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Abstract

Machine learning has risen to prominence in recent years thanks to advancements in
computer technology, the abundance of data, and numerous breakthroughs in a broad range
of applications. Unfortunately, as the demand for machine learning has grown, so too
has the amount of computation required for training. Combine this trend with declines
observed in performance scaling of standard computer architectures, and it has become
increasingly difficult to support machine learning training at increased speed and scale,
especially in embedded devices which are smaller and have stricter constraints.

Research points towards the development of purpose-built hardware accelerators to
overcome the computing challenge, and this thesis explains how specialised hardware
architectures and specialised computer arithmetic can achieve performance not possible
with standard technology, e.g. Graphics Processing Units (GPUs) and floating-point
arithmetic. Based on software and hardware experiments, for kernel methods and deep
neural network (DNN) algorithms, this thesis shows that specialised arithmetic is crucial
for accurately training large models with less memory, while specialised architectures are
needed to increase computational parallelism and reduce off-chip memory transfers.

A systolic Field Programmable Gate Array (FPGA) implementation of the Fastfood
algorithm is described which operates at a high frequency and supports simultaneous
training and prediction for large-scale kernel methods. The architecture is specialised
to minimize memory overheads and efficiently implement the Fast Walsh Hadamard
Transform (FWHT) bottleneck. Empirical results show that 500 MHz clock rates can be
sustained for an architecture that can solve problems with input dimensions up to 103 times
larger than previously reported. This enables the use of kernel methods in applications
requiring a rare combination of capacity, adaption, and speed.

Next, low-precision DNN training is investigated as an alternative to standard full-
precision algorithms on FPGAs. A prototype training accelerator is described for Zynq All
Programmable System on Chip (APSoC) devices using predominantly 8-bit integer num-
bers. Block floating-point (BFP) quantization and stochastic weight averaging techniques
are applied during training to avoid any degradation in accuracy. Results of an implemen-
tation reveal memory savings and 17× speed-ups over processor-only systems on several

iii



training tasks including image classification benchmarks, and online radio-frequency (RF)
anomaly detection. Moreover, a 0.5pp accuracy improvement is achieved over previous
work with results within 0.1pp of floating-point.

Lastly, a new representation called Block Minifloat (BM) is introduced for training
DNNs end-to-end with only 4-8 bit tensors. While standard floating-point representations
have two degrees of freedom, via the exponent and mantissa, BM exposes the exponent bias
as an additional field for optimization. Crucially, this enables training with fewer exponent
bits, yielding dense integer-like hardware for fused multiply-add (FMA) operations. For
the task of image classification, 6-bit BM achieves almost no degradation in floating-point
accuracy with FMA units that are 4.1 × (23.9×) smaller and consume 2.3 × (16.1×) less
energy than FP8 (FP32). Furthermore, over a wide variety of learning tasks, an 8-bit BM
format matches floating-point accuracy while delivering a higher computational density
and faster expected training times.

In summary, this thesis shows how hardware specialization can lead to high-accuracy
and large-scale machine learning training in hardware constrained devices, and enable the
application of on-chip training in FPGAs. These outcomes are an important step towards
moving more machine intelligence into e.g. mobile phones, video cameras, radios, and
satellites.
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Chapter 1

Introduction

1.1 Motivation and Aims

With access to large amounts of scientific and internet data, machine learning algorithms,
which are designed to automatically discover patterns in data, are increasingly being used
to solve complex problems in a wide variety of applications. Examples include self-driving
cars [1], speech recognition [2], healthcare [3, 4], recommender systems [5], scientific
discovery [6], and even playing board games [7]. The list of examples seems to grow by
the day, as new startups emerge, and entire industries are transformed. Machine learning
has arguably become this decade’s most important technology.

Machine learning algorithms are able to solve problems effectively, in part, because
they exploit large datasets and have flexible mathematical models. Unfortunately, the
same features that make an algorithm accurate also make machine learning expensive to
compute. Flexibility comes from a model with many parameters, while the size of the
dataset controls the number of times a model needs to be evaluated during the learning
process. This means that machine learning algorithms often require large amounts of
memory and computation to reach top-tier performance, usually more than is available
with standard computer systems. For instance, Megatron [8] is an 8.3 billion parameter
state-of-the-art deep neural network (DNN) language model which was trained on a 37 GB
dataset using 512 power-hungry Graphics Processing Units (GPUs). While such a model
is extraordinarily large and thus massively overwhelms the energy profile of embedded
applications, its existence reveals the direction that innovations in machine learning have
taken for better or worse. For this reason, research into hardware accelerators has gathered
pace and will be essential in combating the computing challenges of the past, present and
future.

1



Chapter 1. Introduction

The training phase of machine learning is the most computationally intensive, and
typically involves linear algebra operations on large matrices and vectors. Performance,
as measured by operations per second, depends on the underlying hardware architecture
and is either bound by the compute or memory limitations of the system. Compute bound
problems (e.g. matrix-multiplication) can benefit from architectures with more parallelism
and greater compute density, while memory bound problems (e.g. vector addition) will
benefit from architectures that have greater memory bandwidth. Furthermore, performance
can be architecture bound if the available compute density can not be utilised efficiently.
This means idle compute cycles regardless of whether there is enough memory bandwidth.
This often occurs with sparse computations or workloads with irregular data reuse patterns,
where it’s not always possible to fully pipeline the delivery of data.

Given the growing diversity of machine learning models and applications, designing
hardware architectures that maximise performance in a large subset of workloads is non-
trivial. There are no easy solutions. The decline of transistor scaling, known as the end of
Moore’s Law [9], means that finding extra parallelism is much harder for a given silicon
area while increasing memory bandwidth comes at the cost of increased power consump-
tion. To overcome these issues and deliver machine learning at greater speed and efficiency,
computer architects must think outside the box. Hardware that is aligned more closely
with the application, or in other words "specialised", can be particularly advantageous for
machine learning. This thesis aims to investigate this idea for two types of algorithms,
namely kernel methods and deep neural networks.

Reconfigurable architectures like Field Programmable Gate Arrays (FPGAs) have re-
ceived considerable interest because they offer specialization at the hardware level and
the potential for higher performance compared to conventional Central Processing Units
(CPUs). For instance, FPGAs are now being used to accelerate machine learning inference
in servers at Microsoft [10] and Intel [11], while FPGAs have always enjoyed an impres-
sive portfolio of use cases in embedded applications. This thesis defines an embedded
application as a program (software or firmware) that runs on hardware constrained devices
in the field. Examples include mobile phones, radios, video cameras, and satellites, all
of which are battery-powered and thus have limited computing capabilities. For machine
learning in such devices, FPGAs have mostly been used for inference whereas training is
almost exclusively performed using GPUs and Application Specific Integrated Circuits
(ASICs) in the datacenter.

This thesis argues for different thinking, and aims to show that with specialised i.)

2



Chapter 1. Introduction

hardware architectures and ii.) computer arithmetic, FPGAs can also be used to efficiently
train machine learning models.

1.1.1 Hardware Architecture

Systolic arrays [12] have emerged as the dominant parallel architecture for machine learn-
ing acceleration. This is because systolic arrays lead to high-frequency design and can
exploit the maximum amount of parallelism in dense matrix multiplication. Hence for the
vast majority of machine learning models, simply offloading all matrix multiplications
to dedicated hardware is often sufficient for achieving high computational performance.
However, conventional matrix multiplication architectures, such as Nvidia GPUs, are often
reliant on making lots off-chip memory transfers and thus carry high energy costs. For this
reason, some machine learning experts are diverting their models towards computational
kernels which require fewer operations and less memory. Examples include the use spar-
sity [13], butterfly permutations [14], and random projections [15]. However, since each of
these examples introduces some sort of irregularity into the dataflow, their benefits can not
be properly realised with commercial GPU and ASIC accelerators. This is an architecture
problem that can be resolved with more specialization.

Furthermore, even standard training workloads are difficult to fully optimize using com-
mercial hardware with performance efficiency, in particular, being highly questionable. For
example, the Nvidia DGX A100 station contains 8× A100 GPUs capable of 5 petaFLOPs
of performance throughput. Such a system trains a ResNet50 [16] model in 28.77 minutes,
corresponding to an effective throughput of approximately 700 teraFLOPs. Here lies the
opportunity for computer architects. On a widely popular image classification benchmark,
a GPU powered supercomputer only sustains about 14% of its peak performance 1. Spe-
cialised architectures and specialised machine learning algorithms can be designed to close
this gap.

1.1.2 Computer Arithmetic

The way that numbers are represented is a crucial design decision for accurate and efficient
machine learning. Most commercial platforms, such as Nvidia GPUs, employ floating-
point representations because they have a wide dynamic range and are known to perform
well in mathematically intensive applications. Both factors are important for training
DNNs, which rely on repeated calculations involving both very large and very small

1Number of operations for training ResNet50 ≈ 1.2 × 1018. Throughput =
Number of operations

time in seconds ≈ 1.2×1018

(28.77×60) ≈

700 × 1014. Ratio between effective and peak throughput = 700×1014

5×1015 = 14%

3



Chapter 1. Introduction

numbers. The problem with floating-point however lies in the hardware cost and memory
overheads associated with standard 16-bit, 32-bit and 64-bit formats. Floating-point adders
and multipliers are more than 10× and 1.4× larger and consume approximately 4× and 1.2×
more energy than equivalent integer units [17, 18]. For this reason, alternate representations
have been sought which are still robust and provide numerical stability, yet have much
lower implementation costs. Types of arithmetic specialization may include:

• Reduced precision. Offers arguably the best solution since fewer bits increases
computational density and lowers off-chip memory bandwidth requirements. The
latter point is particularly significant, since decreasing off-chip memory transfers
reduces power consumption, where power, not area is the main factor that limits
computing throughput in modern architectures [17].

• Hybrid representations. Research has shown that narrow fixed-point representations
can be adopted for machine learning inference without any loss of floating-point
accuracy [19]. From the hardware perspective, fixed-point arithmetic offers higher
compute density and improved energy efficiency compared to floating-point. How-
ever, training with fixed-point suffers from limited dynamic range and must usually
be combined with other techniques for adequate convergence. An example is block
floating-point [20–22].

• Flexible arithmetic. Resilience to low-precision rounding errors can vary between
tasks and between operations within a given task. Therefore, arithmetic which can
be configured to suit the needs of the algorithm offers a more robust solution.

This thesis aims to show the benefits of these opportunities for on-chip DNN training, with
a particular focus on reduced precision and hybrid representations.
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Chapter 1. Introduction

1.2 Contributions

This thesis shows that hardware specialization can be used to achieve machine learning
performance not possible with standard computing technology, enabling large-scale and
high accuracy training. A particular focus is placed on the embedded application domain,
and a number of technical contributions are presented towards on-chip and reduced preci-
sion training. The contributions are described in detail below:

Large Scale Kernel Methods: The first FPGA implementation of a large-scale kernel
method. The reported design can solve problems with an input dimensionality up to 3
orders of magnitude larger than previous FPGA implementations of kernel methods, and
achieves 245× speed up over a single-core Central Processing Unit (CPU). A specialised
systolic array architecture is described that preserves data locality and promotes resource
reuse to sustain high clock rates and solve massive regression problems. In particular, the
architecture efficiently implements the computational bottleneck (FWHT) with a statically
configured dataflow and using only 18-bit integer adders. Such an approach is not possible
with conventional CPU or GPU architectures.

On-chip DNN Training: The first FPGA implementation of a DNN training technique,
which achieves the accuracy of floating-point using mostly 8-bit arithmetic. Specialised
arithmetic, namely block floating-point (BFP), is used to reduce the computational cost
of training, and flexible hardware/software partitioning is used for higher accuracy. A
prototype accelerator is designed for portability across multiple embedded FPGA devices,
and this technology is demonstrated for real-time anomaly detection in radio-frequency
(RF) networks. Such an application requires hardware specialization to operate effectively
under typically strict computation and power constraints.

Sub 8-bit DNN Training: A new number representation called Block Minifloat (BM)
for training DNNs with a combination of higher accuracy and greater hardware efficiency
than previous 8-bit regimes. BM formats are designed to have both a wide dynamic range
and yield an efficient implementation via Kulisch accumulators. Training is demonstrated
using sub 8-bit BM formats for all weights, activations and gradients of a DNN, and almost
no degradation in floating-point accuracy is observed with arithmetic units that are 23.9×
smaller and consume 16.1× less energy than floating-point. This shows that specialised
arithmetic can be used to overcome both memory and computation bottlenecks, to deliver
training at increased speed and energy efficiency.
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Chapter 1. Introduction

1.3 Thesis Structure

The main contributions of this thesis have been published before in:

• Sean Fox, David Boland, and Philip HW Leong. "FPGA Fastfood-A High Speed
Systolic Implementation of a Large Scale Online Kernel Method." ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 2018.

• Sean Fox, Julian Faraone, David Boland, Kees Vissers, and Philip HW Leong.
"Training Deep Neural Networks in Low-Precision with High Accuracy using FP-
GAs". International Conference on Field-Programmable Technology (ICFPT). 2019.
(Best Paper Award Candidate)

• Sean Fox, Seyedramin Rasoulinezhad, David Boland, and Philip HW Leong. "A
Block Minifloat Representation for Training Deep Neural Networks". International
Conference on Learning Representations (ICLR). 2021.

However, this thesis takes the opportunity to explain and compare the material in more
detail. In particular, chapters are written around each publication and describe hardware
specialization for machine learning in terms of the underlying hardware architecture and
computer arithmetic. The structure of technical chapters is thus encapsulated by Figure 1.1,
and the overall thesis structure is given below:

• Chapter 2 provides background on machine learning algorithms: kernel methods
and deep neural networks (DNNs), hardware architectures: Systolic Arrays and
Field Programmable Gate Array (FPGA) technology, and computer arithmetic:
Fixed-point, Floating-point and Block floating-point.

• Chapter 3 describes a hardware design for training large-scale online kernel meth-
ods, comprising a specialised systolic-array architecture and fixed-point arithmetic
scheme.

• Chapter 4 considers the problem of high accuracy on-chip DNN training and pro-
poses a specialised 8-bit algorithm and prototype accelerator for embedded FPGA
devices.

• Chapter 5 shows that DNN training can be performed with fewer bits and higher
computational density using greater specialization at the arithmetic level. A new
representation called Block Minifloat is introduced.

• Lastly, conclusions of this work are discussed in Chapter 6.
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Chapter 1. Introduction

Figure 1.1: Thesis structure. Each chapter explores hardware specialization along two
axes: hardware architecture (y-axis) and computer arithmetic (x-axis)
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Chapter 2

Background

This chapter presents a brief background on machine learning and hardware specializa-
tion. This includes theory and descriptions for gradient-based learning algorithms, kernel
methods, deep neural networks (DNNs), hardware accelerator design principles, systolic
arrays, Field Programmable Gate Arrays (FPGAs), fixed-point arithmetic, floating-point
arithmetic, and finally, block floating-point arithmetic.

The presentation of this chapter is organised based on the three main investigative themes
of this thesis: Machine learning in Section 2.1, hardware architectures in Section 2.2, and
lastly, computer arithmetic in Section 2.3.

2.1 Machine Learning

Machine learning defines a set of computer algorithms that use experience to automatically
improve performance at some task. A more precise definition was given in (Mitchell,
1997) [23] which says:

Definition 2.1 A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E.

Here, experience refers to past information that is available to the learner and forms
the training dataset while performance measures the ability of the learner to generalise
to previously unseen data. For example, consider the task of image classification (T).
A machine learning algorithm improves its classification accuracy (P) using experience
obtained by training over large collections of already labelled images (E). Likewise, on the
task of forecasting energy prices (T), machine learning uses temporal patterns extracted
from historical price data (E) to predict future unknown prices with higher certainty and
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Chapter 2. Background

lower error (P). These examples are summarized in Table 2.1.

Table 2.1: Examples of machine learning problems

task (T) experience (E) performance (P)

image classification
(e.g. ImageNet [24]) large collection of labelled images classification accuracy

language modelling text corpora containing many words
and sentences

accuracy of the next word probabil-
ity model (i.e. word perplexity)

non-linear regression
(energy prices)

historical timeseries of energy prices
plus any related timeseries data

forecasting error, as measured by e.g.
mean square error (MSE)

anomaly detection
(RF data)

IQ samples from spectrum of radio
frequency signals

correct detections of known/injected
anomalies

To formulate a learning algorithm mathematically, we first need to define a model. The
model refers to a function f (x, θ) that predicts a target y by inputting x and generating
the output ŷ = f (x, θ). The precise form of the function is determined during the training
or learning phase, by improving predictions on the training data, while performance is
evaluated during the testing/inference phase on examples not found in the training set. The
ability to perform well on both the train and test sets is called generalisation and is the
main difference between machine learning and standard optimization algorithms.

This section is organised as follows: First, machine learning algorithms are described
in more practical terms using linear regression as an example. This includes notation and
terminology which is relevant to subsequent sections. While linear models provide a good
understanding of how machine learning algorithms work, most practical problems require
non-linear models for effective learning outcomes. This section also provides the required
background and theory on two classes of non-linear algorithms, namely kernel methods
and deep neural networks.

2.1.1 Example: Linear Regression

Linear regression [25] has been widely used for solving problems in machine learning
and related fields of science. It has a solid mathematical foundation and provides a good
working example of how machine learning algorithms operate.

Linear regression takes an input vector x ∈ Rd, where d refers to the number of input
variables otherwise known as features, and generates a scalar output ŷ ∈ R that predicts a
target value y ∈ R. Importantly, the output is modelled as a linear function of the input, as
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Chapter 2. Background

shown in Equation (2.1), where w ∈ Rd is a vector of parameters called weights.

ŷ = wTx (2.1)

Linear models are sometimes formulated as affine functions. The affine function includes
an additional parameter b ∈ R, called the offset or bias, so that ŷ = wTx + b. The affine
function can be realised with Equation (2.1) by appending the bias term to the weight vector
and augmenting the input vector with an extra feature that always equals 1. The augmented
input and weight vectors then become x = {x1, x2, . . . , xd, 1} and w = {w1,w2, . . . ,wd, b}

respectively.

Let X = {x1, x2, . . . , xN} ∈ R
N×d represent a dataset of N examples, and let y =

{y1, y2, . . . , yN} ∈ R
N represent the corresponding set of target values. In standard ma-

chine learning problems, model performance is measured by computing some metric of
error, called a loss function, on the testing set {X(test), y(test)}. For linear regression, mean
square error (MSE) is commonly used.

MSE(test) =
1
N

N∑
i=1

(ŷ(test) − y(test))2
i

MSE(test) =
1
N

∥∥∥ŷ(test) − y(test)
∥∥∥2

2

(2.2)

However, before MSE performance can be evaluated on a testing set, a model must first
be trained on a training set {X(train), y(train)}. This requires an algorithm for finding weights,
w, that minimises MSE on the training data. Formally, the problem can be written as:

minimizew
1
N

∥∥∥ŷ(train) − y(train)
∥∥∥2

2
, (2.3)

from which a direct solution for w is found by calculating where the gradient equals zero,
according to Equations (2.4) to (2.9) below.
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Figure 2.1: Example of linear regression and gradient descent on a toy problem

∂MSE(train)

∂w
= 0 (2.4)

∂

∂w
(
ŷ(train) − y(train)

)T(
ŷ(train) − y(train)

)
= 0 (2.5)

∂

∂w
(
X(train)w − y(train)

)T(
X(train)w − y(train)

)
= 0 (2.6)

∂

∂w
(
wTX(train)TX(train)w − 2wTX(train)Ty(train) + y(train)Ty(train)

)
= 0 (2.7)

2X(train)TX(train)w − 2X(train)Ty(train) = 0 (2.8)

w =
(
X(train)TX(train)

)−1
X(train)Ty(train) (2.9)

Since it is not possible to derive closed-form solutions (like above) for all learning
models and functions, another way of solving for w is to train via gradient descent. In
gradient descent, the weights are updated iteratively, by taking small steps along the
direction of the negative gradient. Mathematically, the update algorithm is written as:

w(t+1) = w(t) − η
∂H
∂w

(2.10)

where t is the step number, η refers to the step size otherwise known as the learning rate

and H = MSE(train) is the loss function. Equation (2.10) defines the loss with respect to
the training set, and therefore the entire training set must be processed at each step until
convergence. This means that gradient descent does not scale particularly well on large
datasets. An example of gradient descent is shown in Figure 2.1. Here, a simple 2D linear
regression model is trained on a toy dataset comprising 20 examples, reaching convergence
after approximately 20 steps, where w1 = 0.74 and b = −0.23.
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Algorithm 1: Pseudocode for Stochastic Gradient Descent (SGD). Note that η is
the learning rate,D = (X(train), y(train)) defines the training set, the minibatch size is
given by K, and t is the step number

Initialise the model weights: w(t = 0)
while Not converged do

sample a minibatch B = {(x1, y1), . . . , (xK , yK)} uniformly fromD
w(t + 1) = w(t) − η 1

K
∑K

i=1(w(t)Txi − yi)xi

t = t + 1
end while

Due to performance scalability issues associated with gradient descent, a similar al-
gorithm called Stochastic gradient descent (SGD) [26] is often preferred for machine
learning training. SGD, as shown in Algorithm 1, works by estimating the gradient using
a smaller set of examples, known as a minibatch, which are sampled uniformly from the
dataset. Crucially, the size K of the minibatch can be held constant while the training
set size N increases. This reduces the computational cost for each step by N/K times.
Furthermore, since the loss function is now stochastic, in the sense that evaluation depends
on the randomly sampled minibatch, the learning algorithm tends to be better at escaping
from bad local minima. This has proven especially important for training deep neural
networks, which is the main subject of Chapters 4 and 5.

2.1.2 Kernel Methods

To adapt linear models for non-linear problems, the inputs should first be transformed
into a higher dimensional feature space using a function φ(x) : Rd → RD. This is because
features become more clearly separable in high dimensions, and thus the output can
be computed using simple linear techniques. This is shown in Equation (2.11), where
w = {w1, . . . ,wD} is a vector of weights.

f (x) =

D∑
i=1

wiφ(x) (2.11)

Although the linear part of the equation is computationally efficient, φ(x) is itself expensive
to compute for very high dimensional feature spaces. In such cases, it would be better to
define the model using kernel methods [27].

Kernel methods rely on the observation that inner products between pairs of points in
high dimensional feature spaces can be computed using a kernel function, κ(xi, x j), without
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having to explicitly transform into that space, as shown in Equation (2.12).

κ(xi, x j) =<φ(xi), φ(x j)> (2.12)

This enables high-dimensional features to be extracted inexpensively from the input, as
the computation of φ(xi)Tφ(x j) can be avoided. This is commonly known as the kernel

trick [28]. The only caveat is that a length M subset of the input data must be stored in
memory, also known as the dictionary or support vectors. If X = {x1, . . . , xN} ∈ R

N×d and
D = {v1, . . . , vM} ∈ R

M×d represents the input data and dictionary respectively, then f (x)
can be computed using Equation (2.13) for the jth input.

f (x j) =

M∑
i=1

wiκ(vi, x j) (2.13)

Different types of kernel functions exist for solving different types of problems, as shown
in Table 2.2. The most common kernel however is the Gaussian kernel, also known as
the Radial Basis Function (RBF) kernel. All kernel functions compute some measure of
similarity between two input examples. This can be done using the inner product xT

i x j,
as with the linear kernel, or by the distance

∥∥∥xi − x j

∥∥∥2

2
, in the Gaussian kernel. Broadly

speaking, the similarity calculation is the main source of computational cost in the kernel
function.

Table 2.2: Examples of kernel functions

linear kernel κ(xi, x j) = xT
i x j

gaussian kernel κ(xi, x j) = e−γ‖xi−x j‖
2
2

polynomial kernel κ(xi, x j) = (xT
i x j + c)b

bessel kernel κ(xi, x j) =
Jν+1(σ‖xi−x j‖)

‖xi−x j‖
ν+1

To train kernel methods, the machine learning algorithm must update both the dictionary
and weights in order to minimise some predefined loss function. This is in contrast
to linear methods which only require updates for the weights. On small datasets (less
than 104 examples), Equation (2.13) can be computed efficiently. However, this is not
possible on large datasets because M tends to grow with the number of input examples, N,
[29]. This significantly limits kernel methods in applications such as image classification
and language modelling, where for example, the widely used ImageNet dataset contains
N = 106 images and d = 105 input dimensions [30].
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2.1.2.1 Random Kitchen Sinks

To address the problem associated with a large M, Rahimi and Recht [31] proposed
random kitchen sinks. The main idea is to create a function z(x) such that the inner
products <z(xi), z(x j)> are approximately equal to the high-dimensional features extracted
from k(xi, x j). In this case f (x j) can be computed by Equation (2.14). Rahimi and Recht
demonstrated that this is guaranteed for shift-invariant kernels (κ(x, x′) = κ(x − x′, 0)), if
we define z(x) by Equation (2.15).

f (xi) =

n∑
j=1

α jz(xi) (2.14)

z(xi) =
1
√

n
cos(WT xi) (2.15)

In this function, W is a d×m matrix randomly sampled from the Fourier transform of the
kernel function. This is of particular interest for the Gaussian kernel for which the Fourier
transform is itself a Gaussian. Crucially, m is fixed and represents the number of random
basis functions (or expansion dimensions) used to approximate kernel methods with M

dictionary elements. This means that random kitchen sinks can be trained independent
of the dataset size, making it much faster on problems with many inputs. In fact, on the
CIFAR-10 dataset [32], which has N = 50, 000 images and d = 3, 072 dimensions, exact
non-linear kernel methods require very large M and are intractable. On the other hand,
random kitchen sinks with m = 16, 384 achieves an accuracy that is among the top two for
shift-invariant kernel representations [33].

Unfortunately, although the computational cost does not grow with the dataset, N,
random kitchen sinks still must store W and compute Wx for each (xi, yi) pair. For high
dimensional datasets, i.e. d > 1000, this consumes time and energy because memory and
compute requirements of vector-matrix products scale as O(md).

2.1.3 Deep Neural Networks

Deep Neural Networks (DNNs) are powerful multi-layered feature extractors [34]. They
transform raw inputs via a sequence of computational layers into simpler yet more abstract
features at the output. Let x ∈ Rn represent an input vector of dimensionality n, and let
f ′(x) : Rn → Rm represent the function to be computed at each layer. A DNN comprising
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(a) Neuron with n inputs (b) Layer with 2 inputs and 3 outputs

Figure 2.2: An example DNN layer. Layers are composed of multiple neurons, where
each neuron computes a weighted sum of inputs for a single output.

L layers can then be written as:

φ(x) = f L(. . . ( f 2( f 1(x)))) (2.16)

Each layer is composed of smaller computational units called neurons, as shown in
Figure 2.2. Neurons are inspired by biological processes in the brain and compute a
function of the form: g(wT x + b), where w ∈ Rn and b ∈ R are trainable weights and bias
parameters of a linear model, and g(.) is a non-linear function such as ReLU, Sigmoid
and Tanh functions (from Table 2.3). Each neuron computes a single output feature, and
thus multiple neurons are required to produce layers with multiple output features. This
changes the main computation from a dot-product to matrix-multiplication as formulated
below:

f (

x1

x2

) = g(


w11 w21

w12 w22

w13 w23

 .
x1

x2

 +


b1

b2

b3

)

f (x) = g(WT x + b) (2.17)

where x ∈ Rn and f (x) ∈ Rm refer to the input and output of the layer, commonly called the
activations, and W ∈ Rn×m and b ∈ Rm are the weight matrix and bias vector respectively.
Equation (2.17) describes the fundamental computation at the heart of all layers.

The model capacity of a DNN is controlled by the depth (number of layers) and width
(neurons per layer) of the network, while the connectivity between neurons and layers is
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Table 2.3: Examples of non-linear activation functions

g(z) dg/dz

ReLU

0 for z < 0
z for z ≥ 0

0 for z < 0
1 for z ≥ 0

Sigmoid
1

1 + e−z g(z)(1 − g(z))

Tanh
2

1 + e−2z − 1 1 − g(z)2

also part of the modelling framework. Modern DNNs are designed with many parameters
(i.e both wide and deep) which are free to learn very complex feature representations. This
provides DNNs with powerful generalisation properties but means that each prediction
also requires a vast number of large matrix multiplication operations.

(a) Forward path (inference)

(b) Backward path (training)

Figure 2.3: Summary of the forward and backward computations required for a given
DNN layer.

2.1.3.1 Training

Training is performed by first establishing and then minimising an objective of the form:

H(W) =
1
K

K∑
i=1

hi(W) (2.18)

Here, h(W) is a loss function (e.g. MSE(train), cross-entropy etc.) and K is the number
of training batches. For ease of notation, the loss is defined as a function of the weights only.
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Stochastic gradient descent (SGD) in Algorithm 1 is commonly used to minimise
the objective. On each iteration, SGD will select a random batch from the training set,
corresponding to a function h̃ from {h1, h2, ..., hm}, and update the weights in the direction
of steepest descent, according to the following equation and learning rate η.

Wt+1 = Wt
− η

∂h̃
∂Wt (2.19)

Here, ∂h̃
∂W refers to the weight gradient or alternatively the derivative of the loss with respect

to the weight. This needs to be computed for every weight at every layer in the network,
and requires application of the chain rule to propagate the loss back through the network.
This is called backpropagation and the loss at each layer is called the activation gradient (or
deltas), denoted δl = ∂h̃

∂xl
. If z(x) = WT x, then at each computation layer we must compute

the forward path by Equation (2.17) and the backward path by Equations (2.20) and (2.21),
for the activation gradient and weight update gradient respectively.

∂h̃
∂xl−1

=
∂z
∂xl−1

∂g
∂z
∂xl

∂g
∂h̃
∂xl

(2.20)

∂h̃
∂Wl

=
∂z
∂Wl

∂g
∂z
∂xl

∂g
∂h̃
∂xl

(2.21)

A summary of the computation is illustrated in Figure 2.3. Since ∂z
∂x = W and ∂z

∂W = x,
then both equations reduce to matrix multiplication by the activation gradient δ̃l =

∂g
∂z

∂xl
∂g

∂h̃
∂xl

.

DNN training introduces an additional two matrix multiplications at each computation
layer, and furthermore, the input batch at each layer of the forward path must be saved to
calculate the weight gradient in the backward path. Specialised hardware architectures and
specialised arithmetic can be used to reduce these computation and memory costs, such as
systolic arrays and low-precision number representations.

2.2 Hardware Architecture

Machine learning algorithms usually require many parameters and operations to reach high
levels of accuracy. Software running on a general-purpose central processing unit (CPU) is
typically too slow and consumes too much energy for effective computation. This reality
together with the growing size and diversity of machine learning applications has pushed
the need for purpose-built hardware accelerators [35], such as Graphics Processing Units
(GPUs), Application Specific Integrated Circuits (ASICs) and Field Programmable Gate
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Arrays (FPGAs). This section presents background on hardware acceleration, focusing on
FPGAs and architectures for high-performance and efficient machine learning.

Figure 2.4: Heterogeneous machine learning accelerator

Most hardware accelerators are designed to operate alongside a CPU or an equivalent
microcontroller and are thus described as heterogeneous, shown in Figure 2.4. The CPU
controls the execution of the program by offloading the computationally intensive parts
of the machine learning algorithm to the accelerator, where an offload is performed by
transferring data between the CPU and accelerator address spaces in shared memory. The
CPU and accelerator can be connected on the same integrated circuit (or chip) via an
interconnect standard such as AMBA (for ARM processors) and QPI (for Intel processors),
or otherwise as separate devices by external interfaces like PCI-e or Ethernet. This
thesis focuses on embedded devices, where the hardware accelerator is usually packaged
alongside other components and forms a system on chip (SoC) [36].

2.2.1 Design Objectives

Machine learning accelerators are designed to perform tasks more efficiently than standard
computer technology. However, the extent to which the hardware accelerator actually
delivers superior performance depends on the machine learning model as well as the
application itself. Therefore, realising high-performance hardware is very much a moving
target for computer architects [37]. Below, four objectives are outlined that are commonly
used to guide the design process.

Accuracy. Performance is first and foremost measured by the model’s ability to make ef-
fective and accurate predictions. In terms of hardware, numerical accuracy is determined
by the underlying computer arithmetic. The number of bits in the number representation,
and the amount of range and precision allowed. This is discussed in detail in Section 2.3.
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Throughput and Latency. The time taken for inference and training depends on
the computational throughput and latency of the underlying hardware architecture.
Throughput measures the number of operations or inputs which can be computed per
second, while latency refers to the time taken (in seconds) for a single operation or input.
For achieving both high throughput and low latency, hardware architectures must be
able to maximise computational parallelism while sustaining a high operating frequency
and preventing idle time as much as possible. This requires a large silicon area and
enough memory bandwidth to keep the computational units busy. Nvidia GPU’s are the
dominant platform for accelerating training workloads.

Energy and Power. Energy efficient architectures are based on keeping data close to the
computation units and avoiding off-chip memory transfers. According to Horowitz [17]
this is more important for further performance improvements than increasing the transis-
tor count. Brainwave [10] is an FPGA chip for inference which ties the entire model to
28 MB of on-chip memory, and thus eliminates expensive DRAM transfers. Doing the
same for training is more difficult because of increased memory requirements, i.) more
bits are typically needed to preserve numerical accuracy, and ii.) the input activations
must be stored for updating the weights via gradient descent techniques. Specialised
hardware together with specialised learning algorithms is desirable to keep more data
on-chip and reduce energy costs associated with training. This is especially important
for embedded devices which have strict physical constraints.

Flexibility. An architecture that achieves high throughput (or low latency) on one task,
might be unable to reach similar performance levels on other tasks. For example, archi-
tectures that are optimised for high data reuse (e.g. matrix multiplication, convolution)
may perform poorly on models with less data reuse (e.g. vector operations, depthwise
convolution). This could be due to insufficient memory bandwidth, but also because
the network on chip (NoC) architecture is not flexible enough to deliver data efficiently
to the computation units for different workloads. This thesis focuses on the training
phase, and thus greater flexibility is required to effectively support gradient descent
techniques. For DNNs in particular, backpropagation introduces two additional matrix
multiplications (Equation 2.20 and 2.21) which can have vastly different data reuse
properties.

2.2.2 Systolic Arrays

A systolic array (SA) defines a parallel computer architecture comprising a large number of
locally interconnected processing elements (PEs), which are arranged in a spatial structure
such as a linear or two-dimensional array [12]. Computation is performed in a pipelined
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Figure 2.5: (a) Spatial dataflow: B is reused horizontally and C is reused vertically. (b)
Temporal dataflow: B is reused horizontally and A is reused vertically.

manner by passing data through the array in a regular pattern, where each PE works on
part of the computation in parallel. Inputs to the array are buffered and thus synchronised
with a specific dataflow pattern. Hardware benefits of this architecture include:

(i) A modular and regular structure which is flexible and easily extensible. The ar-
ray can be shaped and resized to meet specific I/O bandwidth and computational
requirements with simple modifications and without needing to change the PEs.

(ii) Local interconnections. Each PE is only connected to its neighbours, preserving data
locality within the PE and ensuring that wire lengths and subsequent routing delays
are minimal. This means the design can operate at high frequencies and thus achieve
higher throughput and lower latency.

(iii) Massive parallelism. Systolic arrays exploit parallelism in computationally intensive
workloads, such as convolution and matrix multiplication, by reusing the input data
multiple times as it moves through the pipelined array. This improves the efficiency
and speed of machine learning applications, which are often constrained by the
amount of computation required. Google’s Tensor Processing Unit (TPU) [38] is
perhaps the most well-known machine learning accelerator based on systolic array
dataflows.

Systolic arrays require careful scheduling to ensure the input data arrives at each PE on
the correct clock cycle. The shape of the array and the supported dataflow is also important
for the execution of a given instruction/operation. Below, two dataflows are presented for
matrix multiplication.
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2.2.2.1 Dataflow for Matrix Multiplication

There are two main types of systolic arrays for matrix multiplication. The spatial reuse
architecture and temporal reuse architecture, as shown in Figure 2.5. For C = A × B, each
dataflow works as follows:

Spatial Dataflow. The output, C, is accumulated spatially by propagating partial sums
vertically down the array. B is reused horizontally (right), while A is cached in local PE
memory and is therefore stationary. In the context of neural networks, where A and B
refer to the weight and activation tensors respectively, this dataflow is commonly known
as the weight stationary dataflow [39].

Temporal Dataflow. The output, C, is cached in local PE memory and accumulated
temporally. A and B on the other hand are reused vertically (down) and horizontally
(right). For neural networks, this dataflow is also known as the output stationary

dataflow [39].

Importantly, both dataflows rely on memory bandwidth and data reuse in certain dimen-
sions of A, B, and C to achieve high parallelism and performance. Hence, in terms
of hardware, the "best" dataflow depends entirely on the machine learning workload.
Given that two models for the same task can have widely varying data reuse patterns, it is
challenging for systolic arrays to maximise performance for all workloads and applications.

In Chapter 3, a highly specialised systolic array architecture is presented for a low data
reuse algorithm comprising structured sparse matrices and log-linear time complexity.
Then Chapter 4, another systolic array is described for training deep neural networks. On
this occasion, the architecture is a standard 2D array with spatial data reuse.

2.2.3 Field Programmable Gate Arrays

Field Programmable Gate Array (FPGA) is a type of integrated circuit that can be config-
ured to a particular application or functionality by the consumer after manufacturing [40].
This distinguishes FPGAs from other implementation options, such as ASICs, which
require a newly fabricated chip for every new design [41].

Hardware flexibility can be especially advantageous for machine learning, where both
the algorithm and accelerator architecture are moving targets in an optimal implementation.
For example, techniques such as sparsity and low-precision arithmetic do not perform with
the same accuracy for all models and applications yet they require specialised hardware
to realize their benefits. Apart from flexibility, FPGA architectures also deliver very high
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computational performance. In fact, recent FPGAs provide upwards of 7 tera-operations
per second (TOPs) of 8-bit throughput, have tens of megabytes (MB) in on-chip memory,
multiple terabytes per second (TB/s) of low-latency communication bandwidth, and operate
well above 700 MHz [42] 1. Furthermore, FPGAs can be easily integrated with other
hardware components to form full system applications.
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Figure 2.6: Components of an FPGA architecture

Modern FPGA architectures are composed of five key components: configurable logic
blocks (CLB), digital signal processing (DSP) blocks, memory blocks known as block
ram (BRAM), I/O blocks (IOB), and programmable routing, as shown in Figure 2.6. An
FPGA implements a given circuit by programming each of the aforementioned blocks and
configuring switches in the routing architecture to make all necessary connections. As a
result, the overall routing architecture (including the number of wires in each channel) is
particularly important to the FPGA’s flexibility, speed and area efficiency. Figure 2.6 shows
an "island-style" FPGA architecture, where logic blocks are surrounded by routing channels
on all four sides. In terms of logic, CLBs use look-up tables (LUTs) for functionality
and flip-flops (FF) for memory, with local connections between them. A k-input LUT
implements any function of k inputs as a truth table and requires 2k memory cells and

1Numbers assume a Xilinx Ultrascale+ VU3P device
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a 2k input multiplexer. The use of LUTs means that CLBs can also be configured as a
form of distributed memory. DSPs are dedicated circuits for math operations and contain
adders and multipliers which would otherwise consume large amounts of CLB resources.
Similarly, BRAMs provide a dedicated resource of memory, usually tens of kilobits per
BRAM, which can be configured as single-port or dual-port memory. Both these blocks
are fully pipelined and can thus perform computations and read/write operations every
clock cycle at high frequencies. Most FPGAs contain many DSP and BRAM resources in
their device architecture, taking up most of the area on the chip, the use of which is vital
for achieving high performance in computationally intensive applications.

  

Design (HDL, Verilog etc.)

Synthesis (to logic blocks)

Placement (to blocks in FPGA)

Route (connections between blocks)

Bitstream (programming file)

Figure 2.7: FPGA design flow

FPGA programming is a multi-step process, as shown in Figure 2.7. A hardware
description language (HDL) is typically used to describe a circuit at a high level of
abstraction in the design phase. The circuit, as described by the HDL file, is then converted
into a netlist of FPGA resources (e.g. LUTs, FFs, DSPs, BRAMs, etc.). This step is
called synthesis, the aim of which is to maximize the circuit speed while simultaneously
minimizing the number of resources needed. Next, the netlist is mapped to physical
blocks on the FPGA using placement and routing algorithms which optimize the timing
of the circuit. Finally, the circuit is written to the FPGA as a sequence of bits, called a
bitstream. The bitstream implements the desired functionality of the circuit by configuring
the thousands (possibly millions) of resources and switches on the FPGA.

Modern FPGAs provide programmability and high performance, both of which are
advantageous for machine learning acceleration.
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2.3 Computer Arithmetic

Computer arithmetic concerns the study of number representations, algorithms for manip-
ulating and operating on numbers, and hardware circuits and software routines for their
efficient implementation [43]. This section presents fixed-point, floating-point and block
floating-point arithmetic types, which together generalise nearly all number systems used
for machine learning.

As discussed above, Field Programmable Gate Arrays (FPGAs) consist of logic blocks
that can be reconfigured to implement any type of computer arithmetic. However, the extent
to which the implementation is efficient in terms of area, speed and power consumption,
varies between arithmetic types. With that in mind, this section provides a brief discussion
on the hardware implications of each representation.

2.3.1 Fixed-Point

Fixed-point is a digital number representation that operates similarly to integers [43].
As with integers, fixed-point numbers are represented uniformly which means that gaps
between successive numbers are the same throughout the representation. However, fixed-
point can also represent fractional numbers. Specifically, fixed-point assigns a portion
of the representation to the fractional part of real numbers, called fractional bits F.
This is equivalent to scaling an integer by 2−F and can be interpreted as trading off

representable range for more numerical precision. Putting this together, a bit vector
(xK−1xK−2 . . . x0.x−1x−2 . . . x−F)2 in fixed-point, represents the real value given by:

(xK−1xK−2 . . . x0.x−1x−2 . . . x−F)2 =

K−1∑
i=−F

xi × 2i (2.22)

Here, B = K + F is the bit width of the number, where K is the number of bits after the
decimal point otherwise known as the integer width.

Notably, this formulation does not handle translations from signed fixed-point numbers,
which are usually represented in two’s complement form [43]. In two’s complement, the
most significant bit encodes the sign, where zero and one represent positive and negative
numbers respectively. For positive numbers, Equation (2.22) can be applied to the bit
vector directly, but for negative numbers, the bit vector must first be negated. This can be
done using Equation (2.23) (for a generic B-bit integer) and involves reversing each bit
and adding one.

(yB−1 . . . y1y0)2 = (x̄B−1 . . . x̄1 x̄0)2 + 1 (2.23)

Numerical errors arise when there is not enough range and/or precision to exactly
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Figure 2.8: Unsigned integer multiplication (N = 4). The conventional algorithm requires
N shift and add operations.

represent a given number. This can occur due to limitations in the fixed-point represen-
tation itself or from overflow and underflow in the arithmetic units. For a fixed-point
representation in two’s complement the range is given by [−2B−F−1, 2B−F−1 − 1] while
precision is measured by the relative roundoff error ε = 2−F−1. The relative roundoff error
is simply an expectation of the error from rounding or truncation. When the gap between
successive numbers is 2−F , rounding will produce errors that range between [0, 2−F]. As an
expectation this gives ε = 2−F−1. Overflow and underflow occur when the absolute value
of a number is too large or too small for a given representation. In such cases, fixed-point
representations simply require more range and precision respectively. Unfortunately, for a
fixed number of bits, more range usually requires the sacrifice of precision and vice-versa.
For this reason, other representations like floating-point are often preferred.

2.3.1.1 Hardware Implementation

In terms of hardware, fixed-point arithmetic (or integer arithmetic) has much lower com-
plexity compared to floating-point. For addition and subtraction, efficient implementations
are available using full-adders and carry chain logic, while for multiplication, modified
Booth’s algorithm with carry-save adders and reduction trees are known to produce fast
and small multiplier circuits [43]. An example of unsigned multiplication is shown in
Figure 2.8. Here, it takes N cycles to multiply two N-bit numbers using N shift and N add
operations. Modern multipliers are much more efficient as they compute multiple bits of the
product in parallel. In particular, FPGA architectures make use of such multiplier circuits
in the DSP blocks (in Section 2.2.3). Together with dedicated carry chain logic in the
CLBs, this makes FPGAs especially well suited to fixed-point arithmetic and multiply-add
operations.
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2.3.2 Floating-Point

The problem with fixed-point representations is that they often suffer from limited range
and/or precision since more range can only be provided by sacrificing precision or vice-
versa. On the other hand, floating-point representations have both a wide dynamic range
and high precision and can accommodate both very large and very small numbers [43].

Floating-point representations have three distinct components: the sign S , exponent
E = (êe−1êe−2 . . . ê1ê0)2, and mantissa M = (m̂m−1m̂m−2 . . . m̂1m̂0)2 in binary form. The
exponent and mantissa bits, e and m, control the bandwidth, range and precision of the
representation. Hence, floating-point formats are usually expressed as tuples e.g. (e,m).

(

S︷︸︸︷
ŝ0

E︷             ︸︸             ︷
êe−1êe−2 . . . ê1ê0

M︷                  ︸︸                  ︷
m̂m−1m̂m−2 . . . m̂1m̂0 )2

Together, these three components represent the real number:

x = (−1)S × (1. + M) × 2E (2.24)

• Sign. Floating-point numbers are mostly represented in signed magnitude form,
where the sign is kept separate from the rest of the number. Other options include
using two’s complement to represent the mantissa component.

• Mantissa. The mantissa provides precision to the representation and operates as
an m-bit unsigned fixed-point number with all bits fractional, i.e. F = m. There-
fore the mantissa is also commonly called the fraction. Furthermore, the leading 1
bit in Equation (2.24) is implicit and describes floating-point in normalized form.
Together, the mantissa therefore represents real numbers in the range [1, 2) via
(1. m̂m−1m̂m−2 . . . m̂1m̂0)2. While normalized formats are the most common, unnor-
malized numbers can be realized using a leading 0 bit instead, the use of which
provides more precision to numbers around zero.

• Exponent. The exponent is used to shift the mantissa and thus provides floating-
point representations with a wide dynamic range. Although exponents operate as
signed integers they are usually encoded as unsigned integers by adding a bias. A
bias, β = 2e−1 − 1, incurs minimal overhead in hardware, and aligns the exponent so
that E = 0 and E = 2e − 1 represents the smallest (most negative) and largest (most
positive) numbers. This helps with zero detection and error handling (e.g. infinity
and NaN numbers).

The range of supported floating-point numbers is symmetrical around zero and comprise
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intervals given by [−min,−max] and [min,max]. Overflow and underflow occur when
numbers fall outside of this range, i.e. when the absolute value is larger than max (overflow)
or smaller than min (underflow).

max = largest mantissa × 2largest exponent

min = smallest mantissa × 2smallest exponent

Since max and min are often extremely large and small numbers respectively, the range is
sometimes expressed in decibels (dB) using 20 log10(max/min). In addition, floating-point
precision, as measured by relative roundoff error, is given by ε = 2−m−1.

2.3.2.1 IEEE-754 Floating Point Standard

Table 2.4: Summary of IEEE-754 floating-point number formats

Scheme
Format (e,m) Bias3 Normal Denormal Range1 Precision2

exponent mantissa (β) (max+) (min+) (dB) (ε)

FP16 5 10 -15 6.5e4 6.0e-8 241 2−11

FP32 8 23 -127 3.4e38 1.4e-45 1668 2−24

FP64 11 52 -1023 1.8e308 4.9e-324 12631 2−53

1 dynamic range in decibels 20 log10(max+/min+)
2 relative round-off error, i.e. 2−m × 2−1

3 exponent bias β = −(2e−1 − 1)

Given the flexibility of floating-point, and the number of specialised formats available,
the Institute of Electrical and Electronics Engineers (IEEE) introduced the IEEE-754
standard for floating-point representations to promote interoperability across many hard-
ware platforms and systems [44]. The standard defines rules around arithmetic and error
handling, and specifies a set of industry approved floating-point formats which differ
in numerical accuracy and hardware cost. The three most important formats are: half-
precision (FP16), full-precision (FP32) and double-precision (FP64), which refer to 16-bit,
32-bit and 64-bit representations. A IEEE-754 floating-point number is formally given by
Equation (2.25) below:

x =


E = 0, (−1)s × 21−β × (0 + M) (denormal)
otherwise, (−1)s × 2E−β × (1 + M) (normal)
E = 2e − 1, NaN or Infinity

(2.25)

Compared to the standard format (given in Equation 2.24), IEEE-754 also represents the
unnormalized floating-point region, also known as denormal numbers. Additionally, IEEE-
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754 formats have biased exponent encodings and explicitly represent special numbers (e.g.
NaN and Infinity), which are used for error signalling. Table 2.4 provides configuration
details for different FP representations.

Although IEEE-754 formats are dominant for CPU and GPU platforms, designers
of special-purpose machine learning systems may prefer alternate representations for
performance or cost purposes. For example, Google TPU adopts a modified 16-bit floating-
point format called BrainFloat (BFloat16) [45] which has 8 exponent and 7 mantissa
bits. This presents a significant deviation from standard FP16 which only has 5 exponent
bits. The extra exponent bits are deemed necessary for training DNNs specifically, which
generally require a wide range for representing gradient numbers.

2.3.2.2 FP Addition and Multiplication

Machine learning algorithms typically require a large number of multiply-add operations
for their computation. Next, we present floating-point arithmetic for multiplication and
addition via example. In both examples, a and b represent normalized floating-point
numbers according to Equation (2.24), except the sign bit and leading 1-bit are excluded
for ease of notation. For FP multiplication, the result is calculated by:

a × b = (±Ma × 2Ea) × (±Mb × 2Eb)

= ±(Ma × Mb) × 2(Ea+Eb)

Importantly, the mantissa and exponent can be calculated separately - the mantissa by
standard fixed-point multiplication and the exponent by integer addition, as shown above.
The only exception is when 2 ≤ (Ma × Mb) < 4. In this case, the mantissa must be
right-shifted 1-bit with one added to the exponent to compensate. This returns the result to
normalized form as required, but comes at the cost of extra logic in hardware. FP addition
is more complicated, and requires a right shift to align exponents before the operation:

a + b = (±Ma × 2Ea) + (±Mb × 2Eb)

= (±Ma × 2Ea) + (±
Mb

2Ea−Eb
× 2Ea)

= ±(Ma +
Mb

2Ea−Eb
) × 2Ea

Here, we assume that Ea ≥ Eb and therefore Mb is right-shifted by 2Ea−Eb bits to align the
mantissas. With the mantissas aligned, addition becomes simple using standard fixed-point
adders. Like multiplication above, the adder result might need to be converted back into
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Table 2.5: Comparison of hardware cost for fixed-point and floating-point arithmetic.
Energy and area numbers come from (Horowitz, 2014) [17] and (Dally, 2015) [18]

Operation
Area1 Energy2

(µm2) (pJ)

INT8 Add 36 0.03
INT16 Add 67 0.05
INT32 Add 137 0.1
FP16 Add 1360 0.4
FP32 Add 4184 0.9

INT8 Mul 282 0.2
INT32 Mul 3495 3.1
FP16 Mul 1640 1.1
FP32 Mul 7700 3.7

normalised form. This either requires a simple 1-bit right shift, when the sign of a and
b are equal, or a large left shift, when the signs are different and the result is very close
to zero. This is called the normalization shift (or postshift) as opposed to the alignment
(or preshift) which happens before the addition. Basically, these shifters (together with
associated sign and control logic) contribute most of the difference between floating-point
and fixed-point arithmetic units in hardware.

2.3.2.3 Hardware Implementation

Floating-point arithmetic requires extra circuitry to handle signs, preshift, postshift, round-
ing, and special numbers (e.g. denormals, Infinity, NaN, zero). Hence, floating-point units
are larger in area and consume more energy than equivalent fixed-point units. This is
shown in Table 2.5 for addition and multiplication under a 45nm technology node.

Notably, there is a particularly large disparity between integer and floating-point adders,
which is mainly due to preshift logic. For a 32-bit adder, the preshift can in principle be
implemented using 32-to-1 multiplexers (32× of them) in a single stage. However, due to
problems associated with high fan-in and fan-out, larger multistage designs are usually
preferred. The high cost of FP addition is only exacerbated on FPGAs, which for the most
part, do not have dedicated shifting logic and instead map multiplexers to CLBs which
are highly inefficient. In fact, FP32 multiply-add units require an additional 705 LUTs
and 1092 FFs on a Xilinx Ultrascale+ FPGA platform 2. For this reason, Xilinx FPGAs
are mainly used for computationally intensive fixed-point applications, e.g. machine
learning inference. On the otherhand, Intel FPGAs, such as the Arria10 and Stratix10
device families, have dedicated floating-point units and are thus more amenable to training

2Target platform is Xilinx Ultrascale+ FPGA xczu9eg ffvb1156 [46]
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workloads.

2.3.3 Block Floating-Point
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Figure 2.9: Floating-point, Fixed-point and Block floating-point (BFP) tensor representa-
tions. BFP tensors share an exponent across multiple elements.

Block floating-point (BFP) [47] is an alternative number representation that combines
the best aspects of floating-point and fixed-point representations. In BFP, floating-point
exponents are shared across blocks of N fixed-point numbers, providing a wide dynamic
range to the block while ensuring that the majority of multiply-add operations can be
implemented with dense fixed-point logic. Figure 2.9 provides an illustration.

Let a = [a0, a1, . . . , aN−1] represent a block of N elements, then the real value of an
element ai with mantissa Mi and shared exponent Ea is given by:

ai = (1 + Mi) × 2Ea (2.26)

The shared exponent Ea is usually determined by the maximum exponent in the block to
prevent large overflow errors. As such, quantization errors arise when there is not enough
precision (i.e. not enough mantissa bits) to adequately capture the value distribution of the
block. The number of mantissa bits and block size are thus crucial design decisions for
BFP representations.
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2.4 Summary

A brief background on machine learning, spatial hardware architectures, and computer
arithmetic was presented in this chapter.

Two classes of machine learning algorithms were introduced for solving non-linear
problems, namely kernel methods and deep neural networks. Kernel methods extract
features based on properties of a kernel function while DNNs are free to learn any data
representation. In their standard form, it was shown that both techniques resolve to compu-
tations requiring predominantly matrix multiplication.

Important properties of systolic arrays and FPGAs were outlined and discussed. Systolic
arrays can be designed to effectively exploit parallelism in workloads involving matrix
multiplication, providing substantial speedups over conventional processors. Meanwhile,
FPGAs can be reconfigured to support different types of hardware architectures. Both
concepts are leveraged in Chapter 3, where a highly specialised systolic array architecture
is presented for accelerating kernel methods on FPGAs.

Lastly, fixed-point, floating-point and block floating-point arithmetic schemes were
described and compared in terms of numerical precision, representable range and hardware
cost. In Chapter 5, a specialised new number representation is introduced called Block
Minifloat, which combines the best aspects of all three types of arithmetic, enabling DNN
training with fewer bits and higher accuracy.
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Kernel Methods: FPGA Fastfood

This chapter describes a Field Programmable Gate Array (FPGA) implementation of the
Fastfood algorithm for simultaneous prediction and training. A highly specialised systolic
array architecture is designed which can operate at a high frequency and supports problems
that are 103 times larger than previously reported kernel methods.

The presentation of this chapter is based on background given on kernel methods and
systolic arrays in Chapter 2, and expands on work previously published in [48].

3.1 Introduction

Kernel methods are a popular class of machine learning algorithm capable of solving
many problems, ranging from classification and regression to novelty detection and feature
extraction. However, they are often limited to small datasets because their memory and
computation requirements scale linearly with the number of input examples. To address
this problem, Le et al. [33] proposed an efficient algorithm, called Fastfood, that builds an
approximation using combinations of random diagonal matrices and Hadamard transforms.
This is advantageous because diagonal matrices require little storage and only involve ele-
mentwise multiplications, and the Hadamard transform can be computed in log-linear time
via the Fast Walsh Hadamard Transform (FWHT). These properties reduce computation
and storage requirements by several orders of magnitude, allowing the use of large-scale
kernel methods in embedded applications.

This chapter describes the first known implementation of Fastfood using Field Pro-
grammable Gate Arrays (FPGA). The design, given in Section 3.3, is a systolic array
architecture that creates local structure by grouping processing elements into designated
blocks. This gives the flexibility of compiling different configurations of Fastfood, and
achieve a 500 MHz operating frequency. In fact, simply preserving module partitions dur-
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ing synthesis is enough to sustain high clock rates with the design. This chapter highlights
that Fastfood is particularly well suited for a hardware implementation because:

• the computation requires simple arithmetic operations involving mainly addition and
subtraction

• memory requirements are minimal allowing large parameter spaces to be stored in
embedded memory

• the algorithm can be translated into a datapath that has a regular structure, is highly
parallelisable, and benefits from high-speed local interconnections

• the butterfly structure for computing the FWHT has an efficient hardware implemen-
tation

The Fastfood algorithm is a type of model compression for kernel methods, however,
unlike techniques based on inducing reduced precision and sparsity [19, 49], Fastfood
works during the training phase too. Hence, this chapter focuses on streaming applications
and adaptive learning environments, and performs simultaneous prediction and training
for regression in real-time. One of the key outcomes of this chapter is a machine learning
architecture that supports modelling capacity similar to several layers of a deep neural
network (DNN) but can also perform online training.

3.1.1 Related Work

Efficient FPGA implementations of kernel methods have previously been studied and sev-
eral architectures for performing simultaneous prediction and training have been reported.

Fraser et al. [50] describe a floating-point implementation of the KNLMS algorithm.
They achieve very high efficiency using a fully-pipelined architecture and time-multiplexing
independent parameter sets. This removes the data dependency in the update equation
which significantly improves overall throughput. However, multiple parameter sets and
deep pipelining increase the latency on a per input basis.

Tridgell et al. [51] address this issue using a technique called “Braiding”, which resolves
data dependencies in pipelined architectures. Their design (in fixed-point) operates at well
over 10GbE line rates and achieve latencies around 10 cycles for small models, this coming
at the cost of frequency and DSP resources.

Both of the above architectures are fully parallel and don’t explore the re-utilisation
of resources for improving scalability. Pang et al. [52] describe a micro-coded vector
processor for the SW-KRLS algorithm which does this. They also optimise for latency and
support a sliding window with a software-like interface.
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Each of the mentioned works targets a specific part of the FPGA design space, however,
none can scale the input dimensionality and model size to support the type of big-data appli-
cations dominating the machine learning community today. A specialised implementation
of Fastfood fills this void.

3.1.2 Contributions

The key contributions of this chapter are:

• The first FPGA implementation of a large-scale kernel method. The reported design
can solve problems with an input dimensionality up to 3 orders of magnitude larger
than previous FPGA implementations of kernel methods, and achieves 245× speed
up over a single-core Central Processing Unit (CPU).

• A novel hierarchical systolic architecture for sustaining high clock rates on FPGAs.
Blocks of processing elements constrain the majority of computation to small physi-
cal spaces and allow resource reuse. In particular, the design efficiently implements
the computational bottleneck (FWHT) using the same processing elements that
compute the rest of the Fastfood algorithm.

The chapter is organised as follows: Section 3.2 introduces the theory for Fastfood
kernel methods. Section 3.3 describes the design and scalability of the architecture; results
are discussed in Section 3.4; and lastly, Section 3.5 provides a summary.
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3.2 Fastfood Algorithm

The Fastfood algorithm was introduced by Le et al. [33] to reduce the computational
complexity of random kitchen sinks, which was previously introduced in Section 2.1.2.
The main idea is that a random projection, given by WT xi in Equation (2.15), can be
approximated with a projection Vxi, as described by Equation (3.1), which requires much
fewer operations to compute. Note that this section is based on background provided in
Section 2.1.2 on kernel methods and random kitchen sinks. 1 As such, W ∈ Rd×n is a
matrix consisting of n random basis functions, xi ∈ R

d represents an input vector with
dimensionality d, and yi ∈ R represents the corresponding output value for regression.

Vxi = [V1xi, ...,Vhxi], where Vqxi = SqHGqPHBqxi (3.1)

To compute Vxi, we first break the computation down into h = dn/de separate stages,
each working with d basis functions. By working from right to left, each intermediate
computation of Vqxi can be completed by a sequence of matrix-vector operations, without
ever computing or storing the matrix Vq. Importantly, the matrix-vector operations are
designed to involve minimal computation. Firstly, B, G and S are d × d diagonal matrices,
where Bii and Gii are drawn i.i.d. from {−1, 1} and N(0, 1) distributions respectively, whilst
Sii depends on the choice of kernel function. This work assumes a Radial Basis Function
(RBF) kernel, also known as the Gaussian kernel, meaning Sii is drawn from a chi-squared
distribution [33]. Secondly, P ∈ {0, 1}d×d is a permutation matrix which can be efficiently
implemented in hardware. Finally, H ∈ {−1, 1}d×d is a Hadamard matrix, as defined
by Equation (3.2). Matrix-vector multiplication with a Hadamard matrix can be done
efficiently using the Fast Walsh Hadamard Transform (FWHT). For example, using the
radix-2 FWHT algorithm (given in Appendix A.2), this reduces the number of operations
from d2 to d log2 d. Note that the Hadamard matrix as described by Equation (3.2) requires
the input dimension, d, to be a power of 2 (d = 2l, where l ∈ N). If this is not possible, the
input vectors are padded with zeros to ensure this condition is met.

H = Hd =

Hd/2 Hd/2

Hd/2 −Hd/2

 where H2 =

1 1
1 −1

 (3.2)

Same as random kitchen sinks, the final feature representation of Fastfood is formed by
passing Vxi ∈ R

n through a sinusoidal function given by Equation (3.3). From here, a pre-

1Only the key computation steps are presented for Fastfood. Please refer to (Le et al., 2013) [33] for full
details and proofs of convergence.
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Dataset m d
Exact Fastfood
RBF RBF

Wine 4,080 11 0.819 0.740
Insurance 5,822 85 0.231 0.264
KEGG 51,686 27 n/a 17.818
Forest 522,910 52 n/a 0.840
CIFAR-10 50,000 3,072 n/a 0.624

Table 3.1: Comparison of the test error on 4 regression benchmarks from the UCI
repository [53]. The top-1 classification accuracy, as a percentage, is also given for
CIFAR-10. The results were taken from Le et al. [33] where m is the number of input
examples and d is the dimensionality. Results are for the Radial Basis Function (RBF)
kernel.

diction is made by taking a weighted sum of Fastfood features as shown by Equation (3.4).

ψ(xi) =
1
√

n
cos(Vxi) (3.3)

f (xi) =

n∑
j=1

α jψ(xi) (3.4)

In this chapter, f (x) is trained for regression by solving the least-squares problem.

min
α

∥∥∥αTψ(x) − y
∥∥∥2

2

More specifically, an online stochastic gradient descent (SGD) algorithm is applied,
which incrementally updates α for each new (xi, yi). The exact computation required is
given by Equation (3.5). Alternatively, a batch-based training method could be used, as
described in Algorithm 1 (Section 2.1.1). However, this requires prior access to a larger
subset of the input data which is not available in real-time applications.

αt+1 = αt − η(αT
t ψ(xt) − yt)ψ(xt) (3.5)

To summarise the benefits: Fastfood reduces O(nd) storage and computation require-
ments of random kitchen sinks to O(n) and O(n log2 d) respectively. The statistical prop-
erties of the kernel function are preserved, there is minimal degradation in prediction
accuracy, and Fastfood can now solve problems that were previously intractable for exact
kernel methods, as shown in Table 3.1. As with random kitchen sinks, when n = 16, 384,
Fastfood achieves an accuracy on CIFAR-10 [32] which is among the top two for shift-
invariant kernel representations [33].
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3.2.1 Comparison with DNNs

Approximate kernel methods based on random projections strongly resemble the matrix
computations at the heart of DNN layers with multiple neurons. That is, they both compute
a matrix multiplication and apply a non-linearity function to the result. Therefore, fast
kernel methods can be used in place of DNN layers to speed up and compress DNNs
[54–56]. Perhaps even more important than the computational benefits of Fastfood-
type transformations, kernel methods are preferred to DNNs because they allow domain
knowledge to be imparted in a statistical manner. The kernel function is used to describe
the covariance in the input space, thus carrying the ability to shape and control the features
extracted. In contrast, DNNs have powerful generalisation properties because they are free
to learn any data representation. However, this obfuscates the training process and yields
features that are less interpretable.
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Parameter Description

n Number of Basis Functions
d Input Dimensionality
p Number of PEs
k = n/p Data per PE
h = n/d Number of HBs
b = p/h PEs per HB

Table 3.2: Architecture configuration parameters

3.3 Specialised Architecture and Design

In this section, a novel systolic array architecture is described for computing Fastfood.
Suitable areas for optimisation are explored and the scalability of the design is discussed.

3.3.1 High-Level Description

As described in the previous section, Fastfood is computed by concatenating multiple
evaluations of Vqxi, passing the result through a non-linearity, and calculating a weighted
sum (Equations (3.1), (3.3), (3.4) in Section 3.2). Given that each Vqxi can be processed
independently, the architecture separates and localises their computation using blocks of
Processing Elements (PE), called Hadamard Blocks (HB). A hierarchical diagram of the
Fastfood processor is shown in Figure 3.1, and the following equation shows how the
computation of f (x) (in Equation 3.4) is unrolled by this design:

f (x) =

n∑
j=1

α jψ(x) =

h∑ b∑ k∑
j=1

α jψ(x) (3.6)

Here, n is the number of basis functions or expansion dimensions, k is the basis functions
per PE, b is the PEs per HB, and h is the number of HBs. The other constraints are the input
dimensionality, d, and total number of PEs, p. This information is summarized in Table 3.2.

This architecture has been selected because 1) massive scalability can be achieved when
PE compute resources are reused, 2) PEs with mostly local connections are more amenable
to high-frequency implementations, and 3) blocks of PEs create the local connectivity
needed to implement a fused and distributed Fast Walsh Hadamard Transform (FWHT).
The last point gives this architecture some unique characteristics in the trade-off between
resources, parallelism and frequency, and is discussed more in Section 3.3.3.

Parameters p, b and k should be chosen carefully, and depend on the FPGA device, task,
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Figure 3.1: A hierarchical block diagram of the Fastfood processor
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Load data Compute f(x)
Update 

α
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Figure 3.2: Schedule for computing Fastfood - loading and computation is overlapped

and performance requirements:

• p controls the parallelism and latency of the design

• k is a portion of the algorithm distributed evenly across the PEs. k controls the
number of basis functions n and scales the memory requirements of each PE

• b is the number of PEs allocated to each HB. b controls the locality of connections
between PEs, and in combination with k, also determines the input dimensionality d

that can be supported

The remainder of this section provides a more detailed description and analysis for each of
the above-mentioned design considerations.

3.3.2 Top-Level Module

The top-level diagram of the architecture is illustrated in Figure 3.1a (ignoring PCI-e and
memory bus interfaces). It mainly consists of an h-length array of HBs connected in a ring
topology. Each HB accepts control logic from a finite state machine (FSM) and a stream
of (xi, yi) pairs as input data. The Fastfood processor is an iterative architecture that does
not have overlapping compute stages. This means that the inputs arrive with an initiation
interval (II) equal to the number of cycles taken to compute a given sized input vector. This
is observed in Figure 3.2. Each HB computes a partial result for Fastfood, and an output is
produced by summing each partial result as per the outer loop of Equation (3.6). The HBs
are connected in a ring array for two main reasons: 1.) to minimise routing between HBs
for computing the outermost accumulation, and 2.) to efficiently broadcast the input and
FSM control logic across a large area of the chip.

3.3.3 Hadamard Block

Each HB contains an array of b PEs, a switch, and a module for computing the HB sum and
partial update. This is shown in Figure 3.1b. HBs are created to develop local structures
between PEs for implementing the FWHT at high clock rates. A special emphasis is placed
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Figure 3.3: Two systolic array configurations for a 4-point FWHT. This is based on the
“Spiral” hardware generation framework described by Milder et al. [57].

on the FWHT because its parallel implementation has data dependencies that require
communication between multiple PEs. Below, design considerations for the FWHT and
Sum & Update unit are discussed for maximising the frequency and scalability of Fastfood.

3.3.3.1 FWHT

The standard architecture of a radix-2 4-point FWHT is the fully pipelined version given
in Figure 3.3a. It is constructed by cascading log2 d stages of d PEs and connecting
them in a butterfly structure to directly implement the required switching behaviour. This
design executes the FWHT in a minimum number of cycles but requires large amounts of
additional hardware that are not reused. Given that the rest of Fastfood can be computed
using a linear systolic array, the d-point FWHT is implemented by reusing one stage of b

PEs over multiple cycles, like Figure 3.3b. This design has a compact and regular structure,
which makes it well suited to processing large amounts of data at a high frequency. The
only overhead is the switching network which is used to send intermediate results between
log2 b PEs. The switch is implemented using a multiplexer in each PE, and connecting
the PEs directly. For increasing b, the switch size also increases. Experiments were
conducted with b = {4, 8, 16, 32}, above which degradations in frequency were observed
due to routing congestion.

3.3.3.2 Sum & Update

The Sum & Update unit routes the FSM control logic and also includes logic to implement
several instructions not allocated to the PEs. Figure 3.4 gives a dataflow diagram of
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the operations involved. The design uses log2 b adders to compute the middle loop of
Equation (3.6). Each HB requires the results from every other HB to know the update
(outer loop of Equation 3.6). These are passed around the ring array and accumulated here.
The Sum & Update module then includes one subtract and multiply unit for computing
part of the update, Equation (3.5). The result is written back to each PE where the weights
are ultimately updated. This creates a small resource inefficiency and means the PEs are
idle for a short period of time. However, it only equates to an extra 1×DSP per HB and
between 2-5% in LUTs and FFs, while the PEs are idle for only 1% of total processing
time.

3.3.4 Processing Element

The basic structure of each PE is given in Figure 3.1c. It consists of one Arithmetic Logic
Unit (ALU), two scalar operands, and a control mechanism for reading and writing to
memory. Computation can only begin once a full input vector has been loaded into PE
memory and the previous computation is finished. The inBuffer shift register is used to
buffer the input and allow the loading and computation stages to be overlapped. Below,
other important elements of the Fastfood PE are discussed:

3.3.4.1 Functionality

Table 3.3 summarises the compute requirements of each PE as a list of instructions. As
per the table, not all the functionality is implemented with resources confined to the ALU.
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Instruction ALU Active Cycles

Processing Element (PE)

Mul B N k
Mul Y 3k
Permutation N k
Add Y 2k log2 d + k
Cosine N k
Mul-Add Y k + 1

Hadamard Block (HB)

Adder-tree - log2b
Add - h
Sub (y − f (x)) - 1
Mul (η) - 1

IO Interface

Load - d

Table 3.3: Fastfood instruction count for resources constrained in each PE and HB. The
ALU column denotes whether a PE instruction is mapped to the ALU (Y/N)

For instance, the first Fastfood operation is a binary multiplication involving inBuffer

and a random variable B ∈ {−1, 1} (in Equation 3.1). This was implemented as a sign
change using 1-bit from a 16-bit Linear Feedback Shift Register (LFSR). Test results (in
Figure 3.6) showed that 16-bits were enough for the Fastfood algorithm. The Mul and
Add instructions are implemented using 1×DSP slice and 1×adder in the ALU, and for
Mul-Add an additional adder is used for the accumulation stage (i.e. sum). On a Xilinx
Ultrascale device the two adders amount to approximately 8 CLBs. This overhead can be
avoided by configuring the DSP slice to also do the Add and Mul-Add instructions, but
this optimisation has been deferred for future work. The majority of Fastfood compute
time is spent iteratively reusing the ALU adder. In fact, an average of approximately 70%
of total cycles is dedicated to Adds. The cosine function is implemented using a 256-point
look-up table stored in a shared Dual-Port RAM. The two ports are normally used for
simultaneous reads/writes but for the cosine transformation, only one port is required. A
result is read, i.e. cos(x), using an address generated from x, where x is an intermediate
result from the Seq. Mem shift register. Only 8-bits of x are used for the cosine look-up
table since 8-bits are enough to sustain the accuracy of the function and also reduce the
memory requirements.
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3.3.4.2 FWHT

The FWHT involves 2k log2 d add and subtract operations per PE. To implement this, the
ALU adder is reused over multiple stages and sign switching is performed on the top
operand using the Sign Generator block. The hin and hout I/O ports connect multiple PEs,
and MuxA switches between them. For local permutations (or switching), the Address

Generator develops the memory access patterns required. The size of MuxA scales as
O(log2 b) which for b = {4, 8, 16, 32} can be implemented efficiently with one layer of
LUTs. The address and sign permutations are the same for each PE and can be generated
using several counters and bit operations. This only contributes an additional 30 LUTS and
26 FFs for the Address Generator and Sign Generator modules combined. Given the small
overhead, these control units are included in every PE. This reduces the compute density
of each PE but removes a large fan-out problem which would likely require multiple stages
of pipeline registers.

3.3.4.3 Memory

Fastfood involves a data transformation from Rd → Rn, where n > d. The hardware
architecture distributes this computation across p PE’s so that each PE works on k = n/p

dimensions, also known as basis functions. This requires k-length blocks of memory for
intermediate results and Fastfood parameters G, S and α. Intermediate results are written
back to Sequential Memory every cycle, and Fastfood parameters are generated at compile
time and loaded to the Dual-Port RAM once at startup. The results of ψ(x) (in Equation 3.3)
are also saved in Dual-Port RAM, and for the FWHT switch, data is read from and written to
a double buffer in Dual-Port RAM to avoid pipeline stalls. Therefore, including the inBuffer

and 256-point cosine look-up table, each PE requires (k + k + 3k + 2k + k + 256)× bitwidth

of memory. The Dual-Port RAM is either one or two 18Kb BRAMs depending on the size
of k, and the two sequential memories are either implemented using two LUT-based shift
registers (i.e. SRL) or the Seq. Mem shift register is mapped to a BRAM and inBuffer

remains an SRL. In Section 3.4, results are presented for both configurations. The choice
depends on whether a LUT-constrained or BRAM-constrained design is preferred.

3.3.4.4 Pipelining

The PEs are fully pipelined. There are 4 register stages for reading and writing to memory,
between 3 and 6 on the ALU, 1 on the ALU operands, 1 on the output, and 1 on the MuxB

inputs. This minimises the number of logic levels between registered signals and keeps the
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frequency high.

3.3.5 Scalability: I/O and Latency

The top-level module takes 1× 18-bit feature as input per cycle. The data is loaded through
the array via a d-length shift-register, where d is the input dimensionality. Given that load
and compute stages operate in parallel, one result can be retrieved every tc cycles, where
tc is the total number of compute cycles given below:

tc = 8k + 2k log2 d + log2 b + 2h + 9 (3.7)

The above equation is taken from Table 3.3 for prediction and training, except a few extra
cycles are added because the HB control unit is not fully pipelined. The latency is thus
tc + d and the I/O required is 18d/8 bytes every max(d, tc) cycles.

For large d and d > tc, the throughput is limited by loading the input data. This equates
to 18-bits per cycle, or 9Gb/s, assuming the memory bandwidth is not the bottleneck.
This can be improved by broadcasting more of the input data in parallel. Figure 3.5
gives an example of how this can be achieved using two routing paths, one for even and
odd-numbered PEs.

3.3.6 Trade-offs and Constraints

For a given number of basis functions, n, and input dimensionality, d, the choice of
architectural parameters p, k and b is a trade-off between problem size and latency:
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LUT
Total
(203k)

LUT
Mem.
(112k)

FFs
(406k)

BRAM
(1080)

DSP
(1700)

Max.
PEs
(p)

FF-L

k=64 323 98 524 1 1 610
k=128 398 170 531 1 1 494
k=256 547 314 540 2 1 355

FF-B

k=64 282 70 590 2 1 540
k=128 327 107 603 2 1 540
k=256 405 180 615 3 1 360

Table 3.4: PE resource utilisation for LUT and BRAM constrained 18-bit designs target-
ing a Xilinx Kintex XCU035 FPGA

3.3.6.1 Problem Size

The problem size is defined as any combination of n and d which does not exceed on-
chip memory nor violate any design constraints in Table 3.2. For a large k the hardware
architecture can support problems having large n and d, and when b is also large, even
greater d can be supported. However, an increase in k also increases the computation and
memory required for the PEs. This yields designs with higher latency or greater resource
requirements for the same latency. In addition, by increasing b, the routing resources
within the HBs are also increased. This allows larger switch sizes to be implemented but
tends to diminish the operating frequency.

3.3.6.2 Latency/Parallelism

For a given d, the number of compute cycles in Equation (3.7) is mainly controlled by
k. So for faster designs, p should be large so a small k can be distributed to each PE.
Furthermore, k and b must both be powers of two, and for a fixed n, this means that p

will also scale exponentially. This may result in resource utilisation which only slightly
exceeds 50% in some cases. For this reason, Section 3.4 presents results for two designs.
One which is LUT-constrained and the other which is BRAM-constrained. For brevity,
these designs are referred to as “FF-L” and “FF-B” respectively.

3.4 Results and Evaluation

This section evaluates the specialised Fastfood architecture in terms of problem size and
clock frequency. The designs were written in Chisel HDL [58] and were synthesised
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Input dim.
(d)

Basis func.
(n)

FF-B (p=352) 8192 90.1K
FF-L (p=320) 8192 81.9K

Input dim.
(d)

Dict. size
(N)

KNLMS (Fraser ’15 [50]) 8 16
NORMA (Tridgell ’16 [51]) 8 200
KRLS (Pang ’16 [52]) 8 200

Table 3.5: Peak problem size for LUT and BRAM constrained 18-bit designs targeting a
Xilinx Kintex XCU035 FPGA

and implemented using Xilinx Vivado 2017.2 targeting a Kintex Ultrascale XCKU035-
FBVA676-2-e FPGA. Chisel is a hardware description language embedded in Scala which
generates verilog. The use of Scala allows complex and parameterised structures to be
expressed easily by taking advantage of the power of modern programming such as data
structures and inheritance.

3.4.1 Resource Utilisation

Table 3.4 shows resource utilisation of LUT (FF-L) and BRAM (FF-B) constrained PEs for
an 18-bit design. The area scales with k because of two k-length shift-registers, inBuffer

and Seq. Mem. In the FF-L design, both shift registers are mapped to LUT SRL primitives,
and in the FF-B design, Seq. Mem is implemented with a BRAM. The last column shows
the maximum number of PEs that can be placed on the target device. These numbers are
based on 97% of total LUTs and all available BRAMs. The remaining 3% of LUTs are
attributed to the FSM and HB modules, which contribute an additional 141 and h×617
LUTs respectively. The reported designs are restricted to three BRAMs per PE, one
of which is only required for k = 256. Larger k can be supported, but this requires
doubling memory resources since k scales as a power of two. In terms of parallelism, FF-L
can support more PEs for k ≤ 64, FF-B is preferred for k = 128, and both designs are
approximately equal for k = 256.

3.4.2 Problem Size

Table 3.5 gives the peak problem size of Fastfood compared with other online kernel
methods. This translates to 103 times increase in input dimensionality and modelling
capacity up to 90.1K basis functions. The basis functions allow kernel methods to be
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Designs achieving
Freq=500 MHz

For max. resources
in Table 3.4

LUT
%

BRAM
%

PEs
(p)

PEs
(p)

Freq.
(MHz)

k=64 b=32 91.6 50.4 544 576 483
b=64 67.9 35.6 384 576 416

k=128 b=32 92.0 41.5 448 480 487
b=64 54.8 23.7 256 448 465

k=256 b=32 89.2 59.3 320 320 508
b=64 53.3 35.6 192 320 476

Table 3.6: Clock frequency for an 18-bit FF-L design - Seq. Mem implemented using a
LUT SRL primitive

Designs achieving
Freq=500 MHz

For max. resources
in Table 3.4

LUT
%

BRAM
%

PEs
(p)

PEs
(p)

Freq.
(MHz)

k=64 b=32 82.1 94.8 512 512 501
b=64 66.0 71.1 384 512 465

k=128 b=32 88.3 88.9 480 512 487
b=64 59.7 59.3 320 512 455

k=256 b=32 76.6 97.8 352 352 501
b=64 43.6 53.3 192 320 468

Table 3.7: Clock frequency for an 18-bit FF-B design - Seq. Mem implemented using a
BRAM

used in problems with many input examples, m, because they approximate the kernel
function for large dictionary sizes, N. As shown in Table 3.1, exact kernel methods such
as KNLMS, KRLS and NORMA are intractable on the CIFAR-10 dataset because N is
required to be very large. On the other hand, Fastfood with n = 16, 384 basis functions
achieves an accuracy in the top two for RBF kernel representations. This suggests that an
architecture supporting n = 90.1K basis functions can solve problems even larger than
CIFAR-10, which has m = 50, 000 images and d = 3, 072 dimensions. The achieved input
dimensionality and dictionary size in Table 3.5 are based on maximum values for k and b,
and Table 3.4 is used for p. More specifically, d was calculated by multiplying k = 256
and b = 32, and n was obtained by multiplying k = 256 and p = 352, where p must be a
multiple of b. Although both FF-L and FF-B designs have enough resources for p = 352,
only FF-B could place the design effectively.
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Figure 3.6: Accuracy results on a CPU: fixed-point v floating-point. A model with
n = 16, 384 and d = 1, 024 were used for the Mackey Glass benchmark [59].

3.4.3 Clock Frequency

Table 3.6 and 3.7 show the effect that different design configurations have on the clock
frequency for FF-L and FF-B designs. Importantly, both tables show that a high operating
frequency can be achieved for designs very close to the resource constraints given in
Table 3.4. For b = 32, clock rates at or above 500 MHz can be sustained right up to
p = 544, p = 448 and p = 320 for FF-L, and up to p = 512, p = 480 and p = 320
for FF-B. This corresponds to utilisation rates between 89-98% of available resources.
Furthermore, the frequency is only slightly reduced to 483-495 MHz for PEs which are
even closer to the resource limit. Both tables also highlight the degradation in clock
frequency observed for any b > 32. This occurs because 1.) routing congestion increases
between the PEs and Sum & Update unit, and 2.) the size of each HB doubles in size which
de-localises connections between them. Additional pipeline registers can be included to
manage both these issues, but on large designs, this creates even more congestion between
CLBs. Instead, an architecture is chosen where b <= 32, which guarantees an operating
frequency close to 500 MHz for varying problem sizes. All designs were synthesised
with cross-module LUT optimisation turned off. This preserves the local structure in the
architecture precisely and performs up to 20% faster after place and route.
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Time
(µs)

Speed-Up
(×)

CPU [33] 580 1
FPGA (p=512) 2.4 245

Table 3.8: FPGA speed-up on a Xilinx Virtex XC7VX485-2 for n = 16, 384 and d =

1, 024
.

3.4.4 Speed-Up and Accuracy

Table 3.8 gives the speed-up of the FPGA implementation over a CPU. The execution time
for the CPU version comes from the original Fastfood publication by Le et al. [33] and
is only for prediction. The authors’ code is written in C++ and uses the Spiral library
for the FWHT. While details of the CPU are unclear from Le et al. [33], Spiral provides
cache-friendly C/C++ code which is optimised using SSE vector instructions and up to
four processor cores [60]. For a fair comparison, a previous generation Virtex 7 FPGA
is chosen as the design target. The problem has d = 1, 024 and n = 16, 384, therefore,
the implementation consists of 16 HBs, each of which compute a 1024-pt FWHT. For an
FF-L design, the device operates at 432 MHz and has capacity for p = 985 PEs. However,
only p = 512 could be used because p scales exponentially on fixed problem sizes. For
b = 32 and k = 32, the number of compute cycles for prediction is tc = 869 (from
Equation 3.7). Therefore, the design is I/O constrained (i.e. tc < d), and one result can
only be obtained every d cycles. The final result is a 245× speed-up although only 52% of
available resources are used.

The accuracy of Fastfood is given in Figure 3.6 for floating-point and fixed-point number
representations. The mean square error (MSE) is plotted for the Mackey Glass regression
benchmark [59] using a model consisting of n = 16, 384 and d = 1, 024. Results are based
off one trial, where each trial refers to a new set of randomly sampled G, S and B matrices.
The graph shows that fixed-point is competitive with floating-point in terms of learning
accuracy, although the convergence of 18-bit requires more training iterations. Specifically,
FP32 converges after approximately 400 iterations, whereas 18-bit requires 900 iterations,
corresponding to a 2.25× slowdown. Given a 245× speedup per iteration of the 18-bit
FPGA implementation (over FP32 running on a CPU), the expected speedup in wall clock
time of 18-bit over FP32 is 110×. Furthermore, this speedup will approach 245× as the
latency associated with convergence gets hidden over time.
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d n Bit-
width

Latency
(cycles)

Fmax
(MHz)

Time
(ns)

Thr.put
(Gb/s)

KNLMS (Virtex 7) [50] 8 16 32 207 314 3.18 80.4
NORMA (Virtex 7) [51] 8 200 18 10 127 7.87 18.3
KRLS (Stratix V) [52] - 128 32 4396 157 28000 -

Fastfood (Kintex U) 8192 90.1 K 18 16932 508 17204 8.57
Fastfood (Virtex 7) 8192 98.3 K 18 16932 413 21162 6.97

Table 3.9: Comparison of Fastfood with other implementations of online kernel methods
Note: 1.) the input latency is included in Fastfood and KRLS but not in KNLMS and
NORMA, 2.) n denotes both the number of basis functions and dictionary size, whereas,
in the text, N denotes the dictionary size and is applied only in the context of KNLMS,
NORMA and KRLS

3.4.5 Analysis

The implementation of Fastfood occupies a unique part in the design space of online kernel
methods. This is observed in Table 3.9 for designs targeting a Xilinx Kintex Ultrascale
and Virtex XC7VX485-2. The latter is the same device used in [50] and [51]. A p = 320
and p = 384 were chosen for Kintex and Virtex devices respectively, while b = 32 and
k = 256 were used for both. These configurations achieve an optimal combination of
problem capacity and throughput for an 18-bit Fastfood implementation. This yields 3
orders of magnitude increase in input dimensionality, 8.57 Gb/s of throughput, and a large
number of basis functions. The last point provides the ability to approximate much larger
dictionary sizes than can otherwise be supported in [50–52]. Compared with random
kitchen sinks that have O(nd) memory complexity, Fastfood only requires storage for 3n

parameters. This means that basis functions up to 1.54 GB (i.e. n × d × 18/8) can be
approximated using only 0.58 MB, equating to a compression factor of 2655×. Future
work will investigate how this result can be reinterpreted for DNNs, where state of the art
compression factors are around 10× for full-precision weights [19]. The main difference
being that basis functions are learned in DNNs, whereas in Fastfood, they are randomly
sampled from a distribution that closely approximates a kernel function.

3.5 Summary

This chapter demonstrated the utility of employing the Fastfood algorithm for non-linear
regression problems. Such an approach can be used to reduce the hardware requirements
of kernel methods in applications demanding energy efficiency and real-time learning. A
novel hierarchical systolic array architecture was described for minimising data transfers
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between processing elements in the computation of Fastfood. This required an efficient
implementation of the Fast Walsh Hadamard Transform (FWHT), the design of which is
compatible with any fast transform, such as the Fast Fourier Transform (FFT). Based on
synthesis, placement and routing simulations, the reported design can sustain 500 MHz
clock rates while supporting problems with an input dimensionality that is 103 times larger
than other online kernel methods. This paves the way for real-time and large-scale learning
applications in control, communications and signal processing.
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Chapter 4

Training Deep Neural Networks:
SWALP

This chapter presents an algorithm and prototype hardware accelerator for training deep
neural networks with high accuracy using low-precision arithmetic. Compared with
conventional approaches, low-precision computation reduces both memory usage and
computational cost, providing more scalability for Field Programmable Gate Arrays
(FPGAs) with limited on-chip memory.

The presentation of this chapter is based on background given on deep neural networks
and computer arithmetic in Chapter 2 and expands on work previously published in [61].

4.1 Introduction

Training deep neural networks (DNNs) requires large amounts of memory and computation,
and until recently, has almost exclusively been performed with full-precision floating-point
(FP32) numbers and many Graphics Processing Units (GPUs). As a result, it has proven
difficult to move training into edge devices where there are stricter memory, power and
computational constraints (e.g. mobile phones, radios, video cameras and satellites).

The primary workload in DNN training is general matrix multiplication (GEMM), which
depending on the underlying hardware, could be either memory or compute bound. To
overcome compute bound problems we want hardware with more logic and higher compute
density, and for memory bound problems, it’s desirable to fit at least one of the matrices
in fast on-chip memory. Given that DNN model sizes are steadily increasing, and larger
models produce larger matrices, more efficient accelerators are required to satisfy these
demands. Low-precision computation offers arguably the best solution since fewer bits
increases the compute density and reduces memory consumption.

The majority of work on low-precision DNNs has focused on the inference part only,
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to speed up the run time. These low-precision network representations are obtained by
quantising the weights and activations during training, and can normally achieve FP32
accuracy [19, 62]. In contrast, training with low-precision (e.g. 8-bit) generally produces
worse accuracy than training with FP32. The main problem arises in computing gradients
and accumulating the weight updates specifically [63, 64]. This is because the representable
range of low-precision numbers is unsuitably small in most cases.

Several techniques have been developed to address this issue for 8-bit floating-point
(FP8), such as wider accumulators [64], and having two different FP8 formats for forward
and backward computations [65]. Fixed-point representations have also been explored
[20, 22, 66, 67] since integer arithmetic offers higher performance density in hardware.
However, fixed-point training suffers because of limited range and must be combined with
other techniques to avoid convergence problems associated with overflow and underflow.
For instance, the authors of SWALP [21] combine block floating-point quantisation with
weight averaging, establishing the first training algorithm capable of achieving floating-
point accuracy with predominantly fixed-point arithmetic and only 8-bit numbers. This
chapter describes an FPGA implementation of SWALP, except some parts of the training
algorithm are left in high-precision for greater flexibility (e.g. the weight gradients, and
intermediate tensors).

The reported implementation targets the full range of Xilinx Zynq All Programmable
System on Chip (APSoC) devices. Zynq comprises many different processing elements in
the same package, offering real-time processing and massive integration capabilities for
embedded applications. For instance, the ZCU111 board features an ARM processor and
FPGA together with special multi-gigabit components for RF signal analysis. A training
accelerator is designed especially for such systems, where we want to combine real-time
integration with on-chip training. These applications are often referred to as stand-alone

because they can necessarily be deployed in the field without host communication. In
Section 4.5, this use case is demonstrated by training a DNN-based auto-encoder for
anomaly detection in RF networks.

4.1.1 Related Work

The vast majority of work on low-precision has targeted hardware acceleration for DNN
inference only [68]. Examples include FINN [69], Eyeriss [70], ESE [71], RebNet [72]. In
contrast, there are relatively few examples for training DNNs on FPGAs.

Early work considered the case of backpropagation through just one neuron [73],
and then one multi-layer perceptron (MLP) layer [74]. Small MLP networks are also
considered in [75], except training is performed with 16-bits via weight perturbations.
Such a technique can reduce the area by 10× over backpropagation when the network can
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be fully pipelined. FPDeep [76] is a design framework for mapping DNN training across
multiple FPGAs in a cluster. They show 3.4× better energy efficiency is possible training
16-bit AlexNet when the computation is distributed across 15 FPGAs in a pipelined manner.
The authors in [22] describe an FPGA prototype which is similar in the sense that all
weights and activations are stored on-chip. In general, the above-mentioned works are only
relevant to single FPGA implementations if the networks are very small. F-CNN [77] is
more scalable and uses run-time reconfiguration to implement the different kernels used
during training. The computation is based on 32-bit floating-point arithmetic, although
8-bits is now sufficient. DarkFPGA [78] is a new accelerator for 8-bit training and is
particularly optimised for convolution layers. The authors introduce several optimisations,
including a new data pattern and tiling strategy, and demonstrate comparable performance
with a GPU and better energy efficiency for training CIFAR-10. This chapter is similar in
that an accelerator for 8-bit matrix multiplication has also been designed, but is sufficiently
different in that this work focuses on techniques for high accuracy training and reports a
real application of the technology.

4.1.2 Contributions

Although specialised low-precision training techniques like block floating-point and weight
averaging have been described previously, to the best of the author’s knowledge, this is the
first demonstration of training with these techniques on Field Programmable Gate Arrays
(FPGAs). Specifically, the contributions of this chapter are:

• The first FPGA implementation of a DNN training technique, which achieves the
accuracy of floating-point using mostly 8-bit arithmetic.

• A modified version of SWALP which achieves improved accuracy, and a flexible
hardware/software partitioning scheme.

• Quantitative analysis of the performance of the resulting system using the CIFAR-10
and MNIST benchmarks.

• The first demonstration of a real-time, radio frequency anomaly detector with FPGA-
accelerated training.

The chapter is organised as follows: Section 4.2 introduces the low-precision training
algorithm; Section 4.2 describes the design and implementation of the FPGA accelerator;
training accuracy and hardware performance are evaluated in Section 4.4, and lastly, the
chapter is summarized in Section 4.6.
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4.2 Low-Precision Training Algorithm

In this section, a low-precision stochastic gradient descent (LP-SGD) algorithm is presented
for training DNNs with high accuracy. Forward and backward computations are described
as matrix multiplication for fully-connected and convolution layers, based on background
provided in Section 2.1.3, and quantisation and averaging techniques are introduced for
improving the stability of LP-SGD. Pseudocode for the algorithm is given in Algorithm 2,
which crucially enables training with all weights, activations and activation gradients
quantised to 8 bits only. Algorithm 2 is based on SWALP [21].

Algorithm 2: Training DNNs with LP-SGD + BFP + SWA
Define: Convolution layer k; time t; low-precision weight W̄k, activation x̄k, and activation

gradient tensors ēk; high-precision activation xk and gradient tensors ek ∇Wk; BFP
quantisation functions QW , Qx, Qe; update function U(W̄k,∇Wk); hardware
accelerator function gemm(A, B, EA, EB);learning rate ηt; softmax loss C; SWA
weights WS k ; SWA iterations S ; SWA cycle c; Data batch sequence {at, bt}

T
t=1;

{1. Initialise model:}
W̄0

k , E
0
Wk

= QW(N(µ, σ)), ∀k ∈ [1, L]
W0

S k
= N(µ, σ), ∀k ∈ [1, L]; m = 0

{2. Train model:}
for t = 1, 2, . . . ,T do
{2.1 Forward propagation:}

x̄0, Ex0 = Qx(at)
for k = 1 to L do

xk = ReLU
(
gemm(W̄k−1, im2col(x̄k−1), EWk−1 , Exk−1)

)
x̄k, Exk = Qx(xk)

end for
{2.2 Backward propagation:}

Compute eL = ∂C
∂x̄L

given x̄L and bt

ēL, EeL = Qe(eL)
for k = L to 1 do
∇Wk = gemm

(
im2col(x̄k−1), ēT

k , Exk−1 , Eek

)
ek−1 = col2im

(
gemm(W̄T

k , ēk, EWk , Eek )
)

ēk−1, Eek−1 = Qe(ek−1)
end for

{2.3 Low-precision SGD Update:}
W̄ t+1

k , Et+1
Wk

= QW
(
U(W̄ t

k,∇Wk
t, ηt)

)
, ∀k ∈ [1, L]

{2.4 High-precision SWA Update:}
if t > S and (t − S ) ≡ 0 (mod c) then

Wm
S k

= (Wm
S k
· m + W̄ t

k)/(m + 1), ∀k ∈ [1, L]
m = m + 1

end if
end for
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Figure 4.1: Array shapes and sizes for three matrix multiplications used for DNN training:
A×B=C. Forward activation (top), backward weight gradient (middle) and backward
activation gradient (bottom). A is cached in local memory, B and C are streamed in
column-major order.

4.2.1 Forward and Backward Computation

Training typically requires three matrix multiplications at each layer of computation, as
described in Section 2.1.3. Algorithm 2 implements general matrix multiplication as a
function call, given by C = gemm(A, B, EA, EB) in block floating-point (BFP), where A, B
and C are shown in Figure 4.1. The forward computation for the activation, xl+1, and the
backward computation for the activation gradient, el, and weight gradient ∇Wl. The BFP
shared exponents are given by EA and EB, for A and B respectively, and are used inside
the gemm function call to convert back into floating-point. For hardware acceleration of
matrix multiplication, it is desirable to store at least one of the matrices in fast on-chip
memory. For this reason, matrix A (leftmost) is cached in on-chip memory while B and C
are streamed in column-major order.

Table 4.1: Mapping convolution and fully-connected layers to matrix multiplication. IC,
OC, k, W, H and B denote the number of input and output channels, size of convolution
filter, width and height of input image, and batch size.

Layer m n k

Convolution IC × kW × kH OC B ×W × H

Fully-connected IC OC B

For convolution and fully-connected layers, Table 4.1 provides the mapping from the
input dimensions to the matrix multiplier. In convolution layers, the inputs are typically
a batch of images with dimensions (B,W,H, IC), corresponding to the batch size, width,
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height and number of input channels. The outputs are computed by applying a convolution
kernel to the image with typically four dimensions (kW , kH, IC,OC), which refer to the
kernel width and height, and the number of input and output channels. The convolution
kernel computes dot products over local regions of the input, moving over the input with
an associated stride, and forming outputs with shape (B,W ′,H′,OC), as described in Ap-
pendix A.3. Importantly, convolution layers can be reformulated as matrix multiplication
by the im2col and col2im transforms. In Figure 4.1, x̂l and êl represent the data after
im2col and before col2im respectively. In the next section, a prototype training accelerator
is described which implements both transforms on the host CPU.

4.2.2 Block Floating-Point Quantisation

To train networks in low-precision, a quantisation function Q(.) is required to convert
real-valued weights, activations, and gradients into their rounded versions. A number of
quantisation methods have been suggested in the literature [63, 64, 79, 80]. This chapter
focuses on block floating-point quantisation with stochastic rounding, as implemented in
[21].

Block floating point (BFP) is a hybrid number representation for balancing dynamic
range and logic density requirements. In BFP, all numbers within a block share the same
exponent, which is allowed to vary during training. The exponents are calculated at every
iteration during training and are set to the largest exponent in a block to avoid overflow [22,
81]. Let a = [a1, a2, . . . , aN] represent a block of N real numbers, then the shared exponent,
Ea, and the real value of a number ai with mantissa xi is given by Equations (4.1) and (4.2)
respectively.

Ea = max
(
blog2 |a|c

)
(4.1)

ai = (1 + xi) × 2Ea (4.2)

For convolution layers, where the inputs are multi-dimensional arrays, a block could
represent a batch, an image, or even just one channel. The finer the granularity, the more
exponents that must be saved [21]. In this chapter, block assignments vary depending on
whether the tensor is a weight or activation. For weights, one exponent is assigned to the
tensor, and for activations, B exponents, are assigned to the layer, corresponding to the
batch size. This is necessary because unlike weight tensors, the distribution of numbers
within an activation tensor may not be well-calibrated across the entire batch of inputs.

Finally, stochastic rounding is used to quantize the mantissas, xi, to a low-precision
representation. In stochastic rounding, numbers are rounded up or down at random such
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Figure 4.2: Empirical results of stochastic weight averaging (SWA) with full-precision
(FP) and low-precision (LP) SGD

that the expected rounding error is zero, i.e. E[Q(x)] = x. If each mantissa is represented
by F bits, then the smallest representable mantissa is ε = 2−F [79]. Let bxc be the largest
integer multiple of ε which is less than or equal to the real value of the mantissa x, then the
quantisation function for x is:

Q(x) =


bxc with prob. 1 −

(x − bxc)
ε

bxc + ε with prob.
x − bxc
ε

, (4.3)

4.2.3 Stochastic Weight Averaging for LP-SGD (SWALP)

In SWALP [21], the authors showed that averaging SGD iterates of the weights with
a higher learning rate can recover quantisation errors and produce better low-precision
training models, even when all numbers are 8 bits. This technique has been incorporated
into Algorithm 2 and is known as stochastic weight averaging (SWA) [82]. Figure 4.2
illustrates an example on the CIFAR-10 image classification dataset [32]. For the first 80k

iterations standard SGD and a decaying learning rate is applied, and in the last 40k iterations
the learning rate is modified, held constant, and the weights are averaged every epoch
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Figure 4.3: High-level system overview

(approximately 400 iterations). The averaged weights are not used directly in training
but rather represent the final trained model. This technique is observed to work relatively
better for low-precision models, as averaging cancels out errors in weights rounded up with
those rounded down during quantisation. The main limitation from an implementation
perspective is that a copy of the low-precision weights must be stored in high-precision
for the moving average. For PCI-e based accelerator cards, the high-precision copy could
be stored in slower host memory and the moving average calculated on the host every
few hundred iterations by transferring the low-precision weights over the PCI-e bus. This
way, the high-precision copy doesn’t consume any of the fast DDR memory close to the
accelerator. In embedded devices like Zynq, there is no host and the fast DDR memory is
shared between the FPGA and ARM processor. So even though the high-precision copy is
not used regularly, it will be saved with memory that could otherwise be used for more
low-precision weights and supporting larger models.

4.3 Low-precision Training Accelerator

In this section, a low-precision DNN training accelerator is introduced for Zynq SoC
and MPSoC devices. Figure 4.3 illustrates the three main components of the Zynq-based
system, namely the programmable logic (PL) or FPGA, processing system (PS), and high
bandwidth DRAM interface. A hardware/software partitioning scheme is proposed that
offloads all GEMM operations to an 8-bit matrix multiplier on the FPGA, while the rest
of the LP-SGD algorithm is computed in floating-point on an ARM processor. Since the
majority of computation in any DNN involves matrix multiplication, significant speedups
in training times can be achieved over processor only systems, without losing any generality
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in the type of networks that can be supported. The only limitation is memory, both on the
FPGA and in DRAM. The prototype is designed and implemented using Xilinx SDSoC
2018.3, a predominantly software-based development flow that abstracts away much of the
low-level complexities associated with moving data between the PL and PS subsystems.

4.3.1 Software Overview

The software implementation is based on Darknet [83] with added support for stochastic
weight averaging, low-precision convolution and fully-connected layers, contiguous mem-
ory allocation on Zynq, and compilation directives for SDSoC-based FPGA acceleration.
Darknet is an open-source framework for DNNs written in C. It provides the backend
for TinyYolo [84] and contains fast implementations for different layers, non-linearity
functions, and DNN utility functions. A PYNQ v2.4 image is used to boot the target Zynq
boards [85]. PYNQ runs desktop Ubuntu and offers a highly productive development
environment, which includes C/C++ and Python libraries for interacting with custom IP
on the FPGA. The use of these libraries means that the hardware accelerator is acces-
sible from Python, which is the same abstraction level adopted by most DNN training
frameworks, e.g. Tensorflow and PyTorch. All software (including bitstreams) can be
installed from an online repository and compiled on the board. The repository is available
at www.github.com/sfox14/darknet-zynq.

4.3.1.1 Hardware/Software Partitioning

Algorithm 2 is partitioned across FPGA and ARM processors as follows. All three
gemm function calls are offloaded to the FPGA, corresponding to three 8-bit matrix
multiplications given in Figure 4.1. Furthermore, the FPGA performs run-time transpose
on matrix A (for computing the activation gradient) and handles integer to floating-point
data conversions. All other operations are implemented with software on the ARM
processor. This includes BFP quantization, stochastic weight averaging, matrix transpose,
ReLU, and FP32 accumulators for weight gradients and weight updates. For convolution
layers, im2col and col2im transforms are also performed in software. This comes at the
cost of increased memory usage, as explained in Appendix A.3. Fully-connected layers are
implemented similarly to convolution layers except im2col and col2im are not required.

4.3.1.2 Memory Usage

Each layer must store it’s own set of 8-bit weights W̄k, 8-bit input activations x̄k, and BFP
shared exponents (EW , Ex). Given that LP-SGD operates over minibatches of the input
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Table 4.2: VGG16 [86] Network Architecture (Convolution layers only). *Note, 2×
refers to the number of times a layer is repeated. Each convolution layer has stride=1, and
the input is downsampled using 2 × 2 maxpool layers.

#L. Filter size
(k × k × IC ×
OC)

Input size
(W×H×IC)

1 3 × 3 × 3 × 64 32 × 32 × 3
2 3× 3× 64× 64 32×32×64
3 3×3×64×128 16×16×64
4 3×3×128×128 16×16×128
5 3×3×128×256 8 × 8 × 128
6 (2×) 3×3×256×256 8 × 8 × 256
7 3×3×256×512 4 × 4 × 256
8 (2×) 3×3×512×512 4 × 4 × 512
9 (3×) 3×3×512×512 2 × 2 × 512
10 (2×) 1×1×512×512 1 × 1 × 512

Table 4.3: Memory usage in megabytes (MB) for varying batch sizes on VGG16

Batch
Darknet 8-bit 8-bit + SWA

(float) malloc cma total malloc cma total

1 141 4 34 38 65 34 99

32 276 110 38 148 171 38 209

128 722 438 51 489 499 51 550

data, the batch size scales the size of x̄k and subsequently the memory required for the
entire network.

For training a VGG16 network on the CIFAR-10 dataset, Table 4.3 shows a comparison
of memory usage for different batch sizes. The malloc columns refer to non-contiguous
memory while cma columns denote the contiguous memory allocations. Contiguous
buffers are allocated for the inputs and outputs of the GEMM and sized for the largest
layers of the network. The weights are saved in contiguous memory which avoids the
overhead of copying data. The input activations are stored in non-contiguous memory but
are written into contiguous buffers each iteration. Stochastic weight averaging requires
an additional 61 MB for a floating-point copy of the low-precision weights. The table
assumes that one image from the batch is processed at a time, denoted by KB = 1. If a
larger tiling factor is used then the size of each direct memory access (DMA) transfer will
be larger and more contiguous memory must be allocated. A larger tile size could lead to
improved performance as shown in Figure 4.5, but this has not been implemented.
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Figure 4.4: Low-precision GEMM FPGA Accelerator

4.3.2 Hardware Architecture

Figure 4.4 shows the high-level design of the accelerator architecture. A systolic array
computes 8-bit matrix multiplication in fixed-point, and additional modules are included
for buffering and transposing the input and output data streams, as well as implementing
the fixed to floating-point data converter. The core computes matrix multiplication AB = C

or AT B = C. The option is configurable at run-time.

4.3.2.1 Systolic Array

Matrix multiplication (in Figure 4.1) is mapped to a spatial N × N array of processing
elements (PEs) as follows. First, the elements of matrix A are pre-loaded into PE block
rams (BRAMs) over a high bandwidth on-chip network (NoC). B is streamed from DRAM
in column-major order, forming N-length vectors which are broadcast across N columns
in a pipeline. Each column computes one N-length dot product in fixed point, between a
column of B and a row of A, forming partial results which are accumulated in 32-bit integer
accumulators. The array can operate at high frequency since all connections between PEs
are localised and have short wire lengths. If A represents the weights of a DNN then this
describes a weight-stationary dataflow [70].
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4.3.2.2 Processing Element

Each PE computes KB multiply-accumulate (MAC) operations in parallel, where KB=1
denotes the amount of batch (or instruction) parallelism in operand B. In terms of FPGA
resources, this maps to one DSP block and up to four BRAM resources, depending on
how much of A is cached on-chip. To achieve higher performance and better hardware
efficiency, KB should be chosen to maximize the utilisation of DSP and BRAM resources.
This is shown via roofline analysis in Figure 4.5.

4.3.2.3 Fixed to Floating-Point Converter

The integer result C′ is cast back to floating-point and re-scaled by successively multiply-
ing the block floating-point exponents for matrix A and B. There is one exponent for the
weights, and b exponents for the input activations and gradient activations, where b equals
the batch size. The converter is fully pipelined and consumes moderate to low FPGA
resources. Other preprocessing for matrix A, B and C is performed by the PS.

4.3.2.4 Memory and Array Partitioning

The accelerator assumes the entire matrix A can be pre-loaded into on-chip memory.
Therefore, the maximum DNN size that can be train is limited by the availability of on-chip
memory resources, i.e. the number of BRAMs and LUT RAMs on the FPGA. Figure 4.1
shows the array shapes the accelerator expects for A, B and C, for forward (top) and
backward paths (middle and bottom). Since a batch is processed one example at a time,
the on-chip memory needed for A is AFPGA ≥ max(oc × ic × k2, oc × w × h). For VGG16
(see Table 4.2), this means the FPGA must have at least 512 × 512 × 9 × 1 = 2.35MB of
available memory. This is mapped to PE BRAMs. The PE memory is statically partitioned
at compile time along both row and column axes, but the memory access pattern is run-
time configurable allowing data to be fetched in either row-major or column-major order.
This is critically important for training workloads specifically, where the weights W and
the transposed weights WT are both mapped to A and calculate the output activation
and activation gradients in the forward and backward path respectively (as shown in
Figure 4.1). Without run-time configuration the design would be highly inefficient and
require approximately 9× more memory resources.
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Figure 4.5: Roofline model: 32x32 PE array at 200 MHz

4.3.2.5 Performance Roofline

A roofline model [87] is used in Figure 4.5 to visually relate peak performance and off-chip
memory bandwidth with the operational intensity of the full range of VGG16 layers. The
red shaded area captures the full range of different VGG layers and their respective opera-
tional intensities. The largest matrix multiplication occurs in computing the backward path
for layers with oc = 512 and ic = 512, where 512 × 9 MACs are required per input (or per
byte). In contrast, the smallest VGG layer has an operational intensity of 64 MACs/byte.
A conservative estimate of 10 GB/s is assumed for the memory bandwidth of the ZCU111
board. Therefore peak memory bound performance equals to 10 × 512 × 9 = 46, 080 giga-
operations per second (GMACs/s), or 46 TMACs/s. Additionally, peak DSP performance
is based on 4272 DSPs doing two 8-bit MAC at 550 MHz, therefore 4272× 2× 550 = 4.70
TMACs/s. It can be said that designs that do not achieve 4.70 TMACs/s of performance
are simply not utilising the available DSP resources efficiently. The red line is the reported
implementation and is based on a 32×32 PE array doing KB=1 MAC per cycle at 200 MHz.
Therefore 32 × 32 × 200 = 205 GMACs/s. Clearly, this design massively underutilizes
available compute resources, and thus all VGG layers are compute bound. To utilise
more of the available memory bandwidth and DSP resources, it would be advantageous to
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consider designs that better exploit batch (or instruction) level parallelism, by computing
multiple rows of B in parallel. This can be thought of as blocking or tiling, and the green
and purple dotted lines show performance points of larger tile factors. The authors in [78]
describe tiling strategies for optimising the GEMM for training, and there are many other
highly optimised GEMMs that could replace the reported core.

4.4 Analysis and Implementation

The architecture and training algorithms were tested on two generations of Zynq SoC
and MPSoC devices from Xilinx Inc. The Pynq-Z1 board, which integrates an ARM
Cortex-A9 processor and small 7-series FPGA, and the ZCU111 development board (also
known as RFSoC) which couples four ARM Cortex-A53 processors and a large Ultrascale+

FPGA. For comparative purposes, the training accuracy and run times are validated on
standard well-known networks and datasets, such as VGG16 [86] and CIFAR-10 [32].
These problems are perhaps ill-suited to the low power embedded application domain,
which is the main focus, but they are familiar to the research community in general. In the
final section, the training accelerator is evaluated on the targeted problem with real-world
constraints.

4.4.1 FPGA Resource Utilisation

Tables 4.4 and 4.5 show FPGA resource utilisation for different PE array configurations
on the ZCU111 and Pynq Z1 boards. As mentioned previously, the accelerator is designed
to fit the entire A matrix in on-chip memory, and more specifically in block rams (BRAMs)
located in PEs. If this is not possible then larger layers can be handled by breaking A

into smaller blocks and calling the accelerator multiple times. Arbitrarily large layers
can be solved as long as they fit in ARM memory. However, let’s assume for now that
the accelerator can only be called once and therefore Amax refers to the largest supported
matrix for a specific PE and BRAM configuration. Notably, A can be at most 672 × 6080
and 168 × 1520 on the ZCU111 and Pynq-Z1 boards respectively. This refers to designs
that consume 97% and 55% of available BRAMs. Notably, further improvements to 55%
BRAM usage are not possible on the Pynq-Z1 board due to power-of-two scaling associated
with high-level synthesis (HLS) tools. Specifically, arrays in HLS must ordinarily be
partitioned by power-of-two factors otherwise large amounts of additional logic is inferred
leading to synthesis problems.
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Table 4.4: Resource utilisation for ZCU111 board

Config.
Amax BRAM 36k LUTs/DSPs/FFs Freq.

(row/col) (1080) (4.2M)/(4.2k)/(850k) (Mhz)

16x16 240/2198 149 32.3k/269/20.7k 262

16x16 336/3040 277 32.5k/269/20.8k 253

32x32 480/4160 533 69.3k/1037/25.8k 246

32x32 672/6080 1045 73.1k/1037/25.6k 181

Table 4.5: Resource utilisation for Pynq-Z1 board

Config.
Amax BRAM 36k LUTs/DSPs/FFs Freq.

(row/col) (140) (53k)/(220)/(106k) (Mhz)

8x8 120/1064 45 13.9k/81/17.4k 114

8x8 168/1520 77 14.1k/81/17.4k 112

4.4.2 Training Accuracy

The key results from SWALP [21] have been reproduced in Table 4.6 for training VGG16,
PreResNet-20 [88] and logistic regression networks on CIFAR-10 and MNIST datasets.

Table 4.6: Test accuracy (%) on CIFAR-10 and MNIST for VGG16, PreResNet-20 and
Logistic Regression, trained with different quantisation schemes. The number of epochs
taken to reach 92% accuracy for batch size 128 is also recorded.

Dataset Model
Float SWALP [21] Ours (8-bit)

Acc. Ep. Acc. Ep. Acc. Ep.

CIFAR-10
VGG16 93.02 205 92.47 195 92.93 177

PreResNet-20 93.29 223 93.29 225 93.72 218

MNIST Logistic
Regression

92.6 104 92.06 66 92.7 108

All networks were trained with batch size 128, and without bias and batch normalisation.
The training algorithm was run for 250, 350, and 150 epochs, for VGG16, PreResNet-20
and logistic regression respectively, using starting learning rates of 0.05, 0.1 and 0.1 which
are decayed linearly. Stochastic weight averaging is applied for the last 25% of epochs
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Table 4.7: Time per iteration (secs) on CIFAR-10 and MNIST for VGG16 and Logistic
Regression, trained on Pynq-Z1 and ZCU111 boards

Dataset Model Batch
Pynq-Z1 ZCU111

A9 FPGA A53 FPGA

CIFAR-10 VGG16
1 - - 5.6 1.58

32 - - 172 9.89

128 - - 680 38.6

MNIST LogReg
128 0.0401 0.0084 0.0121 0.0031

256 0.0824 0.0149 0.0247 0.0057

with a modified constant learning rate of 0.01. Importantly, Table 4.6 shows that the BFP
quantisation scheme achieves virtually the same test accuracy as full-precision floating-
point networks and the prior work of SWALP [21]. This is expected since this work uses a
combination of 8-bit fixed-point and full-precision floating-point (for the weight gradients
and updates), whereas SWALP is entirely 8-bit. The choice for a mixed precision algorithm
is predicated on the fact that Zynq has fast DDR memory shared between the PL and
floating-point units in the PS. Basically, the weight updates can be computed efficiently in
low-precision on the FPGA, and accumulated in high-precision on the ARM.

4.4.3 Performance

Training times per iteration are given in Table 4.7 for varying batch sizes. As mentioned
previously, the accelerator does not exploit batch level parallelism, and therefore training
times increase linearly with batch size. Designs with 8 × 8 and 32 × 32 array configura-
tions were placed on the Pynq-Z1 and ZCU111 boards running at 100Mhz and 180Mhz
respectively. Using low-precision and offloading all GEMMs to the FPGA, this achieves
a 17× speed-up for CIFAR-10 and VGG16 on the ZCU111, and up to 5.5× and 4.3×
speed-ups for MNIST on the Pynq-Z1 and ZCU111 boards respectively. This is compared
to software running on an A53 (or A9) Arm processor and all computation done in full-
precision floating-point. For an additional point of reference, a mid-range Tesla M40 GPU
performs at roughly 16 iterations per second for batch 128 on CIFAR-10 and VGG16.
This corresponds to a massive 600× speedup over the ZCU111 implementation. However,
the work by Luo et al. [78] has shown that this performance gap can be significantly
reduced, through GEMM optimisations and also by implementing more of the training
on-chip. In applications that must be deployed stand-alone (without host communication),
and which need the energy efficiency and low latency of FPGA inference engines, then
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Figure 4.6: VGG16 per-layer forward and backward times on ZCU111

system designers are likely to tolerate slower training times as long as that training can
be computed with high accuracy on-chip. The low-precision techniques presented in this
work do not compromise the training accuracy. Figure 4.6 profiles the execution time
and relative speed-up for forward and backward paths, and for each convolution layer in
the VGG16 network (details provided in Table 4.2). The backward path requires an extra
GEMM and takes observably longer than the forward path, and layer 8 and layer 2 take
the most time on the ARM and FPGA respectively. The input and output activations are
particularly large in layer 2 (i.e. 32 × 32 × 64), and therefore proportionately more time is
spent in software on the im2col and quantisation functions.
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Figure 4.7: Software overhead of convolution layers

4.4.4 Software Overhead

Figure 4.7 profiles the run time and software overhead on two different convolution
layers, for both the forward and backward paths. Clearly, im2col and col2im are the main
performance bottlenecks and are especially damaging on layers with a large number of
input and output activations (like VGG16 layer 2, 32 × 32 × 64 pixels). Other significant
overheads exist for quantisation and accumulating large weight matrices (like VGG16
layer 6, 256 × 256 × 9). Future work should aim to move these functions into hardware,
thus eliminating memory transfers by a factor of kw × kh, where kw and kh denote the width
and height of the convolution kernel (more details provided in Appendix A.3).

4.5 Case Study: Anomaly Detection in RF Networks

The application of neural networks to physical layer radio signals is extremely challenging
due to the high data rates involved. In anomaly detection, one would like to perform training
and prediction in an online manner to obtain a model of normal data, while simultaneously
making normal/abnormal classifications. In this section, a low-precision variant of a small
and simple DNN is trained for detecting anomalies in frequency modulated radio signals.

Figure 4.8 shows the network architecture for the RF anomaly detector. The main
component is the autoencoder multi-layer perceptron (MLP) network. The first two layers
encode and compress the input signal by learning a dimensionality reduction transform,
and the final two layers reconstruct the encoding back to the original input signal. The
mean-squared error loss is computed at the output layer using the original input signal as
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Figure 4.8: Auto-encoder DNN architecture

the truth values. An anomaly is detected when the loss is higher than a preset threshold
value. This is a form of unsupervised learning.

Training is still performed by offloading each GEMM to the FPGA accelerator on the
ZCU111 board. This experiment uses a 16× 16 PE array configuration running at 200Mhz.
The training data consists of sliding windows of complex I/Q samples. Each window
has a length of 32 which represents the dimensionality of the input vectors. Training
is performed by collecting and then iterating low-precision SGD over a batch of 1000
inputs. To validate the performance of the anomaly detector during training, a test set was
created with three different types of noise (i.e. bandpass, chirp and complex sine), and
an F1-score computed for correctly detecting the known anomalies. Figure 4.9 shows a
plot of the F1-score on the test set for floating-point and 8-bit training algorithms. The
anomaly detector shows convergence to an F1-score of approximately 0.87 after about 200
iterations for both curves. The 8-bit version is accelerated by the FPGA and is observably
faster to converge. This reflects a 1.75× speed-up over training with software-only. Much
larger speed-ups are expected for wider networks that require more computation.
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Figure 4.9: Comparison of F1-scores and training times for anomaly detection

4.6 Summary

In this chapter, new techniques were introduced for efficiently training DNNs with high
accuracy on Zynq devices. The convolution and fully-connected layers are computed on the
FPGA using only 8-bit block floating-point numbers for weights, activations and activation
gradients, while the rest of the network is computed in full-precision on an ARM processor.
A prototype training accelerator was designed for portability across multiple Zynq boards
and integration with high-level software frameworks. Results of an implementation on
multiple benchmarks show up to 17× speed-ups over processor only systems without any
degradation in training accuracy.
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Chapter 5

Training Deep Neural Networks: Block
Minifloat

This chapter presents Block Minifloat, a specialised number representation for training
deep neural networks efficiently and with high accuracy.

The presentation of this chapter is based on background given on deep neural networks
and computer arithmetic in Chapter 2 and expands on work previously published in [89].

5.1 Introduction

The energy consumption and execution time associated with training deep neural networks
(DNNs) are directly related to the precision of the underlying numerical representation.
Most commercial accelerators, such as NVIDIA Graphics Processing Units (GPUs),
employ conventional floating-point representations due to their standard of use and wide
dynamic range. However, double-precision (FP64) and single-precision (FP32) formats
have relatively high memory bandwidth requirements and incur significant hardware
overhead for general matrix multiplication (GEMM). To reduce these costs and deliver
training at increased speed and scale, representations have moved to 16-bit formats,
with NVIDIA and Google providing FP16 [44] and Bfloat16 [45] respectively. With
computational requirements for DNNs likely to increase, further performance gains are
necessary for both datacenter and edge devices, where there are stricter physical constraints.

New number representations must be easy to use and lead to high accuracy results.
Recent 8-bit floating-point representations have shown particular promise, achieving
equivalent FP32 accuracy over different tasks and datasets [64, 65]. Such representations
are referred to as minifloats. Minifloats are ideal candidates for optimization. By varying
the number of exponent and mantissa bits, many formats can be explored for different
trade-offs of dynamic range and precision. These include logarithmic and fixed-point
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representations which provide substantial gains in speed and hardware density compared to
their floating-point counterparts. For instance, 32-bit integer adders are approximately 10×
smaller and 4× more energy-efficient than comparative FP16 units [18]. That said, fixed-
point representations still lack the dynamic range necessary to represent small gradients for
backpropagation, and must be combined with other techniques for training convergence.

Block floating-point (BFP) (in Chapter 4) share exponents across blocks of 8-bit integer
numbers and provide a type of coarse-grained dynamic range for training. This approach
will typically incur some accuracy loss on more challenging datasets [21, 22], however,
all dot products within the block can be computed with dense fixed-point logic. In
comparison, HFP8 [65] minifloats require larger floating-point units (expensive FP16
adders in particular) but have at least 5 exponent bits dedicated to each gradient and suffer
zero degradation in training accuracy. It would seem that an ideal representation should
bridge the gap between each of these approaches. This chapter introduces techniques for
doing this with 8-bit and sub 8-bit precision schemes, overcoming two key challenges in
the process. These are listed below and discussed with related works.

5.1.1 Challenges and Related Work

Minimising data loss with fewer bits: While several works have demonstrated train-
ing with fewer than 8 bits of precision, they typically lead to loss of accuracy on more
complex problems and have performance bottlenecks because parts of the algorithm are
left in high-precision [62, 90, 91]. Therefore, training end-to-end with reduced precision
representations that are persistent remains a key challenge. In this regard, 8-bit tensors
with 16-bit updates can be trained effectively [66]. Data loss arises when formats do not
have enough range to capture variations in tensor distributions during training. BFloat [45]
adds two extra exponent bits for a custom 16-bit representation, and the Apex library is
used in [64, 65, 92] for scaling the loss function into a numerically representable range.
Block floating-point and other variants apply similar functionality for fixed-point numbers
but at a finer granularity. WAGE [93] uses layer-wise scaling factors, SWALP [21] shares
exponents across feature maps and convolution channels, and HBFP [22] does the same
for dot products, though their implementation requires caching of intermediate activations
in FP32 and wide weight storage for better accuracy. S2FP8 [94] replaces loss-scaling in
FP8 [64] with squeeze and shift factors that centre 8-bit minifloats over the mean exponent
of the value distribution. Shift factors operate similarly to BFP shared exponents, whereas
squeeze factors can divert precision away from high-value regions leading to errors in
dot-product calculations. Empirical evidence of this effect is provided in Section 5.4.5.
Finally, HFP8 [65] defines two minifloat formats that are optimized for range and precision
requirements of forward and backward paths separately. This work seeks minifloat formats
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that are also optimized for arithmetic density.

Increasing the performance density of floating-point: Most DNN training frame-
works are developed with GEMM accumulation in FP32. The authors in [64] reduced
the accumulation width to FP16 with chunk-based computations and stochastic rounding.
However, training minifloats with even denser dot products has not been demonstrated.
For DNN inference, ELMA [95] and posit number systems [96] describe arithmetic that
accumulates minifloat-like numbers as integers. Such work is applicable when the number
of exponent bits is small, however training under such regimes can lead to data loss due to
limited dynamic range.

5.1.2 Contributions

The Block Minifloat (BM) representation is presented which addresses both of the afore-
mentioned challenges. BM is a modification of block floating-point that replaces the
fixed-point values with minifloats, whilst maintaining shared exponents across blocks of
numbers. BM formats generalise a far wider spectrum of reduced precision representations
and produce better outcomes than previous 8-bit regimes. Specific contributions of this
chapter include:

• Block Minifloat (BM), a more efficient alternative to INT8 and FP8 for end-to-
end DNN training. Shared exponent biases provide dynamic range and accuracy,
while small exponent encodings provide fine-grained dynamic range and reduce the
hardware cost of GEMM accumulation.

• A new 8-bit floating-point format that uses no more than 4 exponent bits, achieving
equivalent accuracy to floating-point with denser hardware via efficient Kulisch
accumulation.

• An exploration of the BM design space showing high accuracy DNN training with
sub 8-bit representations for all weights, activations and gradients. This includes two
techniques for minimising data loss of a practical implementation, namely gradual
underflow and cost-aware block designs.

The chapter is organised as follows: Section 5.2 introduces the Block Minifloat repre-
sentation; Section 5.3 describes loss minimization techniques and implementation details;
Section 5.4 provides training results on a wide variety of DNN models and datasets; the
hardware is evaluated in Section 5.5, and lastly, Section 5.6 summarizes the chapter.
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5.2 Block Minifloat Representation

5.2.1 Minifloat Number Format

Equation (5.1) computes the real value of a minifloat number, where (e,m) denote the
number of exponent and mantissa bits in the representation.

X
〈
e,m

〉
=

E = 0, (−1)s × 21−β ×(0 + F × 2−m) (denormal)
otherwise, (−1)s × 2E−β ×(1 + F × 2−m) (normal)

(5.1)

The decimal expansions of the exponent and mantissa are both unsigned integers, given by
E and F respectively, s refers to the sign bit and β = 2e−1 − 1 is the exponent bias for the
binary-offset encoding scheme. This is consistent with IEEE-754 floating-point standards,
except that these minifloats are considerably smaller (4-8 bits only), can generalise to mul-
tiple (e,m) configurations, and do not handle nan/infinity bit patterns. Instead, arithmetic
is allowed to saturate at the limits of the representable range [X+

min, X
+
max]. For example,

a minifloat representation with X
〈
4, 3

〉
have exponent and mantissas that range between

[0, 15] and [0, 7] respectively. Therefore, the largest normal and smallest denormal positive
numbers are X+

max = 480 and X+
min = 2−9. This corresponds to a dynamic range of 108

decibels (dB).

5.2.2 Shared Exponent Bias

The main difference between minifloat and BM representations are highlighted in Fig-
ure 5.1. Minifloats have one exponent per element, but that exponent must be wide enough
to tolerate changes in DNN tensor distributions during training (i.e. 5 bits for gradients in
FP8 [64]). In contrast, BM share exponent biases across blocks of N minifloat numbers.
This provides the equivalent dynamic range with respect to the block, but with fewer
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exponent bits than the original minifloat format. BFP operates similarly, but all numbers
within the block are integers [22]. BM can generalise for this case, i.e. when e = 0.

The real value of the ith element from BM tensor a is given in Equation (5.2), where X

is an unbiased minifloat tensor, represented by (e,m) exponent and mantissa bits, and βa is
the shared exponent bias.

ai = Xi

〈
e,m

〉
× 2−βa (5.2)

In this example, ai can only be represented accurately when the shared exponent bias
βa (calculated for the entire tensor) and the distribution of X jointly captures the value
distribution of a. For example, large and small values in a could saturate or be lost
altogether if βa is too large or too small. However, some leeway exists when exponents are
shared across dot products. This is because dot products are reduce operations, meaning
their sum is dominated by the largest values in the inputs. For this reason, βa is calculated
to specifically guard against overflow, and unlike [94] there is no scaling that could divert
precision away from larger value regions. The method of updating β during training is
illustrated in Figure 5.2 and formalized in Equation (5.3) below.

βa = max
(
blog2 |a|c

)
−

(
2e − 1

)
(5.3)

The first term denotes the maximum exponent for the tensor a, which changes and must
be updated during training, while the second term is fixed and refers to the maximum
exponent of X.

In terms of hardware, shared biases ensure that all dot products can be computed with
denser minifloat arithmetic. This is shown in Equation (5.4) for BM tensors a and b, each
with N elements.

a · b =

N∑
i=1

(
(Xa

i × 2−βa) × (Xb
i × 2−βb)

)
= 2−(βa+βb) × (Xa · Xb) (5.4)

The dot product, Xa · Xb, have minifloat formats with smaller exponents, while the cost of
calculating, storing and aligning the exponent biases during training is amortized over the
length of the dot-product. Next, it is shown how minifloat formats with fewer exponent
bits can lead to faster and more compact hardware.

5.2.3 Kulisch Accumulation

A Kulisch accumulator [97] is a fixed point accumulator that is wide enough to compute
an error-free sum of scalar floating-point products, over the entire range of possible values.
Kulisch accumulators operate by shifting the mantissa of the floating-point product into an
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Table 5.1: Kulisch accumulator examples

Format Kulisch Acc.
(ea,ma) (eb,mb) kadd kshift

(8, 23) (8, 23) 561 512
(5, 2) (6, 1) 102 96
(4, 3) (5, 2) 56 48
(3, 4) (4, 3) 34 24
(2, 3) (3, 2) 20 12

INT8 INT8 32 -

internal register according to the exponent of the product. The sum proceeds as integer
addition which is 4− 10× more efficient in terms of area and power compared to FP16 [18].
The number of bits required for the internal register (i.e. the addend) and shifter, scale the
size and complexity of the accumulator and are provided as formulas in Equation (5.5) for
BM operands a = (ea,ma) and b = (eb,mb).

kadd = 1 + (2ea + ma + 1) + (2eb + mb + 1) (5.5)

kshift = 2ea + 2eb (5.6)

In the above equations, kadd calculates the number of bits required for the largest product
of two numbers, plus one extra bit for the addition, and kshift determines the maximum
number of bits the mantissa product must be shifted to align with the addend. Crucially,
by considering the size of kadd and kshi f t, BM formats can be designed to trade-off

fine-grained dynamic range (i.e. exponent bits) for more precision and smaller hardware.
In fact, formats with exponents up to 4 bits may yield kadd of approximately the same
size as INT8/INT32 arithmetic units, while kadd becomes prohibitively wider and more
expensive for larger exponents. This is clearly shown via example in Table 5.1 above, but
more importantly, it is supported by hardware synthesis results given in Section 5.5 and
Appendix B.3. For example, an 8-bit minifloat format having 4 exponent bits achieves a
1.6× area reduction compared to HFP8 [65] with 5 exponent bits. Furthermore, through an
extensive set of experiments, it was discovered that such representations also achieve high
training accuracy which is a key contribution of this work.
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5.3 Training with Block Minifloat

5.3.1 Minimizing Data Loss

BM arithmetic will incur data loss when the value distribution is too wide or requires more
precision than can be captured by the underlying minifloat representation within a block.
Below, steps are described for mitigating this problem without substantially increasing
implementation overheads.

Gradual underflow: The reported minifloats support denormal numbers as defined in
Equation (5.1). Denormal numbers have precision close to zero and ensure that consecu-
tively smaller quantized numbers approach zero gradually. The alternative is flush-to-zero
which discards the mantissa bits, producing a zero value, when E = 0. This equates to
approximately 12.5% of the exponent encoding when e = 3; this is highly inefficient.
Overhead for denormal numbers in hardware is minimal, and only requires detection of
E = 0 and a single bit flip in the multiplier. Experiments show that gradual underflow is
crucial for BM formats with less than four exponent bits.

Block Size: Matrix multiplication with BM is computed by dividing tensors into N × N

blocks that bound the number of exponent biases and reduce data loss since each block
shares one exponent bias. Square blocks are chosen so that biases are contiguous in memory
regardless of whether the block is operating in the forward path or after transposition in
the backward path. As such, BM can be stored with a persistent data structure, that doesn’t
require recasting or extra memory transfers during training. This makes BM easy to use at
the software level but does mean that biases are shared across N independent dot products.
In terms of hardware cost, Equation (5.7) formalizes the relationship between the size of
N and three overheads, where α refer to relative area costs for each overhead.

cost =

Kulisch︷             ︸︸             ︷
α1

(
1 +

log2 N
kadd

)
+

FP︷︸︸︷
α2

1
N

+

Memory︷     ︸︸     ︷
α3

8 + N2

N2 (5.7)

For the first term, the width of the Kulisch accumulator must increase by log2 N bits to
prevent overflow in the BM dot products. In the second term, floating-point hardware
(including quantization and conversion modules) are required to accumulate, align and
convert BM partial results, but the cost is amortized over N fixed-point operations. Finally,
in the last term, additional memory is required to compute and store one 8-bit bias for
every N × N values. For large block sizes, the extra silicon area from Equation (5.7) is
negligible compared to the GEMM but data loss from sharing biases can still be significant.
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In Section 5.4.5, it was determined that a block size of N = 48 offers a good balance for
both objectives and is used for the rest of this paper.

Hybrid representation: Different minifloat representations for forward and backward
paths have been shown to produce better accuracy for FP8 training [65]. The same idea is
used for BM, where the best balance of precision and range is determined for each path
separately. Full details for all BM formats are provided in Table 5.2 where forward and
backward configurations are given by (e f ,m f )/(eb,mb) notation. BM formats cover each
precision level between 4 and 8 bits and are denoted by BM4, BM5, BM6, BM7 and BM8.
For example, BM6 (2, 3)/(3, 2) refers to 6-bit BM training with weight and activation
tensors represented by (2, 3) and activation gradient tensors represented by (3, 2) minifloat
formats.

Table 5.2: Comparison of Block Minifloat number formats

Scheme
Format1 Range2 Precision3 Kulisch Acc.
(e,m) (dB) (ε) kadd kshift

FP32 (8,23) 1668 2−24 561 512
Bfloat16 [45] (8,7) 1529 2−8 529 512
FP16 (5,10) 241 2−11 87 64
FP8 [64] (5,2) 185 2−3 71 64
S2FP8 [94] (5,2) 185 2−3 71 64
HFP8 [65] (4,3)/(5,2) 108/185 2−4/2−3 56 48
SWALP [21] (0,7) 42.1 2−8 32 -
INT8 [93] (0,7) 42.1 2−8 32 -

BM8 (ours) (2,5)/(4,3) 48.0/108 2−6/2−4 31 20
BM7 (ours) (2,4)/(4,2) 41.9/101 2−5/2−3 29 20
BM6 (ours) (2,3)/(3,2) 35.6/53.0 2−4/2−3 20 12
BM5 (ours) (2,2)/(3,1) 28.9/45.7 2−3/2−2 18 12
BM5-log (ours) (4,0)/(4,0) 28.9/45.7 2−3/2−2 33 32
BM4 (ours) (2,1)/(3,0) 21.6/42.1 2−3/2−1 16 12
BM4-log (ours) (3,0)/(3,0) 28.9/45.7 2−3/2−2 17 16
1 hybrid formats, i.e. forward/backward
2 dynamic range in decibels 20 log10(X+

max/X
+
min)

3 relative round-off error, i.e. 2−m × 2−1

5.3.2 Training Details and GPU Simulation

BM offers an alternative to standard FP32 for the computationally intensive parts of
training, which is typically mapped to general matrix multiplication (GEMM). However,
specialised hardware is required to realise its potential gains in speed and energy efficiency.
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Figure 5.3: End-to-end Training with Block Minifloat (BM). All off-chip memory trans-
fers are low-precision BM tensors. BM alignments, weight updates, quantization, batch
normalization and ReLU are executed in on-chip scalar FP32 units. The register file (RF)
stores a block of ∇W.

For the purposes of this work, the behaviour of BM hardware is simulated using GPUs
and PyTorch [98]. Given that dot products are computed exactly via Kulisch accumulators,
existing CUDA libraries for GEMM can be used without modification, and all data loss
is attributed to quantization only. Figure 5.3 provides an illustration of the setup for
each GEMM in forward and backward paths. In a practical implementation, BM does
not require any costly movement or storage of high-precision tensors. This is enabled
by scalar processors after the GEMM (for FP32 operations, Kulisch to floating-point
conversion, block minifloat alignments, quantization etc.) and a weight update scheme
that can compute and cache high-precision gradients on-chip [65]. Weight, activation
and gradient tensors are quantized to BM numbers with stochastic rounding as described
in [64]. For the software simulation, quantization is applied before each GEMM in
forward and backward paths and contributes significant performance overhead compared
to standard PyTorch layers. An approximate 5× slow-down is realised on most networks
and datasets, with support for denormal numbers the main implementation bottleneck. The
realisation of the same function is comparatively cheap in custom hardware however and
can be fully pipelined for fast training times.

5.4 Experiments

The training accuracy of BM was evaluated on a subset of image, language and object
detection modelling tasks. The entire spectrum of representations was explored on Ima-
geNet [99] and CIFAR [32] image recognition benchmarks, with results compared against
well-calibrated INT8, FP8 and FP32 baselines. On other tasks, BM8 is compared with an
FP32 baseline.

5.4.1 CIFAR-10 and CIFAR-100

CIFAR experiments are run using SGD with momentum of 0.9 for 200 epochs in batches of
128 images and an initial learning rate of 0.1 which is decayed by a factor of 5 at the 60th,
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Table 5.3: Final Validation Accuracy (%) on CIFAR datasets for ResNet-18

Scheme CIFAR-10 CIFAR-100

FP32 (ours) 94.9 77.5

BM6 (2,3)/(3,2) 95.1 77.2
BM5 (2,2)/(3,1) 94.7 76.1
BM4 (2,1)/(3,0) 94.2 73.7

Table 5.4: Training Accuracy (%) on CIFAR-10 for VGG16 and log quantization

CIFAR-10 FP32 Log ∇
kshift
(bits)

log-5b1 94.1 93.8 -0.3 32
log-BM5 (ours) 93.8 93.4 -0.4 32
log-BM4 (ours) 93.8 93.1 -0.7 16
1 [91]
2 results achieved with base

√
2

120th and 160th epochs. Table 5.3 presents results for training ResNet-18 [16] with only
small BM6, BM5 and BM4 representations. These offer the highest reduction in memory
usage while still reaching very close to the FP32 baseline. For example, 6-bit BM training
only records a 0.3% loss in accuracy compared to FP32 on CIFAR-100 while theoretically
saving 25% of memory read and write overheads compared to FP8. Logarithmic BM
formats were also tested on CIFAR-10 and VGG16 network. Log representations arise
when m = 0, and require only adds and shifts for multiply-add arithmetic. Experiments for
log-BM use the same training parameters as before and are shown in Table 5.4. Results
are compared against the only previously known result for log training, i.e. log-5b [91]
and achieve similar results with respect to FP32 for 5-bit and 4-bit. BM representations
have exponent biases that shift tensor distributions dynamically during training, whereas
log-5b define offset parameters at each layer that are fixed. Allowing biases to vary during
training gives BM an advantage, and results in similar validation accuracy with only 4-bit
words. This corresponds to approximately half the cost for multiplication in the linear
domain (by exponent add and Kulisch shift).

5.4.2 ImageNet

The ImageNet dataset has 1000 class labels, and consists of 256x256 images split into a
training set with 1.28 million images and validation set with 50,000 images. ResNet-18 [16]
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Table 5.5: Top-1 accuracy (%) of reduced precision (RP) training on ImageNet for
ResNet-18 models

Scheme
Numerical representation (e,m) ResNet-18

w x dw dx acc FP32 RP

SWALP [21] 81 81 81 81 321 70.3 65.8
S2FP8 [94] (5, 2)/(8, 23) (5, 2) (5, 2) (5, 2) (8, 23) 70.3 69.6
HFP8 [65] (4, 3) (4, 3) (5, 10) (5, 2) (5, 10) 69.4 69.4

BM8 (2,5)/(4,3) (2, 5) (2, 5) (6, 9) (4, 3) 311 69.7 69.8
BM7 (2,4)/(4,2) (2, 4) (2, 4) (6, 9) (4, 2) 291 69.7 69.6
BM6 (2,3)/(3,2) (2, 3) (2, 3) (6, 9) (3, 2) 201 69.7 69.0
BM5 (2,2)/(3,1) (2, 2) (2, 2) (6, 9) (3, 1) 181 69.7 66.8
1 Fixed point

and AlexNet [24] architectures are used from the official PyTorch implementation 1, and
trained on one GPU with standard settings; SGD with momentum of 0.9, batches of 256
images, and an initial learning rate of 0.1 (0.01 for AlexNet) which is decayed by a factor
of 10 at epoch 30 and 60. ResNet-18 has been widely tested upon in previous work and
offers the most suitable benchmark for exploring the full spectrum of BM representations,
especially given the size of the network as well as the cost of BM quantization on training
times (approx. 5× slow-down). Results are presented in Table 5.5 where columns w, x, dw,
dx and acc refer to the numerical representation for weight, activation, weight gradient,
activation gradient and on-chip GEMM accumulator. Equivalent FP32 accuracy is achieved
for BM8 and BM7, slight degradation for BM6, while BM5 exceeds the reported accuracy
for 8-bit SWALP [21]. Compared to S2FP8 [94], BM6 representation reaches similar
levels of relative accuracy, but with two fewer bits and without a high-precision master
copy of the weights. Insights are provided into potential reasons for this in Section 5.4.5
by considering the possibility of diminishing returns in accuracy from scaling minifloat
representations. Compared with HFP8 [65], which offers robust 8-bit training results, BM8
produces the same accuracy on ImageNet while improving upon HFP8 in hardware density
and performance. BM8 tensors can be represented with fewer exponent bits, and thus
perform dot products via Kulisch accumulators that are smaller and faster than FP16 units.
Furthermore, BM offers tradeoffs for even denser arithmetic and lower memory usage.
In these regimes, BM hardware is more comparable to SWALP [21] which performs the
GEMM in fixed-point. Proof of BM design efficiencies is provided with RTL synthesis
results in Section 5.5, Figure 5.6.

1Implementation available at https://github.com/pytorch/examples/tree/master/imagenet
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Table 5.6: Comparison of Block Minifloat (BM) and Block Floating Point (BFP) number
formats trained on ImageNet with ResNet-18 model.

Scheme
BFP BM

∇
(ours) (ours)

6-bit 67.0 69.0 +2.0
8-bit 69.2 69.8 +0.6

5.4.2.1 Comparison with Block Floating Point (BFP) on ImageNet

As described in Section 5.2, BM formats bridge the gap between narrow floating-point and
block floating point (BFP) representations. The main idea is that better outcomes in terms
of accuracy and hardware efficiency can be achieved by exploring the spectrum between
the two representations. While BFP ensures that the majority of computation involves
dense integer arithmetic, the lack of fine-grained dynamic range typically leads to accuracy
loss on larger models and more complex datasets. In Table 5.6, BM is shown to recover
accuracy loss for 6-bit and 8-bit formats on ImageNet training. Crucially, the hardware
overhead of BM is minimal thanks to narrow exponents and Kulisch accumulators.
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Figure 5.4: Validation perplexity of LSTM model on Penn Treebank

5.4.3 Language Modelling with LSTM

This section compares 8-bit formats for language modelling on the Penn Treebank dataset [100].
The 2-layer Long Short Term Memory (LSTM) network is adapted from PyTorch Exam-
ples 2 with all GEMM operations performed using BM8 arithmetic. The batch size is 20,
the initial learning rate is 20 with 0.25 decay, the embedding and hidden dimensions are
650 and the sequence length is 35. Results in Figure 5.4 show BM8 with (2, 5)/(4, 3) hybrid

2Implementation available at https://github.com/pytorch/examples/tree/master/word_language_model
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configuration achieving better accuracy than BFP8 and HFP8 variants. The proposed BM8
representation has more fine-grained dynamic range and fewer mantissa bits than BFP8,
and more precision and fewer exponent bits than HFP8 formats. This design point achieves
better outcomes in terms of accuracy and hardware density than either representation
separately (see Figure 5.6, Section 5.5). Validation perplexity of 87.33 is also comparable
to 84.70 obtained with full-precision floating-point.

Table 5.7: Baseline FP32 v BM8 training on Image, Language and Object Detection
models

Model (Dataset) [Metric] FP32 BM8

AlexNet (ImageNet) 56.0 56.2
EfficientNet-b0 (small ImageNet) 62.6 61.8
LSTM (PTB)[Val ppl.] 84.7 87.33
Transformer-base (IWSLT)[BLEU] 32.3 31.8
SSD-Lite (MbNetV2) (VOC)[mAP] 68.6 68.0

5.4.4 Additional Experiments

To demonstrate wider applicability of the BM number representation, BM8 was tested
on several additional networks and modelling tasks. Results are summarized in Table 5.7
with experiment setup details provided in Appendix B.2. Crucially, every network tested
achieved comparable accuracy with baseline FP32. This includes EfficientNet-b0 [101]
image classification and SSD-lite [102] with MobileNet-V2 object detection models,
both of which represent the type of network and application well suited to resource-
constrained hardware devices. Furthermore, a small Transformer network was also trained
for translation on the IWSLT German to English dataset [103]. Future work could involve
scaling up the implementation and demonstrating training with BM representations on
even larger networks and datasets. Network design with BM is another interesting research
direction since the majority of network architectures have been designed and optimized
while assuming an FP32 arithmetic scheme.

5.4.5 Empirical Analysis

Effect of Denormal Numbers: To study the effect that denormal numbers have on train-
ing convergence in sub 8-bit networks, ResNet-18 was trained on ImageNet for BM6
with denormals (ours) and without denormals, using QPyTorch library [104]. Results are
plotted against floating-point accuracy in Figure 5.5a. Without denormals, small numbers
are flushed to zero and training stagnates immediately. Although not shown here, 8-bit
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Figure 5.5: Experiments for minimising data loss with 6-bit Block Minifloat (BM6)

representations with more than e = 3 bits do not suffer similar accuracy degradation
without denormals. This investigation confirms the importance of denormal numbers for
training BM formats with fewer exponent bits and differentiates this chapter’s experiments
substantially from previous 8-bit regimes.

Selecting the Block Size: Experiments were conducted on CIFAR-100 to determine
suitable block sizes - those which simultaneously increase dynamic range and have low
hardware overhead. Results are shown in Figure 5.5b. The largest range observed in
gradient tensors at different block settings was taken as an average over the entire duration
of training. Estimates of area come from Equation (5.7) with parameters; α1 = 1, α2 = 10
(relative area of fixed-point and floating-point respectively), kadd = 21 and α3 = 0. The
area cost is saturated at N = 256, which is consistent with the length of dot products
supported by the GEMM architecture in commercial hardware [38]. Finally, N = 48
emerged as a good selection, corresponding to one floating-point unit for every 48 multiply-
accumulate operations and one 8-bit exponent bias every 2304 minifloat numbers.

Scaling the Minifloat Representation: In Figure 5.2, which was discussed previously,
minifloats have exponent biases that shift the representation to align with the maximum
of the underlying value distribution. Additionally, the minifloat representation could be
scaled (or stretched) over a wider or narrower part of the value distribution. This effect
is investigated by varying the base of the exponent, and inspecting the underflow and
root mean square error (RMSE) of dot products after quantization; results are shown in
Figure 5.5c. The tensor under test is a gradient tensor with maximum exponent of -17 and
mean exponent of -21. Mean scaling was proposed in S2FP8 [94] for 8-bit training and
works by centring the minifloat over the mean of the exponent value distribution. For the
(3,2) format, mean scaling requires a base of 2.52, calculated as b = 2

−17+21
7−4 . This is akin to
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redirecting precision from high-value regions into smaller underflow regions, the result
of which observably leads to increased error in the tested 6-bit regime. Better approaches
could be designed to detect underflow and use higher precision arithmetic where necessary.
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Figure 5.6: Computational density v ResNet-18 accuracy on ImageNet

5.5 Hardware Evaluation

In this section, the proposed BM representation is evaluated in hardware and compared
against competitive integer and floating-point arithmetic types. Figure 5.6 summarizes
the main results with a plot of computational density (measured as operations per unit
silicon area) and ResNet-18 training accuracy on ImageNet. Computational density was
obtained from an register-transfer level (RTL) design of single-cycle fused multiply-add
(FMA) units and 4x4 systolic array multipliers. RTL synthesis was performed at 750MHz
for 28nm silicon technology with area and power measurements recorded for each number
representation. Table 5.8 provides a subset of these results, with coverage of all BM
formats supplied in Appendix B.3.

To summarize, BM8 and BM6 arithmetic units are 2.1×(12.2×) and 4.1×(23.9×) smaller
and consume 1.25 × (8.8×) and 2.3 × (16.1×) less power than competitive FP8/(FP32)
representations. Such arithmetic, which has similar hardware complexity to INT8, may
be especially useful in embedded applications where there are stricter area and power
constraints but training still needs to achieve normal levels of accuracy and relatively
high performance. With high computational density, BM arithmetic can achieve higher
training throughput on compute-intensive problems, while sub 8-bit BM formats have lower
bandwidth requirements leading to faster training times in memory bound applications.
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Table 5.8: Logic area and power of single-cycle fused multiply-Add (FMA) and 4x4
array multipliers. Synthesized at 750 MHz with Cadence RTL Compiler 14.11 and 28nm
cell library

Component
Area Power
(µm2) (µW)

FP32 4782 10051
FP8 (w/ FP16 add) 829 1429
INT8 (w/ INT32 add) 417 1269
BM8 391 1141
BM6 200 624

INT8 (4x4 systolic) 7005 20253
FP8 (4x4 systolic) 18201 56202
BM8 (4x4 systolic) 6976 18765

Finally, overheads related to conversion from Kulisch to floating-point and BM quantization
are expected to contribute little logic area relative to GEMM. This includes modules for
leading-one detection, barrel shifter, maximum exponent calculation, pre-quantization
buffering and stochastic rounding, each of which has an efficient implementation. Further
support of these claims and other system-level effects are the subject of future work.

5.6 Summary

A new representation called Block Minifloat (BM) was presented for training DNNs
effectively with reduced precision. The representation allows the implicit exponent bias
within IEEE-754 floating-point specifications to vary for a block of numbers and can be
trained with high accuracy using narrow exponent encodings. This chapter describes how
few exponent bits lead to significantly smaller hardware, while smaller representations
reduce memory bandwidth requirements, leading to potentially faster training than previous
8-bit approaches.

88



Chapter 6

Conclusion

This thesis aimed to demonstrate the importance of hardware specialization for improving
the speed and energy efficiency of training machine learning models. Based on quantitative
and qualitative analyses of kernel methods and DNN training algorithms, including perfor-
mance modelling and hardware simulations using FPGAs, it can be concluded that both
the underlying hardware architecture (Chapter 3) and computer arithmetic (Chapter 4 and
Chapter 5) are important factors to consider when designing performant machine learning
systems. Results indicate that specialization in these two areas can significantly improve
the scalability and accuracy of on-chip training:

First, a high-speed systolic array architecture was described for real-time training
of approximate kernel methods in fixed-point, and it was shown that a design based
on minimising off-chip memory transfers and maximising data reuse is effective at
increasing the on-chip model capacity by several orders of magnitude.

The limitations of DNN training in fixed-point were then discussed, and instead, a
specialised representation called block floating-point (BFP) was proposed. It was then
shown through the implementation of a prototype that high accuracy could be achieved
using mostly low-precision BFP arithmetic. However, performance of the system could
be improved with greater hardware specialization to increase parallelism and minimise
off-chip memory transfers.

Finally, in order to train DNNs with further reduced precision and higher compute
density, a highly specialised number representation called Block Minifloat (BM) was
introduced, and effective training was demonstrated on a wide variety of benchmark
models and datasets.

Putting the main results together, specialised arithmetic is useful for training large models
and achieving the same accuracy with less memory, whereas specialised architectures
are needed for keeping the model on-chip, reducing expensive memory transfers, and
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implementing denser compute units. With the growing adoption of machine learning and
the growing need for hardware acceleration, these insights should encourage computer
architects and machine learning experts to work on hardware specializations together. It
is likely that such collaborations will produce significant performance gains for on-chip
training, and pave a path towards greater intelligence in computationally constrained
devices.

6.1 Future Work

Moving forward, there are still a number of research directions for hardware specialization
and on-chip training. While this thesis considered the hardware architecture and computer
arithmetic as separate targets for optimization, not much work has been done to combine
both specializations into the same FPGA design. An implementation here would substan-
tially improve the performance of the prototype given in Chapter 4, which can benefit from
extra parallelism in the systolic array, greater flexibility in the supported dataflow, and
more functionality on-chip.

The algorithmic techniques used to efficiently approximate large-scale kernel methods
in Chapter 3 could have potential for practical application in training DNNs. While the
hardware architecture presented in this thesis was specialised for the Fastfood algorithm,
similar design strategies, as well as other more specialised techniques, could be applied
for keeping the entire DNN model on-chip during training. Further investigation would
need to focus on preserving the accuracy of standard SGD training, while in terms of an
implementation, massive performance gains could be expected over a system reliant on
off-chip DRAM transfers.

Training with Block Minifloat representations can be expanded and further improved by
considering the problem of multiple minifloat training, which selects the BM format for
each input dynamically. While BM arithmetic units can already be modified to support
multiple formats in hardware, further work is required to decide how and when to switch
representations during training. An approach based on heuristics is the likely first step, and
could potentially yield a more robust and well-tuned reduced precision training algorithm.
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Abbreviations

ASIC Application Specific Integrated Circuit

BFP Block Floating Point

BM Block Minifloat

BRAM Block Random Access Memory

CLB Configurable Logic Block

CPU Central Processing Unit

DNN Deep Neural Network

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

FF Flip-Flop

FMA Fused Multiply-Add

FP Floating-Point

FPGA Field Programmable Gate Array

FSM Finite State Machine

FWHT Fast Walsh Hadamard Transform

GEMM Generalised Matrix Multiplication

GPU Graphics Processing Unit

HB Hadamard Block

IEEE Institute of Electrical and Electronics Engineers

LUT Look-Up Table

MAC Multiply-Accumulate

MSE Mean Squared Error

PCI-e Peripheral Component Interconnect express

PE Processing Element

RAM Random Access Memory

ReLU Rectified Linear Unit

RF Radio Frequency

RTL Register-Transfer Level

SGD Stochastic Gradient Descent

SoC System on Chip

SWALP Stochastic Weight Averaging for Low-Precision Gradient Descent
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Appendix A

Basic Operations

A.1 Generalised Matrix Multiplication

The dominant computation in machine learning is generalised matrix multiplication
(GEMM). Consider the example below for Cn×k = An×m × Bm×k, where n = 2, m = 4
and k = 2.

C = A × B

c11 c12

c21 c22

 =

a11 a12 a13 a14

a21 a22 a23 a24

 ×

b11 b12

b21 b22

b31 b32

b41 b42


c11 = a11b11 + a12b21 + a13b31 + a14b41

c12 = a11b12 + a12b22 + a13b32 + a14b42

c21 = a21b11 + a22b21 + a23b31 + a24b41

c22 = a21b12 + a21b22 + a23b32 + a24b42

For output Ci j, the result is calculated by computing the dot-product of row i in A and
column j in B. When n = m = k = N, the number of multiply-accumulate operations
scales as O(N3).
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A.2 Fast Walsh Hadamard Transform

The Fast Walsh Hadamard Transform (FWHT) is an efficient algorithm for computing the
Hadamard transform and is used to speed up the implementation of approximate kernel
methods in Chapter 3. For an input vector x = [x1, x2, . . . , xd], the Hadamard transform is
calculated as the matrix product of x and the Hadamard matrix H, defined below:

H = Hd =

Hd/2 Hd/2

Hd/2 −Hd/2

 where H2 =

1 1
1 −1

 (A.1)

Figure A.1: The Fast Walsh Hadamard Transform applied to a vector of length d=8

The radix-2 FWHT algorithm works by breaking a size d Hadamard transform (i.e. Hdx)
into sets of d/2 Hadamard transforms recursively. This creates a butterfly shaped dataflow
diagram, as shown in Figure A.1, and reduces the number of operations from d2 to d log2 d

but requires that d is a power of 2. An example is provided below for d = 4:

y = Hdx

y =


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1


.


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


.


x1

x2

x3

x4


y1 = (x1 + x2) + (x3 + x4)

y2 = (x1 − x2) + (x3 − x4)

y3 = (x1 + x2) − (x3 + x4)

y4 = (x1 − x2) − (x3 − x4)
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A.3 Convolution

This section describes the computation of convolution layers in deep neural networks
(DNNs). Convolution layers are widely used in image and video processing tasks for
spatial feature extraction.

Figure A.2: Input, weight and output dimensions of convolution layer for a single
example image, i.e. B=1

The input tensor f refers to a batch of images with dimensions (B,W,H, IC), corre-
sponding to batch size, width, height and number of input channels. The outputs are
computed by applying a convolution operator g to the input with typically four dimensions
(kW , kH, IC,OC), which refer to the width and height of the operator and number of input
and output channels. The convolution operator computes dot products over local regions
of the input, moving over the image with an associated stride, and forming outputs y with
shape (B,W ′,H′,OC). This is shown in Figure A.2 and formalised mathematically in
Equation (A.3) for an output pixel indexed by (b, i, j, o) and stride=1.

y = f ∗ g (A.2)

y[b][i][ j][o] =

IC−1∑
p=0

kW−1∑
n=0

kH−1∑
m=0

f[b][i + n − 1][ j + m][p] × g[n][m][p][o] (A.3)
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(a) im2Col

(b) col2Im

Figure A.3: Image-to-Column (im2col) and Column-to-Image (col2im) Transforms

To compute convolution efficiently with standard hardware architectures, the operation
is usually reformatted into a matrix multiplication to improve memory utilisation and
computational efficiency. Two transforms are used, called Image-to-Column (im2col)
and Column-to-Image (col2im), which change the layout of the input from an image to
2D matrix, and the output from a 2D matrix back to an image. An illustration of both
transforms is given in Figure A.3, where the input matrix is constructed from patches of
the image sized kW × kH × IC, and OC pixels in the output image are formed by summing
every kW × kH elements in a given column.

The implementation of im2col and col2im were identified as the main performance
bottlenecks in Chapter 4 as both transforms increase memory traffic by (kW × kH)×, while
col2im introduces an additional (kW × kH) operations for each output pixel.
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Supplementary Material: Block
Minifloat

B.1 Software Overview

Block Minifloat (BM) arithmetic requires custom hardware to achieve gains in speed
and energy efficiency. QPyTorch [104], an open-source framework for low-precision
training, is used to simulate the behaviour of BM hardware with existing PyTorch and
CUDA libraries. QPyTorch provides a simple interface for applying quantization in
the forward path (weight and activation tensors) and backward path (error, gradient and
momentum tensors), ensuring that all numbers have a low-precision representation, while
the actual GEMM and AXPY operations are computed in single-precision floating-point
(FP32). This last point means that QPyTorch can not ordinarily be used to research low-
precision accumulation strategies. BM in this thesis is different. Kulisch accumulators (as
described in Section 5.2.3) compute exact dot products, and therefore GEMM operations
are adequately approximated by FP32 arithmetic (which is close to exact). QPyTorch is
available online 1 and supports floating-point (without denormals), fixed point and block
floating-point number formats. The code implementation of BM 2 is an extension of this
package.

1Implementation available at https://github.com/Tiiiger/QPyTorch
2Available at https://github.com/sfox14/block_minifloat
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B.2 Experiment Details

Transformer Model (WMT)

The Transformer Base model from the FairSeq 3 repository was trained on the IWSLT’14
German to English translation task. Adam optimizer was used and the FairSeq implemen-
tation was modified with BM8 quantization. The network was trained for 25 epochs using
the default parameters found in the repository. BLEU scores were calculated using the
script from the repository and show similar convergence between BM8 and FP32 models.
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Figure B.1: Training convergence curves for Transformer on IWSLT’14 DE-En dataset

SSD-Lite (MobileNet-V2) (VOC)

The PyTorch implementation of SSD-lite was adapted from an online repository 4. The
base network is MobileNet-V2 [105] which was pre-trained on ImageNet. The entire
network is trained on VOC2012 and VOC2007 trainval datasets and evaluated on the
VOC2007 validation dataset. BM8 quantization was applied to all weights, activations and
gradients before GEMM computations in the forward and backward paths. The network
was trained with default parameter settings provided in the repository as follows: SGD with
momentum of 0.9, weight decay factor 0.0005, batches of 32 images, and cosine annealing
(tmax = 200) with an initial learning rate of 0.01. After 200 epochs, BM8 achieves an mAP
of 68.0 which is sufficiently close to the reported score of 68.6.

3Implementation available at https://github.com/pytorch/fairseq
4Implementation available at https://github.com/qfgaohao/pytorch-ssd

98



Appendix B. Supplementary Material: Block Minifloat

EfficientNet-b6 (ImageNet)

The PyTorch implementation of EfficientNet [101] was adapted from an online repository 5.
The smallest EfficientNet-b0 network was trained on a reduced sized ImageNet dataset,
where the images are resized from 256x256 to 128x128. This choice was made in order to
reduce the training time, which is slowed down by 5× using the BM8 quantization function.
The network is trained on one GPU for only 60 epochs using batch size 256 and an initial
learning rate of 0.1 which is decayed exponentially with gamma of 0.90387. Figure B.2
shows the convergence of BM8 with an FP32 baseline.
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Figure B.2: Training convergence curves for EfficientNet-b0 on ImageNet

5Implementation available at https://github.com/narumiruna/efficientnet-pytorch
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B.3 Hardware Synthesis

Fused multiply-add (FMA) units were designed in RTL for floating-point and block
minifloat representations. Code was modified from the Deepfloat6 repository for FP32,
FP16 and FP8 units. The BM units with Kulisch accumulation were handwritten in Verilog
following the block design given in Figure B.3. All designs were synthesised at 750 MHz
using Cadence RTL compiler 14.11 and a commercial 28nm standard cell library. Since
GEMM hardware is typically designed from tiles of smaller computational units, synthesis
results are also provided for small 4x4 systolic array multipliers. Full coverage of results
is shown in Table B.1 and Table B.2. Table B.3 is also provided and shows the component
breakdown and scaling of Kulisch related costs in different 8-bit BM regimes. Given that
BM relies on hybrid formats, the multiplier operands are both sized for the largest mantissa
plus one bit for denormal support. Compared to (4,3)/(5,2), which is the format used in
HFP8 [65], BM8 (2,5)/(4,3) is 1.6× smaller. This is because BM8 has narrower exponent
encodings that reduce the width of the Kulisch accumulator.
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mul
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Figure B.3: Block diagram of block minifloat multiply-add; A*B + C, where A and B
are minifloats and C is an integer

6Implementation available at https://github.com/facebookresearch/deepfloat
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Table B.1: Synthesized logic area
and power of single-cycle fused
multiply-Add (FMA) at 750 MHz
on 28nm chip.

Component Area Power
µm2 µW

FP32 4782 10051
FP16 1116 2120
FP8 (w/ FP16 add) 829 1429
INT8 (w/ INT32 add) 417 1269

BM8 391 1141
BM7 280 840
BM6 200 624
BM5 171 546
BM5-log 231 801
BM4 115 361
BM4-log 120 426

Table B.2: Synthesized logic area and
power of 4x4 systolic array multipliers
at 750 MHz on 28nm chip.

Component Area Power
µm2 µW

FP8 (w/ FP16 add) 18201 56202
INT8 (w/ INT32 add) 7005 20253

BM8 6976 18765
BM6 4083 11959

Table B.3: Component breakdown and logic area for different 8-bit BM formats

Format Details Area (µm2)
(e,m)/(e,m) multiply kadd kshift comb.1 kadd kshift total

(3, 4)/(4, 3) (5b × 5b) 34 24 210 93 74 377
(2, 5)/(4, 3) (6b × 6b) 31 20 235 79 77 391
(3, 4)/(5, 2) (5b × 5b) 49 40 253 199 95 547
(4, 3)/(5, 2) (4b × 4b) 56 48 259 276 104 639
(5, 2)/(5, 2) (3b × 3b) 71 64 300 361 113 774

(0, 7)/(0, 7) (8b × 8b) 32 NA NA NA NA 418
1 combinational logic includes multiply component
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