
FPGA Fastfood - A High Speed Systolic Implementation of a
Large Scale Online Kernel Method

ABSTRACT
In this paper, we describe a systolic Field Programmable Gate Array
(FPGA) implementation of the Fastfood algorithm that is optimised
to run at a high frequency. The Fastfood algorithm supports online
learning for large scale kernel methods. Empirical results show that
500 MHz clock rates can be sustained for an architecture that can
solve problems with input dimensions that are 103 times larger
than previously reported. Unlike many recent deep learning publi-
cations, this design implements both training and prediction. This
enables the use of kernel methods in applications requiring a rare
combination of capacity, adaption and speed.

1 INTRODUCTION
Kernel methods are a popular class of machine learning algorithm
capable of solving many problems, ranging from classification and
regression to novelty detection and feature extraction. However,
they are often limited to small datasets because their memory and
computation requirements scale linearly with the number of in-
put examples. To address this problem, Le et al. [8] proposed an
efficient algorithm, called Fastfood, that builds an approximation
to the kernel using combinations of random diagonal matrices
and Hadamard transforms. This is advantageous because diago-
nal matrices require little storage and only involve elementwise
multiplications, and the Hadamard transform can be computed in
log linear time via the Fast Walsh Hadamard Transform (FWHT).
Fastfood reduces O(nd) storage and computation requirements to
O(n) andO(n log2 d) respectively, where d is the length of the input
vectors and n represents the number of basis functions used to pre-
serve the statistical properties of the kernel function. To summarise,
Fastfood only suffers minimal degradation in prediction accuracy
and can solve problems which were previously intractable using
exact kernel methods.

We describe the first known implementation of Fastfood using
Field Programmable Gate Arrays (FPGAs). Our design, given in Sec-
tion 3, is a systolic array architecture that creates local connections
by grouping processing elements into designated blocks. This gives
us the flexibility of compiling different configurations of Fastfood,
and achieve a 500 MHz operating frequency. In fact, simply preserv-
ing module partitions during synthesis is enough to sustain high
clock rates with our design. In this article, we highlight that Fast-
food is particularly suited for a hardware implementation because:
1.) the computation requires simple arithmetic operations involv-
ing mainly addition and subtraction, 2) memory requirements are
minimal allowing large parameter spaces to be stored in embedded
memory, 3.) the algorithm can be translated into a datapath that
has a regular structure, is highly parallelisable, and benefits from
high-speed local interconnections, and 4.) the butterfly structure for
computing the FWHT has an efficient hardware implementation.

Fastfood implements a form of model compression for kernel
methods, however, unlike related deep learning algorithms that

take advantage of reduced precision and sparsity [3, 6], Fastfood
also works during the learning phase. In addition, kernel methods
are attractive in comparison to Neural Networks because they allow
domain knowledge to be imparted in a statistical manner. Neural
Networks have powerful generalisation properties because they
are free to learn any data representation, but this can obfuscate the
training process and yield results which are often less interpretable.
The key contributions of this paper are:

• The first FPGA implementation of a large-scale online ker-
nel method. Our design can solve problems with an input
dimensionality up to 3 orders of magnitude larger than previ-
ous FPGA implementations of kernel methods, and achieves
245× speed up over a single-core Central Processing Unit
(CPU).

• A novel hierarchical systolic architecture for sustaining high
clock rates on FPGAs. Blocks of processing elements con-
strain the majority of computation to small physical spaces,
and allow resource reuse. In particular, the design efficiently
implements the computational bottleneck (FWHT) using
the same processing elements that compute the rest of the
Fastfood algorithm.

2 BACKGROUND
2.1 Machine Learning Regression Using Kernel

Methods
Let xi , i = 1...m representm input vectors of a given dimensionality
d (xi ∈ IRd ), and let yi represent the corresponding desired output
values for each input vector (yi ∈ IR). In standard machine learning
regression problems, the goal is to find a function f (x) that results in
the minimal prediction error (i.e. min

∑m
i=1 (yi − f (xi ))

2). For non-
linear problems, the input must first be transformed into a high
dimensional space where patterns in xi are linearly separable. The
kernel trick does this implicitly, and thus, it is regularly employed
to inexpensively evaluate f (x), as described by (1).

f (xi ) =
N∑
j=1

α jκ(xi ,vj ) (1)

Here, κ(xi ,vj ) is the kernel function, and αi are parameters to be
optimised. The only caveat is that a length N subset of the input
data must be stored in memory, also known as the dictionary or
support vectors and denoted by v . The machine learning algorithm
must update both the dictionary and parameters α j to minimise
the predictive error. On small datasets (less than 104 examples),
(1) can be computed efficiently. However, this is not possible on
large datasets because N tends to grow linearly with the number of
input examples,m, [2]. To address this problem, Rahimi and Recht
[11] proposed Random Kitchen Sinks (RKS) for shift-invariant ker-
nels (κ(x ,x ′) = κ(x − x ′, 0)). The main idea is to create a function,
z(x) = 1√

n
cos(Wxi ), such that the inner products <z(x), z(x ′)> are



approximately equal to the high-dimensional features extracted
from k(x ,x ′). Here, n is the number of basis functions used to ap-
proximate N dictionary elements, andW is a n×d matrix randomly
sampled from the Fourier transform of k(x ,x ′). Importantly, n is
fixed and means that Random Kitchen Sinks can be trained inde-
pendent of the dataset size, making them much faster on problems
with many inputs.

2.2 Fastfood
The Fastfood algorithm was introduced by Le et al. [8] to reduce the
computational complexity of Random Kitchen Sinks. The main idea
is that a random projection, given byWxi , can be approximated
with a projection Vxi , as described by (2), which requires much
fewer operations to compute. 1

Vxi = [V1xi , ...,Vhxi ], where Vqxi = SHGPHBxi (2)

We first break the computation down into h = ⌈n/d⌉ separate
stages, each working with d basis functions. By working from right
to left, we can complete each intermediate computation of Vqxi
by a sequence of matrix-vector operations, without storing the
matrix Vq . Importantly, the matrix-vector operations are designed
to involve minimal computation. Firstly, B, G and S are d × d di-
agonal matrices, where Bii and Gii are drawn i.i.d. from {−1, 1}
and N (0, 1) distributions respectively, whilst Sii depends on the
choice of kernel function. In this work we assume a Gaussian RBF
kernel, meaning Sii is drawn from a chi-squared distribution [8].
Secondly, P ∈ {0, 1}d×d is a permutation matrix which can be ef-
ficiently implemented in hardware. Finally, H ∈ {−1, 1}d×d is a
Hadamard matrix, as defined by (3). Matrix-vector multiplication
with a Hadamard matrix can be done efficiently using the Fast
Walsh Hadamard Transform (FWHT). For example, using the radix-
2 FWHT algorithm, this reduces the number of operations from
O(d2) toO(d log2 d). The Hadamard matrix in (3) requires the input
dimension, d , to be a power of 2 (d = 2l , where l ∈ N). To meet this
condition, the input vectors can be padded with zeros.

H = Hd =

[
Hd/2 Hd/2
Hd/2 −Hd/2

]
where H2 =

[
1 1
1 −1

]
(3)

The prediction is then formed by passing Vxi ∈ IRn through a
sinusoidal function, ψ (xi ) = 1√

n
cos(Vxi ), and taking a weighted

sum as shown by (4).

f (xi ) =
n∑
j=1

α jψ (xi ) (4)

In this work, we train f (x) for regression by solving the least
squares problemminα ∥y − αTψ (x)∥22 , where y ∈ IR is the expected
output. More specifically, we apply an online stochastic gradient
descent algorithm, which incrementally updates α for each new
(xi ,yi ), as given by (5). Alternatively, a batch-based trainingmethod
could be used. However, this requires prior access to a large subset
of the input data which is not available in real-time applications.

αt+1 = αt + η[yt − α
T
t ψ (xt )]ψ (xt ) (5)

1For brevity, we limit the review to the key computation steps. Refer to [8] for a
complete analysis, including derivations, proofs of convergence, and error bounds.

As with Random Kitchen Sinks, when n = 16, 384, Fastfood
achieves an accuracy on the CIFAR-10 dataset [7] which is among
the top two for shift-invariant kernel representations [8].

2.3 Kernel Methods on FPGA
Efficient FPGA implementations of kernel methods have previously
been studied and several architectures for performing simultaneous
prediction and training have been reported. Fraser et al. [5] describe
a floating point implementation of the KNLMS algorithm. They
achieve very high efficiency using a fully-pipelined architecture and
time-multiplexing independent parameter sets. This removes the
data dependency in the update equation (similar to (5)) significantly
improving overall throughput. Multiple parameter sets and deep
pipelining increase the latency on a per input basis. Tridgell et al.
[12] address this issue using a technique called “Braiding”, which
resolves data dependencies in pipelined architectures. Their design
(in fixed point) operates at well over 10 Gb/s and achieves a latency
around 10 cycles for d = 8 and a fixed N = 200, this coming at the
cost of frequency and DSP resources. Neither explore re-utilisation
of resources. Pang et al. [10] describe a micro-coded vector proces-
sor for the SW-KRLS algorithm which time-multiplexes resources
to improve scalability. The works reviewed target a specific part of
the design space, however, none can scale the input dimensionality,
d , and dictionary size, N , to support the type of big-data appli-
cations dominating the machine learning community today. Our
implementation of Fastfood fills this void.

3 ARCHITECTURE AND DESIGN
3.1 High-Level Description
From Equation (2), it is evident thatVqxi can be processed indepen-
dently. Our architecture separates and localises their computation
using blocks of Processing Elements (PEs), called Hadamard Blocks
(HBs). A hierarchical diagram of the Fastfood processor is shown in
Figure 1, and the following equation shows how the computation
of f (x) (4) is unrolled into (6).

f (x) =
n∑
j=1

α jψ (x) =
h∑ b∑ k∑

j=1
α jψ (x) (6)

Here, n is the number of basis functions or expansion dimensions,
k is the basis functions per PE, b is the PEs per HB, and h is the
number of HBs. The other constraints are the input dimensionality,
d , and total number of PEs, p.

We adopted this architecture because 1) massive scalability can
be achieved when PE compute resources are reused, 2) PEs with
mostly local connections are more amenable to high-frequency im-
plementations, and 3) blocks of PEs create the local connectivities
needed to implement a fused and distributed Fast Walsh Hadamard
Transform (FWHT). The last point gives our architecture some
unique characteristics in the trade-off between resources, paral-
lelism and frequency, and is discussed more in Section 3.3.
Parameters p, b and k should be chosen carefully, and depend on
the FPGA device, task, and performance requirements: 1) p controls
the parallelism and latency of the design; 2) k = n/p is a portion
of the algorithm distributed evenly across the PEs. k controls the
computable size of n and scales the size of each PE; 3) b = d/k is the

2



HB
1

HB
2

HB
3

HB
5

HB
h-1

HB
h

FSM

x out

sum

y

HB
4

(a) Top-Level

PE
2

PE
b

PE
1

S
W

IT
C

H

S
U

M
 &

 U
P

D
A

T
E

x ctrl

x

sum

ctrl

y

sumy

(b) Hadamard Block (HB)

Seq. Mem

Dual-Port
RAM

out

Addr
Gen.

Sign 
Gen.

inBuffer LFSR

1

Reg

+ sum
ctrl

ctrl

ctrl

ctrl

ctrl

ctrl

seed

ctrl

ctrl

xin

sin

hin hout

sout

xout

+

-

ALU

+
-

M
ux A

Seq. Mem

M
ux B

(c) Processing Element (PE)

Figure 1: A hierarchical block diagram of the Fastfood processor

x
1

x
2

x
3

x
4

PE
1

PE
2

PE
3

PE
4

PE
5

PE
6

PE
7

PE
8

(a) no iterative reuse, width=4

PE
1

PE
2

SW
44

x

2

22

2

C
yc

le
s

PE
1

PE
2

1. x
1 
+ x

2 
= c

1
x

2 
- x

1 
= c

2

2. x
3 
+ x

4 
= c

3
x

4 
- x

3 
= c

4

3. c
1 
+ c

3 
= o

1 
c

2 
+ c

4 
= o

2

4. c
3 
- c

1 
= o

3
c

4 
- c

2 
= o

4

(b) full iterative reuse, width=2

Figure 2: Two systolic array configurations for a 4-point
FWHT, based on Milder et al. [9].

number of PEs allocated to each HB. b controls the locality of con-
nections between PEs; and in combination with k , also determines
the computable size of d .

3.2 Top-Level Module
The top level diagram of our architecture is illustrated in Figure 1a
(ignoring PCIe and memory bus interfaces). It mainly consists of
an h-length array of HBs connected in a ring topology. Each HB
accepts control logic from a finite state machine (FSM) and a stream
of (xi ,yi ) pairs as input data. The Fastfood processor is an iterative
architecture which does not have overlapping compute stages. This
means that the inputs arrive with an initiation interval (II) equal to
the number of cycles taken to compute a given sized input vector.
Each HB computes a partial result for Fastfood, and an output is
produced by summing each partial result as per the outer loop of
(6). The HBs are connected in a ring array for two main reasons:
1.) to minimise routing between HBs for computing the sum, and
2.) to efficiently broadcast the input and FSM control logic across a
large area of the chip.

3.3 Hadamard Block
Each HB contains an array of b PEs, a switch, and a module for
computing the HB sum and partial update. This is shown in Fig-
ure 1b. We created HBs with the aim of developing local structure
between PEs for implementing the FWHT at high clock rates. A
special emphasis is placed on the FWHT because its parallel imple-
mentation has data dependencies which require communication
between multiple PEs. Below, we discuss design considerations for
the FWHT and Sum & Update unit which maximise the frequency
and scalability of Fastfood.

The standard architecture for a radix-2 4-point FWHT is the fully
pipelined version given in Figure 2a. It is constructed by cascading
log2 d stages of d PEs and connecting them in a butterfly structure
to directly implement the required switching behaviour. This design
executes the FWHT in a minimum number of cycles, but requires
large amounts of additional hardware that are not reused. Given that
the rest of Fastfood can be computed using a linear systolic array,
we chose to implement the d-point FWHT by reusing one stage of b
PEs over multiple cycles, like Figure 2b. This design has a compact
and regular structure, which makes it well suited to processing
large amounts of data at a high frequency. The only overhead is
the switching network which is used to send intermediate results
between log2 b PEs. We implemented the switch using a multiplexer
in each PE, and connected the PEs directly. For increasing b, the
switch size also increases. We experimented with b = {4, 8, 16, 32},
above which we observed a degradation in frequency due to routing
congestion.

The Sum & Update unit routes the FSM control logic and also
includes some logic to implement several instructions not allocated
to the PEs. Figure 3 gives a dataflow diagram of the operations
involved. We use log2 b adders to compute the middle loop of (6).
Each HB requires the results from every other HB to know the
update (outer loop of (6)). These are passed around the ring array
and accumulated here. The Sum & Updatemodule then includes one
subtract and multiply unit for computing part of update equation
(5). The result is written back to each PE where the weights are
ultimately updated. This creates a small resource inefficiency and

3



PE
1

PE
2

PE
b-1

PE
b

+

+

+
+

HB
j+1

-

HB
j-1

x

y
i η

PE
1

PE
2

PE
b-1

PE
b

Compute 
f(x) 

Update
equation 

Figure 3: Dataflow diagram of the HB sum and update mod-
ule (data moves from left to right)

Instr. ALU Active
Cycles

Instr. Active
Cycles

Proc. Elem. (PE) Had. Block (HB)
Mul B N k Adder-tree loд2b
Mul Y 3k Add h
Perm. N k Sub (y− f (x)) 1
Add Y 2k log2 d+k Mul (η) 1
Cosine N k
Mul-Add Y k + 1

Table 1: Fastfood instruction count for resources con-
strained in each PE and HB

means the PEs are idle for a short period of time. However, it only
equates to an extra 1×DSP and between 2-5% in LUTs and FFs,
while the PEs are idle for only 1% of total processing time.

3.4 Processing Element
The basic structure of each PE is given in Figure 1c. It consists of
one Arithmetic Logic Unit (ALU), two scalar operands, and a control
mechanism for reading and writing to memory. Computation can
only begin once a full input vector has been loaded into PE memory
and the previous computation is finished. The inBuffer shift register
is used to buffer the input and allow the loading and computation
stages to be overlapped. Below, we discuss other important elements
of the Fastfood PE:

Table 1 summarises the compute requirements of each PE as
a list of instructions. As per the table, not all the functionality is
implemented with resources confined to the ALU. For instance, the
first Fastfood operation is a binary multiplication involving inBuffer
and a random variable B ∈ {−1, 1} (in Eq. 2). We implemented this
as a sign change using 1-bit from a 16-bit Linear Feedback Shift
Register (LFSR). The Mul and Add instructions are implemented
using 1×DSP slice and 1×adder in the ALU, and for Mul-Add we
use an additional adder for the accumulation stage (i.e. sum). The
majority of Fastfood compute time is spent iteratively reusing the
ALU adder. In fact, approximately 70% of total cycles are dedicated to
Adds. The cosine function is implemented using a 256-point look-up
table stored in a shared Dual-Port RAM. We read a result, i.e. cos(x),

using an address generated from x , where x is an intermediate
result from the Seq. Mem shift register.

The FWHT involves 2k log2 d add and subtract operations per
PE. We reuse the ALU adder and perform sign switching on the
top operand using the Sign Generator block. The hin and hout I/O
ports connect multiple PEs together, and MuxA switches between
them. For local permutations (or switching), the Address Generator
develops the memory access patterns required. The size of MuxA
scales as O(log2 b) which for b = {4, 8, 16, 32} can be implemented
efficiently with one layer of LUTs. The address and sign permuta-
tions are the same for each PE and can be generated using several
counters and bit operations. This only contributes an additional
30 LUTS and 26 FFs for the Address Generator and Sign Generator
modules combined. Given the small overhead, we have included
these control units in every PE. This reduces the compute density
of each PE, but removes a large fan-out problem which would likely
require multiple stages of pipeline registers. Fastfood involves a
data transformation from IRd → IRn , where n > d . Our architecture
distributes this computation across p PE’s so that each PE works on
k = n/p dimensions, also known as basis functions. This requires
k-length blocks of memory for intermediate results and Fastfood
parameters G, S and α . We write intermediate results back to Se-
quential Memory every cycle, and load the Fastfood parameters to
the Dual-Port RAM once at startup. For the FWHT switch, we read
and write to a double buffer in Dual-Port RAM to avoid pipeline
stalls. Therefore, including the inBuffer and 256-point cosine look-
up table, each PE requires (k + k + 3k + 2k + k + 256) ×bitwidth of
memory. The sequential memories are either implemented using
two LUT-based shift registers (i.e. SRL) or the Seq. Mem shift regis-
ter is also mapped to a BRAM. In Section 4, we present results for
both configurations. The choice depends on whether we prefer a
LUT-constrained or BRAM-constrained design. The PEs are fully
pipelined. There are 4 register stages for reading and writing to
memory, between 3 and 6 on the ALU, 1 on the ALU operands, 1 on
the output, and 1 on the MuxB inputs. This minimises the number
of logic levels between registered signals and keeps the frequency
high.

3.5 Scalability: I/O and Latency
The top-level module takes 1× 18-bit feature as input per cycle.
The data is loaded through the array via a d-length shift-register,
where d is the input dimensionality. Given that load and compute
stages operate in parallel, one result can be retrieved every tc cycles,
where tc is the total number of compute cycles given below:

tc = 8k + 2k log2 d + log2 b + 2h + 9 (7)

The above equation is taken fromTable 1 for prediction and training,
except a few extra cycles are added because the HB Control unit is
not fully pipelined. The latency is thus tc + d and the I/O required
is 18d/8 bytes everymax(d, tc) cycles.

For large d and d > tc , the throughput is limited by loading of
the input data. This equates to 18-bits per cycle, or 9Gb/s, assuming
the memory bandwidth is not the bottleneck. This can be improved
by broadcasting more of the input data in parallel. For fast designs,
p should be large so a small k can be distributed to each PE.

4



LUT
Total
(203k)

LUT
Mem.
(112k)

FFs
(406k)

BRAM
(1080)

DSP
(1700)

Max.
PEs
(p)

FF-L
k=64 323 98 524 1 1 610
k=128 398 170 531 1 1 494
k=256 547 314 540 2 1 355

FF-B
k=64 282 70 590 2 1 540
k=128 327 107 603 2 1 540
k=256 405 180 615 3 1 360

Table 2: PE resource utilisation for LUT and BRAM con-
strained 18-bit designs on a Kintex XCU035

4 RESULTS AND EVALUATION
Our designs were written in Chisel HDL [1] and will be made
available on our github repository. They were synthesised and
implemented using Xilinx Vivado 2017.2, targeting a Kintex Ul-
trascale XCKU035-FBVA676-2-e FPGA. We present results for two
designs: one which is LUT-constrained (FF-L) and the other BRAM-
constrained (FF-B). In the FF-L design, both shift registers are
mapped to LUT SRL primitives, and in the FF-B design, Seq. Mem
is implemented with a BRAM.

4.1 Resource Utilisation
Table 2 shows resource utilisation of FF-L and FF-B for an 18-bit
design. Area scales with k because of two k-length shift-registers,
inBuffer and Seq. Mem. The last column shows the maximum num-
ber of PEs that can be placed on the targeted device. These numbers
are based on 97% of total LUTs, 99.8% of memory configurable LUTs,
and all available BRAMs. The remaining resources are attributed
to the FSM and HB modules, which contribute an additional 141
and h×617 LUTs respectively. Our designs are restricted to three
BRAMs per PE, one of which is only required for k = 256. Larger
k can be supported, but this requires doubling memory resources
since k scales as a power of two. In terms of parallelism, FF-L can
support the most PEs for k ≤ 64, FF-B is preferred for k = 128, and
the designs are similar for k = 256.

4.2 Problem Size
The maximum problem size of the present design is compared
with other online kernel methods in Table 5. For FF-B and FF-
L, this translates to a 103 times increase in input dimensionality,
and modelling capacity up to 90K basis functions. The massive
modelling capcity allows our design to be used in problems with
many input examples, m, because they approximate the kernel
function for large dictionary sizes, N . Exact kernel methods such
as KNLMS, KRLS and NORMA are intractable for datasets such as
CIFAR-10 [7] because N is very large. In contrast, Fastfood with
n = 16, 384 basis functions achieves an accuracy in the top two for
RBF kernel representations [8]. This suggests that our architecture
with n = 90K basis functions can solve problems even larger than
CIFAR-10, which hasm = 50, 000 images and d = 3, 072 dimensions.

Designs achieving
Freq=500 MHz

For max.
resources in
Table 2

LUT
%

BRAM
%

PEs
(p)

PEs
(p)

Freq.
(MHz)

k=64 b=32 91.6 50.4 544 576 483
b=64 67.9 35.6 384 576 416

k=128 b=32 92.0 41.5 448 480 487
b=64 54.8 23.7 256 448 465

k=256 b=32 89.2 59.3 320 320 508
b=64 53.3 35.6 192 320 476

Table 3: Clock frequency for an 18-bit FF-L design - Seq. Mem
implemented using a LUT SRL primitive

Designs achieving
Freq=500 MHz

For max.
resources in
Table 2

LUT
%

BRAM
%

PEs
(p)

PEs
(p)

Freq.
(MHz)

k=64 b=32 82.1 94.8 512 512 501
b=64 66.0 71.1 384 512 465

k=128 b=32 88.3 88.9 480 512 487
b=64 59.7 59.3 320 512 455

k=256 b=32 76.6 97.8 352 352 501
b=64 43.6 53.3 192 320 468

Table 4: Clock frequency for an 18-bit FF-B design - Seq. Mem
implemented using a BRAM

4.3 Clock Frequency
Table 3 and 4 show the effect of design configurations on the clock
frequency. Importantly, both tables show that a high operating
frequency can be achieved for designs very close to the resource
constraints given in Table 2. For b = 32, clock rates at or above 500
MHz can be sustained right up to p = 544, p = 448 and p = 320 for
FF-L, and p = 512, p = 480 and p = 320 for FF-B. This corresponds
to utilisation rates between 89-98% of available resources. Further-
more, the frequency is only slightly reduced to 483-495 MHz for
PEs which are even closer to the resource limit. Both tables high-
light the degradation in clock frequency observed for any b > 32.
This occurs because 1.) routing congestion increases between the
PEs and Sum & Update unit, and 2.) the size of each HB doubles
in size which de-localises connections between them. Additional
pipeline registers could manage both these issues, but on large de-
signs, this creates even more congestion between CLBs. Instead we
chose an architecture, where b <= 32, which guarantees an operat-
ing frequency close to 500 MHz for varying problem sizes. All of
our designs were synthesised with cross module LUT optimisation
turned off. This preserves the local structure in our architecture,
and results are up to 20% faster.

4.4 Speed-Up and Accuracy
Table 5 gives the speed-up of our FPGA implementation over a CPU.
The execution time for the CPU version comes from the original

5



(d,n,B) Lat Fmax Exec Tput
(cyc) (MHz) (ns) (Gb/s)

[5] (V7) (8,16,32) 207 314 3.18 80.4
[12] (V7) (8,200,18) 10 127 7.87 18.3
[10] (SV) (-,128,32) 4396 157 28000 -
[8] (CPU) (1024,16.4K,32) - - 580000 0.06
Ours (V7) (1024,16.4K,18) 1893 432 23700 7.77
Ours (KU) (8192,90.1K,18) 16930 508 17200 8.57
Ours (V7) (8192,98.3K,18) 16934 413 21167 6.97

Table 5: Comparison of our implementation (FF-B only)
with other online kernel methods (B=bit width, Lat=latency,
Tput=throughput, Exec=execution time, V7=Virtex 7,
SV=Stratix V, and KU=Kintex Ultrascale)

Fastfood publication by Le et al. [8] and is only for prediction.
The authors’ code is written in C++ and uses the Spiral library
for the FWHT. While details of the CPU are unclear from Le et al.
[8], Spiral provides cache optimised C/C++ code which uses SSE
vector instructions and up to four processor cores [4]. For a fair
comparison, we chose a previous generation Virtex 7 FPGA as the
target for our design. The problem has d = 1, 024 and n = 16, 384,
therefore, our implementation consists of 16 HBs, each of which
compute a 1024-pt FWHT. For an FF-L design, the device operates at
432 MHz and has capacity for p = 985 PEs. However, only p = 512
could be used because p scales exponentially on fixed problem sizes.
For b = 32 and k = 32, the number of compute cycles for prediction
is tc = 869 (from Eq. 7). Therefore, our design is I/O constrained
(i.e. tc < d), and one result can only be obtained every d cycles.
The final result is a 245× speed-up although only 52% of available
resources are used. We compared the mean square error (MSE)
of floating point and fixed point versions, on the Mackey Glass
regression benchmark [13] using a model consisting of n = 16, 384
and d = 1, 024. Competitive learning accuracies were achieved for
floating point (MSE= 0.07), using 24-bit (MSE= 0.09) and 18-bit
(MSE= 0.12) fixed point, although convergence of 18-bit is slower
on average. This is only aminor problem since the additional latency
gets hidden over time during online training.

4.5 Summary
Our implementation of Fastfood occupies a unique part in the design
space of online kernel methods. This is observed in Table 5 2. The
reported Fastfood configurations achieve an excellent combination
of problem capacity and throughput for an 18-bit implementation.
This yields 3 orders of magnitude increase in input dimensionality,
8.57 Gb/s of throughput, and a large number of basis functions. The
last point gives us the ability to approximate much larger dictionary
sizes than can otherwise be supported in [5][12][10].

Compared with Random Kitchen Sinks that haveO(nd) memory
complexity, our Fastfood design only requires storage for 3n param-
eters. This means that basis functions up to 1.54GB (i.e. n×d×18/8)

21.) Input latency is included for Fastfood and KRLS [10] but not KNLMS [5] and
NORMA [12], 2.) n denotes both the number of basis functions and dictionary size,
whereas in the text, N denotes the dictionary size and is applied only in the context
of KNLMS, NORMA and KRLS

can be approximated using only 0.58MB, equating to a compres-
sion factor of 2655×. Future work will investigate how this result
can be reinterpreted for DNNs, where state of the art compression
factors are around 10× for full precision weights [6]. The main
difference being that basis functions are learned in DNNs, whereas
in Fastfood, they are randomly sampled from a distribution which
closely approximates a kernel function.

5 CONCLUSION
This paper demonstrated the utility of employing the Fastfood al-
gorithm for non-linear regression problems. Such an approach can
be used to reduce the hardware requirements of kernel methods
in applications demanding energy efficiency and real-time learn-
ing. A novel hierarchical systolic array architecture was described
for minimising data transfers between processing elements in the
computation of Fastfood. This utilised an efficient implementation
of the Fast Walsh Hadamard Transform (FWHT), and our architec-
ture is compatible with other fast transforms, such as the FFT. The
reported design can sustain 500 MHz clock rates while supporting
problems with an input dimensionality 103 times larger than other
online kernel methods. Our work paves the way for real-time large-
scale learning applications in control, communications and signal
processing.

REFERENCES
[1] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,

Rimas Avižienis, JohnWawrzynek, and Krste Asanović. 2012. Chisel: constructing
hardware in a scala embedded language. In Proc. DAC. ACM, 1216–1225.

[2] Ronan Collobert and Samy Bengio. 2001. SVMTorch: Support vector machines
for large-scale regression problems. JMLR 1, Feb (2001), 143–160.

[3] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. Binarycon-
nect: Training deep neural networks with binary weights during propagations.
In Proc. NIPS. 3123–3131.

[4] Franz Franchetti, Markus Püschel, Yevgen Voronenko, Srinivas Chellappa, and
José M. F. Moura. 2009. Discrete Fourier Transform on Multicores: Algorithms
and Automatic Implementation. IEEE Signal Processing Magazine, special issue on
“Signal Processing on Platforms with Multiple Cores” 26, 6 (2009), 90–102.

[5] Nicholas J Fraser, Duncan JM Moss, JunKyu Lee, Stephen Tridgell, Craig T Jin,
and Philip HW Leong. 2015. A fully pipelined kernel normalised least mean
squares processor for accelerated parameter optimisation. In Proc. FPL. IEEE,
1–6.

[6] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[7] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. (2009).

[8] Quoc Le, Tamás Sarlós, and Alex Smola. 2013. Fastfood-approximating kernel
expansions in loglinear time. In Proc. ICML, Vol. 85.

[9] Peter Milder, Franz Franchetti, James CHoe, andMarkus Püschel. 2012. Computer
generation of hardware for linear digital signal processing transforms. ACM
TODAES 17, 2 (2012), 15.

[10] Yeyong Pang, Shaojun Wang, Yu Peng, Nicholas J Fraser, and Philip HW Leong.
2013. A low latency kernel recursive least squares processor using FPGA tech-
nology. In Proc. FPT. IEEE, 144–151.

[11] Ali Rahimi and Benjamin Recht. 2007. Random features for large-scale kernel
machines. In NIPS. 1177–1184.

[12] Stephen Tridgell, Duncan JMMoss, Nicholas J Fraser, and Philip HW Leong. 2015.
Braiding: A scheme for resolving hazards in kernel adaptive filters. In Proc. FPT.
IEEE, 136–143.

[13] Steven Van Vaerenbergh. 2012. Kernel methods toolbox KAFBOX: a Matlab
benchmarking toolbox for kernel adaptive filtering. Grupo de Tratamiento Avan-
zado de Senal, Departamento de Ingenierıa de Comunicaciones, Universidad de
Cantabria, Spain (2012).

6


	Abstract
	1 Introduction
	2 Background
	2.1 Machine Learning Regression Using Kernel Methods
	2.2 Fastfood
	2.3 Kernel Methods on FPGA

	3 Architecture and Design
	3.1 High-Level Description
	3.2 Top-Level Module
	3.3 Hadamard Block
	3.4 Processing Element
	3.5 Scalability: I/O and Latency

	4 Results and Evaluation
	4.1 Resource Utilisation
	4.2 Problem Size
	4.3 Clock Frequency
	4.4 Speed-Up and Accuracy
	4.5 Summary

	5 Conclusion
	References

