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Abstract

The automatic conversion of floating point software
implementations of algorithms to a equivalent fized
point implementation which can be efficiently imple-
mented in an FCCM remains an obstacle in the rapid
systems prototyping design flow. Floating point to
fized point conversion is tedious, error prone and re-
quires a good knowledge of fizred point computer arith-
metic. This paper describes a software system called
fp designed to automate the process. It consists of a
fized point C++ class; a profiler which is used to deter-
mine the number of bits of precision required for each
signal in the hardware tmplementation; an optimiser
which finds the minimal number of bits required for a
specified degree of accuracy in the implementation and
finally and a compiler which takes the information col-
lected by the system and outputs synthesisable VHDL
code. A post-rendering 3D image warping application
designed using this system is used as an example.

1 Introduction

High level synthesis techniques have signifi-
cantly improved productivity for designers of field-
programmable custom computing machines (FCCM)
in recent times, allowing them to concentrate on
higher level design issues. However, for even larger
productivity gains, the problem of converting algorith-
mic descriptions, which are typically implemented us-
ing a general purpose programming language such as
C, to a hardware eflicient fixed point description needs
to be addressed. This is typically done by the designer
manually translating a floating point description to a
fixed point one, observing the ranges of variables and
specifying enough bits in the fixed point implementa-
tion to ensure that the correct results are obtained.
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This process is tedious, time consuming and requires
a good knowledge of fixed point arithmetic.

It is likely that a computer optimised fixed point
implementation of a floating point algorithm would
require less hardware than a human optimised ver-
sion. This is because a designer is unlikely to reduce
the wordlength of each variable to the absolute mini-
mal value, and also, the computer can make low level
optimisations which a human designer may find too
tedious to apply. Using automatic translation tools,
users that are not intimately familiar with fixed point
arithmetic to design an FCCM, in the same way that
programmers, not intimately familiar with how to im-
plement, say the log function, can apply it through a
math library.

The tools that we have developed, called fp, cen-
ter around a profiler which collects information on the
range that a C variable will take during execution of a
program with fixed inputs and outputs. In the general
case, it is not possible to know the range of an arbi-
trary variable inside a program since it is dependent
on the inputs. However, for a given a set of inputs, the
profiler can record the range of all the variables. The
profiler collects information about each of the vari-
ables and then makes an initial, conservative estimate
for the range of each variable.

Quantisation effects will, in general, degrade
the performance of an algorithm. Increasing the
wordlength of the fixed point arithmetic reduces quan-
tisation effects at the cost of increased hardware. In
many applications, it is possible to describe this trade-
off in terms of a cost function. For example, a com-
pression algorithm might require that the outputs be
identical for both fixed and floating point versions and
a suitable cost function could be a weighted sum of
the number of bytes which are different and the total
wordlengths of all variables. The optimiser tool in fp
minimises a user supplied cost function by changing



the wordlengths of the variables in the program.

Finally, the program is translated from C into syn-
thesisable VHDL code with the wordlengths discov-
ered by the optimiser. It is also possible for the user
to specify wordlengths for any variable, overriding the
computer generated values.

Commercial design environments supporting the
modeling of fixed point system have been mainly based
upon block diagrams descriptions (e.g. [1, 2, 3]),
blocks being implemented as parameterised libraries
which can operate at different word lengths. Although
this dataflow approach has the advantages of being
very simple and intuitive, it is not possible to change
the functionality of the blocks and it is difficult to ex-
press control intensive applications in these systems.

More general purpose design environments based
on programming languages such as Mentor Graphics’
Data Flow Language (DFL) [2] and C/C++ [4, 5] have
concentrated on targeting fixed point DSP chips which
have a fixed wordlength of between 16 and 32 bits. In
this work, optimisation of wordlengths for hardware
synthesis is addressed.” All signals can be of differ-
ent wordlengths and the objective is to minimise the
hardware while at the same time meeting some quality
criteria. )

The main goal of the fp system is to allow for the
automatic translation of arbitrary floating point al-
gorithms to the equivalent minimal wordlength fixed
point implementation. It has the following features

¢ no knowledge of fixed point arithmetic is required
to use the system

wordlengths can be different for each signal in the
final implementation :

a usér—supplied cost function is optimised which
takes into account tradeoffs between wordlength
and implementation quality

a parameterised library of fixed point mathemati-
cal functions such as addition, multiplication, ex-
ponential, square root and reciprocal are provided

output is in synthesisable VHDL, hardware op-
timisations being automatically performed in the
process. )

In Section 2 we will describe a post-rendering 3D
image warping algorithm which is used as an example
in this paper. A description of the fp floating point
tools which were developed to support both automatic
translation of floating point to fixed point code and
manual analysis of floating point systems will be pre-
sented in Section 3. Section 4 describes the results

241

View

reference

CcoP

reference

Figure 1: Post-rendering 3D warping : Warping of
pixel i t0 iyarped (COP is center of projection)

of the fp system when applied to the 3D image warp-
ing problem and finally, conclusions are drawn in Sec-
tion 5. '

2 Post-rendering 3D Image Warping

Traditional rendering systems use linearly interpo-
lated triangles to render a 2D graphical image from
a complex 3D internal representation so as to obtain
realistic rendering result. The computational require-
ment is strongly dependent on the scene complexity.
To address this problem, an image-based rendering
system was introduced by McMillan and Bishop [6]
and after that, post-rendering 3D warping [7] was pro-
posed. Post-rendering 3D warping provides an order
of magnitude improvement in apparent frame-rates
over conventional rendering, with computational re-
quirements not dependent on scene complexity but
rather on the image size.

The post-rendering 3D warping algorithm is illus-
trated in Figure 1. The inputs to the algorithm are
a reference image and its corresponding depth map.
Each pixel is projected to its actual 3D space and
then reprojected to the new view plane. The tech-
nique is typically used in conjunction with traditional
rendering and the post-rendering 3D warping used for
the small view angle changes between frames [7]. This
rendering technique is very effective and has been an
active field of computer graphics research [8, 9, 10, 11].

Figure 2 shows two different views of the same
scene obtained using simple post-rendering 3D warp-
ing. The resultant image have dark lines which are
caused by undersampling. This problem can be over-
come by splat reconstruction or mesh reconstruction
[7]. One other difficulty which must be addressed by
the 3D warping problem is that there is no informa-
tion about objects occluded in the reference image but



which might appear in the new view. This problem,
called the occlusion problem, can be handled by hav-
ing multiple reference images [11] or layered depth im-
ages [9)].

The post-rendering 3D warping algorithm is simple
so its hardware and memory requirements are modest
and high bandwidth memory is not necessary. These
two features make it suitable for implementation on
an FCCM. The undersampling and occulsion problems
were not addressed in our implementation.

2.1 Algorithm

In our implementation, the 3D representation of the
image is computed in software and the FCCM is re-
sponsible for the 3D warping process which is compu-
tationally intensive. We use a perspective projection
model with image plane (reference view).

In the method described below, we denote the new
viewpoint (new center of projection) as v and the new
view plane’s top left, top right, bottom left and bot-
tom right points Ago, A10, Ao1 and Aj; respectively
as shown in Figure 3. The vectors from v to Agg,
AlO; AOI and Au are named as 1700, '(710, "-1‘01 and 1711
respectively.

For every pixel,

1. After projecting it from the reference image to its
actual 3D position, we can have its actual posi-
tion, p' w.r.t. the coordinate system of the new
viewpoint by a simple vector calculation.

2. Next, to find the projected position of p on the
new view plane, we first parameterise the new
view plane by

-

Ith,k) = (1-k) ((1—h)Woo + htio)
+ k ((1 - h)'l_)‘(n + h1711)
(1)
3. By equating .
AP = I(h, k) 2

we will have three real unknown numbers, A, h

and k.

4. Since the above equation are in three dimensional
space, we can obtain three independent equations
along the z, y and z dimensions which can be
solved to obtain & and k.

5. If the values of h and k are within [0, 1] then the
pixel will be splated onto the new image plane at
coordinate (resz x h,resy x k) where resz and
resy is the new view’s resolution.
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Figure 2: Original (a) and warped images (b) and (c).
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In a software implementation, all of the operations
are performed using floating point arithmetic. Al-
though the algorithm is very simple, it is not straight-
forward to implement it using fixed point arithmetic
since ‘

e it is difficult to know how many bits of precision
are required for A, h and k

e it is tedious and difficult to implement fixed point
division, fractional multiplication and square root
functions

o tradeoffs in time, area and quality need to be con-
sidered both for the algorithm and the fixed point
operators.

3 Fixed Point Tools

Fp consists of a C++ class called “Fixed” for the
representation of fixed point values; a profiler that de-
termines the number of bits of precision of every value
in a fixed point function; an optimiser that interacts
with the profiler to minimise the total number of bits
of precision while retaining a certain degree of accu-
racy; a simulator that allows users to verify the results
when using the optimised precisions; and a compiler
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Figure 4: Fp tools design flow.

that translates the C function and the required num-
ber of bits of precision from the profiler into synthe-
sisable VHDL code.

Figure 4 illustrates the fp design flow. A design be-
gins by writing a C function to represent the algorithm
to be implemented in hardware. We will call this func-
tion the “algorithm function”. Variables (both integer
and fixed point) in the algorithm function should be
declared as Fixed, which is a C++ class that is capa-
ble of representing a fixed point value under different
precisions. The function takes a number of Fixed vari-
ables as input and produces a number of Fixed vari-
ables as the output. Users are also required to supply
a configuration file, which specifies the precision for-
mats of the inputs variables. This information is useful
for worst case analysis and is used as the initial guess
for the optimiser.

The optimiser routine is used to minimise a user—
defined cost function. The cost function usually re-
flects the total number of bits in the design and the
error between the floating point and fixed point com-



putations. During optimisation, the optimiser modi-
fies the precision formats of the algorithm function’s
Fixed variables to minimise the cost function. Dur-
ing execution, the profiler routine can be called by the
cost function to extract the precision information of
any of the Fixed variables.

The algorithm function, cost function, profiler rou-
tine, optimisation routine and Fixed class are com-
bined to produce a single C++ program. When this
program is compiled and executed it performs opti-
mization and profiling on itself (see Figure 4), out-
putting optimised precision information for each vari-
able used in the algorithm function.

Finally, the compiler uses the algorithm function
together with the precision information generated by
the profiler to generate synthesisable VHDL code.

3.1 Fixed Class

The built-in C data types such as int and dou-
ble support only pre-defined wordlengths. The pre-
defined lengths for each data type are determined by
the compiler and computing platforms. These built-in
data types are not suitable for describing fixed point
values where wordlengths vary from one variable to an-
other. To describe hardware that utilises fixed point
computation, a data type that supports variable bit
lengths must be introduced.

In the fp system, a “Fixed” C++ class is used to
implement this data type. The reasons for using C++
are [12]

o C++ supports class operators so that if x and y
are variables of type Fixed, it is possible to write
x+y instead of add(x,y)

C++ supports overloading so that implicit type
conversions can be made (e.g. we can write ex-
pressions such as x + 1.5 and the constant will be
implicitly converted to Fixed)

C++ supports exception handling so that either
standard or user overridden exception handlers
can be called in the case of arithmetic exceptions
such as division by zero and taking the square
root of a negative number

A Fixed variable consists of the following major
components

1. the precision of the value in (ilen.flen) format,
where ilen is integer wordlength and flen is frac-
tional wordlength
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. the range of the variable (minrange, maxrange) -
this is a worst case information which is collected
by the profiler but not used by the compiler

. a value fval that represents the value under the
current precision

. a value dval that represents the floating point
value of the variable

. the actual minimum and maximum values that
have been assigned to the variable (minval, max-
val)

For worst case analysis, the two class methods,
SetLen and SetRange, allow users to specify the pre-
cision and range of a Fixed value respectively. For
example, f.SetLen(8, 4) sets the integer and frac-
tional wordlengths of variable f to 8 and 4 respec-
tively; g.SetRange(-2.5, 3.5) sets —2.5 < g < 3.5.
When SetLen is applied to a variable, the correspond-
ing range is automatically computed but users can
override this using SetRange. Similarly, when Se-
tRange is applied to a variable, the corresponding
integer wordlength is determined but the fractional
wordlength remains unassigned. Users can apply both
SetLen and SetRange on the same variable provided
they do not conflict.

The Fixed class provides support of basic arith-
metic operations, such as addition and subtraction,
multiplication and division, square, square root, and
absolute value. More complex functions such as log
and ezp can be also included in libraries. When an
Fixed class operator is applied, the following four op-
erations are carried out

1. the worst case range of the result is determined

2. the worst case precision of the result is deter-

mined

. the exact fixed point result value under the degree
of precision calculated in (2) is computed

4. the floating point result value is computed

As an example, consider the addition of two Fixed
variables, a and b with precisions (8.6) and (4.8) re-
spectively, the result being assigned to the Fixed vari-
able c. The worst case result would require a precision
of (9.8) to guarantee no loss of precision. However, in
practice, the worst case estimate is too pessimistic.
The maximum and minimum values that a variable
takes during execution of the algorithm function is a
best case estimate. Profiling may discover that dur-
ing the course of program execution the variable takes



on the range (-12.0, 10.0). Then a precision of (5.8)
would be sufficient to store the result. The precision is
overridden when the user applies SetLen or SetRange
to c.

The fractional wordlength of a variable affects its
precision only. However, the integer wordlength af-
fects the range that the value can represent. When
a manually set integer wordlength is not able to rep-
resent a value, overflow occurs and a flag is set to
indicate this situation. There is also a not-a-number
(NaN):flag which is set after, for example, taking the
square root-of a negative number. '

The constructor function for a Fixed variable causes
its creation to be recorded in a global data structure
called Fizedvars. 1t is thus possible for other parts
of the fp system to deduce how many variables exist
in the algorithm function, their ranges and precisions
etc.

3.2 Profiling-

The profiler serves to extract the range and error of
each Fixed variable in the algorithm function after its
execution. The range is defined by the minimum and
maximum value that a Fixed variable was assigned,
while the error is defined as the absolute difference
between the value using fixed point and floating point
representations.

The range information collected by the profiler is
useful for estimating the initial guess, while the error
information is used by the cost function. ’

3.3 Optimisation

The optimiser uses the method of Nelder-Mead [13]
to minimise a nonlinear cost function without requir-
ing the computation of derivatives. It obtains its ini-
tial guess from the profiler and adjusts the precisions
of every Fixed variable inside the function. The al-
gorithm function is called twice for every pass of the
optimisation routine. The first call is used for range
extraction and the second for error extraction.

Due to quantisation effects, different sets of frac-
tional wordlengths result in different sets of ranges for
Fixed variables. Before calling the algorithm function,
the optimiser sets all Fixed variables to a large inte-
ger wordlength thus preventing overflow. After the
execution of the algorithm function, the optimizer de-
termines the minimal integer wordlengths according
to the runtime minimum and maximum values and
computes error statistics on the Fixed variables. This
information is then passed to the cost function.
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Different applications require varying degrees of ac-
curacy. The allowable degradation of an algorithm is
specified in the cost function. Commonly, cost func-
tions are a weighted sum of the the total number of
bits in the fixed point algorithm and the error at the
output. Different cost functions allow tradeoff be-
tween wordlengths and output errors.

3.4 Simulator

The simulator sets the wordlengths of variables in
the algorithm function to the optimised wordlengths
prior to executing it. It allows users to verify the re-
sults from the optimiser.

3.5 Compiler

The compiler was constructed by modifying the
code generator of an ANSI C compiler, lcc [14]. The
code generator currently can handle most C declara-
tions, expressions and conditionals. Loops are not cur-
rently supported. _

The compiler begins by constructing the expression
tree from the algorithm function. A tree node corre-
sponds to either a register or an operator. The bit-
widths of registers are obtained from the output of
the optimiser and the bit-widths of operators hence
determined. The operators all have different latencies
and a time-alignment technique [15] which adds stage
latches into the expression tree is used to address this
problem. The stage latches are constructed from lin-
ear feedback shift registers [16].

A library of parameterised synthesisable VHDL
modules are associated with the compiler. In each
case, minimal area implementations were chosen in or-
der to reduce hardware resources. The addition and
subtraction operators are implemented using the ap-
propriate VHDL operators. N bit multiplication is
implemented using a shift/add algorithm in order to
minimise hardware requirements. The fixéd point di-
vision is implemented using restoring division [17] and
the square root function is implemented by “complet-
ing the square” [17].

4 Results

4.1 Fixed Point Optimisation

A post-rendering 3D warping routine was written
in C++4 and all integer and floating point variables
changed to be of the Fixed class. The routine used for



the hardware implementation uses a sequential warp-
ing order rather instead of that of Figure 1 in order to
allow for burst mode memory accesses in the hardware
implementation. The design flow of Figure 4 was fol-
lowed, most of the effort and time being spent deciding
on a suitable cost function.

The cost function consists of the weighted sum of
the following components

o wordlength — the sum of wordlengths of all vari-
ables

e variable error — the sum of errors of all variables
e output error — the sum of errors of all outputs

The weighted sum is then multipled by the the per-
centage of outputs that exceed the error bound.

In order to save memory, we restricted the
wordlengths of the 3D representation of the image
to 16 bits in order to limit the external memory re-
quirements of the algorithm. This constraint made
it impossible to achieve a pixel exact correspondence
between the floating and fixed point implementations.

A total of 35 Fixed variables were used in the
3D warping program. After optimisation, the total
wordlength of the result was 723 bits, an average of
approximately 21 bits per variable. The average errors
at the outputs h and k (as described in Section 2.1)
were 4.191e-4 and 5.248e-4 respectively. The maxi-
mum errors were 9.798e-4 and 1.016e-3 respectively.

The algorithm function was automatically trans-
lated to VHDL code and implemented using the Syn-
opsys’ FPGA Compiler with the Xilinx XC4085XL
FPGA as the target device. A manually designed
memory interface was added to interface the gener-
ated core design with an external memory.

The resulting images from the floating point and
fixed point implementations are shown in Figure 5(a)
and (b). In order to explore cost/performance trade-
offs, the weightings of the optimisation cost function
were changed to get smaller area at the expense of im-
age quality. This resulted in the image of Figure 5(c)
which has a total wordlength of 501 bits (an aver-
age of 14 bits per variable). The number of CLBs
required were 3099 and 2334 for the 723 and 501 bit
implementations respectively and the Xilinx software’s
estimated maximum frequency for both versions was
20 MHz.

Due to our choice of operators which reduced area
rather than time, throughput of the design was lim-
ited by the operator with the longest latency. The ex-
ecution time of the 723 and 501 bit implementations
were 37 and 33 cycles per pixel respectively. Both
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(b)

(c)

Figure 5: Post-rendering 3D warped Images obtained
from (a) Floating point (b) fixed point results using
a total wordlength of 723 bits (c) fixed point results
using a total wordlength of 501 bits.



implementations were successfully tested at 40MHz
on an Annapolis Micro Systems Wildfire board, and
achieved a frame rate of 40MHz/(37%512%512) = 4.12
fps and 40MHz/(33 * 512 % 512) = 4.62 fps for a im-
age size of 512 x 512 pixels. This can be compared
with an execution time of 3.70 fps on an Sun Ultra-
5 270MHz machine with 512MB of RAM. The speed
improvement was insignificant because the throughput
was limited by our implementation of the multiply, di-
vide and square root fixed point operators.

We are working on the optimisation of the gener-
ated VHDL code and using pipelined computational
modules instead of folded ones. The pipelined im-
plementation, with an estimated size of 6000 CLBs,
should fit in larger devices such as Xilinx XC40150XV
FPGA. The throughput of a pipelined implementation
is limited by the memory bandwidth. For each pixel,
3 x 16 bits are used to represent the 3D location of
the object in space and another 16 bits are used to
represent the RGB value of the pixel. A 16 bit RGB
result is also written to memory. Thus in total 2.5 32
bit memory accesses are required for each pixel, corre-
sponding to 7 clock cycles if non-burst mode accesses
are assumed. At a 40MHz clock rate, a frame rate of
40MHz/(7 * 512 x 512) = 21.80 fps can be achieved.

5 Conclusion

A flexible design environment which supports the
automatic translation of floating point algorithms to
a hardware implementable fixed point representation
was presented. These tools enable FCCM designers to
concentrate on higher level algorithmic issues thus in-

- creasing productivity and being able to explore more
of the design space in a given time. The tools were suc-
cessfully applied to a post-rendering 3D warping ap-
plication in which synthesisable VHDL code was gen-
erated automatically from a floating point description
written in C.
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