammarDef, ClassifyFitFunc)

R> expr <- ge$best$expression

R> pretty.print(expr)

ifelse(((Sepal.Width >= max(Sepal.Length)) |

(Petal.Width <= sd(Petal.Length))) &

(Petal.Length >= Sepal.Width), "versicolor", "other")

R> err <- sum(eval(expr, envir=iris) != iris$Species)

R> err

[1] 6

The classification results are visualized in Figure 3.

Table 4 summarises the performance of GE classifier for 100 executions. As no termination
condition was given, all of the runs terminated only after reaching the maximum allowed num-
ber of generations. It is evident that on average, GE is able to find an acceptable expression
with in this limit.

4.3. Symbolic regression and feature generation

Symbolic regression is the process of discovering a function, in analytical form, which fits a
given set of data. Commonly, evolutionary algorithms such as GP and GE are used for this

Journal of Statistical Software 19

0.5 1.0 1.5 2.0 2.5

1
2

3
4

5
6

7

Petal.Width

P
et

al
.L

en
gt

h ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●● ●
●

●

●

●

other
versicolor
classified as versicolor

Figure 3: Classification of Iris versicolor using GE

task. Symbolic regression suffers from a possibly infinite, non-smooth and non-convex search
space, and therefore is not widely used in machine learning.

Feature generation is the process of deriving new features from existing features (Guo, Jack,
and Nandi 2005). In this technique, an evolutionary algorithm is used to generate and combine
results of multiple independently discovered expression, e.g., by using a linear combination of
GP results (Keijzer 2004; Costelloe and Ryan 2009), or by using non-linear function estimators
applied to GE (de Silva, Noorian, Davis, and Leong 2013). This can be considered a type of
machine learning and symbolic regression hybrid, as the final learning model is constructed
from combination of simpler features created through a process similar to symbolic regression.

For example, consider learning of the following sextic polynomial from numeric data:

f(X) = X6 +X5 +X4 +X3 +X2 +X + 1

Evolving an expression that matches the observed data to this polynomial would either require
a very well crafted grammar, or a successful search over a huge space, both of which are
extremely computationally expensive.

20 gramEvol: Grammatical Evolution in R

However, linear dependencies exist between components of this function. By designing a multi-
gene chromosome, we can generate individual expressions independently and then combine
them through a linear regression model to create the final expression. This effectively breaks
the search space to several smaller ones, enabling a faster search over the whole space. Figure 4
illustrates the difference between these two approaches.

5 3 7 12 1 1 0 4 8 3 7 6 8 9 2 7

expr =

2x+sin(x)+4*log(x-1)

Err = |y - expr(x)|

5 3 7 12 1 1 0 4 8 3 7 6 8 9 2 7

CFG CFG CFG CFG

Linear Regression

fitnessfitness

Fitness
Function

Fitting Error
(residuals)

Expressions

Chromosome

Phenotype to Genotype
Mapping

Training

Samples

 (x, y)

Training

Samples

 (x, y)

expr 1 expr 2 expr 3 expr 4

CFG

Single-gene

 symbolic regression

Multi-gene

feature generation

Figure 4: Symbolic regression (using a single-gene) vs feature generation (using multiple
genes).

To compare the symbolic regression and the feature generation with ordinary GE, two ap-
proaches are benchmarked using the same grammar:

R> ruleDef <- list(expr = grule(op(expr, expr), func(expr), var),

+ func = grule(sin, cos, log, sqrt),

+ op = grule(`+`, `-`, `*`),
+ var = grule(X, X^n, n),

+ n = grule(1, 2, 3, 4))

R> grammarDef <- CreateGrammar(ruleDef)

The grammar can be used to generate many different types of expressions:

R> set.seed(0)

R> GrammarRandomExpression(grammarDef, numExpr = 3)

[[1]]

expression(log(2))

Journal of Statistical Software 21

[[2]]

expression(sqrt(X * X) + cos(sqrt(cos(X^3))) - sqrt(log(sin(X))))

[[3]]

expression(X^3)

Obviously, this grammar is not tuned for the purpose of fitting high-degree polynomials.

Symbolic regression

Firstly, symbolic regression is tested:

R> target.func <- function(X) X^6 + X^5 + X^4 + X^3 + X^2 + X + 1

R> X <- 1:10

R> Y <- target.func(X)

R> symRegCostFunc <- function(expr) {

+ result <- suppressWarnings(eval(expr))

+

+ if (any(is.nan(result)))

+ return (Inf)

+

+ return (mean((Y - result)^2))

+ }

The cost function handles invalid values (e.g., log(−1)) by assigning a high cost to any expres-
sion with an invalid value. However, R may show warnings about NaNs being produced. To
suppress these warnings, one can wrap the eval in the cost function inside suppressWarnings.

To allow the GE to have enough room for search, the length of the chromosome is set to 60:

R> set.seed(0)

R> ge.single <- GrammaticalEvolution(grammarDef, symRegCostFunc,

+ seqLen = 60,

+ terminationCost = 1e-4)

This test is prone to getting stuck in a local minima and multiple restarts may be required
to find the solution. Results often lack or include additional terms not in the target, e.g.,

R> ge.single

Grammatical Evolution Search Results:

No. Generations: 1000

Best Expression: (X^2 + X^3) * X^3

Best Cost: 21085073.8

The resulting expression can be simplified to X6 +X5, and therefore has a high error.

22 gramEvol: Grammatical Evolution in R

Feature generation

The second approach uses GrammaticalEvolution’s numExpr option to generate multiple
expressions. Here, numExpr = 5 is set, and for a fair comparison, the length allocated to
each sequence seqLen is also reduced from 60 to 12. GrammaticalEvolution will still use a
chromosome with length of 60, but this is divided into 5 parts (i.e., the genes), each of which
are used individually to generate up to five valid expressions. A simple linear model is then
applied to fit these expressions to data and the fitting residuals are reported as error.

For evaluating multiple expression, the function EvalExpressions offers a simpler interface
compared to eval:

R> X <- 1:10

R> Y <- target.func(X)

R> fitLinearModel <- function(expr.list) {

+ vals <- EvalExpressions(expr.list)

+

+ if (any(is.nan(unlist(vals))) | any(is.infinite(unlist(vals))))

+ return(NULL)

+

+ mdl <- lm(Y ~ ., cbind(as.data.frame(vals), Y=Y))

+

+ return (mdl)

+ }

R> fitnessFunction <- function(expr.list) {

+ mdl <- fitLinearModel(expr.list)

+

+ if (class(mdl) != "lm")

+ return (Inf)

+

+ return(mean(residuals(mdl)^2))

+ }

The fitnessFunction uses fitLinearModel to create a linear model of generated expressions
to data. The model is then fit to the data, and the MSE of residuals are returned as its cost.

All other GE parameters (i.e., population size, mutation chance, termination condition, etc.)
are kept the same:

R> set.seed(10)

R> ge.multi <- GrammaticalEvolution(grammarDef, fitnessFunction,

+ seqLen = 12, numExpr = 5,

+ terminationCost = 1e-4)

This approach is clearly better at finding a close approximation to the target:

R> ge.multi

Grammatical Evolution Search Results:

No. Generations: 12

Journal of Statistical Software 23

Best Expressions: X + X^3 * X * ((X + 2) * 1)

: X^4 * X^2

: X^4

: X^2

: X^3

Best Cost: 6.20330039637389e-23

R> expr <- ge.multi$best$expression

R> mdl <- fitLinearModel(expr)

R> mdl

Call:

lm(formula = Y ~ ., data = cbind(as.data.frame(vals), Y = Y))

Coefficients:

(Intercept) expr1 expr2

1 1 1

expr3 expr4 expr5

-1 1 1

R> X <- seq(1, 10, length.out = 40)

R> pred <- predict(mdl, newdata = EvalExpressions(expr))

R> err <- mean((target.func(X) - pred)^2)

R> err

[1] 4.64618e-21

In the results above, all the elements of the sextic equation are found within five expres-
sions. Three of them (X2, X3, X4 and X6) are found separately, and the other expression,
X + X^3 * X * ((X + 2) * 1), contains the linear combination X + 2X4 + X5. As X4 is
already present separately, the linear regression can extract and combine all elements with the
correct y-intercept. Consequently, the regression model f̂(X) perfectly matches the original
model:

f̂(X) = 1 + (X +X3 ×X × (X + 2)) +X4 ×X2 −X4 +X2 +X3

= 1 +X +X2 +X3 +X4 +X5 +X6
(1)

Comparison

To test the stochastic performance of GE with a single and multiple genes, each method was
run 100 times and their error from the target equation was noted. The results are presented
in Table 5. The results show major improvements in error, from an average 9.12 × 1010 for
symbolic regression to a worst cast of 1.48 for the feature generation approach. In comparison,
the average time required to process both approaches was almost equal.

24 gramEvol: Grammatical Evolution in R

Symbolic regression Feature generation

Value Minimum Median Maximum Minimum Median Maximum

Error 2.14× 106 9.12× 109 6.15× 1010 0.00 0.00 1.48
No. of generations 1000 1000 1000 5 25.5 200
Time (s) 23.24 24.73 25.17 6.59 30.65 309.93

Table 5: Performance comparison of symbolic regression and feature generation using GE for
100 runs.

5. Conclusion

Context-free grammars provide a concise and versatile mechanism for expressing families
of programs. Combined with evolutionary optimisation, grammatical evolution creates a
powerful framework that allows integration of domain specific knowledge, defined using a
grammar, into real-world applications.

The gramEvol package allows creation of native R programs using GE. After specifying a
grammar and evaluation function, users can employ GE techniques with little additional
code. Parallel execution is also supported via parallel computing functions within R.

One disadvantage of GE lies in its stochastic nature, as it does not guarantee the convergence
to the global optima. The gramEvol package includes an exhaustive search option which can
ensure an optimal solution at the expense of computation time.

Acknowledgements

This research was supported under Australian Research Council’s Linkage Projects funding
scheme (project number LP110200413) and Westpac Banking Corporation. We also thank
Michael Frechtling, Duncan Moss, the associate editor and the anonymous reviewers for their
valuable comments and ideas.

References

Costelloe D, Ryan C (2009). “On Improving Generalisation in Genetic Programming.” In
Genetic Programming, volume 5481 of Lecture Notes in Computer Science, pp. 61–72.
Springer-Verlag Berlin Heidelberg.

de Silva AM, Noorian F, Davis RIA, Leong PHW (2013). “A Hybrid Feature Selection and
Generation Algorithm for Electricity Load Prediction using Grammatical Evolution.” In
IEEE 12th International Conference on Machine Learning and Applications ICMLA 2013,
special session on Machine Learning in Energy Applications, pp. 211–217.

Deb K, Agrawal S (1999). “Understanding Interactions among Genetic Algorithm Parame-
ters.” Foundations of Genetic Algorithms, pp. 265–286.

Eddelbuettel D, Francois R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18.

Journal of Statistical Software 25

Guo H, Jack LB, Nandi AK (2005). “Feature Generation using Genetic Programming with
Application to Fault Classification.” Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 35(1), 89–99.

Hemberg E (2011). Grammatical Evolution in MATLAB (GEM). Version 0.2, URL http:

//ncra.ucd.ie/GEM/.

Hemberg E, McDermott J (2012). PonyGE: A Pony-sized Implementation of Grammatical
Evolution in Python. Version 0.1.5, URL http://ncra.ucd.ie/Site/GEVA.html.

Holland JH (1975). Adaptation in Natural and Artificial Systems: An Introductory Analy-
sis With Applications to Biology, Control, and Artificial Intelligence. The University of
Michigan Press, Ann Arbor.

Holland JH (1992). Adaptation in Natural and Artificial Systems. MIT Press, Cambridge,
MA, USA.

Keijzer M (2004). “Scaled Symbolic Regression.” Genetic Programming and Evolvable Ma-
chines, 5(3), 259–269.

Knuth DE (1964). “Backus Normal Form vs. Backus Naur Form.” Communications of the
ACM, 7(12), 735–736.

Koza JR (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection, volume 1. MIT press.

Kuhn M (2014). caret: Classification and Regression Training. With Contributions from Jed
Wing and Steve Weston and Andre Williams and Chris Keefer and Allan Engelhardt and
Tony Cooper and Zachary Mayer and the R Core Team – R package version 6.0-35, URL
http://CRAN.R-project.org/package=caret.

McKay RI, Hoai NX, Whigham PA, Shan Y, O’Neill M (2010). “Grammar-based Genetic
Programming: A Survey.” Genetic Programming and Evolvable Machines, 11, 365–396.

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2014). e1071: Misc Functions
of the Department of Statistics (e1071), TU Wien. R package version 1.6-4, URL http:

//CRAN.R-project.org/package=e1071.

Mitchell M (1996). An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
USA. ISBN 9780585030944.

Nicolau M (2006). libGE C++ Library. Stable Release 0.26, URL http://bds.ul.ie/

libGE/.

Nohejl A (2011). AGE: Algorithms for Grammar-based Evolution. Version 1.1.1, URL http:

//nohejl.name/age/.

O’Neill M, Hemberg E, Gilligan C, Bartley E, McDermott J, Brabazon A (2008). “GEVA:
Grammatical Evolution in Java.” ACM SIGEVOlution, 3(2), 17–22. URL http://ncra.

ucd.ie/Site/GEVA.html.

O’Neill M, Ryan C (2001). “Grammatical Evolution.” IEEE Transactions on Evolutionary
Computation, 5(4), 349–358.

http://ncra.ucd.ie/GEM/
http://ncra.ucd.ie/GEM/
http://ncra.ucd.ie/Site/GEVA.html
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071
http://bds.ul.ie/libGE/
http://bds.ul.ie/libGE/
http://nohejl.name/age/
http://nohejl.name/age/
http://ncra.ucd.ie/Site/GEVA.html
http://ncra.ucd.ie/Site/GEVA.html

26 gramEvol: Grammatical Evolution in R

O’Neill M, Ryan C, Keijzer M, Cattolico M (2003). “Crossover in Grammatical Evolution.”
Genetic Programming and Evolvable Machines, 4(1), 67–93.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Sipser M (1997). “Context-free Grammars.” In Introduction to the Theory of Computation,
chapter 2, pp. 91–122. PWS Publishing Company.

Smiley D (2012). PyNeurGen: Python Neural Genetic Algorithm Hybrids. Release 0.3, URL
http://pyneurgen.sourceforge.net/.

Srinivas M, Patnaik LM (1994). “Genetic Algorithms: A Survey.” Computer, 27(6), 17–26.

Suchmann P (2013). Grammatical Evolution Ruby Exploratory Toolkit (GERET). URL
http://geret.org/.

Ushey K, Hester J (2014). rex: Friendly Regular Expressions. R package version 0.2.0.99,
URL https://github.com/kevinushey/rex.

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Fourth edition. Springer-
Verlag, New York. ISBN 0-387-95457-0, URL http://www.stats.ox.ac.uk/pub/MASS4.

Willighagen E (2014). genalg: R Based Genetic Algorithm. R package version 0.1.1.1, URL
http://CRAN.R-project.org/package=genalg.

Affiliation:

Farzad Noorian
Computer Engineering Lab
School of Electrical and Information Engineering
The University of Sydney
NSW, 2006, Austria
E-mail: farzad.noorian@sydney.edu.au
URL: http://www.ee.usyd.edu.au/cel/farzad

Anthony M. de Silva
E-mail: anthonymihirana.desilva@sydney.edu.au
URL: http://www.ee.usyd.edu.au/cel/mihirana.desilva

Philip H.W. Leong
E-mail: philip.leong@sydney.edu.au
URL: http://www.ee.usyd.edu.au/people/philip.leong/index.html

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume VV, Issue II Submitted: yyyy-mm-dd
MMMMMM YYYY Accepted: yyyy-mm-dd

http://www.R-project.org/
http://pyneurgen.sourceforge.net/
http://geret.org/
https://github.com/kevinushey/rex
http://www.stats.ox.ac.uk/pub/MASS4
http://CRAN.R-project.org/package=genalg
mailto:farzad.noorian@sydney.edu.au
http://www.ee.usyd.edu.au/cel/farzad
mailto:anthonymihirana.desilva@sydney.edu.au
http://www.ee.usyd.edu.au/cel/mihirana.desilva
mailto:philip.leong@sydney.edu.au
http://www.ee.usyd.edu.au/people/philip.leong/index.html
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Background
	Canonical genetic algorithms
	Context-free grammar
	Genotype to phenotype mapping using grammar rules
	Software implementations of GE

	Package gramEvol
	Defining a grammar
	Exhaustive and random search in grammar
	Evolving a grammar
	Parallel processing option
	Non-terminal expressions

	Grammatical evolution for machine learning
	Model selection and hyper-parameter optimisation
	Classification
	Symbolic regression and feature generation
	Symbolic regression
	Feature generation
	Comparison

	Conclusion

