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Abstract

A time multiplezing scheme for implementing cellu-
lar neural networks (CNN) is described. This scheme
makes it possible to realise much higher density imple-
mentations of CNNs in VLSI circuits. A circuit im-
plementation of this technique is presented along with
simulation results.

Introduction

Cellular neural networks are generalised, locally
connected architecture which are particularly suitable
for image processing. The circuit model equation in
[1] can be written as (assume single layer and unity
neighbourhood size):
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where Vyi; is the cell state, m an index, being a di-
rection indicator (NE, N, NW, ..., S, SW) around a
cell C(i,3), V2 the cell output correspondmg to the
neighbour of cell C(4,5) in direction m, V;;}; the exter-
nal neighbour input, 7 the bias and a,, and b,, the co-
efficients in the feedback A-template and feedforward
B-template respectively.

In a standard CNN (SCNN), a programmable ba-
sic cell would require 18 multipliers (9 each for an
and by, values). Thus the chip area is proportional
to 18 N2, where N is the array size. For example, a
programmable CNN chip by Halonen et al. required 1
mm? per cell [2]. Another programmable CNN chip
by Lim et al. had an area of 0.4 mm? per cell [4]. A
recent chip by Kinget et al. [3] had a cell size of 0.26
mm?. For practical image processing applications, a
simple implementation of a programmable CNN re-
quires a prohibitively large area.

To reduce the number of multipliers, instead of us-
ing 9 multipliers, we propose using one multiplier 9
times in a multiplexed fashion. With this scheme, a
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time multiplexed CNN (TMCNN) cell requires only
2 multipliers, one each for a,, and b,, values respec-
tively. This technique results in a large net saving in

the area required to implement a fully programmable
CNN.

Mathematical Model of TMCNN and
Software Simulation Results

In order to perform the time multiplexing, eqn. 1 is
rewritten as:

Vet = (=22 4 a VT b VI + I/M) (2)
where m is varying from 1 to 9 (ad infinitum). A
factor M is included in the equation owing to the mul-
tiplexing process and M equals 9 in the present dis-
cussion. The maximum value of M is 9 for a single
layer CNN with unity neigbourhood size. Contribu-
tory components in the same direction m for all cells
are obtained by performing summation over a peri-
odic pulse of width T through small incremental time
steps.
The differential equation in eqn. 2 can be solved using
Euler’s method. A C-program was written to solve
eqn. 2. The software was applied to perform edge de-
tection with the conditions in equations 3-5.
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The edge detection result for an 8 x 8 array CNN
was successful and the results shown in fig. 1.
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Figure 1: Edge detection of a square pattern of array
size 8 x 8. A dot denotes a black pixel and a circle a
white pixel. (a) Original pattern. (b) Final pattern
after detection.

Circuit Architecture of TMCNN

The circuit architecture of the basic cell is shown
in fig. 2. The time multiplexing scheme consists in
replacing some multipliers with transmission gates
(tgates). Only 2 time multiplexed core multipliers are
used for the A and B templates. The timing diagram
of the drivng pulses for the transmission gates and
the gain control voltage waveforms for the time mul-
tiplexed multipliers (A and B multiplier) is shown in
the inset of fig. 2. The ay,, and b, coeficients are
implemented by applying their values in a time mul-
tiplexed manner on V4 (t) and Vp(t) (see fig. 2). Each
template coefficient will be active for one-ninth of the
time since there are 9 coefficients each in A- and B-
templates respectively. Corresponding coefficients in
the two templates are concurrently active. While the
mth coefficients in the A and B templates are active,
the mth neighbouring output Vym and the mth input
source V7, will be inputted to the A and B multi-
pliers respectively (as shown in fig. 2). The timing
sequence of the drivng pulses will control which and
when Vi3, and V7 will be connected to the inputs of
the A- or B-multiplier respectively by the transmis-
sion gates. Since the A- and B-templates are space
invariant, the same multiplexing pulse Vo will drive
all the cells in the CNN with the corresponding Vi
and V.. The appropriate gain of the multipliers are
set by the gain control voltage waveforms V4(t) and
Vg(t). The dynamic evolution of the CNN occurs as a
result of the continuous integration process across the
state capacitors.

The Multiplier Circuit

The multiplier is a Gilbert four quadrant multiplier
circuit as described by Mead [5]. The gain and sign
of the multipliers are determined by the magnitude
and sign of a,, and b,, values. These are globally
programmed by the common V,4(¢) and Vi(t) voltage
sources.
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Figure 2: The architecture of time multiplexed cellular
neural network. The inset shows the timing diagram
of the driving pulses and the multipliers gain control
voltage waveforms Vy (t) and Vg (t). In general, V4 (t)
and Vp(t) are multi-level voltage waveforms.

The Active Resistor

We make use of a MOS linear resistor as the active
resistor. The configuration is similar to that of Wang
[6]. The active resistor consists of 2 p-transistors con-
nected in series. The lower device has its substrate
node attached to the source in order to eliminate the
body effect. For an n-well process, a separte n-well
is required for this transistor. The active resistor re-
quires less silicon area than a passive counterpart and
the value is given by the expression:

1 1L
=t 6
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The active resistor is used as a load in the summing
and squashing circuit in fig. 2.
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Spice Simulation Results
Trajectory of Chua’s 4 x 4 array

The multiplexing technique was applied to the CNN
described in Chua and Yang [1] with the same initial

conditions as in fig. 9a of [1]. We used the same tem-
plates and bias conditions in [1], namely:

0
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Figure 3: The transient voltage waveform of a cell
circuit C(2,2) in a 4 x 4 array of a TMCNN and
SCNN. (a) The transient response of the TMCNN is
delayed as shown. (b) Noise ripples are associated
with the time multiplexing scheme when the mul-
tiplexing pulses do not have sufficiently short pulse
width.

Similar circuits as in [1] were used except that time
multiplexing was used instead of a parallel implemen-
tation. The trajectory of the cell €(2,2) (for the cell
location, see [1]) was monitored both for a standard
CNN (SCNN) and our TMCNN. The transient wave-
form is shown in fig. 3. When time multiplexing, it
is not necessary to compute the zero a,, values and
so in this case, M = 5. Our results were exactly the
same for both types of CNN except that the multiplex-
ing process delayed the circuit response by M (= 5)
times. Noise owing to switching normally occurred in
the TMCNN waveform, as shown in (b) of fig. 3. The
quantization noise ripples disappeared when the mul-
tiplexing pulse width T was small enough (< 40 ns,
in the present case).

Edge Detection

A complete 8 x 8 array TMCNN was simulated
using SPICE. Four-quadrant Gilbert multipliers were
used for the template multipliers, and minimum ge-
ometry transmission gates were employed to perform
the multiplexing. The technological parameters were
those of Orbit Semiconductor’s 1.2 pm double metal,
double polysilicon, n-well CMOS technology. The
multiplexing pulse width T was 120 ns. The simula-
tion time for a Sun Sparc 10 workstation took about
5.2 hours. The conditions of equations 3-5 were used
to successfully perform edge detection (see fig. 1). It is
of interest to note that only 1 pass of each coefficient
was needed to reach the steady state response.
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Figure 4: Simplified circuit architecture of time mul-
tiplexed CNN. IB is the substitute current source in
place of B-template multipliers and the original bias
Ib.

Limitation of the Time Multiplexing
scheme

The settling time 7 to reach steady state response is
longer for a TMCNN than a SCNN because of the time
multiplexing scheme. In our simulion result of Edge
Detection, 7 of SCNN is 120 ns and that of TMCNN
1.1 ps. Our result showed that 7 of a TMCNN was
about M times that of a SCNN when the neighbour-
hood size is 1 (M is 9 in this case.) Larger neighbour-
hood size and the greater number of non-zero template
coefficients will increase 7. The multiplexing scheme
is a function of these two factors since the active peri-
ods of different template coefficients are the same and
will share the time within a cylce of the multiplexing
pulses. The scheme becomes complicated for CNNs of
multiple layers. However it is noted that most image
processing problems can be solved with single layer
CNN and the maximum value of M is 9,

Further Reduction in Area

It is noted that the terms of (b, V7 + I/M) in
eqn. 2 is a constant sum since the input sources and the
template coefficients are invariant with time. Hence
these terms can be pre-computed and programmed
into the circuit as a fixed bias (IB). The original bias
term Ib can also be lumped here. All the B-template
multipliers can be dispensed with and replaced with
DAC’s or simple dynamic current mirrors, resulting in



Table 1: Comparison of
SCNN and TMCNN.
rType of CNN
SCNN
TMCNN

hardware requirement in

| Hardware requirement |
18 multipliers

2 multipliers and

8 tgates

1 multipher, 9 tgates
and 1 dynamic
current mirror

Scheme AB

Scheme A

further reduction of area (at the expense of additional
off-chip computation). The simplified architecture is
shown in fig. 4. Table 1 lists the comparison of neu-
ral processing hardware requirement in the SCNN and
our proposed schemes of TMCNN. Scheme ” AB” em-
ploys A- and B-template multipliers and Scheme ”A”
A- template multiplier only.

Conclusions

We proposed a simple time multiplexing method
which significantly reduces the area of a fully pro-
grammable cellular neural network. The scheme was
verified through mathematical modelling and SPICE
simulations, and it was successfully applied to the
problem of edge detection. The greatly reduced area
offered by the time multiplexing scheme will make it
feasible to implement single chip VLSI CNNs with
much higher densities than previous approaches.
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