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Abstract— We describe an implementation of Gabor-type
filters on field programmable gate arrays using the cellu-
lar neural network (CNN) architecture. The CNN template
depends upon the parameters (e.g., orientation, bandwidth)
of the Gabor-type filter and can be modified at runtime so
that the functionality of Gabor-type filter can be changed
dynamically. Our implementation uses the Euler method to
solve the ordinary differential equation describing the CNN.
The design is scalable to allow for different pixel array sizes,
as well as simultaneous computation of multiple filter outputs
tuned to different orientations and bandwidths. For 1024 pixel
frames, an implementation on a Xilinx Virtex XC2V1000-4
device uses 1842 slices, operates at 120 MHz and achieves 23,000
Euler iterations over one frame per second.

I. INTRODUCTION

It is clear that biological systems perform feats of signal
processing that we have not been able to approach using
even the most sophisticated computers and signal processing
techniques. Generally, biological based systems operate with
greater functionality, lower power consumption and increased
robustness than their man-made electrical counterparts.

Although biological visual systems have been widely
studied at the physiological, psychophysical and functional
levels, our understanding of its signal processing mechanisms
is still very rudimentary. One of the obstacles in this pro-
cess is the difficulty of dealing with the vast amounts of
processing necessary to test real-time temporal models of
the visual system. Although parallel clusters offer enormous
amounts of computing power, issues concerning latency,
power consumption and volume constraints are limiting in
many applications. To address this issue, implementations
using subthreshold analog VLSI techniques have been pro-
posed and real-time models of early vision systems have been
developed.

Analog VLSI is an excellent match to the distributed par-
allel computation present in biological systems. It offers high
speed, high density and low power consumption. However,
it has the disadvantages of long design time, low signal to
noise ratio and is best suited for simple, regular designs. Field
programmable gate arrays (FPGAs) have complementary
properties in that design times are short, arbitrary dynamic
range can be achieved and complex control logic is relatively
easy to implement. We believe that hybrid systems which
process information in both domains are able to combine
their benefits.

In visual systems, as information travels from the retina
to the cortex, neurons become progressively more selective
to complex stimuli [1]. Cells in the retina are sensitive to
position, size, temporal frequency and color. In the higher

stage of processing, such as the primary visual cortex (V1),
additional selectivity to orientation, direction of motion and
binocular disparity have been recorded. A large proportion of
cells in V1 can be modeled by a orientation selective neuron
which consists of a Gabor-type filter followed by a nonlinear
element [2].

In this paper, we first present a high performance FPGA-
based cellular neural network which implements a Gabor-
type filter. 1 This is a building block element which we
intend to use with different parameters to model cells in
V1. The application of the Gabor-type filter in a neuro-
morphic system consisting of an analog VLSI retina chip
interfaced to our Gabor chip is also presented. The retina
chip serves as an imager and transmits its output to the FPGA
via an address event representation (AER) transceiver. By
combining both analog VLSI chips and digital chips (e.g.
DSP chips, microprocessors, and FPGA chips), we hope to
make real-time implementations of early vision models and
visualize their temporal behaviour, while achieving a level
of performance, integration, power consumption, area and
flexibility not possible using any technology in isolation.

An analog VLSI silicon retina is used for image ac-
quisition. Neuronal activity in the retina is transmitted to
an FPGA using the address event representation (AER)
communication protocol [3], [4], [5], [6]. The AER scheme
is not widely used in reconfigurable computing circles and
offers an efficient communications scheme when activity is
sparse, as in the case of most biologically inspired systems.
Using AER, multiple neuromorphic chips can be intercon-
nected in a modular manner and large networks of Gabor
chips, each modeling different cells in the visual system can
be implemented. A preliminary version of this paper was
published in [7].

The design presented has the following contributions:

• We present a novel, flexible and scalable architecture
for modeling early vision using cellular neural networks
(CNNs) on Field Programmable Gate Arrays

• The functionality of the Gabor-type filter can be
changed at runtime by downloading different CNN
templates

• We describe how a system can be developed using a
front end analog VLSI retina system to study the early
vision models in V1, and which operates in real time

• We propose and explore the simulation of neural activity
on FPGAs using an AER interface

1This research was supported in part by Hong Kong Research Grants
Council.
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The rest of the paper is organized as follows. In Section II,
Gabor-type filters and their implementation using cellular
neural networks are introduced. Next, in Section III the
architecture of an FPGA-based Gabor-type filter is described.
Results obtained from our implementation are in Section IV.
Finally, conclusions are drawn in Section V.

II. MODEL

A Gabor filter can be represented by the complex valued
convolutional kernel [8]

g(x, y) =
1

2πσ2
e−

x2+y2

2σ2 ej(ωxx+ωyy) (1)

where σ, ωx, ωy are real constants. The even kernel is cosine
modulated and the odd kernel is sine modulated and hence
two filers are 90 degrees out of phase. Pollen and Ronner
suggested that adjacent neurons in visual cortex have even
and odd symmetry [9] and therefore Gabor-filter can model
receptive field profiles.

Such filters can be used to model the receptive fields of
neurons in the visual cortex [2], [10] and have applications
in stereo vision [11], texture segmentation [12], and mo-
tion analysis [13]. Cellular neural networks (CNN) can be
used to implement Gabor-type filters, where the functions
modulating the complex exponentials are not necessarily
Gaussian [14]. In this section, we describe the equations
necessary to implement a Gabor-type filter and refer readers
to [14] for a full derivation.

The CNN formulation leads to a particularly simple paral-
lel implementation and is adopted in this work. Let uij , xij

and yij represent the input, state and output pixels of an
image respectively. The dynamics of the CNN are governed
by the differential equation

τ
dxij

dt
= fij = −xij +

∑

kl∈Nr

aklykl +
∑

kl∈Nr

bklukl (2)

where akl represents the feedback template and bkl represents
the control template.

The output of the CNN is commonly assumed to be a
sigmoidal nonlinearity,

yij =
1

2
(|xij + 1| − |xij − 1|) (3)

which is linear in the range [−1, 1] and saturates at −1 or +1
outside this range. Since the Gabor-type template is intended
to operate in the linear region, for simplicity we will assume
in the following that yi,j = xi,j .

Finite difference methods can be used to solve the ordinary
differential equation (ODE) in Equation 2. Although tech-
niques such as Runga Kutta methods with higher accuracy
exist, the first order Euler method was selected for its
simplicity and minimal state. Euler’s method approximates
the trajectory of the differential equation at discrete timesteps
of size ∆t according to the formula:

xij(t + ∆t) = xij(t) + hfij(t) (4)

Where fij is defined in equation 2 and h = ∆t

τ
. The

accumulated error for Euler’s method is O(h).
For a 3 × 3 CNN, the feedback template, akl is





a00 a10 a20

a01 a11 a21

a02 a12 a22





and for the special case of a Gabor-type filter [15], the
template is





0.0 α2
ye−jΩy 0.0

α2
xejΩx −2(α2

x + α2
y) α2

xe−jΩx

0.0 α2
yejΩy 0.0



 .

The control template, bkl is given by




0 0 0
0 β 0
0 0 0



 .

The spatial transfer function of this filter for an input
image that is constant in time is

H(ωx, ωy) =
HΩ

1 + 2−2 cos(ωx−Ωx)

(∆Ωx)2
+

2−2 cos(ωy−Ωy)

(∆Ωy)2

H(ωx, ωy) ≈
HΩ

1 + (ωx−Ωx)2

(∆Ωx)2
+

(ωy−Ωy)2

(∆Ωy)2

(5)

where

H(Ω) =
β

1 + α2
x(2 − 2 cosΩx) + α2

y(2 − 2 cosΩy)

(∆Ωx)
2

=
β

HΩα2
x

(∆Ωy)
2

=
β

HΩα2
y

The constant HΩ is the maximum gain of the filter,
which occurs at the spatial frequency (ωx, ωy) = (Ωx, Ωy),
corresponding to a sine wave grating with spatial frequency
magnitude Ω =

√

Ω2
x + Ω2

y and orientation θ = arctan(
Ωy

Ωx
).

The terms ∆Ωx and ∆Ωy are referred as the half bandwidths
in x and y, since the transfer function drops to half its
maximum value at spatial frequencies (ωx, ωy) = (Ωx ±
∆Ω, Ωy) and (ωx, ωy) = (Ωx, Ωy ± ∆Ω). The parameter β
provides control over the filter gain. In the following, we
assume that β is chosen so that the filter has unity gain, i.e.,
HΩ = 1.

By changing the values of Ωx, Ωy, ∆Ωx and ∆Ωy (or
equivalently Ωx, Ωy, αx and αy), the Gabor-type filter can be
tuned to respond to different orientations and spatial scales.
For example, if we choose Ωx = π

12 cos(π
4 ), Ωy = π

12 sin(π
4 ),

and ∆Ωx = ∆Ωy = π
36 (i. e., αx = αy = 13.2), we obtain

a filter tuned to orientation θ = 45◦ and spatial frequency
magnitude Ω = π

12 . Keeping the values of ∆Ωx and ∆Ωy

unchanged, but modifying Ωx to π
12 and Ωy to 0, we obtain

a filter tuned to the same bandwidth and spatial frequency,
but orientation θ = 0◦. The corresponding values of αx

and αy are approximately unchanged. If we scale the spatial
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Fig. 1. General Architecture for producing multiple maps from a Gabor-
type filters cell.

frequency and the bandwidth by the same factor, we can
implement a filters of varying scales, i. e., they have identical
impulse responses except for a spatial scaling. Thus, we can
use this system to model the outputs of orientation tuned
neurons in the V1, where it is thought that each retinal
location is served by a set of neurons tuned to different
orientations and spatial scales. The orientation coverage is
commonly assumed to be uniform, and the spatial scales
appear to vary over a range of 4 octaves [16].

III. IMPLEMENTATION

The approach used in our FPGA implementation of the
Gabor-type filter was to develop a pipelined datapath which
can perform the required complex multiply accumulate op-
erations for the solution of Equation 2 using Euler’s method.
Inputs, templates and outputs are stored in internal memories
of the FPGA.

In order to model responses of cells in the primary visual
cortex, the output of a large number of Gabor filters tuned
to different orientations, scales and frequencies are desired.
In our implementation, these can be easily adjusted as they
are parameters stored in memory and can be modified by
the serial communication interface. Hence a single core can
process data in a time multiplexed manner with different
parameters. Multiple cores can be also used to increase
performance as illustrated in figure 1.

Gabor-type filters have a complex valued convolutional
kernel, the data format with complex value is used. As fixed-
point arithmetic implementations require less area, two’s
complement fractions are used. In our implementation, a
core is built based on 16-bit fixed-point arithmetic and
the Euler integration method. The data format consists of
two 16-bit words which are used for the even and odd
kernels of equation 1. The 16-bit words consist of a 4-bit
integer part and 12-bit fractional part. For the VGA interface,
image pixels are represented by an 8-bit number. We chose
h = 0.25 for our implementation. Since ∆t is determined
by the speed of the Euler core iteration, which is 43µs
in our implementation, this corresponds to a time constant
τ = 0.17ms. The actual time constant is 0.68ms due to the
accumulated error of Euler’s method. The mean square error

of precision is measured to be 5.24×10−5 in the simulation
of Euler core using a high precision floating point computer.

In figure 2, the design of the Euler core is shown. Inside
the dotted box, template registers are multiplied by the cur-
rent state variables. The computation is pipelined to achieve a
throughput of one multiplication per cycle. The multiplier is
generated using the Xilinx Core Generator and has a latency
of three clock cycles. The SRL16E shift registers blocks are
used to match the latency of the pipelined units.

The datapath of Euler core has latency of 17 cycles. In
every clock cycle, one of the state variables is read from the
current block ram sets and then multiplied with the value
in the template register. The Euler core calculates ΣAx in
five cycles. To reduce the critical path, the multiplier result
is latched and accumulated (Add1). ΣAx is then added to
the current state variable and pixel input (Add2). Assuming
h = 0.25, the result is then shifted right by two (with sign
extension). Finally, the current state variable is again added
to the result (Add3) and written to the next block ram.
The above procedure is repeated for all pixels to compute
a timestep.

In our 16-bit, 32× 32 pixel array example, since complex
numbers are used, we require 2 sets of RAM with 32-bit word
length totalling 64Kb. These memories are instantiated as
four 16Kb dual port block RAMs (primitive components in
Xilinx Virtex-2). Our pipelined Euler core datapath achieves
a 120MHz clock rate which corresponds to 120MHz/(5×
32 × 32) = 23K Euler frame-iterations per second.

A. Integration with Silicon Retina

Our Gabor-type filter is used as the processing unit in a
silicon retina system as shown in figure 3. In the system, a
silicon retina, leaky integrators, Gabor-type filter core, and
spike generator are integrated. The silicon retina is a custom
designed analog VLSI chip [17] and the other components
are implemented on an FPGA.

The image from the silicon retina is encoded as a spike
train using the AER protocol [3], [4], [5], [6]. They are
reconstructed in digital format via leaky integrators and the
values written to block ram for the Gabor-type filter core.
After the output pixel array has been computed by the Gabor-
type filter core, an AER output spike train is generated to
simulate the neuronal activities of ON and OFF channel in
spiking neuron interface. Finally, the output spike train is
passed through another leaky integrator to a VGA interface
and visualized on a monitor.

1) Address-event representation (AER) Interface: Com-
munications between the FPGA and silicon retina are per-
formed using an AER protocol and images are encoded in
the form of spike trains.

The AER protocol scheme is shown in figure 4. An address
event consists of sequences of addresses. The ReqY signal is
brought high when there is an address event. For a particular
row and column address, the ∼ ReqX signal is taken low.
The receiver acknowledges by driving Ack signal low. In
the sequence of address, the first address is a chip address
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Fig. 4. AER interface scheme

and the second address is a row address. This is followed by
multiple column addresses which represent the spike trains.

A different AER scheme is used in the FPGA as shown in
figure 5. The neuron in row1 and col1 fires a single spike,
followed by the neuron address row1, col2. After the spikes
from row1 are transmitted, row2 is sent. Compared to the
original AER scheme, which operates asynchronously with a
serial word format, the FPGA scheme uses parallel addresses
and a synchronous scheme. This results in improved speed
within the FPGA as the transmission of a spike takes a single
clock cycle whereas the original scheme requires multiple
clock cycles.

2) Leaky integrator: In order to simulate the activities of
retinal neurons, spike trains are used. The frequency of the
spike train indicates the degree of neuron stimulation. How-
ever, a spike train is difficult to process using synchronous
digital logic. Therefore, a leaky integrator is used to form

Col1 Col2 Col4 Col5 Col6

Row1 Row2

Chip1Chip Addr

Row Addr

Col Addr

Addr rdy

Col3

Fig. 5. AER interface scheme in the FPGA

the digital data from incoming spike trains. The value of the
data is dependant on the frequency of spikes and is given by
the formula

xt+1 = xt × e
−t

τ + nC (6)

where x(t) is the neuron activity at time step t (10ms
refresh rate of VGA interface), τ is a time constant (set to
0.111 s), n are the number of incoming spikes during t and
C is a constant determined by manual tuning ( 1

32 ).
3) Spiking neuron interface: The Euler core operates on

pixel maps and the interface shown in figure 6 is required to
convert pixel maps in a serial-word format to produce AER
spike trains.

The Euler core operates at 120 MHz whereas the refresh
rate of VGA interface operates at 100 Hz. The pixel values
from the Euler core are accumulated in spiking neurons, one
being used for each pixel location. The accumulated pixel
value is checked against positive and negative thresholds. If
the value is larger than a positive threshold, a pulse is fired
on the ON channel and a value subtracted from it. Values
smaller than a negative threshold are treated similarly, pulses
being fired in the OFF channel. Finally, spikes are converted
to the AER protocol format and sent to a display via a VGA
interface. This AER output can also be sent to other chips
for further processing.

IV. RESULTS

In [18], Choi et. al. presented an analog VLSI retina
system with a Gabor-type filter VLSI chip. The same AER
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input/output format is used in our FPGA-based Gabor-
type filter implementations such that both system are fully
compatible. The Euler core was implemented on a Celox-
ica RC200 platform which is populated with a Xilinx
XC2V1000-4. Our 16-bit Euler core runs at 120MHz and
uses 759 slices (14% of the logic resources of the chip).
Adding the leaky integrators, spiking neuron interface, AER
interface and VGA interface increases the total area utiliza-
tion to 1842 slices. A single Euler core achieves 23, 000
Euler iterations over one frame per second compared to the
result of 16, 000 Euler iterations over one frame per second
in the corresponding C program which runs on a 3GHz
Pentium 4 machine.

The power consumption of the analog Gabor chip (0.25µm
technology at 2.5 − 3 V ) and its peripherals as described
in [18] is 44.1mW . The power consumption of the FPGA
chip (0.12µm technology at 1.5 V ) and all the peripherals
on the RC200 platform in the reset state is 1.929W . This
increases to 1.946W when the Euler core is processing.

The spatial impulse response of the FPGA-based Gabor
type filter was measured by stimulating the pixel located at
(17, 17) with a 500Hz spike train from a pattern generator.
Different CNN templates were downloaded to Euler core for
different orientations with spatial frequency magnitude Ω =
π
4 . Figure 7 shows the output display with vertical, horizontal
and diagonal orientations from about 30000 spikes collected
using a logic analyzer.

A ring pattern in white with a black background is
displayed on a LCD monitor and captured using the silicon
retina. The image is processed by the FPGA-based Gabor-
type filter processor and the result is shown in figure 8. The
spatial frequency of the Gabor-type filter is set to be π

3 .
The design time for the FPGA-based components includ-

ing Euler core, leaky integrator, AER interface and spiking

neuron interface was approximately four months, and the
corresponding VLSI Gabor-type filter design required six
months plus an additional three months for chip fabrication.
Besides the scalability and flexibility offered in our FPGA
implementation, the design cycle is shorter, allowing for
more sophisticated models to be developed.

V. CONCLUSIONS

An implementation of Gabor-type Filters on field pro-
grammable gate arrays using cellular neural network (CNN)
architecture is described. Compared to other analog imple-
mentation of Gabor-type filters, our implementation on FP-
GAs have advantages of scalable and flexility. High degree of
parallelism can be achieved by instantiate more Gabor-type
filter core operates for different orientations. In particular, we
hope that it can be used to test and refine models concerning
processing in V1.
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(c) The even output with 45
degree tuning. White/Black
= 10/35 Hz.
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(d) The odd output with 45
degree tuning. White/Black
= 17/14 Hz.
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(e) The even output
with horizontal tuning.
White/Black = 9/36 Hz.
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(f) The odd output
with horizontal tuning.
White/Black = 17/15 Hz.
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(g) The even output
with 135 degree tuning.
White/Black = 10/36 Hz.
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(h) The odd output with 135
degree tuning. White/Black
= 16/15 Hz.

Fig. 7. The output of spatial impulse response. (The maximum firing rate of ON channel is represented by white and maximum firing rate of OFF channel
is represented by black)
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= 227/99 Hz.
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(b) The odd output with
vertical tuning. White/Black
= 170/184 Hz.
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(c) The even output with 45
degree tuning. White/Black
= 231/102 Hz.
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(d) The odd output with 45
degree tuning. White/Black
= 172/186 Hz.
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(e) The even output
with horizontal tuning.
White/Black = 221/89 Hz.
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(f) The odd output
with horizontal tuning.
White/Black = 167/181 Hz.
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(g) The even output
with 135 degree tuning.
White/Black = 234/105 Hz.
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(h) The odd output with 135
degree tuning. White/Black
= 174/192 Hz.

Fig. 8. Output of ring pattern (The maximum firing rate of ON channel is represented by white and maximum firing rate of OFF channel is represented
by black)
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