—— e

UNIX Password Encryption
Considered Insecure

Philip Leong — University of Sydney
Chris Tham — State Bank of Victoria

ABSTRACT

Recently there has been a revival of interest in the security of the password encryption
scheme employed in the UNIX Operating System and its derivatives. This resurgence was due
mainly to the success of an attack on the Internet by a virus program in November 1988.
The current encryption scheme used is a variant of the NBS Data Encryption Standard (DES)
modified in such a way that existing DES hardware implementations cannot be used. There
is currently no reported way of reversing the password encryption, i.c., to obtain a password
from its encrypted string.

In this paper, we show that the current encryption scheme can no longer be considered
secure as most UNIX passwords can be decrypted using a brute force search within a
reasonable period of time. As an example, all passwords containing only lower case
alphabetic characters can be decrypted in less than 15 days.

In order to perform a brute force search, we need the ability to encrypt a UNIX password
in the shortest time possible. Accordingly, we present a hardware design of a password
encryption device that can encrypt a UNIX password in 6 us. This device consists of
approximately 100 Emitter Coupled Logic (ECL) chips and can be built by any electronic
hobbyist for less than $2000. The board can also be used to encrypt DES at 266 Mbps, more
than ten times faster than a recent CMOS VLSI design.

We also present a software only implementation of the encryption algorithm recoded for
maximum speed. This implementation can encrypt a UNIX password in 1.2 ms on an IBM

RS/6000 Model 530 machine.

INTRODUCTION

The issue of the security of the UNIX Operating
System has long been a subject of debate, resulting
in a multitude of conflicting statements made, often
by ill-informed parties. Whilst it is probably true
that the system is ‘‘... more secure than any other
operating system offering comparable
facilities”’'[Duf89a] it is also true that UNIX has never
been designed with security features foremost in its
implementors’ minds.[Rit78a]

The UNIX protection model has been exten-
sively described in existing literature [Rit78a,Gra84a,
Bac86a) and will not be detailed in this paper. It is
sufficient only to know that UNIX security is based
on the concept of users and groups. A user is a
uniquely identifiable entity within the system and
belongs in one or more groups. Users may own
resources in the system such as processes, files and
devices. Access to these resources is maintained by
the owner who can control access by other users or a
specific group. To gain access to a UNIX system, all
users must undergo a login procedure either expli-
citly or implicitly. The login procedure requires the
knowledge of a valid login name and a password
associated with the user. The password is used to
authenticate the user. (An implicit login occurs

USENIX - Winter '91 - Dallas, TX

when accessing a machine through a network using
utilities which may bypass the interactive login pro-
cedure.)

Once through the login procedure, access to
resources in the system is validated through the
user/group protection mechanism. In addition, there
exists a special user known as the super-user who
has the ability to transcend the protection scheme to
access any resource in the system.

Although there are various ways of compromis-
ing the security of a UNIX system, nearly all of them
involve either (a) an unauthorized person or program
gaining access to the system by knowing the pass-
word associated with an authorized user, or (b) an
authorized user ‘masquerading’ as another user,
preferably the super-user, in order to gain access 10
unauthorized resources in the system.’ In any case,
any intrusions into a system or network must first

11t must be pointed out that unauthorized access to a
system can happen through a network by compromising
the network utilities. When this occurs, we classify it as
an unauthorized access into a system by an authenticated
user of another system. Also, the above classification
scheme has not considered the possibility of an
unauthorized user gaining access to the system simply by
walking into a terminal already logged in.

269

begin with the knowledge of the password of an
cxisting authorized user. Hence, the security of a
UNIX system hinges on the security of its password
authentication scheme.

On November 2, 1988, a self replicating pro-
gram was released on the Internet (a logical network
of many physical nctworks of predominantly UNIX
machines) which uses the resources of machines on
the network to replicate and spread itself. This pro-
gram, alternatcly described as the Internet Worm and
Internet Virus,[Eic89a,See89a,Spa88a] caused a
major disruption to the operation of the Internet and
incensed the mcmbers of the Internet computing
community comprising thousands of academic, cor-
porate and government users. It sparked our interest
in investigating the effectivencss of the UNIX pass-
word encryption system as one of major methods of
attack employed by the program involved the guess-
ing of UNIX passwords through repeated executions
of a password ‘cracking’ routine in the program.
The implementation of the encryption routine used
by the program was diffcrent from that used by the
UNIX system itself and is up to nine times faster than
the UNIX version.[Sec89a]

DESCRIPTION OF THE UNIX PASSWORD
ENCRYPTION ALGORITHM

The login(l) program in the UNIX System
implements the login procedure and attempts to
authenticate access to the system. A file called
/etc/passwd contains a list of all valid users on the
system, including their login names and encrypted
passwords. This file, strangely enough, is readable
by any user on the system. When a user trics to
gain access to the system, she or he must first type
in a valid login name. The login program prompts
for a password associated with the login name. This
password is not cchoed back to the user as it is
typed in. Once typed, the program calls a standard
UNIX library function called crypt(3) which encrypts
the password into a printable ASCII string. The
login program then compares the results of the
encryption with the encrypted password in
letc/passwd. If the two strings are equal, the user is
allowed entry into the system and the program then
scts up the user environment and executes the user’s
command interpreter on behalf of the user. If the
login name that has becen typed in does not match a
valid user on the system, or if the encrypted pass-
word docs not match the encrypted string, the pro-
gram prints the string "Login incorrect” and
redisplays the login prompt.

Obviously, the design and implementation of
the crypt() function is crucial to the security of the
login procedure. The encryption performed by
crypt() must be irreversible, i.e., it should be impos-
sible to derive the clear password string given the
encrypted form of the string, even when the source

270

to the encryption routine is available.? In addition,
the encryption algorithm must be reasonably com-
pact, given the hardware limitations of the machine
on which UNIX was originally designed for, and yet
take up a substantial amount of computing time to
execute. This last requirement serves to prevent the
usc of key search cryptanalytic approaches.

The original implementation of the encryption
algorithm was a variant of the M-209 cipher
machine.? The password was used as the key for the
encryption of a constant text string and the result of
the encryption was returned. Moms &
Thompson[Mor78a] notes that a version of this algo-
rithm optimized for maximum speed could encrypt a
password in approximately 1.25 ms on a DEC PDP-
11/70 minicomputer. This was considered unaccept-
ably fast as it permitted the use of key search tech-
niques in password guessing programs.

K = kiky kg

PC1(K) = CyD,
=010y Cdidycdiyg
C, =LS,(C;_y)
D; = LS;(D,;_))
K, = PC2(C,D))
where i = 1,2,..,16

Table 1: Computing the Key Schedule

The version currently in use is based on the
Data Encryption Standard (DES) announced by the
National Bureau of Standards (NBS) for use in
unclassified United States Government applications
in 1977.[Ano77a,FIP75a,Seb89a)] The DES uses an
algorithm called the Data Encryption Algorithm
(DEA) specified in the American National Standard
ANSI X3.92-1981.[ANS81a] The first eight charac-
ters of the user’s password are used as the DES key,
a constant 64-bit block (consisting of all zero bits) is
then encrypted via DEA 25 times (the result of each
encryption being used to feed the next round).
Finally, the resultant 64-bits is converted into a
string of 11 printable ASCII characters by encoding
every six bits into a printable ASCII character and
zero padding the 11th character.

The DEA is a fairly convoluted series of bit
permutations, expansions and selections optimized
for efficient hardware, rather than software, imple-
mentation. It requires a 64-bit key to be used to
encrypt every 64-bit block to a 64-bit encrypted
block.

The key K is only effectively 56-bits long as
every eighth bit is ignored by the algorithm. X is
used to compute a key schedule of 16 48-bit subkeys

This additional requirement was necessary because the
source code to the UNIX operating system was widely
available within the academic community and also
described in easily available literature.

3U.S. Patent Number 2,089,603

USENIX - Winter '91 - Dallas, TX

Leong, Tham

(K, to K. A permuted choice (PC1) function
transforms K into two equal 28-bit halves (Cy and
D). These halves arc rotated independently by
specified amounts (LS;) and then run through another
permuted choice (PC2) yiclding the 16 48-bit keys.
Table 1 summarizes the key schedule computation.

The actual encryption algorithm itself will
“encrypt a 64-bit block T* into another 64-bit block Z.
T undergoes an initial permutation called IP which
is then splitted into two equal halves called Ly and
R, Each half is then alternately passed through the
f function which expands the half into a 48-bit
block through the E expansion, bitwise exclusive-
ORs (@) with one of the subkeys in the key schedule
(K;), performs selection (§) and permutation (P)

operations before exclusive-ORing the 32-bit result .

with the other half. After 16 applications of the f
function, the halves arc then rejoined back into a
64-bit block and the result undergoes a final permu-
tation (FP) yiclding the encrypted block Z. Table 2
summarizes the operation of DEA.

T=I]lz"'f64

To=1P(T)
= LRy
=l Iypryr, I3
L, =R
R, = L;_of R;_K})
i =1.2,..16

Z = FP(Ryl1g)

f(RK) = P(S(E(R)K))
Table 2: DEA operation

One intercsting twist in the implementation of
the DES algorithm in the UNIX cryp() function lies
in the salting of the encryption. Stored together
with the cncrypted password is a 12-bit salt encoded
as two printable ASCII characters. The crypt() func-
tion expects the salt to be passed to it along with the
clear password text. The salt (W) is used to perturb
the E expansion in the following manner. Let E be
the standard expansion function and E be the per-
turbed expansion function. Then Y=E(X) and
Y =E (X) is related:

Y =yws " Yas

Y =ywa' 'Y
W‘ RPN
= {)’uu ifsg=1
, Yiszs f 5 =0
Yied T {y, ifs, =1
i =12,..,12

Table 3: Effect of the salt on the E expansion

USENIX ~ Winter ’91 - Dallas, TX

UNIX Password Encryption Considered Insecure

When a password is first selected for a user,
the password encryption program passwd(1) selects a
random 12-bit number as the salt. The clear pass-
word string is then encrypted using this salt and the
result is stored in the password file. Later on, when
the user attempts to login to the system, the salt is
extracted from the password file and is used to
encrypt the user’s typed password. The effect of
salting is to allow for 4096 possible encryptions of
the same password string.

Obviously, the use of salting does not neces-
sarily improve the strength of the encryption. 'In
fact, especially since the mechanism of DEA is not
well understood by cryptanalysts who do not have
access to classified files explaining the algorithm, it
is possible that salting may have weakened the
encryption process. However, the modification was
done in order to prevent the use of hardware DES
implementations in speeding up key searches, and
also to prevent password cracking programs from
precomputing commonly used passwords and storing
them in a file or array and thus bypassing the (slow)
encryplion process.

On the surface, the UNIX crypt() function
appears to have fulfilled all of its designers’ aims. It
is compact, appears at this stage to be irreversible,
and software implementations of DEA tends to be
slow, a password taking more than one second of
CPU time to encrypt on a PDP-11/70.

However, there has been many doubts casted
upon the strength of DES, including disagreement
over whether a 56-bit key was sufficiently strong.
Diffie & Hellman[Dif77a)] predicted in 1977 that the
DES algorithm could be compromised by 2 dedi-
cated machine with around one million chips that
can be built for around $20 million. This machine
could then search the complete key space in approxi-
mately one day. They also predicted that by 1990
hardware speeds would have improved so much that
a 56-bit key would no longer be secure. The NCSC
no longer certifies DES for even unclassified govern-
ment information, a sure indication that DES is no
longer considered secure. Furthermore, 25 applica-
tions of DEA does not necessarily improve the secu-
rity of the basic algorithm, especially since the key
schedule does not change between passes.

Most recently, Ali Shamir and Eli
Biham([Sha89a] have reported that a chosen plaintext
attack can reverse the DES encryption process in a
time less than that required by exhaustive key search
provided less than 16 rounds of the f function are
run. It will be interesting to see if a variant of this
method can be used for reversing the UNIX password
encryption process, although this seems unlikely
since the crypt() function uses 25x16 applications of
the f function,

271

HARDWARE IMPLEMENTATION

In order to design hardware which will decrypt
passwords in as short a time as possible, we must
use components with a very small propagation delay.
To this end, we chose the ECL 100K logic family.

f Function

The f function forms the heart of DEA and a
password encryption involves 25 applications of
DEA each of which make 16 applications of f. Fig-
ure 1 shows a block diagram of the f function.

Yoo —= E Expansion | Kblock = &4 Bitkey
A 48 ;x 48
\/\/

'} 48 bit XOR
487
| S Boxes |
; |
' P permutation |
" N.B. All buses are
y 32 bits unless
32 bit specified
Output
Figure 1: The f function
32 bit i E expansion
Input {
Tes
\{,
h

salif0]—= Salt Box 1

salf{1}—=> Salt Box 2

salt{2}]—= Salt Box 3

% |

{11 gt Box12

y
48 bit
Output
Figure 2: The E Expansion
272

salt[i}—s

E Expansion

The main difference between DEA and crypt(3)
lies in the salting of the E expansion operation
which outputs a 48-bit block from a 32-bit input. In
DEA, this expansion is always performed in the
same way, so we could implement this by rearrang-
ing the connecting wires. For crypt(), the bits in the
output of the E expansion may be exchanged
according to the value of the salt.

The exchange of E output bits involves only
optionally crossing two connections depending on
whether a particular bit of the salt is set or cleared.
Thus, the exchange can be implemented using 12
two—pole changeover relays, one for each bit of the
salt. Each relay acts as a crossbar connection con-
trolled by a bit from the salt, thus allowing the 32-
bit input to pass through the normal DES E expan-
sion and then through the salt-dependent permuta-
tion (see Figure 2). Since the salt need only be set
once for each user, the speed of switching of the
relays does not matter. Furthermore, during the
encryption process, the signal only passes through
the relay contacts, and so no propagation through
logic gates is required. Hence the difference
between the E expansion of DES and cryptr does not
affect the speed of this hardware encryption device.
Figure 2 shows a block diagram of the £ expansion
and Figure 3 shows a blowup of a salt box.

48

4

1
1
I
y

/

Figure 3: The Salt Box

Key Schedule

The key schedule converts K into a 48-bit
block depending on the iteration number. Thus the
subkey for the i-th iteration is K; which is a selec-
tion of K. Our method of calculating the key
schedule is generate all 16 key schedule values for
each of the 48 bits of output, and then use a 100164
1-0f-16 multiplexor to select the desired output for
any given iteration (see Figure 4).

XOR of the E expansion with K;

This 48-bit XOR is implemented using 10
100107 quint XOR gates which have a maximum
propagation delay of 1.7 ns.

S selection and P permutation

The XOR described above is passed through
the S selection boxes and then permuted. Note that
the S boxes are arranged as 8 groups of selections of
4 bits from 6 bits, and so 8 64x4 bit ECL RAMS are
required. We wuse 100422's which have 5ns

USENIX - Winter ’91 - Dallas, TX

propagation delay from the address input to the out-
put. The output is then permuted according to the P
permutation which just involves crossing of wires.

Final XOR

To complete the f function we do the 32-bit
XOR of the output of the above permutation with
the leftmost 32 bits of the previous iteration.

64
bit key

put = ‘l/ N —y
L M Kbit 1
H ux rr—
Bit 1 16 . 1
Kbit 2
Bit 2 3 Mux
N —j,
, i | K bit 48
Bit 48 —> Mux —
i I

Figure 4: The Key Schedule

64 bit T
Isput : _—
ir , : ! gmemqtee ey
{ loput | | Feedback 1 W appes
I T T
| ‘
i | B
|
£ |
|
_________ 5 5
\&/\/-/ ,
X) 32 bit XOR
,L__ N.B. All buses are
! Output | 32 bits unless
‘ ! specified
\‘y 64 bit
Output

Figure 5: Block Diagram of the DES Hardware

Block Transformation

Block transformation involves the exchange of
the leftmost 32 bits of the 64-bit word with the
rightmost 32 bits. As shown in Figure 5, we have
three latches that can feed the f function, and this
allow us to optionally perform block transformation
or clear the 64-bit input to f. Clearing is required at
the start of the crypr operation. The three latches
are wire—ORed together and the two latches not
being used are cleared. The three 64-bit latches
require 33 100151 hex flip—fiops.

USENIX - Winter 91 - Dallas, TX

State Machine

A finite state machine controls the flow of
information through the circuit. It must feed the key
schedule computation unit with the correct iteration
number, select the correct input to the f function
from the three latches and latch the output result
when the computation has been completed. Figure 5
shows a block diagram of the hardware.

Note that DES can be implemented using the same
hardware by setting the E expansion relays to flow
straight through. Then the main difference between
crypt and DES is that crypt performs 25 iterations of
the DES algorithm.

Operating Frequency

The gate delays for a single iteration of the
algorithm are the delays for 2 XORs, 1 multiplexor,
1 RAM and one latch which totals to a worse case
of 14.7 ns. We use a cycle period of 15 ns which
corresponds to a frequency of 66 MHz. Hence it
takes 6 us to encrypt a password.

As a DES encryption machine, the board can
process 64 bits every 240 ns, that is, at a rate of
267 Mbps. It is interesting to note that a recently
reported single chip implementation of DES[Ver88a]
operates at 20 Mbps.¢

SOFTWARE IMPLEMENTATION

Although a hardware implementation of crypt()
is within range of a determined cracker, we also
decided to implement a fast software version. This
implementation is substantially faster than the UNIX
routine and is portable across any hardware platform
with native 32-bit operations. Interestingly, our
implementation does not discriminate against either
big endian or little endian machines, although as
currently implemented, it seems to shine on RISC
(Reduced Instruction Set Computer) architectures
due to the fact that the implementation does not tend
to require complex instruction addressing modes but
requires a fast basic instruction execution cycle, two
characteristics which have been used to describe
RISC architectures. Our implementation was written
in Australia and is hence free of any US export res-
trictions.

A good description of the Internet Worm/Virus
implementation of crypt() is given in Seeley[See89a]
and we used this implementation as a base for our
own approach. Our initial implementation encrypted
a password on the Sun Sparcstation 1 in just over
6 ms. The performance of this implementation was
disappointing compared to Bishop[Bis88a] so we
reimplemented the program using these new ideas.

#This is perhaps an unfair comparison as the reported
chip implements far more than just the encryption part of
DES.

273

This resulted in an implementation that encrypts a
password on the same machine in just over 2 ms.
The following notes describe our second implemen-
tation. ~

The basic spcedup over the UNIX implementa-
tion was due to bit compaction into machine words.
The UNIX implementation uses one byte to store
every bit that nceds to be manipulated. Hence,
64 bytes consisting of the numbers 0 and 1 were
used to represent a 64-bit entity. In our implementa-
tion, the same entity is represented by two 32-bit
words. This allows us to use the the rotate and
exclusive OR operations in the instruction set, and
hence exploit the inherent parallelism in the data-
path of the CPU. Also, we precomputed all expan-
sion, selection, and permutation functions and in
many cases combined several operations into one
precomputed array.

As an example, the PC1, LS;, PC2 operations
can be effectively combined into a single operation
which we call keys,. This operation can then be
precomputed so that instead of performing the opera-
tion on every bit in the 56-bit key yielding a 48-bit
subkey, we can divide the original 56-bit key into
cight groups of 7-bit blocks. Each 7-bit block is
used to index into an array of precomputed 48-bit
blocks. The eight resultant 48-bit blocks are then
ORed together to form the subkey. As an example,
we declare and precompute an array used for key
schedule computations called keys, the DES key K
is in the array k and the computed key schedules
will be stored in the array keysched:

typedef unsigned long Word;
typedef unsigned char Byte;

static Word keys{16])[B)[128])(2]);
static Byte k{8];
static Word keysched{l16]{2];

Note that two Words are used to store the 48-bit
quantity, which is divided into 24-bit halves, each of
which fits in the 32-bit machine word. For example,
to compute the ith subkey, all we need to do is to
use each byte in k to index into the keys array

and then OR the results into the keysched array.
keysched{i][0] = keys[i][0])(k
keys[1i)

~
[
<
»

N

keysched(i){1] = keys(

NOMAWNHONOAUMDEWN-O
D e
et et St St et et S At Bt S At Bt St ek et et

WOV WN OO UIE WN -
LR R R R R R R R s sl alkal

(10
{2}(
(311
(4)(
{511
(631
(71l
[0t
(13
{211
{31
(431
(311(
{611
(731

ot et et St ot St et e At St et bt St et

*
o
<
o
—
[N S S o

Note that all arrays are declared as static variables
rather than left on the stack so that the compiler can
gencrate actual memory references or memory plus

274

register offset references rather than indirect stack
references. This significantly speeds up code execu-
tion on CISC (Complex Instruction Set Computer)
machines. The subkey computation loop was also
unrolled to simplify the compiler address generation.

A similar technique is used to perform the f
function and the FP final permutation® In the f
function, we note that f accepts a 32-bit argument,
which then immediately expands to a 48-bit block
through the E expansion. The result of the f func-
tion is a 32-bit number which is then exclusively
ORed with another 32-bit number and then fed into
the next invocation of the f function. First of all,
note that since E is an expansion which maps every
32-bit block into a unique 48-bit block, we can
obtain the inverse of E which we shall call EL

Suppose we define a function g such that
g(X,K)=E(f(E'1(X),K)) then we notice that
g(X K)=E(P(S(XaK))). In other words, we can
combine the E, P and S operations into a single
operation that can be precomputed. We can then
transform the DEA algorithm into 16 applications of
the g function followed by application of E™! on
both halves which is then fed into the FP final per-
mutation.

Bishop(Bis88a] gives a full mathematical treat-
ment of the modified algorithm outlined above.
Finally, we note that the effect of salting can be
obtained by exchanging bits of the result of the £
expansion. Given that we are representing a DES
block as two machine words, we can calculate the
salted expansion by performing several exclusive-
ORs and one bitwise AND (&) operation.

Let UD =E(X)
. = Uyt Ugddydy,
EX) = (UsM)DaM)
where M = (UaD)& V'
Yo=55,0 500

Table 4: Salting the E expansion

In our actual implementation, we reinitialize
the precomputed EPS array given a new salt in
order to save the time required to perturb the result
of the E expansion. This is because in a password
cracking situation, the cost of precomputation when-
ever the salt changes is insignificant as many pass-
word guesses are made for every encrypted pass-
word.

5The IP permutation is not necessary since the text that
is encrypted is always the zero block and we observe that
0=IP(0). Also, since FP(IP(X))=X, we never have to
perform FP until after the 25 iterations of the DEA as the
results of each iteration is fed directly into the next
iteration.

USENIX - Winter '91 - Dallas, TX

GUESSING PASSWORDS

We shall not describe the design and imple-
mentation of the Intermet Worm/Virus’s password
cracking routines because it has already been docu-
mented in existing literature,[Eic89a,See89a,Spa88a]
although the methods it uses can be generalized for
any password guessing program. Essentially, a pass-
word guessing program works by reading in the
password file and then making multiple guesses of
the password of every user or selected users in the
password file. The selection of password guesses is
vitally important as the better the quality of the
guesses, the greater the chance of actually hitting the
correct password within a given period of time.

Each password guess has to be encrypted using
the current salt and then matched against the
encrypted password. Obviously, the effectiveness of
this procedure strongly depends on how fast a pass-
word can be encrypted. Ideally, the encryption pro-
cess should take almost no time so that a complete
key search can be done. Since we know that the
encryption process takes up a significant amount of
time, even with hardware assistance, it is more
effective to implement a good password guessing
generator and use brute force search only as a last
resort.

A password guesser should make intelligent
password guesses which is dependent on the per-
sonality traits and characteristics of the person who
has chosen the password. Ideally, personal informa-
tion concerning the password creator should be
known to the program, such as names and birth dates
of people, car registration numbers etc. In practise,
this information is very hard to obtain, but a good
start can be made by scanning the password file
itself for information about users. The password file
often stores very useful pieces of information which
can be used, such as the user’s full name, histher
phone extension and/or office number. A password
guesser should certainly try permutations of the
user’s login name, full name and any other detail
known about the user. Searches through lists of
words or combination of words can also be effective.
These may include lists of first and last names,
words occurring in a special context (swear words,
technological jargon, biblical and mythological
names), or even dictionaries.

If a brute force search is attempted, this can be
made more efficient by ordering the keys searched
so that common characters and sequences of charac-
ters appear first in the search. Any additional infor-
mation such as the first character of the password or
even which side of the keyboard it was typed on,
will dramatically reduce the time required to decrypt
a password.

Table S shows the speed of our software imple-
mentation of crypt on a wide variety of machines.
Figure 6 summarizes the results of this table in a

USENIX - Winter ’91 - Dallas, TX

scatter plot.

Table 6 demonstrates the speed difference
between hardware and software implementations and
also shows the time required to decode a password
using a brute force search. The software times were
extrapolated from the RS/6000 encryption time. It is
easily seen that for lower case alphabetic characters
(which form the majority of passwords), it is very
feasible on our hardware. The table also shows that
such brute force searches are not possible in
software on commonly available workstation class
computers.

Machine name CC Time (ms)
Sun 3/50 cc -04 16.0

Sun 3/60 cc -04 9.5

Sun 3/60 gee -O 7.2
Pyramid 9810 gee -O 6.3
DECstation 2100 cc -0 33
Sparcstation 1+ cc -O4 20
DECsystem 5000/200 | cc -O 1.8
IBM RS/6000-530 cc -0 1.2
ECL hardware n/a 0.0060

Table S: Crypt() speed Comparison

10

o
l

o

Time

g

| I D

»

[5]

)

|
; I ! [i ! I
H'ware RS/6000 5000 Sparci+ 2100 9810 3/60
Machine

Figure 6: Scatter plot of crypt() performance

Search Number of H'ware S’ware
Criterion Passwords (days) (days)
Lower case only 26° 14.5 3Nn2
As sbove + digits 36 196 39182
All alphabetic s2* 3712 | 742496

Table 6: Brute force search times

It is interesting to note that the original UNIX pass-
word encryption algorithm based on the M-209
cipher machine was changed because it could be
implemented on a PDP-11/70 in 1.25 ms and this
was deemed to be too fast.[Mor78a] Since even our
software version can perform a password encryption
in less time than this, it may be time to change the

278

current method of encryption yet again.

There are a number of possible improvements
to password encryption algorithm that will
significantly decrease the success ratio of a password
encryption program that uses our hardware or
software implementations of the crypt() function.
An easy method would be to use the next eight char-
acters of the password as the initial input to the
DEA and then modifying the passwd(1) program to
only allow passwords longer than eight characters.
Alternatively, a concept similar to the shadow pass-
word file idea can be implemented by UNIX adminis-
trators to stop users and/or programs from reading
the password file.

These implementations are by no means the
last word on speedy password encryption. It is cer-
tainly tempting to imagine the speedup that can be
obtained using a massively parallel computer such as
the Connection Machine[Hil85a] or through the use
of a large array of custom VLSI chips which can test
passwords in parallel.

CONCLUSION

A design of a very fast hardware encryption
device has been presented in this paper. Such a dev-
ice makes brute force searching of passwords possi-
ble due to the small key space from which people
normally select passwords. It was shown that per-
turbing the E expansion of the DES algorithm with
the salt does not result in any change in the speed of
the implementation of crypr() in hardware, although
applying DES 25 times reduces the speed at which
we can encrypt passwords by a factor of 25.

A software implementation of the UNIX pass-
word encryption algorithm was also presented, and
the speed of this implementation was compared with
that of the custom hardware.

References

Duf89a. Tom Duff, ‘' Viral Attacks on UNIX Sys-
tem Security,”” USENIX Winter '89 Conference
Proceedings, (1989).

Rit78a. Dennis Ritchie, ‘‘On the Security of
UNIX,” in UNIX Programmers Manual, (3
April 1978).

Gra84a. F. T. Grampp and R. H. Morris, “‘UNIX
Operating System Security,”” AT&T Bell
Laboratories Technical Journal 63(8 (Part
2))(October 1984).

Bac86a. Maurice J. Bach, The Design of the UNIX
Operating System, Prentice Hall International,
Inc. (1986).

Eic89a. Mark W. Eichin and Jon A. Rochlis,
““With Microscope and Tweezers: An Analysis
of the Internet Virus of November 1988,”
IEEE Symposium on Research in Security and

276

Privacy, (9 February 1989).

See89a. Donn Seeley, ‘“‘A Tour of the Worm,”
USENIX Winter '89 Conference Proceedings,
(1989).

Spa88a. Eugene H. Spafford, ‘‘The Internet Worm
Program: An Analysis,”” Purdue Technical
Report, (CSD-TR-823)(28 November 1988).

Mor78a. Robert Morris and Ken Thompson,
‘‘Password Security: A Case History,”” in UNIX
Programmers Manual, (3 April 1978).

Ano77a. Anon, ‘‘Data Encryption Standard,”” FIPS
PUB, (46)National Bureau of Standards, (15
January 1977).

FIP75a. FIPS, Proposed Federal Information Pro-
cessing Data Encryption Standard, Federal
Register (17 March 1975).

Seb89a. Jennifer Seberry and Josef Pieprzyk, Cryp-
tography: An Introduction to Computer Secu-
rity, Prentice Hall Australia (1989).

ANS81la. ANSI, American National Standards
Data Encryption Algorithm, American National
Standards Association (1981).

Dif77a. W. Diffie and M. E. Hellman, ‘‘Exhaus-
tive Cryptanalysis of the NBS Data Encryption
Standard,”” Computer 10 pp. pp. 74-84 (June
1977).

Sha89a. Ali Shamir and Eli Biham, ‘‘Differential
Cryptanalysis of DES-like Cryptosystems,”’
Crypto °89, (1589).

Ver88a. Ingrid Verbauwhede, Frank Hoomaert,
Joos Vandewalle, and Hugo de Man, ‘‘Security
and Performance Optimization of a New DES
Data Encryption Chip,”’ IEEE Journal of Solid
State Circuits 23(3) pp. 647-656 (June 1988).

Bis88a. Matt Bishop, ‘‘An Application of a Fast
Data Encryption Standard Implementation,””
Dartmouth College Technical Report, (PCS-
TR88-138)Department of Mathematics and
Computer Science, (1988).

Hil85a. W. Daniel Hillis, The Connection
Machine, MIT Press (1985).

Philip Leong works at the Sys- |
tems Engineering and Design
Automation Laboratory at the
Department of Electrical
Engineering at the University of
Sydney. His interests include
operating systems, digital signal |
processing and VLSI design. He |
received a B.Sc. degree in !
Computer Science in 1987 and |
a B.E. (Hons) in Electrical
Engineering in 1989. Reach him via mail at Sys-
tems Engineering and Design Automation Labora-
tory; Department of Electrical Engineering;

USENIX - Winter 91 ~ Dallas, TX

University of Sydney J03; NSW 2006 AUSTRALIA;
Phone: +61 2 692-3297 His electronic mail address
is phwl@ee.su.0z.au.

Chris Tham is currently
employed as a Treasury Analyst |
at the State Bank of Victoria.
His interests include distributed .
operating systems, concurrent |
computer language design and
computer music. He graduated
from University of Sydney in |
1988 with a B.Sc. (Hons) in
Computer Science. Reach him
via mail at State Bank of
Victoria; Level 23 9 Castlereagh St; Sydney NSW
2000; AUSTRALIA; Phone: +61 2 239-6282. His
electronic mail address is
christie@blueboy.ct.saleven.oz.au

USENIX - Winter ’91 -~ Dallas, TX

277

’
#
14
#
#
14

#
{

}

Appendix A

/t

* UNIX compatible version of crypt(3)
¢ that uses fast DES routines

./

#ifdef TRACE
include <stdio.h>
endif

include "des.h”
include "efp.h”
include "spe.h”
include “"Xkeys.h”

define f(left, right, i) \
\
register Word s8; \

TRACEOUT("right”, writeBlockd8(&right});

tl.w[(0] = (right).w{0] “ keysched[--i).w[O0};
tl.w(l}] = (right).w{l] ~ keysched{i].w[l}]; \
TRACEOUT("key”, writeBlock4B(&keysched(i])));

TRACEOUT("t1", writeBlock4B8(&tl}); \
t2.w(0] = \
spe(0)[tl.h(0]}[0) | \
spe(l](tl.h(l}}(0]) | \
spe(2]{t1.h{2]){0} | \
spe(3)(t1.h{3]]1(0];
t2.wil} = \
spe(0]{tl.h(0]][1] | \
spe(1](tl.h(1])(1]) | \
spe[2](tl.h[2}](1) | \
spe[3]{tl.h(3])](1]); \
TRACEOUT("t2", writeBlockd4B(&t2)); \
ss = (t2.w[0] " t2.w[l])) & m; \
(left).w(0] “= t2.w[(0] " s8; \
(left).w{l}] "= t2.w{l] * =»s; \
TRACEQUT("left", writeBlockdB(sleft));

tatic Block64 keysched[1€];
tatic Block64 leftr, right;

union result

{
Byte b{9];
Word wi2};
} block;
static char iobuf[16};
static Word m;
veid
setsalt(salt)
char *salt;
{
register int i, 3;
m= 0;
for (i = 0; i < 2; i++)
{
char [
iobuf{i] = ¢ = *galt++;
if (¢ > '2') c -= §;
if (¢ > '9') ¢ == 17;

C == ',

for (3 = 0; 3 < 6; 34+, c >>= 1)

m <<= 1;
if (¢ & 1)
mo|=1;

}
}
#ifndet LITTLE_ENDIAN
m <<= 16;

fendit
)
char *
encrypt(pw)
char *pw;
register int i, 3
278

\

Word sl, 82;

/'
* keysched is s
* order to kays
v/

memset (keysched,

for (1 = 0; (3 =

tored in reverse
for optimization

0, sizeof(kaysched));
*pwit) &b 1 < 8; i++)

{
keysched{15).w{0] |= keys[O0}[i)
keysched{14].w([0) |= keys[1]}[i)
keysched[13].w(0) |= keys[2]{i)
keysched(12).w[0] |= keys[3](i]
keysched{11).w{0] |= keys[4][4}
keysched{10).w{0] |= keys[S](i}]
keysched(9).w{0] |= keys[6](i](
keysched(8].w[0] |= keys(7)(i]{
keysched[7]).w(0] |= keys{8)(i}[
keysched{6].w[0] |= keys[9]){i)(
keysched(5].w[0] |= keys[10][i]
keysched{4].w{0] |= keys{11][i}
keysched{3].w(0] |[= Xeys[12](i}
keysched{2}.w{0) |= keys{13][i} {0}:
keysched{1]).w[0] |= keys[14][i} {0};

{3110}:
{3}
13}
()]
(31
(3]
I
It
bRR
It
(3]
t3
{3
(3]
(31
keysched|[0}.w(0) |= keys[1S}{i)[J]{0}:
(3]
(@]
(1)
(3]
(3]
{3)
I
31t
3
3
13
(3]
13
(3
(31
{3

{o);
(0);
(0);
{0):
{o:
0};
0};
0];
01;
(0);
{o);
(0]

keysched[15).w[1] [= keys[0}[i) [1};
keysched[14}.w([l] |= keys[1]){i] (1);
keysched{13].w(1] |= keys{2]{i} (1}:
keysched[12).w{l] |= keys{3][i} [1],
keysched{11].w(l} |= keys[4][i}]
Xeysched{10].w{1) |= keys[5])(i}
keysched([9].w{l}] |= keys{6){i](
keysched([8).w(1l}] |= keys{7)(i)(
keysched(7].w[1] |= keys[B][i][
keysched{6].w{1l] |= keys{9)[i]{
keysched{S).w[1l} |= keys[10][i)
keysched[4].w(1] |= keys[11)[i]
keysched{3].w(1l] |= keys[12){i]}
keysched(2].w[1l] |= keys[13)[i)
keysched{1].w{1l] |= keys{14][i}
keysched{0).w[1l] |= keys[15])([i}
}

/* clear working blocks */
left . w(0] = O;
left.w{l} = 0;
right.w[0] = 0;
right.w[l] = 0;

3=12;
goto middle;
while (3--)

static Block64 tl, t2;

/*
* Do 16 rounds of the £() function
* on even rounds the right half is
¢ fed to £() and exclusive ored with
¢ the left half and vice versa
*/
for (i = 16; i;)
{
f(right, left, i);
f(left, right, 1i);

middle:

for (i = 16; ;)

£(left, right, i);
f{right, left, {i);

}

8l = (left.w(0) & -m) | (left.w[l) & m);
82 = (left.w(l) & -m) | (left.w{O] & m);
left.w[0) = s};

left.w(l] = 82;

sl = (right.w[0} & -m) | (right.w(l] & m);
82 = (right.w(l) & -m) | (right.w(0] & m);
right.w[0] = s1;

USENIX - Winter '91 - Dallas, TX

.

right.w(l] = 82;

block.w{0) =
efp{0]){right.h(0]](0] |
efp{l][right.n({1])](0] |
efp(2](right.h(2])(0] |
efp(3)(right.h(3])(0] |
efp{4)[lefr.h(0]}(0] |
efp{S){left.h{1}](0] |
efp(6])(left . h{2}}(0] |
efp{7)[left.h{3]](0];

block.w{l) =
efp(0][(right.h{0}][1)
efp(l]lright.h(1}){1)
efpl2)(right.h(2]][1}
efp(3]j(right.h{3])([1}
efp(4)(left.h[0]] (1] |
efp(S]{left.h(1)}{1] |
efp(6]{left.h(2]][1) |
efp{7]}[left.h(3)][1);

block.b{8] = 0;

TRACEOUT("block”, writeBlocké4(sblock));

for (4 = 0; 4 < 11; f++)

{
int type = i * §;
int POs = type >> J;
char c;

switch (type & 07)
{

case 0:

¢ = block.b{pos] >> 2;

break;

case 2t
c = block.b{pos] &
break;

case 4:
¢ = ((block.b[pos]
+ (block.b[pos

break;

case 6:
¢ = ({block.b[pos}
+ (block.b{pos

break;

}

C 4= ‘',

if (¢ > ’'9’) ¢ += 7
if (¢ > '2') ¢ += ¢
iobuf[i + 2] = ¢;

}
iobuffi + 2) = 0;

return iobuf;

}

char ¢

crypt(pw, salt)

char *pw, *salt;

{
setsalt(salt);
return encrypt(pw);

USENIX - Winter ’91 - Dallas,

077;

& Oxf) << 2)
+ 1} > 6);

& 03) << ¢)
+ 1) >> 4);

TX

279

