
CUBE: A 512-FPGA CLUSTER

Oskar Mencer, Kuen Hung Tsoi, Stephen Craimer,
Timothy Todman and Wayne Luk

Dept. of Computing, Imperial College London
{o.mencer,khtsoi,s.craimer,tjt97,wl}@doc.ic.ac.uk

Ming Yee Wong and Philip Heng Wai Leong

Dept. of Computer Science and Engineering
The Chinese University of Hong Kong
{mywong,phwl}@cse.cuhk.edu.hk

ABSTRACT
Cube, a massively-parallel FPGA-based platform is pre-

sented. The machine is made from boards each containing
64 FPGA devices and eight boards can be connected in a
cube structure for a total of 512 FPGA devices. With high
bandwidth systolic inter-FPGA communication and a flex-
ible programming scheme, the result is a low power, high
density and scalable supercomputing machine suitable for
various large scale parallel applications. A RC4 key search
engine was built as an demonstration application. In a fully
implemented Cube, the engine can perform a full search on
the 40-bit key space within 3 minutes, this being 359 times
faster than a multi-threaded software implementation run-
ning on a 2.5GHz Intel Quad-Core Xeon processor.

1 Introduction
Reconfigurable gate array technology has been used in many
areas for both research and industrial applications; examples
include cryptographic systems, architectural exploration, mul-
timedia processing, physical or financial simulation and sys-
tem emulation. The major advantage of reconfigurable plat-
forms over general purpose processors and ASICs is the bal-
ance between circuit level specialization and programming
flexibility.

The available resources in field programmable gate ar-
ray (FPGA) devices increase each year due to Moore’s Law
with the addition of embedded RAM, DSP block and proces-
sor core, but the demand for more programmable resources
is even higher as more sophisticated systems are being im-
plemented. A common solution is to use multiple FPGA
devices for a single design. In such an environment, design
partitioning, data communication and logic configuration be-
come increasingly complicated with the number of devices
employed.

Although research on computing systems with large num-
bers of parallel ICs or large numbers of processing elements
on a single IC has been well studied, studies with large num-
bers of reconfigurable devices have not been fully explored.
Practices applied to systems with small numbers of devices
are not applicable to systems with hundreds of FPGAs. In
particular, issues concerning the clock distribution scheme,
data communication paths, configuration requirements and
the increasing cost of system debugging requires new ideas

and techniques on both hardware construction and develop-
ment flow.

The lack of a cost effective massive FPGA cluster frame-
work has become an obstacle for researchers exploring the
properties and applications on this class of system. In this
paper, we describe a massively-parallel reconfigurable plat-
form designed for both advancing research in the field and
solving real-world applications. The major contributions of
this work include:

• A novel massively-parallel FPGA architecture, called
the Cube, is proposed. The architecture balances scal-
ability, flexibility and fault tolerance, providing a low
cost, high density and versatile research platform for
large scale parallel reconfigurable clusters.

• A Single Configuration Multiple Data (SCMD) pro-
gramming paradigm is used in the Cube for efficient
FPGA configuration. Using SCMD, all 512 FPGAs
can be programmed to the same bitstream in parallel
within a few seconds which is suitable for constructing
large scale systolic processor array.

• A prototype of the Cube platform was built and tested.
The hardware consists of multiple boards each host-
ing 64 Xilinx FPGA devices. The complete system is
a 512-node FPGA systolic array with 3.2 Tbps inter-
FPGA bandwidth. A standard I/O interface and simu-
lation framework are also provided.

• A key search engine was implemented in the Cube
to demonstrate the computing power of the system.
With 49152 independent key search cores, it can fully
search the 40-bit key space of the RC4 encryption al-
gorithm in 3 minutes.

Section 2 reviews previous work on massively-parallel
processing (MPP) platforms. Section 3 details the architec-
ture and design details of Cube platform. Section 4 presents
a fully functional 64-FPGA module, the critical component
of the Cube platform. Section 5 describes and evaluates an
RC4 key search engine for the Cube. Finally, Section 6
presents conclusions and describes future directions of the
Cube project.



2 Related Work
The basic idea of MPP is to partition the problem into sub-
tasks and distribute them to different nodes called processing
elements (PEs). Total processing time is reduced as compu-
tations in the PEs are in parallel. This section reviews some
contemporary MPP systems.

In 1994, the first prototype of the GRAPE-4 [1] system
for computing the N-body problem in astrophysics was pre-
sented. In 1995, the measured peak performance of a com-
pleted GRAPE-4 system was reported as 1.08 Tflops [2].
The system had 40 modules, each carrying 48 Hermite Ac-
cceleRator Pipeline (HARP) processors. The HARP was
a dedicated ASIC for gravitational force computations run-
ning at 15MHz. All modules in GRAPE-4 were connected
to a central host station through a shared bus. In 2002, the
GRAPE-6 system with 1728 to 2048 processors achieved 64
Tflops [3]. Each processor in GRAPE-6 had 4 independent
force pipelines. The processors were connected in a hierar-
chical network including switch boards and Gigi-bit Ether-
net. In 2005, an SIMD architecture, Network on Chip (NoC)
and other approaches were proposed for the new GRAPE-
DR system [4] which targeted Pflops performance. The cur-
rent GRAPE hardware designs are specialized for gravita-
tional force computations and do not support more general
applications.

The Berkeley Emulation Engine 2 (BEE2) system was
developed for event-driven network simulation in 2004 [5].
In BEE2, five Xilinx Virtex-II Pro 70 FPGAs were hosted on
a single Print Circuit Board (PCB). A star topology was used
to connect the four computational FPGAs in a 64-bit ring
and a control FPGA as the center of the star network. All
connections between FPGAs and on-board memories ran at
200MHz. Computationally intensive tasks ran on the outer
ring while the control FPGA ran a Linux OS and managed
off-board I/Os. The asymmetry between the control FPGA
and computation FPGA complicated the programming model.

In 2006, COPACOBANA, a low cost cryptanalysis sys-
tem using large numbers of FPGAs was described [6]. In the
system, 6 Xilinx Spartan-3-1000 FPGAs were grouped in a
DIMM module. All modules were connected by a shared
64-bit data bus on a DIMM backplane. In a 2007 imple-
mentation [7] the system running at 136MHz can search a
full 56-bit DES key space in 12.8 days. New versions of
the hardware described in 2008 used more powerful Xilinx
Virtex-4 FPGAs. This system is scalable in physical form
but not logically. Users can add more DIMM modules as
needed to expand the system but are limited by the global
shared bus. Unlike cryptanalysis, most applications require
communication between PEs, where the shared bus architec-
ture becomes a bottleneck.

In 2007, Nvidia released their C compiler suite, CUDA,
for Graphic Processing Units (GPU) [8]. Users can use the
standard C language to utilize the massively-parallel thread-

ing feature in GPU for general purposes computation. In a
GPU chip, simple PEs executing linear threads communicate
to each other through shared memory. GPUs are increasingly
attractive to both academia and industry due to ease of pro-
gramming and high-performance floating point units. The
scalability of GPUs is largely limited by their dependency
on a host computer system; data communication overhead
between the host and GPU through a PCIe interface makes
it difficult to integrate large numbers of GPU chips with low
latency over a dedicated high speed network.

3 System Architecture
In this section, the details of the Cube architecture are pre-
sented. Fig. 1 shows the block diagram of a complete Cube
platform. Each FPGA is considered as an individual PE. All
PEs are connected in a systolic chain with identical inter-
faces between them. There are no storage components in the
system except for the PEs’ internal memories. Also, there
are no global wires for data communication and clock distri-
bution. All FPGAs can be configured with the same design
concurrently. Each PE accepts data from the previous one,
processes them and passes them to the next PE. There are
several advantages to this approach.

- Scalability: A centralized shared bus/memory archi-
tecture is not suitable for scaling up to massive amount
of elements due to resource conflicts. The cost of
full point-to-point topologies such as cross-bars in-
creases exponentially with the number of PEs and thus
become prohibitively expensive in systems with hun-
dreds of PEs. In the Cube platform, a linear systolic
interface is used which has cost which is linear with
the number of PEs.

- High Throughput: Synchronizing high frequency clocks
between 64 FPGA devices on a single board or across
multiple boards is difficult. In the Cube system, short
tracks between neighboring FPGA devices for clock
and data distribution can easily achieve over 100MHz
clock rates for inter-PE communication. Also, mini-
mizing the overhead of handshaking and traffic switch-
ing results in low latency and deterministic communi-
cation channels.

- Rapid Development: Design partitioning and work-
load distribution in a large scale FPGA cluster are eased
by a unified interface and by each PE playing a sym-
metric role in the system. All FPGAs can be pro-
grammed to the same configuration making for con-
stant time configuration, rather than having time pro-
portional to the number of PEs.

- Low cost: On-board tracks in the Cube are less ex-
pensive than the high speed switches and backplanes
employed previous systems. Also, the regular layout
in the Cube avoids the expensive and time consuming



(7,7)

PLD

PE PE PE PE PE PE PE PE

PEPEPEPEPEPEPEPE

PLD

PLD
PE PE PE PE PE PE PE PE

PEPEPEPEPEPEPEPE
PLD

PLD

PE PE PE PE PE PE PE PE

PEPEPEPEPEPEPEPE

PLD

PLD

PE PE PE PE PE PE PE PE

PEPEPEPEPEPEPEPE

PLD

Board 1To Host/Next Board

From Host/Previous Board

Board 2
Board 3
Board 4
Board 5
Board 6
Board 7
Board 8

PE
Xilinx Spartan 3
XC3S4000
−5
FG676

PE
Xilinx Spartan 3
XC3S4000
−5
FG676

TMS/TCK etc.CCLKDIN

DAT_IN
AUX_IN

64
8

SYS_IN
SYS_CK

4

TDI

64
8

4

CLK_IN

(0, 7)(0, 6)

64
8

4

AUX_OUT
CLK_OUT

SYS_OUT
SYC_CO

TDO

GPIO

32 32

DAT_OUT

OSCFPGA signals
CPLD signals
Configuration Signals

(0,6) (0,7)(0,0) (0,1) (0,2)

(2,0)

(1,7) (1,2) (1,0)

(7,0)

Fig. 1. Cube architecture.



processes of testing and verifying the signal integrity
of the boards.

3.1 The FPGA Systolic Array

Each module in the Cube platform hosts 64 Xilinx FPGAs
(XC3S4000-5-FG676) arranged in an 8 by 8 matrix as shown
in Fig. 1. Each FPGA has a unique ID indicating the logi-
cal X-Y location of the device. Eight FPGAs are grouped
together in a row and have independent configuration inputs
and power supplies. The complete system consists of 8 con-
nected boards in a cabinet forming an 8 × 8 × 8 cluster of
512 FPGAs, and thus named Cube.

There are two systolic buses in the system: the PE bus
is the major data communication channel between PEs and
the SYS bus is used for system control. Each PE has a 64-bit
data bus I/O (DAT), an 8-bit auxiliary bus I/O (AUX) and a
dedicated clock line I/O (CLK), connecting the previous PE
to the next PE. The SYS bus, with 1 dedicated clock line
and 4-bit data I/Os, goes through all PEs and CPLDs. All
these buses connect adjacent PEs only. These short point-to-
point parallel buses significantly simplify the programming
model and higher inter-PE bandwidth is achieved. The re-
quirements on PCB layout and FPGA I/O interface are also
relaxed for this topology compared to gigahertz serial com-
munications in other designs. On the other hand, the sys-
tolic chain enables multiple boards to be cascaded for bet-
ter scalability without reducing the I/O clock rate. The PE
bus was designed to work at 100MHz and thus providing
6.4Gbps data bandwidth between PEs with additional con-
trol and handshaking signals on the AUX bus.

All these buses are freely available for user designs. The
buses are also routed from/to external headers for communi-
cation between host and board or between multiple boards.
In most applications, CLK_IN is driven by previous PE or
external source from headers. The clock is then replicated
for use internally and forwarded to the next PE through a de-
lay locked loop digital clock manager (DCM) in the FPGA.
In the design, the DAT and the AUX buses can easily match
the wire length of the clock line for improved I/O thoughput.

The internal logic of the PE can only be used after the
input clock source is stable. There is a delay between DCM
reset and when the clock output is usable. The long distri-
bution lines of the global reset and the long cascaded chain
of 64 DCMs make it impossible to synchronize the DCM
locking sequence of a 64-FPGA module concurrently. To
solve this problem, the LOCKED output of the current DCM
is used to reset the following DCM. This proceeds in a se-
quential fashion as described in [9]. Global synchronization
of clock signals is feedforward in nature and skew is depen-
dent on the performance of the DLLs. An additional 25MHz
oscillator is provided in each row for increased flexibility.
This clock source is broadcasted to the row and shared by
both FPGAs and the row associated CPLD.

3.2 Configuration of FPGAs

In the Cube platform, different FPGA configuration schemes
are provided under SCMD for minimum configuration time
and maximum flexibility. Considering the number of FPGAs
and the size of the board in our design, commodity program-
ming equipment cannot provide sufficient driving power to
configure all devices concurrently. Thus a CPLD (Xilinx
CoolRunner-II XC2C256-VQ100) is installed in each row
to control and drive the configuration signals. Both JTAG
and Slave Serial (SS) programming modes are supported by
selecting the M1 input to the FPGA through the CPLD. This
can be controlled by on board DIP switches or external host
through the SYS bus. The CPLDs are programmed by a sep-
arated JTAG chain.

Slave serial (SS) mode provides the fastest way to con-
figure all FPGAs in parallel. The SS configuration signals
are sampled and buffered by internal Schmitt triggers in the
CPLDs and thus all associated FPGAs receive clean and syn-
chronized signals. As shown in Fig. 2, there are three output
links from each CPLD for SS configuration. Two of these
links broadcast the signals to FPGAs in the odd and even
position of the row, while the third link sends the SS signal
to the CPLD of the next row. This provides extra flexibil-
ity for enabling user to program different configurations in
odd and even FPGAs. It is also possible to program different
configurations to different rows of FPGAs.

FPGA0 FPGA2

FPGA1

FPGA4 FPGA6

FPGA3 FPGA5 FPGA7

CPLD

SS Signals

CPLD

Fig. 2. Slave Serial Configuration Mode in Cube.

JTAG mode allows users to program individual FPGAs
and read back internal values. Using JTAG in conjunction
with SS mode enables users to configure most FPGAs in par-
allel rapidly and change the contexts of some FPGAs later.
For example, it may be necessary to change the head and tail
of the systolic chain in certain applications.

3.3 External Interface

The first and the last FPGAs in the systolic chain are con-
nected to external headers on the 64-FPGA board. Both the
PE and the SYS buses are available. For both input or out-
put, there are 78 signal lines grouped into three standard IDE
headers which can be connected to external devices or an-
other module in the Cube through standard IDE ribbon ca-
bles.

There are also three pairs of programming headers for
CPLD JTAG, FPGA JTAG and FPGA Slave Serial configu-
ration. By bridging the output headers of the current mod-
ule to the input headers of the next module, a single set of
programming cables can be used to configure 512 FPGAs



concurrently.
Each pair of FPGAs has an extra 32-bit (EXT) bus. Us-

ing this channel, pairs of FPGAs can be grouped to form a
tightly coupled PE for larger designs which cannot fit in a
single FPGA. This bus can also be used as general purpose
IOs (GPIOs) shared by the pair for debugging or external
connections as all 32 signals are connected to high density
headers.

To provide a simple way to monitor the internal status
of FPGAs without extra equipment, each FPGA drives four
LEDs of different colors (red, green, yellow and orange). In
addition, each CPLD is connected to an 8-bit DIP switch and
eight LEDs for controlling and debugging in the field.

3.4 Fault Tolerance

Installed electronic devices can be damaged by high Elec-
trostatic Discharge (ESD), high temperature and/or physical
stress. As all PEs are connected in a systolic chain, any mal-
functioning FPGA in the chain will break the data path and
render the system unusable for most applications. Replacing
the soldered FPGA device is expensive due to the high pin
count Ball Grid Array (BGA) packages employed and close
component placement. The cost of large BGA sockets is also
too high and occupies too much real estate for production.

To address this issue, a row-skipping scheme is imple-
mented which allows pairs of rows to be bypassed. By set-
ting a pair of tri-state switches as the small triangles shown
in Fig. 1, users can configure the outputs of an odd row to
be either the outputs from the last PE in an odd row or the
inputs to the first PE in a grouped even row. When inputs
are fed through directly to the outputs, the pair of rows are
skipped in the design without affecting the rest of the board.
Besides the PE and SYS buses, all programming signals can
also skipped through these switches. Users can now work
around damaged FPGAs in arbitrary position without trash-
ing the whole board with 64 FPGAs. It also enables users to
reduce power consumption when not all FPGAs are required
for the application.

4 Cube Prototype
The major component of the Cube platform is the 64-FPGA
module. In the prototype Cube system, two of these mod-
ules were built for experiments and evaluation. Fig. 3 shows
a photograph of a fully populated 64-FPGA module which
was programmed for system connectivity testing.

4.1 The 64-FPGA Module

The PCB hosting 64 Xilinx Spartan-3 FPGAs is 320mm ×
480mm in size. An 8-layer FR-4 PCB, four layers were used
for power/ground plans and another four for signal routing.
Following the standard BGA escape pattern in [10], 5mil
and 6mil tracks are used for signal routing.

On the right hand side of the module, two 20-pin ATX
power sockets are installed as the main power inputs. For

Fig. 3. A 64-FPGA Module in Action.

each row, a PTH05030W DC/DC switching power module
converts the +5.0V input to the 1.2V VCCINT supply. For
each ATX power socket, two LDO voltage converters are
used to provide the 2.5V VCCAUX and the 1.8V VCCC-
PLD from the +3.3V input. The +3.3V input source is used
directly as the VCCIO33 supply. Negative and +12V in-
puts from the ATX Power Supply Unit (PSU) are not used.
This scheme can provide sufficient power for 90% of the
LUTs/FFs, 100% of the BRAMs and 100% of the DSPs of
all FPGAs to switch at 200MHz, and all I/Os to switch at
100MHz. The switching probability was set to 33% except
that of LUT/FFs was set to 12%.

The 64-FPGA modules are kept in a 12U 19 inch3 rack
cabinet. Although only passive cooling heat sinks are in-
stalled in the modules, fans are mounted on the cabinet for
system level active cooling. All FPGAs on all the modules
are tested to be operational and can be configured in both
JTAG and SS mode successfully. In SS mode, all 64 FP-
GAs in a module can be configured in less than four sec-
onds. We also tested that the PE bus can run at 100MHz
with an external clock source. In the initial setup, two Xilinx
V2P XUP boards [11] were used for I/O interfacing. The
XUP boards provide various interfaces for external devices
including SATA, Ethernet, Flash and MGT. In practice, any
device with 40-pin IDE header in LVCMOS 3.3V I/O stan-
dard can be interfaced to the Cube system.

4.2 Development Environment

Programming using both VHDL and Verilog is supported by
the Cube platform via a set of standard templates. The tem-
plates include pin assignment in a UCF file, top level entity
(module) interface, clock/reset systems and user logic inter-
faces. Our designs are synthesized and implemented using
the Xilinx ISE 10.1i tool chain. Configurations are down-
loaded to the FPGAs through Xilinx iMPACT tools. The
RTL package also includes a parameterized simulation tem-
plate for simulating multiple PEs as in the real hardware.



UserLogic

IOCtrl

Output
FIFO

Input
FIFO

write

read
empty

req valid

full empty

read

write

PE[i]

full

PE_DAT_O
write

PE[i+1]

full

Input
PE_DAT_I

FIFO

Fig. 4. Default Interface Template.

In the provided template, the PE bus is interfaced to in-
ternal FIFOs as shown in Fig. 4. Users can change the con-
tents of UserLogic and IOCtrl blocks to realize specific
applications while leaving the interface intact. The (full,
empty) and (read, write) pairs between PEs automati-
cally transmit data at maximum bandwidth. Internally, the
IOCtrl block, provided by user, controls the data flow in
top level. If UserLogic requests data from previous PE,
the IOCtrl will assert the valid flag when a data address-
ing current PE appears at the output port of the input FIFO.
If UserLogic has data to send out, it will direct the data
through the output MUX. If there is no I/O request from
UserLogic, it will forward data from the input FIFO to the
output FIFO. This communication system facilitates packet
streaming and insertion between PEs where user logics need
to handle simple FIFO interface only. In addition, using
asynchronous FIFOs can provide a clean separation of clock
domains so that user logic can work at a clock rate higher
than the I/O interface.

5 Application: Key Search Engine
The RC4 encryption algorithm was developed by RSA Labs
in 1987. The algorithm is dated and proved to be insecure
due to lack of nonce information and correlation between
output stream and key. But the long history and ease of im-
plementation make it a widely used encryption algorithm in
both software and hardware systems. Applications include
WEP in 802.11, Secure Sockets Layer (SSL), Kerberos au-
thentication and Microsoft Office.

We constructed a RC4 key search engine based on the de-
sign in [12] to demonstrate the idea of MPP on the Cube plat-
form. The encryption algorithm is presented below where
S[] is a state array of a Random Number Generator (RNG).
The RNG output stream is then used to scramble messages
using the XOR operation.

/* initialization phase */
for i = 0 to 255 do

S[i]← i
end for
/* setup phase */
j ← 0
for i = 0 to 255 do

j ← (j + S[i] + key[i mod key length]) mod 256
swap S[i], S[j]

end for
/* RNG phase */
j ← 0
while has input do

addr

1 2

2

2

2

2

2

2

3

3

3

S

t

sum

Si

Sj

prev_j

B

A

data

j

k

i

0

key_b0

Fig. 5. RC4 Key Search Unit.

i← (i + 1) mod 256
j ← (j + S[i]) mod 256
swap S[i], S[j]
RNGout ← S[(S[i] + S[j]) mod 256]

end while

In our implementation, a dual port BlockRAM (BRAM)
is used to store two copies of the state array. The data path
of a single key search core is shown in Fig.5. Due to data
dependencies, the tasks in the setup loop and the RNG loop
must be performed sequentially in hardware. Thus at least
three clock cycles are required for a single iteration in these
loops. The numbers in circles along the signal lines in Fig. 5
indicate the activities of the circuit in different clock cycles.
In the 1st cycle, S[i] is read and j computed. key b0 is
the lowest byte from the 40-bit shifting key array. In the
2nd cycle, S[j] is read. The swap of S[i] and S[j] takes
place in the 3rd cycle. In 1st cycle of the setup phase, i is
used to initialize the other half of the BRAM through port B
as the initialization phase for next key. In the RNG phase,
S[(S[i] + S[j]) mod 256] is read at the 1st cycle of next it-
eration through port B. Then the resulting RNG byte is com-
pared against a pre-stored reference. If all RNG bytes match
the reference bytes, the current key under test is the encryp-
tion key and the checking process stops. Else, the MSB of
BRAM address is toggled in both ports and the checking pre-
cess restarts with a new key using the other half of BRAM
as state array which is initialized in the previous checking
process.

Since there are 96 BRAMs in a XC3S4000 device, we
implemented 96 key search cores in a single FPGA. The core
is self- contained and includes the data path of Fig. 5, the
associated control logic and a 40-bit local key. All cores
within the same PE work synchronously. The MSBs of the
local key are fixed to the ID of the PE while the LSBs are
initialized from 0 to 95 according to the position of the cores.
After a key is tested, the local key is increased by 96 for next
test until the encryption key is found.

Each PE has a global control unit with the same FSM
as that in the key search core except that no RNG stream is
generated and checked. This global control unit collects the
found signal from all the 96 cores on chip. Based on the ID



Table 1. Performance Comparisons.

64-FPGA Cube Xeon Cluster
Keys/Second 753M 6024M 2.1M 753M
Search time (s) 1460 183 524K 1460
No. of PE 64 512 4 1463
Frequency (Hz) 100M 100M 2.5G 2.5G
Power (W) 104 832 400 71.8K
Size (U) 1 9 1 180

of the PE, the position of the core which found the key and
the local key of the global control unit, the 40-bit encryption
key can be reconstructed and reported to the external host
through the 64-bit DAT bus. In this implementation, a single
key search core occupied 169 LUTs and 91 FFs. The com-
plete design, operating at 100MHz, consumes 14202 LUTs
(25%), 8968 FFs (16%) and 96 BRAMs (100%) in the Xilinx
FPGA device. The critical path is from the local key shifting
register output, key b0, through three multiplexers and two
adders to the addr input of the BlockRAM.

It takes (256 + n)× 3 clock cycles to check a key where
n is the length of referencing text. For n = 16, a core re-
quires 8.16µs to check a single key. There are 96 cores on a
single FPGA and thus 96× 64 = 6144 cores on board. One
64-FPGA module can search full 240 key space in 1460 sec-
onds. The total power of the key search engine running on a
single 64-FPGA module was measured to be 104W. On aver-
age, an optimized multi-threaded C version of the RC4 key
search engine compiled using GCC v4.1 with -O3 option
can check a key in 0.477µs on a 2.5GHz Intel Quad-Core
Xeon processor. Thus 145 hours for the full key space. The
experimental results show that a single module has similar
computing power as a cluster of 359 high-end CPU with sig-
nificantly reduced space and power consumption. With 512
FPGAs in the Cube, this task can be completed in around 3
minutes. The performance measurements and comparisons
are shown in Table 1. Here we assumed the cluster has 180
1U server boards each hosting two Quad-Core Xeon CPU.
The search time of searching a full 240 key was used in the
table.

6 Conclusion
We have presented the design, implementation and perfor-
mance evaluation of the Cube platform as a massively-parallel
reconfigurable cluster with 512 FPGA devices. The RC4
key search engine demonstrated the high computation den-
sity of the Cube over standard technology such as PC clus-
ters. Compared to previous efforts in reconfigurable MPP ar-
chitectures, the Cube platform has advantages in scalability,
flexibility, fault tolerance, accessibility and cost-performance
ratio. The fixed systolic connection of the Cube makes it less
flexible than existing FPGA clusters and limited the class of
suitable application. This is the trade-off for easy interfacing

and low system cost. Currently, multiple applications are be-
ing developed on the Cube platform including particle colli-
sion simulation, constrain solving and cellular automata. In
the future, we will extend our studies on the behaviors of
both scheduled, deterministic communication and random
event driven communication on this architecture. We will
also study automated design partitioning tools and work load
distribution for the Cube.

7 References
[1] J. Makino, M. Taiji, T. Ebisuzaki, and D. Sugimoto, “GRAPE

4: a one-Tflops special-purpose computer for astrophysical
N-body problem,” Supercomputing Proceedings, pp. 429–
438, Nov. 1994.

[2] M. Junichiro, T. Makoto, E. Toshikazu, and S. Daiichiro,
“Grape-4: A massively parallel special-purpose computer for
collisional n-body simulations.” Astrophysical Journal, vol. 4,
pp. 432–446, 1997.

[3] J. Makino, T. Fukushige, M. Koga, and K. Namura, “GRAPE-
6: Massively-parallel special-purpose computer for astro-
physical particle simulations,” Astronomical Society of Japan,
vol. 55, pp. 1163–1187, Dec. 2003.

[4] J. Makino, K. Hiraki, and M. Inaba, “GRAPE-DR: 2-pflops
massively-parallel computer with 512-core, 512-gflops pro-
cessor chips for scientific computing,” in Proceedings of
the 2007 ACM/IEEE conference on Supercomputing SC’07.
New York, NY, USA: ACM, 2007, pp. 1–11.

[5] C. Chang, J. Wawrzynek, and R. Brodersen, “BEE2: a high-
end reconfigurable computing system,” Design and Test of
Computers, IEEE, vol. 22, no. 2, pp. 114–125, March-April
2005.

[6] E. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler,
“Breaking ciphers with COPACOBANA - a cost-optimized
parallel code breaker,” in Workshop on Cryptographic Hard-
ware and Embedded Systems, Oct. 2006, pp. 101–118.

[7] T. Guneysu, T. Kasper, M. Novotny, C. Paar, and A. Rupp,
“Cryptanalysis with COPACOBANA,” IEEE Trans. Comput.,
vol. 57, no. 11, pp. 1498–1513, 2008.

[8] I. Buck, “GPU computing: Programming a massively paral-
lel processor,” in CGO ’07: Proceedings of the International
Symposium on Code Generation and Optimization. Wash-
ington, DC, USA: IEEE Computer Society, 2007, p. 17.

[9] Using the Virtex Delay-Locked Loop, Xilinx, Inc., 2006, ver-
sion 2.8.

[10] Four- and Six-Layer, High-Speed PCB Design for the
Spartan-3E FT256 BGA Package, Xilinx, Inc., 2006, version
1.0.

[11] Xilinx University Program Virtex-II Pro Development System,
Xilinx, Inc., 2008, version 1.1.

[12] K. H. Tsoi, K. H. Lee, and P. H. W. Leong, “A massively
parallel RC4 key search engine,” in Proc. IEEE Symposium on
Field-Programmable Custom Computing Machines (FCCM).
Washington, DC, USA: IEEE Computer Society, 2002, pp.
13–21.


