
Simplification Of Deep Neural Networks
For Efficient Inference

JULIAN FARAONE

B.Eng (Hons) & B.Com

Supervisor: Philip H.W. Leong
Associate Supervisor: David Boland

A thesis submitted in fulfilment of
the requirements for the degree of

Doctor of Philosophy

School of Electrical and Information Engineering
Faculty of Engineering

The University of Sydney
Australia

27 February 2021

Abstract

In recent years, Deep Neural Networks (DNNs) become an area of high interest due to

it’s ground-breaking results in many fields and applications. In many of these applications

however, the model’s runtime and memory cost of computing inference is more important

than the cost of training the model. Inference is computationally expensive, making them

difficult to deploy in constrained hardware environments. This has lead to an increasing

interest in recent years for model compression techniques for these models.

In this thesis, model compression techniques are presented for achieving efficient repres-

entations of DNNs for hardware acceleration. Firstly, pruning to achieve both unstructured

and structured sparse representations of low-precision DNNs is explored. This is done by

describing a training method for sparse binary/ternary network representations on the MNIST

and CIFAR10 datasets. Field Programmable Gate Array (FPGA) hardware is then used to

evaluate their advantages over state-of-the-art methods. Secondly, a quantization method is

introduced for training highly accurate binary and ternary networks with high computational

efficiency. These are evaluated on the ImageNet dataset with state-of-the-art results. A

hardware architecture is designed for this representation and its performance evaluated on an

FPGA. Lastly, a custom arithmetic is designed which utlizes FPGA-optimized multipliers.

Additionally, a training methodology is presented which is customized for DNN models to be

compatible with the multiplier.

Together, this work illustrates the effectiveness of hardware-software co-design of DNNs.

Training with quantization and pruning can result in highly computationally efficient inference

representations. Adjunctly, designing customized hardware helps in optimizing accuracy

and hardware efficiency. This is very useful for many real-world DNN applications where

hardware performance is paramount.

ii

Acknowledgements

First and foremost I’d like to thank my supervisor Professor Philip H.W. Leong. He is an

outstanding supervisor. I am so grateful for his guidance throughout this PhD journey. On

reflection, I learnt many valuable skills from him which will benefit my career immensely.

Specifically, I learnt the ability to define a problem, how to investigate that problem thoroughly

and present results such that others will benefit from the knowledge. Professor Leong’s

passion for the area of machine learning and hardware is infectious and this allowed me

to stay effortlessly motivated throughout the PhD. His foresight and ability/willingness to

help all his students on a deeply technical level is truly inspiring and something I will strive

towards in my own endeavours.

I’d also like to thank my friends and lab mates from the Computer Engineering Lab at The

University Of Sydney. Firstly, my co-supervisor Dr. David Boland. Having another senior

staff member to consult with was highly beneficial and provided great perspective, ideas and

discussions. In addition, other PhD students: Sean Fox, Dr. Stephen Tridgell, SeyedRamin

Rasoulinezhad, Dr. Siddartha and Dr. Duncan Moss. These people provided me with great

assistance and discussions throughout my PhD. It has been a great environment and culture to

work in.

I also had the pleasure of collaborating with many other great researchers from industry

along this journey. Internships at Xilinx in Dublin, Ireland, Xilinx in San Jose, USA and

Mythic-AI in San Francisco, USA improved my technical ability and gave me new perspective

on my research area. This experience was invaluable and helped improve my research signi-

ficantly. I sincerely thank Dr. Michaela Blott, Dr. Nicholas Fraser, Dr. Giulio Gambardella,

Dr. Kees Vissers, Dr. Stephen Neuendorffer and Dr. Mark Beardslee. I learnt a great deal

from working with each one of you.

iii

I was also lucky enough to collaborate with other universities outside of The University

Of Sydney. I would like to thank Dr. Martin Kumm, Martin Hardieck and Professor Peter

Zipf from The University Of Kassel and also Dr. Jiang Su from Imperial College.

I would also like to thank my friends and family for their love and support throughout this.

Being able to relax and enjoy myself with you whilst away from my PhD was as important as

doing the work itself. Most notably, I’d like to thank my late father, who unfortunately passed

away during my final year over in Perth, Western Australia. His mentorship throughout my

PhD was highly significant in keeping me on track. We had countless chats regarding my

progress and opportunities to improve. He always ensured I was prioritizing this PhD first

over other life distractions. I am forever grateful.

iv

Author Statement

All the content of this thesis is a product of my own work. All assistance in the preparation

of this thesis have been acknowledged as follows:

• Professor Philip H.W. Leong provided the research direction for all this work

• The hardware cost models and implementation in Chapter 3 was done in collaboration

with Dr. Giulio Gambardella and Dr. David Boland.

• The SYQ hardware implementation was done in collaboration with Dr. Nicholas

Fraser

• The AddNet idea was conceived in discussion with Dr. David Boland, Dr. Martin

Kumm and Martin Hardieck. The design of the multipliers was done by Dr. Martin

Kumm and Martin Hardieck.

Julian Faraone - 14/11/2020

v

Publications

The work in this thesis has been published in journals, conferences and as patents. The

publication titles and their corresponding publication destinations are stated as follows:

Journal Publications:

• Julian Faraone, Martin Kumm, Martin Hardieck, Peter Zipf, Xueyuan Liu, David

Boland, Philip HW Leong - "AddNet: Deep Neural Networks Using FPGA-Optimized

Multipliers" - 2019 IEEE Transactions on Very Large Scale Integration Systems

(TVLSI)

Conference Publications:

• Julian Faraone, Nicholas Fraser, Giulio Gambardella, Michaela Blott, Philip HW

Leong - "Compressing low precision deep neural networks using sparsity-induced

regularization in ternary networks" - 2017 International Conference on Neural

Information Processing (ICONIP)

• Julian Faraone, Giulio Gambardella, Nicholas Fraser, Michaela Blott, Philip Leong,

David Boland - "Customizing low-precision deep neural networks for FPGAs" -

2018 IEEE International Conference on Field Programmable Logic and Applications

(FPL)

• Julian Faraone, Nicholas Fraser, Michaela Blott, Philip HW Leong - "Syq: Learn-

ing Symmetric Quantization For Efficient Deep Neural Networks" - 2018 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR)

• Jiang Su, Julian Faraone, Junyi Liu, Yiren Zhao, David B Thomas, Philip HW

Leong, Peter YK Cheung - "Redundancy-reduced MobileNet acceleration on re-

configurable logic for ImageNet classification" - 2018 International Symposium on

Applied Reconfigurable Computing (ARC)

vi

Patents:

• Julian Faraone, Michaela Blott, Nicholas Fraser - “System and Method For Imple-

menting Neural Networks In Integrated Circuits” - June 2018. Filed with the US

Patent and Trademark Office

vii

Contents

Abstract ii

Acknowledgements iii

Author Statement v

Publications vi

Contents viii

List of Figures xiii

Chapter 1 Introduction 1

1.1 Aims and Contributions . 3

1.2 Thesis Structure . 7

Chapter 2 Background 9

2.1 Deep Neural Networks . 9

2.1.1 Inference . 11

2.1.2 Training . 13

2.1.3 Convolutional Neural Networks . 14

2.2 Data Representations . 15

2.2.1 Floating-point . 16

2.2.2 Fixed-point . 16

2.3 Quantization Network Training . 18

2.3.1 Quantization . 18

2.3.2 Network Quantization . 19

2.3.3 Bitwise Networks . 20

2.3.4 Straight Through Estimator Learning . 21
viii

2.4 Pruning . 23

2.4.1 Quantization and Pruning for Efficient Hardware Designs 24

2.5 Applications . 25

2.5.1 Image Classification . 25

2.5.2 Object Detection. 27

2.6 Hardware Implementations . 27

2.6.1 Specialized Hardware For DNNs . 28

2.6.2 FPGAs . 28

2.6.3 FPGAs For DNN implementations . 30

2.7 Summary . 30

Chapter 3 Using Sparsity To Enhance Bitwise Network Performance 33

3.1 Compressing Bitwise Using Sparsity-Induced Regularization 34

3.2 Sparse TNN Training . 35

3.2.1 Quantization Threshold . 36

3.2.2 L2 Regularization. 37

3.2.3 Quantization Pruning . 38

3.2.4 Weight Representations . 39

3.2.5 Algorithm . 40

3.3 Sparsity and Networks . 40

3.3.1 MNIST . 41

3.3.2 CIFAR10 . 42

3.4 Hardware Implications of Sparse TNNs . 44

3.4.1 Hardware Decompressor . 45

3.4.2 A Sparse TNN Accelerator . 45

3.4.3 Accelerator Architecture . 46

3.4.4 Exploiting Sparsity Through Data Reuse . 47

3.5 Summary . 48

Chapter 4 Customizing Bitwise Networks For Hardware Platforms 50

4.1 Background . 51
ix

4.2 Contributions. 52

4.3 Network Quantization Setup . 53

4.4 CNN Acceleration . 54

4.4.1 CNN acceleration on CPUs/GPUs . 54

4.4.2 FPGA-based CNN acceleration of Dataflow Architectures 54

4.5 Hardware-Aware Pruning . 55

4.5.1 Layer Selection. 56

4.5.2 Model-finetuning . 58

4.5.3 Quantization Error Pruning . 58

4.5.4 Filter Ranking . 59

4.5.5 Data Fine-tuning . 59

4.6 Experimental Setup . 60

4.6.1 Networks . 61

4.6.2 Computing Core . 62

4.7 Results . 63

4.7.1 Streaming Dataflow . 64

4.7.2 Comparison To Previous Work . 66

4.8 Summary . 67

Chapter 5 Improving Quantization Of Bitwise Networks 70

5.1 SYQ: Learning Symmetric Quantization For Efficient Bitwise Networks 71

5.2 Related Work . 72

5.2.1 Low-precision Networks . 73

5.3 Ordered Scaling Factor Representations . 74

5.3.1 Reducing Information Loss Through Scaling Factors 75

5.4 SYQ Structural Representations . 76

5.4.1 Layers . 76

5.4.2 Subgroups . 78

5.5 SYQ Training . 78

5.5.1 Symmetric Quantizer . 78

5.5.2 Initialization . 79
x

5.5.3 Activations Quantization . 80

5.6 Experiments . 80

5.6.1 Networks . 81

5.6.2 Changing Granularity Via Weight Subgroups . 82

5.6.3 Comparisons To Previous Work . 83

5.6.4 Varying Activation Bitwidth . 84

5.7 Hardware Implications . 85

5.7.1 Computational and Memory Complexity . 85

5.7.2 Architectural Design . 86

5.8 Summary . 88

Chapter 6 Increasing Precision With Low Hardware Cost 89

6.1 AddNet: DNNs Using FPGA-Optimized Multipliers . 90

6.2 Background . 92

6.2.1 Small Softcore Multipliers . 92

6.3 Related Work . 93

6.4 AddNet Reconfigurable Multipliers . 94

6.4.1 Reconfigurable Multipliers . 94

6.4.2 FPGA Multiplier Mapping . 96

6.4.3 Architectures Considered . 98

6.5 AddNet Training . 100

6.5.1 Distribution Matching . 101

6.5.2 Weight Quantization . 104

6.5.3 Activation Quantization . 105

6.6 Experimental Setup . 106

6.6.1 System Overview . 106

6.6.2 Network Layer Accelerator Core . 108

6.6.3 Architectures . 108

6.6.4 Memory Use . 109

6.7 Results . 109

6.7.1 Reconfigurable Multiplier Resources . 110
xi

6.7.2 Architecture Resource Utilization . 110

6.7.3 Frequency . 113

6.7.4 Effect of Layer Size . 114

6.7.5 Accuracy . 115

6.7.6 Accuracy vs Area . 116

6.8 Summary . 117

Chapter 7 Conclusion 119

7.1 Future outlook . 121

Bibliography 123

1 Appendix A. 138

xii

List of Figures

1.1 The accuracy-performance tradeoff of each of the methods explored in this thesis. 4

2.1 An example of a basic Neural Network architecture, consisting of an input layer, one

hidden layer and an output layer. 12

2.2 A two’s complement fixed-point number representation 17

2.3 A simple one layer CNN training flow diagram. This shows the difference of how

different network layers are related to each other for (a) conventional learning and (b)

STE learning with quantized weights and activations 22

2.4 Convolutional Layer Connectivity and Pruning 23

2.5 Image Classification Using Neural Networks 26

2.6 Object Detection to detect vehicles in an image using DNNs 27

2.7 An array of CLBs whereby each CLB contains four slices. 29

2.8 The average cost per MAC operation on an FPGA device for different bitwidths

(weight-activation) 31

3.1 Validation Error Convergence on MNIST. Comparing training with η = 0.33 and

η = 0.9 36

3.2 Weight distribution for wr for MLP Layer in MNIST training. With L2 regularization

(top) and without (bottom). Both are for TNNs with η = 0.9. 38

3.3 Accuracy vs Sparsity for CIFAR10. We vary the quantization threshold regularizer

for convolutional layers, η1, and fully-connected layers, η2. No quntization pruning is

implemented. 43

3.4 Per Layer Sparsity for different quantization threshold regularization on CIFAR10.

No L2 regularization or pruning is implemented 44

3.5 Diagram of Decompressor Feeding Multiple Processing Elements with Data Reuse 46

3.6 Effective throughput: BNNs vs TNNs (type 3) while varying γ and R. 48

xiii

3.7 Effective throughput: BNNs vs TNNs (type 1) while varying γ and R. Note: VGG is

labelled as CNN. 48

4.1 Generic system diagram for CONV layer computations 55

4.2 Advantage of reading from on-chip BRAMs 57

4.3 Measuring the relative accuracy of AlexNet against the pruning percentage for

different filter importance ranking metrics 60

4.4 The normalized MSQE of each filter from highest to lowest for each layer of

binarized AlexNet 61

4.5 PEs used for MAC computations 63

4.6 Total operations of networks for different pruning methods 68

4.7 Relative BRAM requirement for different pruning methods 68

5.1 Computational structure of pixel-wise (Left) and row-wise (Right) subgrouping of

a CONV layer (K, I = 3). The tensors represent the weight layer structure during

training and the matrices represent the matrix decomposition for deployment. 77

5.2 Top-1 training and validation error for binary AlexNet with varying activation

precisions 84

5.3 Hardware description of MAC for SYQ layers 87

6.1 Example of a reconfigurable multiplier with the coefficient set {12305, 20746} 95

6.2 Base topologies used to build reconfigurable multipliers 97

6.3 Bit level FPGA slice mapping of base topologies of figure 6.2. This is applicable

to any FPGA using 6-input LUTs, including Xilinx Ultrascale and Intel Stratix X

devices 98

6.4 Selected RCCM circuits 99

6.5 Distribution for CNN weights and constant multiplier coefficients 101

6.6 Bitstream generation design flow 107

6.7 Hardware Accelerator System Design 107

6.8 LUT results from synthesis for the proposed RCCMs and a generic 8× win multiplier111

6.9 Relationship between LUTs and amount of parallelism for different arithmetic 114

6.10Accuracy-Area comparison of uniform and AddNet quantization for AlexNet and

ResNet 117

xiv

CHAPTER 1

Introduction

Data has overtaken oil as the most valuable commodity in the world [9]. A majority of the

world’s most valuable companies have been successful due to their expertise in monetizing

information from data [25]. The ability to collect, analyze and make data-driven decisions

has now become crucial for governments, companies and research institutions to innovate

and increase productivity and efficiency [103]. In the current technological age, the quantity

of data has exploded as information becomes increasingly digitized [51]. When records and

other information are digitized, it provides an opportunity for applying machine learning

algorithms to turn raw data into knowledge [125]

Machine learning is a statistical learning algorithm whereby decision-making computer sys-

tems, without explicit programming, can be made. This is particularly useful for applications

whereby it is infeasible to explicitly program rules for a computer to act upon. A superior

machine learning algorithm for many applications are Deep Neural Networks (DNNs). Hav-

ing access to large amounts of data can be very effective at training high performing DNNs,

especially for complex datasets.

Achieving both high accuracy and high performance is ideal for all DNN applications.

However, particularly in resource-constrained environments, achieving both of these becomes

difficult. For some applications, high accuracy is more important and low performance is

sufficient, and vice versa. For example, using DNNs for life-critical decision making, such

as diagnosing certain diseases through medical imaging, requires high accuracy whereas

extreme speed of the decision is likely to be not as important. On the other hand, using DNNs

for targeted advertisements on social media would require fast decisions, however the most

1

optimal output is not critical. Thus, using different compression techniques is useful to meet

the requirements of the application at hand.

Software implementations of DNNs typically use 32 bits of precision to represent floating

point numbers on general purpose hardware such as CPUs and GPUs. However, it is now

known that less precision can be used for training and inference [111, 79, 84]. This poses ad-

vantages for specialized hardware units such as application-specific integrated circuits (ASICs)

and field programmable gate arrays (FPGAs), because the arithmetic can be customized for

any bitwidth, which reduces computational and memory complexity. For low-precision, such

as 1-8 bits, specialized hardware platforms can yield much higher computational performance.

For inference computation, it has been shown that only 1 and 2 bits of precision for weights

and activations can be sufficient to achieve floating point accuracy [136]. In these cases,

networks are represented by binary and ternary values. These are known as bitwise networks

because Multiply and Accumulate operations (MACs) are replaced by bit operations. As

the number of commercial applications of DNNs has increased in recent years, the ability to

design fast, low-power hardware has become very significant. For DNN applications which do

not require personalization, once a model is trained it can be deployed to compute inference,

without the need for updating the model. This can be useful for implementing DNNs on

embedded platforms and mobile platforms where hardware resources are restricted.

When deploying DNNs on embedded platforms and other resource-constrained hardware

environments, their size and computational complexity significantly impacts hardware per-

formance. Many of the state-of-the-art networks consist of millions/billions of operations

to compute inference per image and consume large amounts of storage, making them in-

creasingly difficult to deploy on embedded platforms. For example, EfficientNet-B7 [112]

achieves state-of-art-results on the ImageNet challenge which requires 66 million parameters

for storage and 37 billion operations to compute inference per image.

2

1.1 Aims and Contributions

The aim of this thesis is to develop DNN training techniques which produce high accuracy

and result in network representations which are amenable to custom hardware implementa-

tions. Furthermore, this thesis aims to explore different degrees of freedom to improve the

accuracy-performance trade-off of DNNs. The goal is to push the envelope in achieving

different accuracy-performance trade-offs, particularly on embedded platforms, making these

techniques relevant to applications which both place a higher importance on accuracy and/or

performance.

For embedded platforms, the best performance achievable from quantization is through

bitwise networks. The first contribution of this thesis explores how to utilize sparsity to

enhance performance beyond this limitation, enabling implementations on smaller devices.

Novel training techniques are introduced which maintain accuracy whilst introducing high

sparsity. The drawback with the above method is the requirement for additional hardware,

making it only compatible for particular hardware architectures. As such, the next main

contribution is to introduce sparsity in a way that doesn’t require additional hardware. This

improves performance further and makes it compatible with many already existing DNN

hardware implementations. However, the absolute accuracy from both these methods is

limited. Hence, rather than introduce sparsity to a bitwise network, their large information

loss is overcome by introducing additional ordered scaling factors. Ordering the scaling

factors allows us to achieve higher accuracy, whilst preserving the hardware simplicity of the

representation. This maintains the network’s applicability to embedded devices. The final

contribution is to take accuracy improvement one step further by increasing the precision

of the network with minimal impact on hardware usage. This is achieved by developing a

family of novel arithmetic multipliers which utilizes specialized adders which require low

resource consumption, and a corresponding method to train networks to use these resources.

This provides an improvement in the accuracy-performance tradeoff against conventional

methods of increasing precision.
3

FIGURE 1.1. The accuracy-performance tradeoff of each of the methods
explored in this thesis.

Figure 1.1 presents a visualisation of these contributions in terms of accuracy and performance.

In Chapter 3 & 4 bitwise networks are used which lack accuracy, however can generally

achieve higher performance than the networks with higher precision used in Chapters 5 & 6.

In all the methods, an improvement in the accuracy-performance trade-off is demonstrated

over standard bitwise networks and also recent state-of-the-art related work. The methods

and contributions of each Chapter are now discussed in greater detail:

The technique to maintain accuracy of bitwise networks whilst introducing sparsity is de-

scribed in Chapter 3. The aim is to use sparsity to improve the performance of hardware

implementations of bitwise networks on image classification tasks. This involves pruning

weight parameters, meaning many of the operations can be ignored. The challenge with

this method is the potential for information loss causing accuracy degradation. Thus, an

informative method is required to determine which weights are less important than others.

Previous methods sparsify or quantize a network at different stages of training [42]. However,

in this method, the quantization function is used to sparsify the network and include a cost
4

function with L2 regularization to enhance sparsity. Additionally, sensitivity information from

the solution found by training is used to distinguish how aggressively each layer is pruned.

The main contribution is the ability to train bitwise networks with equivalent accuracy but

significantly higher sparsity than previous work. Using lossless compression algorithms, this

can save memory and lead to an improvement in throughput when a hardware decompressor

is instantiated. This is demonstrated by evaluating the performance of the networks via a

hardware cost model targeting FPGA platforms.

To make a sparse representation which is amenable to DNN hardware implementations, in

Chapter 4 groups of weights are set to zero, whereby the groups constitute convolutional

kernels. This effectively removes the kernel as it’s whole computation can be ignored and

hence improves performance significantly for various hardware platforms. With this method,

typically less weight parameters can be pruned in total with respect to techniques used in

Chapter 3. However, both the amount of sparsity and the target hardware is considered,

allowing performance improvements. The main contribution is a kernel sparsity method for

customizing bitwise DNNs to common FPGA dataflows. Unlike traditional kernel sparsity

methods which follow sensitivity metrics to determine the amount to prune in each layer,

layers are chosen based on their hardware costs. Which kernels are most important in that layer

are then deciphered based on the total quantization error of each kernel. The representations

are evaluated via an FPGA implementation. Using this technique, accuracy is maintained

whilst significantly improving throughput. The networks are evaluated on the AlexNet [61]

network using the ImageNet dataset [106].

To improve the accuracy of the networks, in Chapter 5, the aim is to develop a quantization

function which learns efficiently and preserves the simplicity of the bitwise representations.

The issue with bitwise networks is there is large information loss as weights are quantized to

1-2 bits. The main contribution is the introduction of fine-grained learnable scaling factors

to recover this loss, which maintain data regularity, making them amenable to hardware

implementations. The technique is evaluated across a range of benchmark networks, including

AlexNet, ResNet [48] and VGG [109] on the ImageNet dataset, achieving state-of-the-art

results for various precision. To demonstrate the performance benefits, a hardware design is

5

then presented for custom hardware platforms which can exploit this representation. Lastly,

this design is evaluated via a resource exploration on an FPGA which demonstrates very

minimal hardware cost implications.

Finally, the aim is to investigate networks with higher precision to achieve higher accuracy,

whilst attempting to maintain high performance. Given the same arithmetic method, the issue

with increasing precision is that it typically increases the hardware cost. Thus, in Chapter 6,

a custom arithmetic is derived which is suited to a particular low-level FPGA architecture

which minimizes this cost. Digital multipliers are firstly designed which fit tightly into its

slices to reduce area consumption. A customized training methodology is then described

targeting these multipliers which are restricted by their input coefficient sets. This uses a

distribution matching technique and a single learnable scaling factor. A network with this

representation is then trained to make it compatible with the multiplier and evaluate these

results on AlexNet and ResNet on the ImageNet dataset. Finally, an FPGA implementation of

the work is provided and results are compared for accuracy and resource consumption against

methods using conventional digital arithmetic. This benefits of this type of arithmetic are

demonstrated over traditional fixed-point arithmetic.

Through the various techniques in all the Chapters, the following contributions are presented:

• The first training technique for sparse DNNs which minimizes hardware costs as

part of the objective function [28].

• The first filter pruning training technique tailored to low-precision DNNs [29].

• A novel resource-aware training method for customizing low precision DNNs to

underlying FPGA dataflow architectures [29].

• A novel quantization technique for improving the ability of convolutional weights

to learn low-precision representations whilst maintaining hardware efficiency. This

improved upon previous state-of-the-art networks for Top-1 ImageNet classification

for binarized neural networks by 2-8% [30].

• A hardware architecture to exploit the resulting representation of this quantization

technique [30].

• An open source tensorflow implementation of this quantization technique [30].
6

• A novel arithmetic for computing DNN inference which is tailored to the FPGA

fabric. This significantly reduces resource requirements over conventional arith-

metic [27].

1.2 Thesis Structure

A background of concepts discussed and terminology used throughout this thesis is provided

in Chapter 2. The chapter begins with an overview of Deep Learning and the types of Deep

Learning models used throughout the thesis. Then detail of how these networks are trained is

given, using a simple neural network example. Following this, popular data representations are

introduced for digital arithmetic. Quantization is then discussed, including explicit definitions

for bitwise networks. After this, common methods of learning such representations are

discussed during training. Finally, specialized hardware is introduced and more specifically,

FPGAs and why FPGAs are used to evaluate most of this work. Lastly, the applications

the methods are evaluated on are described and details are given of the specific benchmark

datasets used throughout the thesis.

In Chapter 3, methodologies for inducing sparsity during training by pruning individual

weight parameters are explored. Details of the quantization functions, cost function, pruning

techniques and compression methods are described. Furthermore, a training algorithm is

discussed in detail. This training process is evaluated on several benchmark datasets and

networks. Finally, a hardware cost model for these networks is designed and evaluated.

Next, in Chapter 4, derivations for bitwise networks are re-introduced which are related to

this Chapter. Background information is then provided regarding common DNN acceleration

methods on various hardware platforms such as CPUs, GPUs and FPGAs. Following this, the

layer selection and kernel filter selection methods are described. A training algorithm is then

provided for achieving the desired representations. This training method is then evaluated on

both Image Classification and Object Detection tasks and accuracies are reported for various

sparsities. Finally, the hardware performance is evaluated via an FPGA implementation.
7

In Chapter 5, the quantization functions are described, which are used for this technique. This

includes the learnable scaling factors. The granularity of the scaling factors is then explored

and how they are arranged within each layer’s weight matrix. Functions for initializing the

network and also quantizing the activations are presented. Following this, an algorithm to train

for the desired representations is shown. The method is evaluated on an Image Classification

task for various benchmark networks and for various precision. The computational complexity

of this method is explored against previous state-of-the-art methods. Finally, the hardware

design is illustrated and the performance via hardware simulations is evaluated targeting an

FPGA platform.

Furthermore, in Chapter 6, the required background for small softcore multipliers is firstly

introduced. Next, reconfigurable constant coefficient multipliers (RCCMs) are explained

using examples and illustrations. How each multiplier fits tightly into the FPGA architecture

is then discussed, before displaying the exact RCCMs used in this work. A training algorithm

is described with details of the quantization function for weights and activations. A hardware

accelerator system design is then presented with a detailed description of the experimental

setup. The hardware is then evaluated for resource usage, power consumption and frequency.

Accuracy of the networks are also evaluated on Image Classification.

In the final chapter, the contributions of the thesis are summarized and possible avenues for

future research is discussed.

Mathematical notation is introduced in the background chapter of this thesis. In the subsequent

chapters, some of the equations are reused and symbols are redefined. The symbols relating

to one chapter are only meaningful to that particular chapter.

8

CHAPTER 2

Background

In this chapter, we introduce background ideas and terminology spanning across Deep

Learning, numerical precision and computer architecture which are relevant to this thesis.

Firstly, we describe what DL is, how their models are designed, trained and their computational

requirements. We then describe some common numerical data representations found in

computers. Following this, we discuss compression methods such as quantization and pruning

for DNNs and how these are used to reduce their computational load in hardware. We then

outline the application areas targeted throughout this thesis. Finally, we provide a background

on hardware implementations of DNNs and in particular for FPGAs.

2.1 Deep Neural Networks

Deep Learning is the sub-field of Machine Learning concerned with the application of

biologically-inspired models to perform an AI function such as detecting/classifying objects

and recognizing/translating speech [71, 141]. These models are typically known as Deep

Neural Networks (DNNs). DNNs are typically composed of many intermediate computations,

known as layers, whereby higher level features are progressively extracted from the raw

input [111]. The length of the chain of layers gives us the depth of the model. The term

"deep" in DNNs, is generally concerned with networks consisting of many layers. DNNs

can perform tasks effectively, particularly in learning complex mappings from large amounts

of exemplar data. DNNs currently are the best approach for many previously intractable

problems such as image classification, object detection, and machine translation. In this thesis,
9

we are concerned with making implementations of DL models which can be executed with

improved speed, power and accuracy.

A DNN can perform classification of an input x ∈ Rn to category y ∈ Rz, where n and z are

the dimensionality of the input and output arrays/vectors, respectively. A DNN finds some

mathematical function y = f(x; θ), where θ is the set of learnt parameters found during the

training phase. These parameters are typically known as weight and bias parameters. The

goal of the DNN is to find the function which produces predictions y which most accurately

match the target outputs ŷ. In supervised learning (which is what we are concerned with in

this thesis), each input x is accompanied by a target output ŷ. During the training phase, we

update the learnt parameters to minimize an error function, which is a function of both y and

ŷ. Feedforward networks compute y by passing the input x through layers, which are used to

form the structure of f .

In the testing phase, unseen data is fed into the model and the performance is evaluated based

on its ability produce a desired output based on input data [7]. The difference between the

error on the training data (the training error) versus the error on the test data is referred to as

the generalization error. Having two solutions which fit the training data equally, the repres-

entation which reduces the generalization error will be preferred as the final solution. This is

because it will perform better on unseen test data. This is the idea of regularization. Regular-

ization is the idea of adding a preference for certain representations of functions over others,

without changing the hypothesis space size of potential functions of the model [96]. Generally,

regularization methods are used to reduce the generalization error but not necessarily the

training error.

In this thesis, we focus on the implementation of feedforward networks, mainly in the form

of Convolutional Neural Networks (CNNs). However, many of our techniques could also

be applied to recurrent neural networks. Additionally, we use compression methods which

add preferences for certain representations, similar to regularization. However, we use these

methods to choose representations which optimize an accuracy-hardware tradeoff.

10

2.1.1 Inference

The structure of a DNN approach is a repeated application of a simple nonlinear function

g(x) at each layer l. This is typically a sigmoid function, relu function, hyperbolic tangent

function, etc. Each layer of a DNN computes dot products between weight parameters and its

input values. The input layer represents the input vector of information x and the output layer

is the last layer which produces an output vector o. All layers in between are called hidden

layers because the training data does not show the desired output for these layers. The desired

output is only shown at the output layer [37]. By adding layers or units per layer, we can

represent functions of increasing complexity.

The most classic form of DNNs are multi-layer perceptrons [124]. These consist of full-

connected layers whereby each neuron in a hidden unit is connected to every input. Suppose a

network has L layers with 1 and L being the input and output layers, respectively. Also, layer

l for l = 1, 2, 3, ..., L has n̂l neurons, so that n̂1 is the dimension of the input data and n̂L is

the dimension of the output data. Then, from the input layer to the output layer, the network

maps from Rn̂1 → Rn̂L . The weight matrix at layer l follows W[l] ∈ Rnl×nl−1 . Each weight

parameter is then denoted as w[l]
ij , which is the weight at neuron i that layer l applies to the

output from neuron j at layer l − 1. Each bias parameter b[l]
i used by neuron i at layer l are

described by the vector of biases b[l] ∈ Rnl . Each neuron i in the hidden layer l, h[l]
i , can be

described by output vector of the hidden layer as:

h[l] = g(W[l]h[l−1] + b[l]) ∈ Rnl , for l = 1, 2, 3, ..., L (2.1)

where g is an element-wise nonlinear activation function. The input to the network is

h[1] = x[1] ∈ Rn1 and the output of the network is o = h[L] ∈ RnL . This computation is

repeated throughout the network, therefore overall model complexity is dependant on its

structure.

The number of columns in W equals the size of the input vector x and the number of rows

equals the size of vectors b and h. Thus, the output of each neuron i in the hidden layer l, is
11

FIGURE 2.1. An example of a basic Neural Network architecture, consisting
of an input layer, one hidden layer and an output layer.

computed as:

h[l]
i = g(

∑
j

w[l]
ijh

[l−1]
j + b[l]

i), (2.2)

where the sum runs over all values in x [53]. For example, consider a simple Neural Network

with two input components, one layer of three hidden neurons and two output components

as described in Figure 2.1 (Note: biases are not shown in this Figure). The output from the

second layer, the hidden layer, has the form:

h[2] = g(W[2]x + b[2]) ∈ R2 (2.3)

where W[2] ∈ R3×2, x ∈ R2 and b[2] ∈ R2. The third layer, the output layer, then has the form:

o = h[3] = g(W[3]g(W[2]x + b[2]) + b[3]) ∈ R2 (2.4)
12

This expression in Equation 2.4 defines a function o : R2 → R2 in terms of all its weight and

bias parameters for all layers. This completes the forward pass for the inference phase. Based

on our resulting outputs we can infer something based on the input. When we want to train

the network by learning optimal weight parameters, we then include the backward pass as

discussed in the following section.

2.1.2 Training

The non-linearity from the activation functions in DNNs causes the error function to become

non-convex [37]. Thus, training DNNs is a non-convex optimization problem. It is an

iterative process whereby gradient-based optimizers are used to minimize the error function

E(x). We refer to E(x) as the objective function, cost function, loss function or error function

interchangeably throughout this thesis. In training, the aim is to compute the partial derivatives

of the error function with respect to w[l]
ij & b[l]

i . To derive these, it is worthwhile to introduce

further variables:

z[l] = W[l]h[l−1] + b[l] ∈ Rn (2.5)

Given we have training data consisting of m training batches of examples, we can describe

the error function E as:

E(W, b) =
1

m

m∑
i=1

ei(W, b) (2.6)

where e is an error function such as mean-squared error, cross-entropy, etc. The iterative

method of training a DNN is most commonly done via the backpropagation algorithm and

stochastic gradient descent (SGD) [105]. As discussed in Section 2.1.1, training involves a

forward path, which feeds in an input to the network and infers the output. There’s also a

backward path to calculate gradients and update its parameters. SGD is the iterative algorithm

which updates the parameters of the model via a gradient of the error function with respect to

the parameters. This intends to descend the error function. Thus, at each training iteration, the

parameter update aims to move the network function towards a more optimal solution. For

this iteration the SGD will typically select a random batch from the training set, corresponding

to a function ê ∈ {e1, e2, ..., em}. For example, weight parameters Wt+1 are updated with the
13

following:

Wt+1 = Wt − η
∂ê

∂Wt

(2.7)

where η represents the learning rate. Computing the forward path, followed by backpropaga-

tion and a weight update constitutes one training iteration. The term ∂ê
∂Wt

is the partial

derivative of ê with respect to Wt or alternatively it is known as the weight gradient. It tells us

how much a change in Wt affects the total error, E. This is calculated using the chain rule for

partial derivatives. Similar update equations can be made for the biases. The back propagated

loss at each layer is the activation gradient δ[l]. Thus to calcualate the activation gradient and

the weight updates, we use:

δ[l−1] =
∂z

∂h[l−1]
∂g

∂z
∂δ[l]

∂g
(2.8)

∂ê

∂W
=

∂z
∂W

∂g

∂z
∂δ[l]

∂g
(2.9)

We recall from Equation 2.4 that the network output is calculated by computing each layer in

order during the forward pass. After doing this, we can compute the error function and calcu-

late the activation and weight gradients by finding the partial derivatives via backpropagation.

2.1.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of DNN that use a convolution operation in

at least one of their layers [70]. The convolution is a linear operation that process input tensors

(multidimensional arrays) of (a, p, I) dimensions in a translationally invariant manner [72].

Typically, a and p are spatial dimensions (width and height) and I is the number of channels,

also known as Input Feature Maps (IFMs). Processing operations such as convolution, pooling

and activation functions are applied in a series of layers in the forward path, each of which

transforms the input tensors from dimension (a, p, I) → (a′, p′, N). A convolutional layer

produces N output channels, also known as Output Feature Maps (OFMs). Each of the OFMs

is formed through a convolution of the input tensor with a K [l] ×K [l] convolutional kernel

filter, where typically K [l], K [l] � a, p so it operates on local input regions. For a given

convolutional layer, there are K [l] ×K [l] × I [l] ×N [l] weights.
14

The output of convolutional layer l, takes as input S[l] images of spatial dimensions a[l] and

p[l] and I [l] is the number of neurons. The pixel h[l]I,a,p at location (a, p) for the Ith neuron is

calculated as

h
[l]
a′,p′,N = g(

S[l]∑
s=0

K[l]∑
j=0

K[l]∑
k=0

w
[l]
N,s,j,k · h

[l−1]
I,a+j,p+k) , (2.10)

Thus, kernel filters are applied to all pixels of the IFMs, with the result passed into g to

compute OFMs. The OFMs then become the IFMs for the next layer. The IFMs to the

first layer are from the raw input data, such as the RGB components of an image. For each

fully-connected layer, all pixels of the IFMs are multiplied by weights to generate each pixel

of the OFM. The element-wise activation function is then once again applied to produce the

OFMs.

A 2-dimensional (2D) convolutional layer can be described as matrix multiplication, followed

by the elementwise activation function. Convolutional layers form the bottleneck for CNN

implementations and this tensor form allows efficient matrix-multiplication libraries to be

applied.

Pooling layers are downsamplers of 2D images. Max pooling layers provide a spatial

maximum function which divides an input image into small sub-tiles of a given window size

and then replaces these with the maximum value in the sub-tile. An average pooling layer is

similar, however it finds the average in the sub-tile rather than the maximum.

In Chapters 3, 4, 5 & 6, we use CNNs for image classification and object detection to evaluate

our training methods. We also explore various data representations of these models and

analyze their respective hardware performances.

2.2 Data Representations

On digital computers, performing operations on different data representations requires differ-

ent arithmetic. In this section, we describe the two most common types of numerical data

representations on digital computers, fixed-point (FX) and floating-point (FP).
15

2.2.1 Floating-point

The most common form of digital arithmetic in modern day CPUs and GPUs is floating point

(FP) [36]. Most commonly these are of the form 32-bits for single-precision and 64-bits for

double-precision. The IEEE-754 binary floating point format [57] represents real numbers x

by a subset in normal form as:

x̂ = (−1)sx(1 +mx)2
ex (2.11)

where sx ∈ {0, 1} is the sign bit, ex is an integer representing the exponent of x̂ and mx is the

mantissa of x̂. Thus a floating point number format can be described as a (sx, ex,mx) tuple.

In binary form the representation is (bs, be1, b
e
2, ..., b

e
Bex

, bm1 , b
m
2 ..., b

m
Bmx

) ∈ {0, 1}B, with Bex

and Bmx being the number of exponent and mantissa bits, respectively. The infinite set of real

numbers R is represented in a computer with B = 1 + Bex + Bmx bits. The real numbers

representable in FP format are known as exact values, F ⊂ R. Real numbers which aren’t

representable, known as inexact values I , are approximated in floating point by their nearest

exact value.

The main advantage of FP over fixed point is that it has a higher dynamic range. The main

drawback however, is that it is less precise and its hardware implementation consumes more

area than a fixed point representation with an equivalent bitwidth.

2.2.2 Fixed-point

Exploiting reduced numerical precision for data representation has been very promising for

high performance DL implementations. In particular, low-precision neural networks reduce

both memory and computational requirements whilst achieving accuracies comparable to

floating point [40]. Low-precision representations typically are of the FX format as it provides

hardware advantages over FP.

In computer arithmetic, a FX number data representation is able to represent fractional

numbers with a fixed number of digits. A set of integers is represented by a fixed number of

digits. In contrast, FX is the extension of this which represents a set of rational real numbers
16

FIGURE 2.2. A two’s complement fixed-point number representation

by a fixed number of digits [52]. FX representations can either be signed or unsigned. There

are three components to a FX representation: The signed component, the integer component

and the fractional component. As shown in Figure 2.2, the total number of bits, B for a signed

FX representation is B = 1+BIBW +BFBW where IWL is the integer bitwidth and FBW is

the fractional bitwidth. With this representation, the range of the number is [−2IBW , 2IBW),

with a step size of 2FBW . Such number formats can be described as a (B, IBW,FBW)

whereby the signed-bit is implicit. For example, (4, 0, 3) represents one sign-bit, no integer

bits and 3 fractional bits.

The range and step size of an FX number can be increased or decreased via a scaling factor.

Thus, for an FX number with scaling factor α, the range becomes [α×−2IBW , α× 2IBW)

and the step size becomes α× 2FBW . The scaling factor is usually a power of 10 for human

convenience or a power of 2 for computational efficiency (as then it can be implemented via

bit shifts). To add or subtract two FX numbers with scaling factors α and R, if α and R are

the same, then it is sufficient to add/subtract the FX numbers and then keep the common

scaling factor. If the scaling factors are different however, one of the FX numbers must be

scaled so that the scaling factors match before addition/subtraction is executed. Thus, to make

the scaling factor R match α, we multiply the FX integer by α
R

. For multiplication, we can

multiply the scaling factors and FX numbers separately. Thus, having common scaling factors

amongst numbers can improve computational efficiency as it lowers the number of required

multiplications. This is the premise for the representation designed in Chapter 5.
17

2.3 Quantization Network Training

In this section, we introduce the notion of quantization of neural networks (QNNs). We

then discuss bitwise neural networks which are able to replace operations such as multiplies

and additions with simple additions/subtractions. These include both binary and ternary

representations for weights and/or activations. Following this, we discuss common training

methods for learning such networks effectively.

2.3.1 Quantization

Quantization is the process of mapping input values from a large set of possible values to

output values in a smaller set [38]. This is typically done via truncation and rounding. We

define the possible values for the output as the codebook. If these values are evenly spaced

apart, then the quantization is regarded as uniform quantization. If they are uneven, the

quantization is regarded as non-uniform. For example, rounding a real number x ∈ R to an

integer value is a form of uniform quantization. This is done via a quantization function,

quantize, as per the following in Equation 2.12:

quantize(x) = γ ×
⌊
x

γ
+

1

2

⌋
(2.12)

where γ is the step size or distance between between two neighbouring values in the desired

codebook. bc is the floor function. In this thesis, we explore various forms of quantization for

DNNs. In Chapters 3 & 5 we use uniform quantization and in Chapter 6 we use non-uniform

quantization.

The quantization function can either be stochastic or deterministic. Stochastic quantization

uses probabilistic calculations by sampling a random variable to determine the quantization

state [17]. In deterministic quantization however, the quantization state is fully determined

from the value being quantized. For example, Equation 2.12 is an example of deterministic

quantization. We can quantize x to an integer stochastically using a random variable β via the
18

following:

quantize(x) = γ ×
⌊
x

γ
+ β

⌋
(2.13)

In this case, β = 0, 1 and its value can be determined via sampling from a uniform distribution,

i.e. β = round(U (0, 1)). In this thesis, we focus on deterministic forms of quantization due

to the hardware simplicity over stochastic forms of quantization.

2.3.2 Network Quantization

For QNNs, quantization can be performed as a post-training step [94, 138, 93, 13, 140]. Al-

ternatively, it can be performed during each training iteration [129, 142, 145]. In this instance,

the resulting quantized representation after training is used for hardware implementation. In

this thesis, the latter methodology which uses quantization during training is the focus. All

the networks in this thesis use some form of quantized representation for hardware evaluation.

For quantizing DNNs into lower precisions, the distribution of full precision weights for each

layer W[l] are approximated by a function quantize, resulting in a quantized weight matrix

Ql:

Q[l] = quantize(W[l]) (2.14)

for w[l]
ij ∈ R and q[l]

ij ∈ C. The codebook C =
{
c1, c2, ..., cr

}
is a set of all possible values

for q[l]
ij where ci ∈ R and i ∈ R+ represent each codebook value and index respectively.

q[l]
ij represents each element in the quantized weight matrix Q[l]. The codebook values and

size is dependant on the data representation used and the bitwidth, respectively. Such data

representations can be FX, FP or binary/ternary. In this thesis, we refer to network weight

representations with FX or binary/ternary as low-precision networks. However, we also

refer to binary/ternary networks explicitly as bitwise networks. Typically, the smaller the

codebook, the harder the network will be to train as the information loss from quantization is

larger. Hence we must alter standard training algorithms to ensure efficient learning. In many

instances, to enable further hardware advantages, the output of the activations h[l] are also
19

quantized.

G[l] = A(h[l]) (2.15)

In this way, the inputs to the next layer are also quantized values, represented by G[l] ∈ CA.

A represents the quantization function used for the activations. Both quantization of weights

and activations are explored throughout this thesis.

2.3.3 Bitwise Networks

Optimizations via compression, quantization and neural network layer explorations have been

utilized to reduce complexity and boost performance, e.g. [42, 54]. In particular, quantizing

inference networks to very low precision, such as constraining weight representations to

binary or ternary values, both reduces memory requirements and enables multiplications to

be replaced with the bitwise exclusive NOR operation [15, 116]. This translates to massive

reductions in storage requirements and spatial complexity in hardware [115]. Additionally,

large power savings and speed gains are achieved when networks can fit in on-chip memory.

2.3.3.1 Binarized Neural Networks

Binarized Neural Networks (BNNs) restrict their weight spaces to have a codebook C ={
− 1,+1

}
[17]. To binarize a weight matrix deterministically, we use the element-wise sign

function as follows:

Q[l] = sign(W[l]) (2.16)

with,

sign(x) =

 1 if |x| ≥ 0

-1 if x < 0
(2.17)

This is the most extreme form of quantization as their are only two possible values, both of

which can be represented via 1-bit in hardware. The addition of scaling factors can be useful

in recovering the dynamic range of the network without imposing hardware costs. In the most
20

simplest form, one scaling factor α can be included per layer. In this case, the codebook for a

particular layer becomes C =
{
− α,+α

}
. Another, way to add representational capacity

to the network is to ternarize the network by adding 0 to C, however this requires a higher

computational cost.

2.3.3.2 Ternary Neural Networks

Ternary Neural Networks (TNNs) restrict their weight spaces to be C =
{
− 1, 0,+1

}
[73].

To ternarize a each element in a weight matrix deterministically, we use:

q[l]
ij =

1 if w[l]

ij > η

0 if −η ≤ w[l]
ij ≤ η

−1 if w[l]
ij < −η

(2.18)

where the quantization threshold, η is a hyperparameter, which can be tuned by the user. By

including zero into the codebook, sparsity is naturally introduced into the representation. As

similarly discussed in 2.3.3.1, the addition of a scaling factor per layer for TNNs will result in

a layer’s codebook to be C =
{
− α, 0,+α

}
.

2.3.4 Straight Through Estimator Learning

As mention in Section 2.1.2, DNN training is an iterative process which has a feedforward path

to compute the output and a backpropagation path for learning, which involves calculating

gradients and update the network weights. Training of low-precision networks typically

involves maintaining a set of single precision floating point weights W[l] which are quantized

to a representation Q[l] prior to inference, e.g. [15]. The issue is that a large reduction in

precision, leads to large information loss which incurs significant accuracy degradation,

especially for complex datasets such as ImageNet [106]. Ideally, we can train networks which

have both high prediction capabilities and minimal computational complexity.

During training, heavily quantized functions commonly get trapped in poor local minima,

causing accuracy degradation. This becomes problematic especially for BNNs where this

effect is greatest. As the quantization functions employed are piecewise and constant, the
21

FIGURE 2.3. A simple one layer CNN training flow diagram. This shows
the difference of how different network layers are related to each other for
(a) conventional learning and (b) STE learning with quantized weights and
activations

gradients of quantized weights are calculated and applied to update their corresponding

full-precision weights [8]. In this way, information from small updates won’t be totally

lost from the discretization. The quantization neural network training used in this thesis

uses the straight through estimator (STE) approach as described in [8]. The STE has been

successful as a surrogate for the derivative of a non-differentiable function [56]. This approach

allows the non-differentiable function defined in the forward path to use a non-zero surrogate

derivative function in the backward path gradient calculations. Thus, an error function E used
22

FIGURE 2.4. Convolutional Layer Connectivity and Pruning

to calculate the loss during training (also known as training loss), we then allow:

∂E

∂Q[l]
=

∂E

∂W[l]
(2.19)

The quantized weights Q[l] are used for inference in the forward path and the floating point

weights W[l] are updated in the backward path. This is shown in Figure 5.2, where we illustrate

how different network operations are related to each other for STE training in contrast to

conventional full-precision training. In Figure 5.2 (a), we see that the real-valued weights

and activation outputs are used with the loss to update the real-valued weights. However in

Figure 5.2 (b), the quantized weights and activations are used with the loss to update the

real-valued weights.

2.4 Pruning

While quantization methods reduce the number of bits for weights and arithmetic operations,

pruning methods [4] reduce the total number of weights that must be stored and arithmetic

operations that must be performed. For some CNNs, weight pruning allows tensors, which

previously required off-chip memories for storage to be eliminated. For FPGAs and ASIC

implementations, this enables significant improvements in speed and power.
23

There are two broad categories of CNN pruning methods: fine-grained pruning and filter

pruning. Fine-grained pruning methods modify a trained network by setting the least im-

portant set of weights to zero. Weights are considered important if their removal results in

accuracy degradation. The issue with this simple approach is that it introduces a sparse matrix

representation which incurs overheads due to irregular data access patterns. Filter pruning

overcomes this problem by choosing the least important filter/s to keep and pruning out both

those filters and their corresponding OFM. This is demonstrated in green in Figure 3.1 and

allows the network to maintain the dense matrix format. However, while filter pruning reduces

the total number of operations, on hardware designs, it is typically the feature map memory or

available resources for processing elements that limits performance. In this work, choosing to

prune filters according to these limitations is focused on. It has also been shown that network

pruning and quantization are orthogonal and can be applied iteratively together for further

redundancies [45], [42].

This has lead to weight pruning methods for low precision networks for applications includ-

ing compressing binarized neural networks [4], as well as techniques to utilizing sparsity

information obtained during training to compress ternary neural networks [28]. Subsequent

research has compared varying pruning granularities, highlighting that coarser-grained meth-

ods can offer higher memory savings for a given accuracy at the same time as avoiding the

costs associated with random sparse matrix representations whereby the nonzero values are

randomly situated [81].

2.4.1 Quantization and Pruning for Efficient Hardware Designs

Various research studies have explored how to take advantage of these quantization methods

in order to create FPGA-based CNN accelerators with high throughput and low power [90],

[139], [98], [118]. A Framework For Fast, Scalable Binarized Neural Network (FINN) [117],

demonstrated the advantages of fitting models in on-chip memory. The methods introduced in

this work could be applied to improve the performances of many of these implementations for

minimal or no accuracy loss. Similarly, there have been efforts to take advantage of pruning
24

for hardware implementations. This includes pruning to improve performance and efficiency

of FPGA architectures for LSTM-based Recurrent Neural Networks [44].

Finally, there has also been some research into tailoring the pruning methodology to hardware.

Pruning weights which contribute to the highest data movements and hence power consump-

tion were prioritized in [130]. This demonstrated improvements in energy consumption over

traditional techniques. However, the energy estimates in this work were based upon models

estimating energy consumption as a function of the number of multiply-accumulate operations

and the number of memory accesses required, as opposed to real hardware. Customizing dif-

ferent pruning methodologies to micro-controllers, CPUs and GPUs was proposed in Scalpel

[133]. Optimal filter pruning for highly parallel GPU hardware is achieved by removing the

largest number of filters. In this work, a different pruning strategy is implemented which

focuses on customizing the pruning process for FPGA architectures. FPGAs pose unique

considerations over other hardware platforms as the amount of layer unrolling is set by the

designer and resources can be arbitrarily allocated. In addition, since the highest performance

implementations store intermediate FMs in on-chip BRAM, only considering the model-size

is misleading to the overall hardware savings from pruning.

2.5 Applications

In this section, we provide details of the target applications on which our proposed method-

ologies are evaluated on. We introduce the datasets used for experimentation in this thesis,

which are all freely available online.

2.5.1 Image Classification

Image classification is the task of classifying a digital image or video into a category/class.

For a given task, there are n potential classes that an image can be classified to. When wanting

to classify thousands or millions of images, it becomes a very tedious task for a human to

complete. Thus, with the aid of DNNs, we can rely on computers to complete the task much

faster. An illustration of image classification using DNNs is presented in Figure 2.5. In this
25

FIGURE 2.5. Image Classification Using Neural Networks

example, we feed an image into our DNN algorithm and determine that it belongs to the car

category. Some of the common image classification benchmark datasets used throughout

computer vision research are discussed below.

MNIST: The MNIST dataset [69] is a large dataset consisting of handwritten digits that is

commonly used for training various machine learning systems. It consists of 60,000 training

images and 10,000 testing images. The images are 28×28 resolution with grey-scale colour.

There are 10 different categories which consist of the numbers 0-9.

CIFAR10: The CIFAR10 dataset [59] is benchmark dataset consisting of 50,000 training and

10,000 test images. The images are square 32×32 in Red-Green-Blue (RGB) colour format

with 10 different categories. These categories are: airplane, automobile, bird, cat, deer, dog,

frog, horse, ship and truck. This dataset is widely used to benchmark image classification

techniques.

ImageNet: The ImageNet dataset [62] is another benchmark dataset used in computer vision

machine learning applications. It consists of over 15 million labelled high resolution images

and 22,000 categories. ILSVRC uses a subset of ImageNet which has roughly 1000 images

for 1000 categories. It consists of 1.2 million training images, 50,000 validation images and

150,000 testing images. ILSVRC is used through this thesis with images cropped/resized to a

224× 224 resolution.
26

FIGURE 2.6. Object Detection to detect vehicles in an image using DNNs

2.5.2 Object Detection

Object Detection is another application area for DNNs in computer vision. Object detection

is the task of detecting instances of semantic objects of certain classes/categories in digital

images/videos. Other detection tasks such as face detection, pedestrian detection, car detection,

etc are all sub-tasks of object detection or can be defined as single class object detection task.

Typically boxes are drawn around the objects, known as ’bounding boxes’. An example of

detecting vehicles in an image via object detection is illustrated in Figure 2.6.

PASCAL VOC: A common dataset used to evaluate object detection algorithms is the Pattern

Analysis Statistical Modelling and Computational Learning (PASCAL VOC) dataset [26]

provides standardised image data sets for object detection, semantic segmentation and image

classification. In this thesis, it is used for object detection in Chapter 3. It consists of

20 different annotated object classes. The total training/validation data has 11,530 images

containing 27,450 annotated objects and 6,929 segmentations.

2.6 Hardware Implementations

In this section, we discuss why we focus on optimizing DNNs for specialized hardware over

conventional computing platforms.
27

2.6.1 Specialized Hardware For DNNs

Specialized hardware, such as FPGAs and ASICs, have the advantage of higher hardware

performance and the disadvantage of difficult programmability over conventional computing

platforms. For DNN applications whereby personalization is unimportant, the network is

not altered regularly. Therefore, the burden of difficult programmability diminishes and the

benefits of higher hardware performance are more easily reaped. This makes specialized

hardware units are a much higher performant over conventional computing platforms for these

types of applications.

FPGA and ASIC implementations have demonstrated improved latency and power efficiency

for DNN applications compared with central processing unit (CPU) and graphics processing

unit (GPU) technologies, e.g. [134, 116]. This is because conventional computing platforms

such as CPUs/GPUs are byte-addressable, making it difficult to take advantage of networks

with very low-precision. For custom hardware, these limitations do not hold as arithmetic

components can be designed for the exact precisions. Therefore, the advantages of low-

precision networks can be most highly leveraged on custom hardware, such as FPGAs [97].

In contrast to CPU/GPU technologies, specialized hardware allow customized data paths,

enabling higher degrees of parallelism and less data movement. This design flexibility poses

an opportunity to optimize system performance through custom hardware tailored to the

application.

2.6.2 FPGAs

To evaluate the representations designed in this thesis, we use FPGA platforms. FPGAs

play a vital role in various industries such as Aerospace & Defence, ASIC prototyping,

Audio, Automotive, Data Center, Medical Equipment, Wireless Communications and many

more [104]. They also offer the option of tightly integrating machine learning to low-level

data acquisition hardware such camera sensors and networking hardware for low-latency

implementations [108, 89]. FPGAs are a semiconductor computing platform consisting

of a number of logic cells that can be interconnected to other logic and input/output (I/O)
28

FIGURE 2.7. An array of CLBs whereby each CLB contains four slices.

cells each connected via programmable interconnects [92]. FPGAs allow users to configure

these logic cells and programmable interconnects via bit-level programming data, which is

stored in memory cells in the FPGA. The complete design is described via a configuration

bitstream which specifies the logic and I/O cell functionality, and their interconnection.

The main difference between FPGAs and ASICs is that the logic cells on FPGAs can be

reconfigured/reprogrammed after manufacturing whereas ASICs have a fixed processing

path [65].

A block diagram illustrating a generic fine-grained island-style FPGA is given in Figure 2.7

A logic cell consists of userprogrammable combinatorial elements, with an optional register

at the output. They are often implemented as lookup tables (LUTs), flip flops and multiplex-

ors [107] with a small number of inputs. Multiple logic cells are grouped together to form a

single unit, known as a slice. Multiple slices are also grouped together to form a configurable

logic block (CLB). The number of slices in a CLB is dependant on the FPGA family. Modern

FPGAs typically consist of configurable logic blocks (CLBs) in a "sea" of programmable

interconnects. This is shown in Figure 2.7. Other main components found on an FPGA are

Digital Signal Processors (DSPs) and Block Random Access Memories (BRAMs). DSPs

are hardened blocks which operate at much higher frequencies and consume less resources

than the equivalent circuit on programmable logic. They are particularly useful for higher
29

precision computations. They consist of a multiplier and additionally other components such

as pre-adders, adders and accumulators. BRAMs are situated through the FPGA and used as

buffers for data storage. They vary in size and consist of one or two ports (known as dual port

BRAMs). All these components mentioned consume the majority of the area on an FPGA.

Hence, throughout this thesis we evaluate resource usage results in terms of Flip-Flops, LUTs,

DSPs and BRAMs.

2.6.3 FPGAs For DNN implementations

Although quantizing networks reduces its representational capacity, for a wide-variety of

networks, it has been shown that low-precisions (1-8 bits) for weights and/or activations

can be achieved with negligible or no accuracy loss. For bitwise networks, Multiply and

Accumulate operations (MACs) are replaced by bit operations. For example, Figure 2.8 shows

average resource usage on FPGA hardware to implement a MAC operation under different

precisions, which scales quadratically with the multiplier size atO(k2) where k is the number

of bits1.

As shown, no high precision multipliers (known as Digital Signal Processors (DSPs) on an

FPGA) are required for precision less than or equal to ternary weights and 8-bit activations.

Furthermore, the logic element (known as Look-Up Tables (LUTs) on an FPGA) requirement

reduces proportionally with both weight and activation precisions. Additionally, the storage

requirements for both weights and activations is reduced by 8− 32×. This significantly im-

proves the network’s ability to fit in on-chip memory and constrained hardware environments,

and broadens the applicability of DNNs.

2.7 Summary

In this chapter, we introduced the theory for DNNs. Many of the key concepts and termino-

logies were defined for common DNN models. The methodology for training DNNs using

1Results are obtained from instantiating MAC modules using Vivado

30

FIGURE 2.8. The average cost per MAC operation on an FPGA device for
different bitwidths (weight-activation)

conventional methods was explained and equations were introduced. Additionally, we exam-

ine common data representations for DNNs, such as fixed-point, floating-point and bitwise

neural networks. These representations are used throughout Chapters 3, 4, 5, 6. We also

discuss the STE learning method used in training for these representations in these Chapters.

Also, FPGA hardware is defined and discussed. Finally, we present the applications and

datasets used for evaluating our methods throughout the thesis.

In the following Chapters, we present different methods which explore different combinations

of computation type, precision size and arithmetic type as presented in Table 2.1. We

design representations requiring sparse matrix computation in Chapter 3 and dense matrix

computation in all other chapters. In Chapters 3 & 4, we use bitwise networks and in

Chapters 5 & 6 we use higher precision FX representations. Notably, in Chapter 5, we

describe how the network can be computed as a bitwise network due to the ordered scaling
31

TABLE 2.1. Categorizing each technique in terms of computation, precision
and arithmetic type

factors. However, the resulting codebook still requires a higher precision. In Chapter 6, we

explore non-uniform quantization, whilst all other techniques use uniform quantization.

32

CHAPTER 3

Using Sparsity To Enhance Bitwise Network Performance

A sparse representation of data has only few non-zero elements and a majority strictly zero

elements. Sparse neural network representations can be created by making zero-valued weight

parameters and/or activations. This methodology is known as Pruning. As discussed in Sec-

tion 2.4, pruning has been demonstrated as an effective regularization method for improving

network generalization of DNNs [45, 41] and also for compression [42]. The latter can trans-

late to reductions in memory and computational complexity in hardware. In this section, a

training methodology for inducing sparsity is discussed. The technique Compressing Ternary

Deep Neural Networks Using Sparsity-Induced Regularization is introduced. Using bitwise

networks is the focus. This is because at this precision, significantly higher performance

custom hardware implementations are possible as most/all operations are bitwise.

Specifically, the method involves producing sparse, ternary neural networks. It incorporates

hardware implementation costs during training to achieve significant model compression for

inference. Training involves three stages: network training using L2 regularization and a

quantization threshold regularizer, quantization pruning, and finally retraining. Resulting

networks achieve improved accuracy, reduced memory footprint and reduced computational

complexity compared with conventional methods, on MNIST and CIFAR10 datasets. The

networks are up to 98% sparse and 2 & 11 times smaller than equivalent bitwise models,

translating to significant resource and speed benefits for hardware implementations. In this

method, individual weights are pruned out based on their magnitudes, meaning the resulting

sparsity patterns are random.

33

3.1 Compressing Bitwise Using Sparsity-Induced

Regularization

As discussed in Section 2.3.2 networks can constrain either weights alone or weights and

activations via quantization, leading to extremely efficient hardware implementations. In this

methodology, the inherent sparsity of TNNs is utilized whilst maintaining the advantages of

multiplierless computations. Similar Convolutional Neural Networks (CNNs) to [122] are

used for CIFAR10 classification and achieve similar accuracies, although their network has a

full precision 1st layer compared to the ternary weights used in our networks. Regularization

techniques and reduced precision weight representations have been extensively studied for

compression, acceleration and power minimization. Many efforts have concentrated on

building efficient computational structures from floating point networks through sparse weight

representations and quantization [42, 45, 128, 135, 110, 6, 50, 80, 76, 137, 131, 68]. However,

such networks still require fixed-point multiply-accumulate operations which limits power

savings and speed.

Instead of considering sparsity and reduced precision separately, sparse TNNs explore both.

Pruning the fully connected layers of bitwise networks was proposed in [4] to reduce the

number of model parameters for efficient hardware implementations. In our work, all layers

are pruned and focus on inference acceleration. With recent breakthroughs in low-precision

deep learning, specialized hardware solutions have been increasingly investigated. FINN

implements scalable BNN accelerators on FPGAs [117] and we use this framework to explore

performance advantages of sparse TNNs.

We propose a three-stage training approach for TNNs which is able to reduce hardware

costs for inference. Firstly, the network is trained using L2 regularization and a quantization

threshold regularizer, secondly we use quantization pruning whereby the sparsity pruning

threshold is the same as the quantization threshold and thirdly the network is retrained. During

training, the network learns in a sparse environment. This has significant benefits as the

sensitivity of the weights to sparsity regularizers can be determined after the model is initially

trained. The contributions of this method are thus as follows:
34

• The first reported low-precision training method which minimizes hardware costs as

part of the objective function. This uses a quantization threshold regularizer and L2

regularization to encourage sparsity during training.

• A layer-based quantization pruning technique which utilizes sparsity information

obtained during training.

• A quantitative comparison of the proposed sparse TNN with state-of-the-art multipli-

erless networks in terms of accuracy, memory footprint, computational requirements

and hardware implementation costs.

Together these techniques achieve between 2 and 11x compression. For memory-bound

hardware architectures, this would directly translate into speed-up.

3.2 Sparse TNN Training

The key idea in this work is to introduce sparsity in TNN weight representations. TNN

training consists of real-valued weight parameters, wr, which are quantized deterministically

to wq using a quantization threshold hyperparameter, η. Thus, duplicating equation 2.18, the

ternary weights in this Chapter are calculated as:

wq =

1 if wr > η

0 if −η ≤ wr ≤ η

−1 if wr < −η
(3.1)

For the forward path, wq is computed and used for inference. For the backward path, the

gradients are computed with wq and parameter updates are then applied to wr. In training

DNNs, generally many values for wr can achieve the same training loss. Regularization

techniques incorporate a preference for certain weight representations with the aim of improv-

ing generalization. In this method, representations are chosen that minimize the number of

nonzero parameters. This is done by inducing sparsity and with the aim of improving hard-

ware performance. The scheme considers the hardware costs not only during the fine-tuning

stage, but also during the initial training process.
35

FIGURE 3.1. Validation Error Convergence on MNIST. Comparing training
with η = 0.33 and η = 0.9

3.2.1 Quantization Threshold

The deterministic quantization described in Equation 3.1 partitions the wr weight space via a

threshold η. Typically, different values for η are used based on different assumptions made

on wr. For example, to uniformly partition the weight space, η = 0.33 [4] or to minimize

quantization error, η = 0.5. Generally, a higher η will lead to more sparsity as more of the

wr weight space is quantized to 0. As such, in this methodology, η is increased to make 0’s

consume a large portion of the weight space (up to 95%) which induces a similar sparsity

effect to L1 regularization. However, L1 regularization has a continous shrinkage effect which

induces sparsity amongst all wr but not necessarily wq. Increasing the threshold on the other

hand, induces sparsity explicitly on wq. Parameter updates for wr are either penalized or

rewarded based purely on the gradients. An example of the effect of this scheme is shown in

Figure 3.1. By partitioning the weight space such that η = 0.9, the network is initialized with

high sparsity. This takes much longer to converge than training with a uniformly distributed

weight space. Initially the validation error is much larger for η = 0.9, however over time, the

network converges to achieve the same validation error as η = 0.33.
36

3.2.2 L2 Regularization

In conventional TNN training, the cost function C can be represented as the average loss Li

over all training examples n:

C(wq) =
1

n

n∑
i=1

Li(wq) (3.2)

L2 regularization adds the squared magnitude of a coefficient as a penalty term to the loss

function [14]. It has the property of penalizing large | wr | more and small | wr | less. This

tends to generate a more diffused set of weights which have a smaller range. L2 regularization

is added as a function of the quantized weights, directly into the cost function to penalize

nonzeros and induce sparsity:

C(wq) =
1

n

n∑
i=1

Li(wq)︸ ︷︷ ︸
data loss

+ λR(wq)︸ ︷︷ ︸
regularisation loss

(3.3)

where the regularization term is the quadratic penalty over all parameters, wq is the quant-

ized/ternary weights,

R(wq) =
1

2
w2
q (3.4)

and the gradient contribution from the regularization term becomes:

dC(wq)

dR(wq)
= λwq (3.5)

where λ is the regularization strength hyperparameter. With L2 regularization, each epoch

becomes a greedy search to reduce hardware costs as only the corresponding wr for each

nonzero in wq is penalized by λ. From (5) and (1) it is evident the regularization term will

only affect the corresponding parameter updates on wr for nonzero wq. This is desirable when

used in conjunction with a large η as peaky weights (weights with values close to -1 and 1 in

this case) are more likely to be pulled below the threshold for a given regularization strength.

Also, it avoids L2 regularization from continually penalizing weights, making them stuck at

low values. This allows for weight values which are penalized in earlier training epochs, to

then be more easily recovered through parameter updates if required later in training. As seen
37

FIGURE 3.2. Weight distribution for wr for MLP Layer in MNIST training.
With L2 regularization (top) and without (bottom). Both are for TNNs with
η = 0.9.

in Figure 3.2, under L2 regularization the frequency shrinks for weight values closer to -1 and

1. Thus, more values of wr are quantized to zero under the ternary scheme. It is also evident

that many weights clump around values closer to the threshold of 0.9.

3.2.3 Quantization Pruning

Training with L2 regularization and the quantization threshold achieves a certain sparsity

before accuracy starts to degrade. This is addressed via our re-training method quantization

pruning. In quantization pruning, the subset in wr which have been quantized to 0 after the

initial training phase are all fixed to 0 for the re-training phase. The network is then retrained,

whereby a masking vector wm is applied to fixate this subset of wr to zero:

wm =

1 if wr < −σ
0 if − σ ≤ wr ≤ σ

1 if wr > σ

(3.6)

In the re-training phase, there is also opportunity for more wr to be pruned also. In doing so,

quantization pruning utilizes weight sensitivity information from the initial training phase to

determine which weights to prune for each layer. This is different to sensitivity pruning [45].
38

In sensitivity pruning, the sparsity hyperparameter σ is chosen by setting different sparsities

for different layers. Depending on the type and order of layer, they have a different sensitivity

to pruning. In our method, by forcing sparsity through regularization during training, the

gradient-based optimization converges to a solution which determines the inherent sensitivity

of each layer to sparsity. The ratio of zeros in each layer is utilized from the first training

phase by pruning only wr below or equal to the quantization threshold.

σ ≤ η (3.7)

Allowing wr1 to be the resulting weights from the initial training phase, weight initialization

for retraining then becomes the elementwise multiplication wr2 .

wr2 = wr1 � wm (3.8)

For retraining, wr2 is updated but the pruned weights are fixed at zero. Also, the threshold is

set to the same value as in the initial training phase.

3.2.4 Weight Representations

In practical implementations of TNNs, real numbers cannot be represented, so the quantized

representation, wq, must be used. Due to the high data regularity of zero-valued weights,

storing all the ternary weights as 2-bits is not necessary. Instead, two compression methods

are used. The first is Run Length Encoding (RLE), which stores only the index differences

between each nonzero and also a sign bit which defines the type of operation. In the second

method, we use Huffman Coding (HC) on the index differences to assign variable length

codewords whereby the most frequently occuring indexes are represented with shorter length

codes and vice versa. HC has higher complexity for its decoder implementation and a higher

compression rate than RLE.
39

3.2.5 Algorithm

Algorithm 1 describes the compression process and consists of four parts. Part 1) represents

typical TNN training and additionally requires hyperparameters λ and η to be set. Algorithm 2

represents the training process experienced in Parts 1) and 3). In Part 2) we use quantization

pruning to calculate the masking vector and this is used for retraining in Part 3). After

the network is trained, the real-valued weights are discarded and the quantized weights are

encoded for Part 4). Outputs and inputs for each layer are represented by y and x respectively;

b is the bias term (if applicable); L is the learning rate; and CGU is compute gradient updates.

Algorithm 1
1. Train
Set λ and η for sparsity requirements and im-
plement Algorithm 2
2. Quantization Pruning
Compute wm with σ = η
3. Retrain
Keep λ and η the same
Repeat Step 1. with wr2 = wr1�wm and λ, η
4. Encode
Apply HC or RLE on resuting wq

Algorithm 2
-Forward Pass:
for each weight layer p do
wqp = Q(wr1p) with threshold η

end for
for each layer i in range(1,N) do

Compute yi with wq, xi
end for
-Backward Pass:
Compute cost: C(wq) with yN , λ
for each weight layer j do

CGU: g1 =
dC(wqj)

dwqj
+ λwqj

CGU: g2 =
dC(wqj)

dbj

Updates: wr1j = wr1j − Lg1
bj = bj − Lg2

end for

3.3 Sparsity and Networks

The training methods are evaluated on two image classification benchmarks, MNIST and

CIFAR10. We compare against other bitwise network results from BinaryConnect [18]

and BinaryNet [101]. BinaryConnect uses floating point ReLu activation functions and

BinaryNet uses binary activation functions. Their results are shown in Tables 3.2 & 3.3 as

’model-a-b’ where a is the weight bitwidth and b is the activation bitwidth (bitwidth = 32 is
40

for floating point, bitwidth = 1 is for binary and bitwidth = 2 is for ternary equivalents of these

architectures with a uniformally distributed weight space). The results are reported as TNN

with resulting sizes represented as x/y which represents the sizes after encoding in RLE/HC

respectively. For all results, the number of weight parameters (Params) in millions is reported,

percentage of zero-valued parameters, the error-rate and size of the network in megabytes

(MB). In all the models, we use only one pruning iteration except for the MLP with floating

point activations for which two iterations were used.

3.3.1 MNIST

The networks used for classification consist of 3 hidden layers of 4096 neurons for the network

with binary activations and 1024 neurons for the network with floating point activations. The

network is trained for 1000 epochs and the network which produces the best validation error

rate is chosen. The effect of quantization pruning is first analyzed on the MNIST dataset

for different threshold settings. No L2 regularization is used in these numbers in order to

focus on the effect of different pruning thresholds. Setting a higher threshold allows for more

aggressive pruning at the threshold.

The results are displayed in Table 3.1 whereby the error-rate is the percentage of incorrect

classifications on the test set. Although other threshold settings achieve similar error-rates,

η = σ = 0.9 achieves significantly improved sparsity. At this setting, 80% of weights can be

pruned. As η = σ, only the subset of wr1 which are quantized to 0 is pruned away. When

σ > η, some of the nonzero wr1 are also pruned away. It is evident that pruning nonzeros

impinges on the network performance and hence the quantization threshold is an effective

indicator for which weights can be pruned. Pruning at a lower sparsity threshold maintains

accuracy benefits, although results in more nonzeros. To make the network more sparse,

it would require several pruning iterations. This could take days/weeks as each training

iteration takes days itself. The results are displayed in Table 3.2. Using the network with

binary activations produces up to 97.6% sparsity and over 5× compression over its binarized

network (BNet) with better accuracy and approximately 11× its ternary network with the

same accuracy. The network with a floating point activation function, achieves 92.8% sparsity
41

η σ Pruned Error-rate Nonzeros
0.9 0.95 91% 1.08 1,220,468
0.9 0.9 80% 0.92 1,863,521
0.9 0.65 50% 0.96 3,826,912
0.7 0.8 76% 0.98 3,595,898
0.7 0.7 64% 0.91 5,243, 764
0.7 0.58 50% 0.92 6,863,798
0.5 0.9 89% 1.14 2,448,073
0.5 0.75 74% 1.04 5,416,539
0.5 0.5 74% 0.98 10,396,476

TABLE 3.1. Quantization Pruning for TNN (Binary Activations) on MNIST,
without L2 regularization.

Model Params Zeros Error-rate Size (MB)
MLP-2-1 36.4 54% 0.92 9.12
MLP-1-1 36.4 0% 0.96 4.56
TNN 36.4 97.6% 0.93 0.83/1.59
MLP-2-32 2.91 34% 1.23 0.72
MLP-1-32 2.91 0% 1.29 0.36
TNN 2.91 92.8% 1.22 0.07/0.11

TABLE 3.2. Classification accuracies for Sparse TNNs for MLPs on MNIST
with L2 regularization and pruning (Right)

and 3.5× compression over its binarized equivalent network. For these networks, we use

η = 0.9

3.3.2 CIFAR10

We use a VGG-derivative architecture inspired by BinaryConnect [18]. From Table 3.3, it is

evident that there is an improvement in accuracy and/or compression for both networks in

contrast to their binarized and ternary equivalents. The convolutional layers are less robust

to higher values of the quantization threshold regularizer η in Equation 3.1. Hence, a lower

value for the convolutional layers η1 = 0.8 is set and a higher value for the fully connected

layer η2 = 0.9. The accuracy and sparsity relationship is shown in Figure 3.3. For varying

thresholds, it is shown that threshold regularization improves accuracy. The leftmost point

is the fully dense binarized network where η = 0 and as the threshold regularization is
42

Model Params Zeros Error-rate Size (MB)
VGG-2-1 14.02 65% 11.2 3.52
VGG-1-1 14.02 0% 11.4 1.76
TNN 14.02 92.3% 10.8 0.88/1.05
VGG-2-32 14.02 35% 9.2 3.52
VGG-1-32 14.02 0% 9.9 1.76
TNN 14.02 90.1% 9.6 0.96/1.22

TABLE 3.3. Classification accuracies for Sparse TNNs for CNNs on CIFAR10
with L2 regularization and pruning.

FIGURE 3.3. Accuracy vs Sparsity for CIFAR10. We vary the quantization
threshold regularizer for convolutional layers, η1, and fully-connected layers,
η2. No quntization pruning is implemented.

introduced, the error-rate drops by up to 1.4% as the sparsity is increased. In Figure 3.4,

the percentage of nonzeros is plotted for each layer in the CNN for varying values of the

threshold regularizer. By increasing the threshold, the robustness of each layer under sparsity

becomes more prominent. For most of the networks, the first two convolutional layers are

the most sensitive to sparsity and consist of around 80% nonzeros and the last convolutional

and first fully connected layers are the least sensitive. These are similar conclusions to [45]

who pruned each layer independently to determine their sparsity sensitivity. In this case, the

network learns these sensitivities by training in sparse environments. This is advantageous as

efficient sparsity parameters are determined for any layer type or order and don’t require a
43

FIGURE 3.4. Per Layer Sparsity for different quantization threshold regulariz-
ation on CIFAR10. No L2 regularization or pruning is implemented

hyperparameter search. Varying the threshold provides sensitivity information for the sparsity

of each layer and quantization pruning takes advantage of this by pruning each layer according

to the threshold and hence these ratios.

3.4 Hardware Implications of Sparse TNNs

In this section, the hardware implications of implementing TNNs with unstructured sparse

data representations are explored. Storing the weights in a compressed format requires a

decompressor which incurs some overheads. A fully parallel architecture would require a

decompressor for every weight in the convolution or fully connected layer and decompressors

in this case would consume significant amounts of resources. For sparse TNNs, data reuse

patterns within convolution layers and fully connected layers (when batching is applied) can

be utilized to increase the ratio of processing elements (PEs) to decoders. When the sparsity

of these networks is taken into consideration, the number of effective operations (discussed

later in this Section) increases the potential performance of TNNs to values well beyond those

of BNNs. For conventional computing platforms (e.g., CPUs and GPUs), the main benefit of

sparsity and compression is the increase in operational intensity that is achieved for a particular
44

layer. Sequential processors, (such as CPUs) will also be able to benefit from the reduction in

required operations per layer, as a result of the high sparsity of TNNs. For parallel processors,

(such as GPUs, FPGAs and ASICs) it is a lot more difficult to take advantage of this benefit

due to the irregular data access patterns. A hardware decompressor described, along with a

corresponding parallel architecture suitable for FPGAs and the potential performance of that

architecture in terms of effective operations per second.

3.4.1 Hardware Decompressor

The proposed hardware decompressor iterates through a list of weights, stored in a sign–

magnitude form in on-chip memory. In each cycle, the hardware decompressor outputs the

complement of the sign bit to represent the weight value and adds the magnitude value to an

internal counter, which is used to generate the address of the value to be accessed from the

input vector. The RLE decoder consists of a counter which controls the address of the input to

feed into the PE for computation. The resource and performance estimates given by Vivado

HLS [95] v2017.1 of the resultant hardware description are that the design can produce an

address and a weight every cycle at 250 MHz while using 112 LUT resources on the FPGA.

3.4.2 A Sparse TNN Accelerator

Two types of low-precision networks are described in this work: 1) networks with binary activ-

ations (VGG/MLP-1/2-1); and 2) networks with floating point activations (VGG/MLP-1/2-32).

For all networks, the predominant calculations for inference are multiply-accumulate opera-

tions (MACs). For type 1) networks, this corresponds to XNOR-popcount operations [101],

where a popcount is the number of set bits in a word. For type 2) networks, this corresponds

to an XNOR operation on the sign bit of a floating point value, followed by a floating point

accumulate.
45

FIGURE 3.5. Diagram of Decompressor Feeding Multiple Processing Ele-
ments with Data Reuse

3.4.3 Accelerator Architecture

The proposed accelerator architecture is based on that generated by FINN [117]. In particular,

a design is proposed which has processing engines with a similar datapath to FINN. Similar

PEs are discussed in more detail in Section 4.6.2 with Figure 4.5. To compute the input-weight

matrix in specialized hardware implementations, typically a series or array of PEs are used

to receive input data and a weight value to perform the multiply accumulate operations,

as required for the datatype. For the compression format described in Section 3.2.4, these

implementations require a decompressor between the weight matrix and the PE as represented

in Figure 3.5. For type 1), with binary activations, resource usage is estimated on the roofline

given by [117], which is reported to have an average cost of 5 LUTs for both an XNOR and

popcount operation.1 For type 2), with floating point activations, resource usage is estimated

by instantiating a Xilinx Floating Point 7.1 IP core addition module. The peak throughput

numbers are what can be achieved if 70% of the LUTs or 100% of the DSPs are used on the

target device, a Xilinx KU115 running at 250 MHz. These are 46.4 TOPs for type 1) and 1.3

TOPs for type 2). The total KU115 resources are 663k LUTs and 5,520 DSPs.

1FINN quotes 2.5 LUTs per operation, which is multiplied by 2 to get LUTs / per MAC.

46

3.4.4 Exploiting Sparsity Through Data Reuse

Convolutional layers require many operations on different input pixels to the same weight

value. Hence, data re-use optimizations can be utilized [32] to instantiate a decompressor for

a specific weight and calculate several MAC operations on different input pixels. This greatly

reduces the average resource usage of the decompressor per operation. Similar optimizations

can be utilized for the fully connected layers, whereby batching can be applied to allow a

single weight to calculate several MAC operations across multiple input vectors.

Let us introduce a data re-use factor,R, which denotes the total amount of data re-use available

in a particular layer. For fully connected layers, R = B, where B is the batch size. For

convolutional layers, R = B×P , where P is the number of output pixels in the output image.

Furthermore, the RLE decoder allows us to easily avoid calculating any zero valued weights.

In comparison to the benchmark BNNs, which have strictly dense weights, only the non-zero

weight computations need to be calculated. The sparsity factor, then becomes a multiplier

which significantly reduces the cost per operations and hence the regularization techniques

discussed in this work directly minimize hardware costs during training. To this end, an

effective operation cost is introduced, given by: Ce = γ ∗ (Cop + Cd/R), where γ is ratio

of non-zero weight values to total weights in the layer, Cop is the proportion of the KU115

which is utilised by a single operation and Cd is the proportion of the KU115 which is utilised

by the decoder.2 An effective throughput can then be calculated as: Te = 1/Ce ∗ 250MHz.

Figures 3.6 & 3.7 show the effective throughput of type 1) & 2) networks respectively, while

varying γ and R. The horizontal lines represent the benchmark BNN networks, MLP and

VGG (VGG is labelled as CNN in figures) from the results in Tables 3.2 & 3.3 and the other

percentages represent networks of the same type with varying sparsities. Note that these

are theoretical peak values and further overheads are likely for all datapoints when they are

implemented in a real system. For type 2), a lower sparsity factor is required to improve

on the benchmark throughput as these operations are more expensive and hence every zero

weight has a greater hardware benefit than for the type 1).

2Assuming 70% of the LUTs and 100% of the DSPs can be utilised for compute.

47

FIGURE 3.6. Effective throughput: BNNs vs TNNs (type 3) while varying γ
and R.

FIGURE 3.7. Effective throughput: BNNs vs TNNs (type 1) while varying γ
and R. Note: VGG is labelled as CNN.

3.5 Summary

In this Chapter, a training methodology was presented which leverages sparse representations

of bitwise DNNs to improve hardware performance. This contributes to the applicability
48

of DNNs on embedded devices and specialized hardware. A sparse TNN training method

is introduced which uses a quantization threshold hyperparameter, complemented by L2

regularization and quantization pruning to substantially reduce the memory requirements and

computational complexity. This was shown using different network topologies on the MNIST

and CIFAR10 benchmarks. Additionally, a hardware cost model was derived to evaluate the

proposed representations for FPGA hardware.

49

CHAPTER 4

Customizing Bitwise Networks For Hardware Platforms

In the previous Chapter, we introduced a technique for pruning individual weight to achieve

high network sparsity and demonstrated how this could benefit hardware performance. To

achieve this we discussed storing the weights in a compressed format and implementing a

decompressor between the weight storage buffers and the PEs. However, given a typical DNN

implementation on specialized hardware, which rarely support decompression, performance

improvement from this type of sparsity is not possible.

In this section, we present the technique Customizing Bitwise Deep Neural Networks For

FPGAs, a hardware-software co-design methodology for optimizing FPGA performance. A

training methodology to prune out weight groups in a computationally structured manner is

presented. We do this by removing full sets of weights from a convolutional kernel and their

corresponding output feature maps, so that we can completely ignore the computation. This

type of pruning is known as filter pruning. This avoids the need to implement decompressor

hardware to handle the sparse computations as in the previous chapter. The choice of layers

in which we choose to prune is guided by a hardware cost model of the underlying FPGA

implementation. The choice of filters to prune within that layer is guided by a novel metric

which we derive.

In our method, it is argued that instead of solely focusing on developing efficient architectures

to accelerate well-known networks, modifying these networks to suit the underlying hardware

implementation should be explored. Thus, with this technique, we don’t only consider the

amount of sparsity, but also the underlying target hardware. A fully automatic toolflow is

developed which efficiently utilizes FPGA hardware whilst satisfying a predefined accur-

acy threshold. Although fewer weights are removed in comparison to traditional pruning

50

techniques designed for software implementations, the overall model complexity and feature

map storage is greatly reduced. As in the previous Chapter, the focus is on bitwise networks,

however the resulting representation requires dense matrix computation. The AlexNet [61]

and TinyYolo [102] networks are implemented on the large-scale ImageNet classification and

PascalVOC object detection datasets, to demonstrate up to roughly 2× speedup in frames per

second and 2× reduction in resource requirements over the original network, with equal or

improved accuracy.

4.1 Background

Pruning seeks to remove parameters from the network, reducing the on-chip memory, memory

bandwidth and computational requirements, whilst minimizing any loss in accuracy. In some

cases, pruning can even improve accuracy.

Pruning methods range from fine-grained weight connection pruning as seen in Chapter 3, to

coarse-grained approaches such as filter pruning which is used in this Chapter. The former

removes individual weights and results in high overall sparsity at the cost of poor data locality

and irregular data access patterns [75]. The latter results in a lower total number of pruned

weight connections, but a structured sparse representation that maintains the regular data

access patterns of the original network. This regular structure can make use of existing

optimized hardware implementations, such as those described in [133].

One of the limitations of existing filter pruning methods is that they do not take into account

the underlying FPGA accelerator architecture. While reducing the total number of network

weights, or filters, reduces the number of operations and memory use, these are not the only

factors limiting performance. Due to high data re-use, modern FPGA-based low precision

CNN accelerators attempt to store feature maps (FMs) in on-chip memory in addition to

weights, and divide the computation between processing elements (PEs). This ensures the

performance is bounded by the available computation as opposed to the available off-chip

memory bandwidth. It follows that pruning methods should be designed to ensure PEs are

used efficiently. In addition, filters in modern benchmark CNNs are typically designed with
51

high precision for the first and final layers, as well as differing FM sizes. This potentially

creates large resource imbalances between layers for FPGA designs, which can translate to

sub-optimal performance.

4.2 Contributions

Instead of focusing on using pruning methods to maintain or improve accuracy, in this work,

a method is presented which prioritizes resource reduction and efficient use of the underlying

architecture for a given accuracy threshold. There’s also a discussion of how different pruning

strategies are required depending on the device constraints and the accelerator architecture.

In particular, dataflow architectures are studied which are restricted by the throughput of

the slowest layer and available on-chip memory. For a predefined accuracy threshold, it

is demonstrated how the pruning method improves the performance over existing methods.

Altogether, this work makes the following contributions:

• The first study on bitwise network filter pruning. A novel quantization error pruning

heuristic is proposed which minimizes the error in the weights rather than in the

output feature maps and show that it outperforms conventional methods. This method

can be applied to applications on all hardware platforms.

• A resource-aware method is proposed for customizing bitwise CNNs to underlying

FPGA dataflow architectures. This is able to significantly reduce resource require-

ments and improve efficiency, making FPGAs a higher performant implementation

alternative for CNN computation.

• Results are compared to traditional pruning which prioritise sensitivity analysis of

each layer rather than the underlying hardware and show significant reductions in

complexity. This improves the scalability/applicability of bitwise CNNs on FPGAs.

• The highest reported frames per second (FPS) is achieved, FPS/kLUT and FPS/BRAM

on the popular AlexNet network for the ImageNet dataset [61]. This improves the

amenability of high throughput implementations of large networks/datasets on con-

strained FPGA environments.
52

4.3 Network Quantization Setup

For this Section 4, let us represent the full precision weight matrices for any layer l by

W[l]. For QNNs, W[l] is approximated with a quantized weight matrix Q[l] ∈ C[l] where C[l]

represents the possible quantized weight values in layer l. The quantized weight matrix for

BNNs is described by (4.1):

Q[l] = sign(W[l]) (4.1)

Alternatively, TNNs are described by (4.2), where η is the quantization threshold hyperpara-

meter.

Q[l] =

1 if W[l] > η

0 if −η ≤ W[l] ≤ η

−1 if W[l] < −η
(4.2)

These equations are very similar to what is described in Section 2.3.3. To more accurately

approximate the dynamic range of full precision weights, Q is multiplied by a scaling factor

coefficient α [144]. For example the fully-connected layer, with biases ignored, is computed

by (4.3), where g is the activation function, h[l] and h[l−1] are the output and input vectors of

layer l.

h[l] = g(α[l]Q[l] · h[l−1]) (4.3)

For the networks discussed in this work, the activations are quantized using signed two’s

complement fixed point representations. This is accomplished by quantizing a real number

x ∈ [0,M] to a k-bit number:

G(x) =
1

2f
floor((2f)x+

1

2
) (4.4)

where M is the upper bound. M itself is bounded by its arbitrary unsigned two’s complement

fixed point representation where f is the number of fractional bits and M = 2k−f − 2−f .

Similar activations have been proposed in [144] by fixing M = 1. During training both

the full precision and quantized weight values are needed; for inference only the quantized

weights are required.
53

4.4 CNN Acceleration

In this section, basic approaches are discussed for accelerating CNNs on GPUs, CPUs and

FPGAs. Throughout this section, we use the following notation to describe the CNNs. For

layer l in a CNN, it is assumed there are I [l] IFMs of dimensions F [l] × F [l] and N [l] filters of

dimensions K [l] ×K [l] (assume feature maps and filters of squared dimensions). The OFMs

from layer l are the IFMs to layer l + 1, and can be represented as I [l+1].

4.4.1 CNN acceleration on CPUs/GPUs

On a CPU or GPU, the typical approach to implement convolutional layers is so called

lowering to matrix multiplication; this enables the use of optimized matrix multiplication

kernels and described in detail in [12]. The basic concept is that convolutional layers involve

multiplying aK [l]×K [l] window of data for every IFM by one or more filters of sizeK [l]×K [l]

to produce each element of the OFMs. To achieve this using matrix multiplication, one image-

matrix is constructed of dimensions (F [l+1]×F [l+1])× (K [l]×K [l]× I [l]) representing every

window of data from the IFMs and multiply this with a second filter-matrix of dimensions

(K [l]×K [l]× I [l])×N [l] representing all of the filters. For efficiency, optimized GPU routines

avoid performing this conversion in off-chip memory, and construct this in on-chip RAM [12].

Since the matrix multiplication kernels have previously been optimized, including binarized

matrix multiplication kernels [19], the aim of pruning for GPUs and CPUs is simply to reduce

the total number of operations by reducing I [l] and N [l].

4.4.2 FPGA-based CNN acceleration of Dataflow Architectures

One problem with the approach of lowering to matrix multiplication is that if the kernel

windows overlap, the (F [l+1] × F [l+1])× (K [l] ×K [l] × I [l]) matrix contains large amounts

of redundant information. This translates to significant extra data transfer overhead. An

alternative approach, potentially better suited to an FPGA, is to use a sliding-window unit

(SWU) [117], which generates the image matrix from an incoming IFM. While this is a

common approach for basic image or video processing kernels, because CNNs have multiple
54

FIGURE 4.1. Generic system diagram for CONV layer computations

IFMs, it is desirable to use multiple SWUs to construct windows from each IFMs in parallel.

In this case, a total of I [l]N [l] filters operate in parallel per layer. Unfortunately, the I/O

requirements to stream the data would typically be too large.

Instead, the fastest FPGA architectures attempt to fit the entire network on the FPGA, as in

Figure 4.1. This is possible for smaller CNNs, in particular those that have been binarised

[117]. In this case, I/O requirements are greatly reduced, as the input and output layers of

CNNs are typically much smaller (for example, the input is typically an image, read one pixel

at a time into the SWU, with the output being a classification, whereas middle layers tend

to have many more IFMs). Unfortunately, it is not typically possible to create fully unrolled

CNNs because the resource requirements are too large.

4.5 Hardware-Aware Pruning

In this section, an effective pruning method is described for dataflow architectures.
55

4.5.1 Layer Selection

To implement modern DNNs on low-end FPGAs, it is usually necessary to re-use the PEs.

To enable this, data buffers are added to hold IFMs and OFMs between layers, as shown in

Figure 4.2. The total number of operations for layer l is given by (4.5). Assuming that a

layer has PE[l] processing elements that can be re-used to perform these operations. The total

number of times that these PEs are reused is given by (4.6). Note that for maximum efficiency

throughput must be matched between layers, to do this, the reuse should be the same for

all layers. In a fully pipelined implementation Reuse = 1, in this case there is no need to

use any memory: OFMs from one layer can go directly to the SWUs of the next layer. If

Reuse = 2, then half of the time, OFMs must be stored, half of the time they can go directly

to the SWUs of the next layer. As the reuse is increased, the PE requirements are reduced,

but the RAM requirements are increased for intermediate buffers. The cost of BRAMs for

OFMS per layer can be modelled using (4.7), where Bw denotes the number of words stored

in a BRAM respectively.

OPS[l] = K [l] ×K [l] × I [l] ×N [l] × F [l+1] × F [l+1] (4.5)

Reuse = dOPS
[l]

PE[l]
e (4.6)

BRAMIFMl+1
= dI

[l] × Fin × Fin × (Reuse− 1)

Reuse×Bw

e (4.7)

To help us create a working hardware design these equations can be utilized, along with a

model of the resources cost per PE, the resource cost per SWU and the BRAM cost to store

all network weights. A basic heuristic is followed for hardware-optimized pruning, given in

Algorithm 5. This heuristic helps us to determine which layer to prune. A fully pipelined

design (Reuse = 1) is begun with. If this does not fit on the FPGA, the design is constrained

by the resources for PEs. There’s the option of pruning the layer utilizing the most resources

for PEs, or increasing Reuse. After this, if the design is constrained by the resources for PEs,

there are the same options; if the design is limited by BRAMs, the layer utilizing the most

BRAMs (FM + Weight memory) can be pruned. Once a design fits and satisfies the accuracy

criteria, some optimizations described in Section 4.5.2 can be applied.
56

Algorithm 3 Neural Network Pruning Process For FPGA implementation
1. Initialize:
Choose PE size such that reuse = 1.
2. Iteratively prune filters:
while accuracy change ≤ η do

Prune filters by 10% using (4.8)
Re-train
Save Model

end while
3. Reuse:
while design exceeds available FPGA resources do

Increase hardware reuse
end while
4. Model Finetuning:
Add/Remove filters and ensure they are a multiple of the number of PEs
Re-train
5. Check:
if Accuracy satisfies η then

continue
else

Go to Step 3 using saved model from previous iteration.
end if
6. Deploy

FIGURE 4.2. Advantage of reading from on-chip BRAMs

57

4.5.2 Model-finetuning

Pruning layers involves the removal of feature maps. To ensure efficient use of the underlying

hardware, layers are pruned so that the remaining number of feature maps in a layer is a

multiple of the number of PEs assigned to that layer, i.e. N%PE = 0. In addition, it is also

attempted to increase the number of feature maps in other resource-inexpensive layers such

that N%PE = 0. This is only the case if it doesn’t impinge on the desired performance

of the design. Once again, this is to ensure maximum efficiency. This can translate into a

significant increase in the accuracy of the design, or recover some of the accuracy that is lost

by pruning the most expensive layer. But importantly, comes with a minimal increased cost in

terms of resources: there is only a slight increase in weight memory/resources. There is also a

slight increase in power requirements as more of the circuit will be active. Note that on other

architectures such as GPUs or CPUs, this decision is unlikely to be taken as it would increase

the workload; instead the ideal course of action is to simply prune the overall network to

reduce the total number of operations.

4.5.3 Quantization Error Pruning

Once the layers to prune have been chosen using the method in Section 4.5.1, which filters

must be chosen from a given layer to prune. Pruning approaches attempt to remove weights

or filters with minimal reduction in accuracy. With traditional floating point network pruning,

error in the OFMs is what impinges overall accuracy. It follows that a typical pruning

technique is to select weights or filters which have the lowest magnitudes and hence contribute

to the smallest activation outputs. Unfortunately, this technique does not easily extend to

bitwise DNNs. For example, in the case of BNNs, real-valued weights are quantized and

hence regardless of their magnitude, if two weights have the same sign, they have the same

quantized value and hence equal contributions to the OFMs. As such, a different approach is

taken. It is hypothesized that for highly quantized representations, such as bitwise networks,

it is the quantization error in the quantized weight values that impinges overall accuracy. As

such, the importance of filters is ranked based on the highest accumulated mean-squared
58

quantization error (MSQE) for each filter, as described by (4.8), where n = K [l] ×K [l] × I [l].

MSQEN =
1

n

n∑
z=1

(qz − wz)2 (4.8)

where qz and wz represent each quantized and real-valued weight in each filter, respectively.

Filter ranking by quantization error pruning will also benefit CPU and GPU implementations

in obtaining greater accuracy for bitwise networks. However, once again, it is highlighted that

such networks can be implemented most efficiently using FPGAs.

4.5.4 Filter Ranking

As filter pruning for low precision networks is yet to be explored, it is demonstrated em-

pirically, the effectiveness of pruning 10% of filters from the first three layers iteratively,

based on three metrics: randomly selecting filters (Random), ranking filters based on the

highest MSQE (Qerror) and the highest magnitude of real-valued weights (Real). While the

results only investigate BNN accelerators, for this analysis, both binary (BNN) and ternary

(TNN) AlexNet experiments are observed in Figure 4.3. It is clear that low pruning rates

improve accuracy showing the regularization effect of filter pruning. Importantly, it is evident

that Qerror pruning improves accuracy by up to 0.8%. As the pruning rate increases, both

Qerror and Real are relatively similar but substantially better than randomly pruning the

weights. After calculating these, each filter is ranked to determine the amount to prune for

each iteration. Figure 4.4 shows each layer for the BNN trained on CIFAR10 and shows that

roughly 5-10% of filters in each layer have significantly higher quantization error than all

other layers.

4.5.5 Data Fine-tuning

To avoid excessive training times, and ensure minimal accuracy loss, after filters are selected

to prune, they are removed to reconstruct the network with its new customized configuration

by initializing the weights with values from the saved filters. Retraining is then implemented

using a quarter of the initial training epochs to fine-tune weight values and recover the
59

FIGURE 4.3. Measuring the relative accuracy of AlexNet against the pruning
percentage for different filter importance ranking metrics

accuracy for the new CNN configuration. As such, the pruning process is done iteratively

for some predefined percentage of filters in each iteration. In this work, ≈ 10% of filters are

pruned per iteration. In the last pruning iteration it is ensured N%PE = 0, as discussed in

Section 4.5.2.

4.6 Experimental Setup

In this section, the device and architecture used to demonstrate the effectiveness of the pruning

strategy is described.
60

0 20 40 60 80 100
Filter

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
M

SQ
E

conv1
conv2
conv3
conv4
conv5

FIGURE 4.4. The normalized MSQE of each filter from highest to lowest for
each layer of binarized AlexNet

4.6.1 Networks

The methods were evaluated on 2 networks trained on the ImageNet dataset. We used these

networks as opposed to the ones in Chapter 3 because they are more suitable for real-world

applications and our target hardware supported their computation. Firstly, we use an AlexNet-

variant [61] inspired by DoReFa-Net [144] which has 1-bit weights and 2-bit activations. This

is used for classifying the ImageNet dataset [21] which has 224 × 224 input image sizes.

Secondly, a fully-convolutional network is considered, TinyYolo [102], whereby we binarize

the network weights and use 3-bits for activations. This network is trained on the Pascal VOC

dataset for Object Detection which has a 418× 418 input image size. The TinyYolo model is

much more compact in terms of weight memory footprint than AlexNet, although has a larger

total number of operations and input image size, as represented in Tables 4.1 & 4.2. In these
61

TABLE 4.1. DoReFa-Net Network Configuration

Layer K N F % Ops %Mem
Conv1 12 96 54 6.24 22.8
Conv2 5 128* 54 46.24 23.0
Conv3 3 384 27 33.30 36.9
Conv4 3 192* 14 6.71 10.4
Conv5 3 256 8 4.48 6.9
FC1 1 4096 1 1.95 -
FC2 1 4096 1 0.87 -
FC3 1 1000 1 0.21 -

tables, the network configurations are displayed, the percentage of operations per layer and

also the percentage memory in terms of FMs and weights.

For both networks, the first and last layers are quantized to 8-bit representations and the

activations bit widths for all layers is the same. Mixed layer precisions are utilized because

accurate low-precision neural networks on large scale complex datasets using conventional

quantization functions, typically require the first and last layers to have higher precisions than

all other layers [10]. Finally, the inputs are also quantized to 8-bit values, for no accuracy

loss.

TABLE 4.2. TinyYolo Network Configuration

Layer K N F % Ops %Mem
Conv1 3 16 418 2.14 8
Conv2 3 32 210 5.72 12
Conv3 3 64 106 5.72 6
Conv4 3 128 54 5.72 4
Conv5 3 256 28 5.72 3
Conv6 3 512 15 5.72 6
Conv7 3 1024 15 22.88 20
Conv8 3 1024 15 45.76 40
Conv9 1 125 13 0.62 -

4.6.2 Computing Core

We investigate the effectiveness of this pruning method using the FINN [117] hardware

library in Vivado HLS. This can be used to create architectures similar to those described in
62

FIGURE 4.5. PEs used for MAC computations

Figure 4.1. The FINN architecture uses SWUs to feed so-called Matrix-Vector Threshold

Units (MVTU) for CONV or FC layers. SWUs can also feed Pooling Units (PU). There

are three key parameters for FINN: PEs, SIMD lanes and Matrix-Multiple Vector (MMV)

length. PEs refer to the number of OFMs evaluated in parallel, SIMD refers to the number of

parallel IFMs processed in each PE, MMV controls to the amount of output pixels evaluated

in parallel.

We extend the PEs in the MVTU to arbitrary precision activations for the middle layers, which

replaces the XNOR-popcount from the PEs in FINN by either an addition or subtraction

(ADD/SUB) depending on the sign of the weight. The datapath for this PE is shown in

Figure 4.5. For the 8-bit input vector and 8-bit weights in the first layer, DSPs are used for

the MAC before being fed into the thresholding unit. The overall system designs for the

architectures discussed in this work use the MVTU extensions to compute the CONV layers.

4.7 Results

In this section, the experimental design is described and results from the implementations

presented.
63

4.7.1 Streaming Dataflow

The case of a streaming dataflow architecture corresponding to Figure 4.1 is investigated.

Here, there is an option to either add more hardware or prune feature maps to improve

throughput.

4.7.1.1 System Design

For dataflow architectures, FINN allows the selection of parallelism (P = SIMD × PE ×

MMV) for each layer depending on the number of operations. The overall throughput of the

network is dependent on the layer which requires the largest number of cycles to compute,

thus the best Throughput/Resources ratio is achieved when all layers have same compute

latency. The neural network is analyzed in a per-layer fashion, the compute requirements

evaluated and the parallelism determined. For the AlexNet implementation, a large proportion

of total operations is done in the 2nd and 3rd layers. Additionally, the first layer requires more

resources per MAC operation, as it is computed with 8-bit inputs and weights, hence requiring

DSPs for implementation and more memory resources for weight storage. Hence, the first

three layers are chosen to be pruned equally for resource and throughput improvements. This

is done iteratively for a total of 40% of filters. For the first layer, the number of IFMs is 3,

meaning SIMD ≤ 3. The number of PEs and MMV is restricted by the number of OFMs and

OFM dimension respectively, hence MMV ≤ 54 and PE ≤ 60 (as the OFMs are reduced

to 60 after pruning and model fine-tuning). Also SIMD = 3, PE = 60 &MMV = 18 are

set. In order to avoid resource inefficiencies, the MMV is restricted to 18 in this case as the

throughput mustn’t exceed the latency of the SWU to construct the image matrix. To achieve

load balancing for all succeeding layers, the resources are allocated such that the estimated

cycles matches this first layer. The CONV layers consist of 97% of the total operations and

hence the throughput of the device is largely constrained by these layers. In this system design,

the last CONV layer writes to the host memory and FC layers are computed on the host

CPU. This is due to their large BRAM and low operations requirement. A large proportion

of the operations and weight + FM memory in the original TinyYolo network is in the last

two quantized layers. Hence, these layers are pruned to improve the load-balancing and
64

TABLE 4.3. AlexNet and TinyYolo Implementation Resource Usage

AlexNet LUTs DSPs BRAMs Freq. FPS Acc.

Original 375,037 2,693 1,527 159 3,265 50.157% 49% 35%

Pruned-30% 228,104 1,938 1,057 172 3,530 50.334% 35% 25%

Pruned-40% 188,924 1,698 955 185 3,797 50.125% 25% 20%
TinyYolo

Original 179,265 500 2,731 233 1,189 47.827% 9% 63%

Pruned-50% 234,883 189 1,930 240 1,226 48.535% 3% 45%
Available 663,360 5,520 4,320

also reduce the number of BRAMs. Also, the number of second layer filters is doubled, as

increasing the number of PEs in that layer from 32 to 64 imposes minimal resource impact

and helps preserve accuracy during re-training.

4.7.1.2 Performance

The performance of both pruned and non-pruned versions of AlexNet are measured by im-

plementing the dataflow architecture on the Xilinx KU115 board. For the pruned topologies,

there are two alternatives for improving the hardware; 1) By fixing the model’s parallelism,

concurrency can be reduced and computational resources saved. This translates to a greater

ability to fit the model on low-cost FPGAs and achieve higher frequencies. 2) Increasing the

parallelism of the original architecture, which reduces latency and improves the FPS. Follow-

ing 1), the same parallelism is maintained for pruning AlexNet at 30% & 40% as displayed in

Table 4.3. This allows us to increase the frequency of the design up to 185Mhz. The frame

rate also improves whilst resources are significantly reduced: 40% pruning translates to a

reduction in LUTs by roughly 50% and BRAMs and DSPs by roughly 40%. For TinyYolo,

there is a slight increase in FPS whilst resources are again reduced: namely a 30% savings

in BRAMs for on-chip parameter storage. Note also that the pruning strategy improves

the accuracy of TinyYolo by 0.7mAP and AlexNet-30% by 0.2% and remains the same for
65

TABLE 4.4. Scaling Up Parallelism For Pruned AlexNet

Original Pruned-30% Pruned-40%
Freq (MHz) 159 130 150

LUTs 375,037 410,073 302,325
BRAMs 1,527 1,333 1,156

DSPs 2,693 3,772 2,693
FPS 3,265 5,359 6,172

FPS/kLUT 8.70 13.14 20.44
FPS/BRAM 2.14 4.02 5.39

AlexNet-40% as the accuracy threshold η = 0. For 2) the parallelism of the implementation

is scaled up. A similar frequency to the original AlexNet network is achieved. Also, the

throughput is 6,172 FPS which is roughly a 2× speedup over the original network. This is

displayed in Table 4.4, along with a significant reduction in resources for the same accuracy.

By significantly decreasing resources in the first layer through pruning, the parallelism is able

to be scaled up in all other layers to improve FPS. Scaling for the original network was unable

to achieve the FPS reported for the pruned topologies due to device resource constraints.

4.7.2 Comparison To Previous Work

Thus far, the results discussed have been compared to an original implementation of AlexNet

and TinyYolo. A comparison to previous implementations is now presented in the literature

for the popular AlexNet benchmark in Table 4.5. The W/Act Prec) metric is for the weight and

activation precision. To calculate the FPS/BRAM against previous implementations, a direct

conversion of M20k to BRAM(18k) is assumed. Also, to calculate the FPS/kLUT 8-input

ALMs and 6-input LUT units are assumed to be equivalent. It is evident the design achieves

a highly superior 3.8× improvement in FPS, 4.9× in FPS/kLUT and 7.5× in FPS/BRAM

over previous state-of-the-art implementations. This demonstrates the largely efficient use of

resources in the design as the pruning strategy is able to remove redundant filters which don’t

contribute much to the overall accuracy and only impinge on the potential performance of the

design.

1Accuracy obtained from 1/1-bit AlexNet in [83]

66

TABLE 4.5. Comparison to previous AlexNet implementations

Li16 [74] Aydonat17 [5] Moss17 [90] Ours
Device VC709 Aria 10 Aria 10 KU115
Freq 156 303 312.5 150

LUTs 273,805 246k (ALM) 427.2k (ALM) 302,325
BRAMs 1,913 2487 (M20k) 2000 (M20k) 1,156

DSPs 2,144 1,476 1518 2,693
W/Act. 16/16-bit 16/16-bit 1/1-bit 1/2-bit

Acc. - 56.0 44.21 50.1
FPS 391 1,020 1,610 6,172

FPS/kLUT 1.43 4.14 3.77 20.44
FPS/BRAM 0.20 0.37 0.72 5.39

4.7.2.1 Comparison To Other Pruning Techniques

The method is compared against the original network and two other filter pruning strategies:

1) the naive method of pruning each layer evenly and 2) traditional machine learning methods

which prune each layer according to their sensitivities. For the analysis, the sensitivities of

each layer are empirically determined by pruning each layer once at a time and analyzing

accuracy degradation for a given pruning rate. All methods prune to their pre-specified

tolerable losses. From Figure 4.7 it is evident that a significant improvement in the required

BRAMs and number of operations for all strategies. The resource-aware strategy outperforms

the other strategies as it only prunes layers which directly improve the desired performance

of the design. The other pruning methods aim to eliminate a high total number by filters

whilst preserving accuracy. This leads to filters being removed from all other layers, meaning

the resource-heavy layers cannot be pruned as much. This suggests that for FPGA imple-

mentations, the method of tailoring the pruning to the underlying architecture by prioritizing

resource-heavy layers is much more effective.

4.8 Summary

This Chapter presents a filter pruning method for customizing bitwise DNNs to FPGA

hardware. A novel quantization pruning heuristic is investigated which minimizes the error

in the weight values rather than the output feature maps. This is used to rank filters. The
67

FIGURE 4.6. Total operations of networks for different pruning methods

FIGURE 4.7. Relative BRAM requirement for different pruning methods

68

amount of filters to be pruned is then determined via a resource-aware evaluation of the

underlying FPGA architecture. We then compare using this method against previous work

which only considers the sensitivity of the weights rather than the underlying hardware.

Following this, we describe target FPGA implementation dataflows for which we use our

training methodology to customize our CNNs to. We then evaluate these methods and report

resource usage of the implementation for the pruned methods and the unpruned methods.

Lastly, we compare to state-of-the-art FPGA implementations to demonstrate state-of-the-art

performance in terms FPS, FPS/kLUT and FPS/BRAM.

69

CHAPTER 5

Improving Quantization Of Bitwise Networks

Chapters 3 & 4 focused on training methods to reduce the number of required operations for

inference computation via network pruning. Both these Chapters utilized bitwise networks to

enable high performance implementations as they reduce the cost of arithmetic operations.

However, these techniques lack accuracy, particularly on complex datasets such as ImageNet.

Thus, in this Chapter, we explore how to improve the accuracy of bitwise networks whilst

attempting to maintain the hardware performance. To do this effectively, we must improve

learning capabilities and understand data movement in the underlying hardware.

This chapter discusses a novel training methodology for quantizing networks such that

the simplicity of the computation is preserved. As discussed in Section 2.3.4, for very

low-precisions such as bitwise networks with 1-8-bit activations, the information loss from

quantization leads to significant accuracy degradation. Our methodology aims to reduce this

loss by learning a symmetric codebook for particular weight subgroups. The subgroups are

determined based on their locality in the weight matrix, such that the hardware simplicity of

the low-precision representations is preserved. Empirically, we show that our methodology

can substantially improve accuracy for networks with extremely low-precision weights and

activations. Additionally, we demonstrate that this representation imposes minimal or no

hardware implications to more coarse-grained approaches.

Due to the ordering of the scaling factors maintaining data regularity, we show how the

network representations in this chapter can be computed similarly to a bitwise network with

some minor additional computational complexity. However, due to the addition of multiple

scaling factors in each layer, the codebook of weight values does not necessarily represent a

bitwise network as in Chapters 3 & 4 but rather a uniformly quantized FX network.

70

5.1 SYQ: Learning Symmetric Quantization For Efficient

Bitwise Networks

As discussed in Section 2.3.4, quantized neural network training involves low-precision

networks having a set of full-precision weights which are quantized before inference. As the

quantization functions are piecewise and constant, the gradients of quantized weights are cal-

culated and applied to update their corresponding full-precision weights. Similarly, derivatives

of quantized activations are calculated by using a non-constant differentiable approximation

function. This type of training was first proposed as the Straight Through Estimator (STE) [8]

as discussed in Section 2.3.4. The problem is that without an accurate estimator for weights

and activations, there exists a significant gradient mismatch which impinges on learning.

Seemingly, as discussed in [85], activations are less sensitive to quantization than weights for

image classification problems due to weight reuse in Convolutional (CONV) layers affecting

multiple operations. To overcome this, methods such as increasing the weight codebook by

applying a scaling factor to all weights in a layer, provides better approximations for weight

distributions and greater model capacity [73]. This is computationally inexpensive and can be

represented as multiplying each weight layer’s matrix by a diagonal scalar matrix which only

requires storage of one value. Applying fine-grained scaling factors has also been shown to

improve accuracy by increasing model capacity [82], [100]. The problem with all of these

fine-grained approaches is either large storage requirements for the scaling factors or high

computational complexity due to irregular codebook indices. We present Learning Symmetric

Quantization (SYQ), a method to design binary/ternary networks with fine-grained scaling

factors which preserve these complexities. We do this by learning a symmetric weight code-

book via gradient-based optimizations which enables a minimally-sized square diagonal scalar

matrix representation. To reduce the large information loss from CONV layer quantization,

we use a more fine-grained pixel/row-wise scaling approach, rather than layer-wise scaling

in Fully-Connected (FC) layers. In the process, we significantly close the accuracy gap for

low-precision networks to their floating point counterpart, whilst preserving their efficient

computational structures. Our work makes the following contributions:
71

• Our approach significantly improves the ability of convolutional weights to learn

low-precision representations. This is useful as most layers in modern network

architectures consist of convolutions which are typically the least redundant layers.

• The proposed method reduces the computational complexity of traditional fine-

grained low-precision scaling and imposes minimal hardware costs to layer-wise

scaling.

• On state-of-the-art networks such as AlexNet, ResNet and VGG, our method is

empirically shown to improve accuracy for 1-2 bit weights and 2-8 bit activations.

5.2 Related Work

Bitwise Networks: Most methods for training low-precision DNNs maintain a set of full

precision weights that are deterministically or stochastically quantized during forward or

backward propagation. Gradient updates computed with the quantized weights are then

applied to the full precision weights [17], [55], [78]. To produce state-of-the-art results on

larger models, [100] proposed scaling the quantized weights by the expectation of real-valued

weights to recover the dynamic range of each layer. Reference [73] also implemented a

similar technique for ternary networks and optimised a non-zero quantization threshold as a

function of the weight expectation. Other gradient-based optimization methods for the scaling

factor have been introduced [146].

Low-precision DNNs: Other methods of quantization have also been implemented, i.e. re-

training networks using incremental weight subgrouping to produce no accuracy loss for 5 bit

weights [143]. Multiple binarizations and a scaling layer were described in [113] to improve

accuracy and binarize the last layer. Logarithmic data representations were used to approxim-

ate the non-uniform distribution of the weights, activations and gradients down to 3-bits with

negligible accuracy loss [85]. Activations quantization has also been investigated with frame-

works created for varying activation bitwidths [144] and both weights and activations [99].

Improving the network learnability under low-precision weights and activations was analysed

in [10]. More fine-grained approaches of quantization have effectively clustered weights or
72

grouped filters together and quantize differently based on their statistical distributions [24],

[82] . Increasing model capacity by applying scaling factors to positive and negative values

separately was proposed in [146].

Low-precision DNN Hardware: Also, many low-precision DNN hardware implementations

have been published [120], [43]. For example, FINN [31], [115] demonstrated the perform-

ance gains of being able to store all network weights in on-chip memory by implementing

binarized neural networks on FPGAs.

5.2.1 Low-precision Networks

Similarly to as discussed in Section 2.3.2, for low-precision DNNs, the distribution of full

precision weight matrices for each layer Wl are approximated by a function f , resulting in a

quantized weight matrix Ql:

Qli,j = f(Wl)i,j (5.1)

for Wli,j ∈ R and Qli,j ∈ C. The codebook C =
{
c1, c2, ..., cr

}
is a set of all possible values

for Qli,j where ci ∈ R and i ∈ R+ represent each codebook value and index respectively. For

example, binary and ternary weight spaces have C =
{
− 1,+1

}
and C =

{
− 1, 0,+1

}
respectively. As similarly discussed in Section 2.3.3, efficient functions for binarizing and

ternarizing weight parameters have been proposed as piecewise constant functions in [73],

such that:

Ql = sign(Wl)�Ml (5.2)

with,

Mli,j =

 1 if
∣∣Wli,j

∣∣ ≥ ηl

0 if − ηl < Wli,j < ηl

(5.3)

where M represents a masking matrix, η is the quantization threshold hyperparameter. η = 0

for binary networks and in our work we set η = 0.05×max(|Wl|) for ternary networks as in
73

[146]. The issue with discretization of the weights, is that it leads to the vanishing gradients

problem [8]. To overcome this, an STE is defined to replace the zero derivatives from the

piecewise constant function in (5.2), by a non-zero surrogate derivative [55]. During training

Ql is used for inference and backpropagation, and the corresponding elements in Wl are

updated based on these gradients. Hence the STE is defined as:

∂Ê

∂Wli,j

=
∂Ê

∂Qli,j

(5.4)

where Ê is the error function for a network without scaling factors. After training, the full

precision weights are discarded and we require only the quantized weights for deployment.

Whilst these methods greatly reduce computational complexity by eliminating floating point

MACs, they increase the difficulty of learning.

5.3 Ordered Scaling Factor Representations

In this section we discuss the fundamentals of applying scaling factors to quantized weight

parameters and how they can be ordered for good hardware efficiency.

As discussed in Section 2.1.3 a CONV layer, all weights are typically represented as a

tensor Wl ∈ RK×K×I×N where K is the filter size, I is the number of input feature maps

and N , the number of output feature maps. In low-precision networks, each weight layer l

can typically be represented by a diagonal scalar matrix αl multiplied by quantized weight

matrix Ql and ideally Wl ≈ αlQl. Also, the activation function g can be approximated using

a piecewise constant activation function G. In our proposed method, we observe that by

ensuring quantization levels for W are symmetric around zero, we can construct efficient

square diagonal matrix representations of αl, which enable fine-grained quantization whilst

having minimal memory requirements (of size K or K2). This translates to a reduction in

overall model complexity and high prediction capabilities. Although, we restrict ourselves by

structured matrices and low-precision weights and activations, the network efficiently captures

information through our gradient-based symmetric quantizer which learns the diagonal

elements of αl during training.
74

5.3.1 Reducing Information Loss Through Scaling Factors

The introduction of scaling factors improves learning capabilities by providing greater model

capacity and compensating for the large information loss due to binary/ternary quantization.

Scaling discrete weight representations requires multiplying all Qli,j by positive scaling factors

α ∈ R+. We want to find optimal scaling factors for each layer, αl, which minimize our error

function:

α∗l =α E(α,Q) s.t. α ≥ 0, Qli,j ∈ C (5.5)

with E representing the error function with scaling factors. Finding the optimal αl is vital

to reducing gradient mismatches in the forward and backward functions. It was proposed in

[144] as the mean of absolute weight values for each layer:

αl =
‖Wl‖1
Zl

(5.6)

where Zl is the total number of layer weights. The codebook for each layer after scaling

in (5.6) is symmetric: Ĉl =
{
− αl,+αl

}
and the scalars become per-layer learning rate

multipliers. Additionally, the STE in (5.7) reduces the gradient mismatch from (5.4) by

including information from the full precision weights:

∂E

∂Wli,j

=
∂E

∂Qli,j

= αl
∂Ê

∂Qli,j

(5.7)

Gradient-based optimizations for scaling factors were also introduced in [146] which ap-

plied different scaling factors for positive and negative Qli,j to improve model capacity and

accuracies. These are updated during backpropagation using gradients:

∂E

∂αpl
=
∑
i,j∈Sp

l

∂E

∂Wli,j

,
∂E

∂αnl
=
∑
i,j∈Sn

l

∂E

∂Wli,j

(5.8)

where initially αpl0 , α
n
l0

= 1 and Sl is the codebook indices for each layer, i.e. Spl ={
i, j|Wli,j ≥ η

}
and Snl =

{
i, j|Wli,j ≤ −η

}
. This allows each layer’s codebook val-

ues to be asymmetric around zero, such that Ĉl =
{
− αnl ,+α

p
l

}
. The codebook indices

are then highly irregular which increases computational complexity as the matrices cannot

be easily decomposed. For many existing DNN hardware implementations, we’d have to
75

check the sign of every element before computation, leading to extra branching instructions

for conventional computing platforms such as CPUs/GPUs and additional logic for custom

hardware. The difficulty of designing low-precision networks which have both high learning

capabilities and computational efficiency can be solved by learning a symmetric codebook

during training and exploiting structured matrix representations.

5.4 SYQ Structural Representations

We now propose matrix representations of SYQ by partitioning the quantization into weight

subgroups. Diagonal matrix representations consist of mainly zeros and have non-zero entries

along the main diagonal. For a matrix D to be diagonal, D = 0 if Di,j = 0 ∀ i 6= j, and square

if D ∈ Rm×m. A square diagonal matrix consisting of all equal main diagonal entries is a

scalar matrix. A diagonal matrix αl is defined by the vector αl =
[
α1
l , ..., α

m
l

]
:

α = diag(α) :=

α1 0 .. 0 0

0 α2 .. : 0

: : .. αm−1 :

0 0 .. 0 αm

Diagonal matrix multiplication is very computationally efficient as it can be easily decomposed

and only the scalar vector requires storage.

5.4.1 Layers

CONV and FC layers have differing computational requirements and sensitivities to network

redundancies. CONV weights are reused many times across the input feature map whereas

FC weights are used only once per image. Hence, the quantization error of each weight in

a CONV layer impacts the dot products across the entire input feature map volume rather

than just once for FC weights. Thus, a fine-grained approach to CONV layers is effective at

compensating for this error. Quantized CONV weights are represented as a tensor Ql ∈ RZ

with Z = K ×K × I ×N . As typically I,N � K, it is optimal to have a diagonal scalar of
76

FIGURE 5.1. Computational structure of pixel-wise (Left) and row-wise
(Right) subgrouping of a CONV layer (K, I = 3). The tensors represent
the weight layer structure during training and the matrices represent the matrix
decomposition for deployment.

sizeK×K or evenK2×K2 as only small scalar vectors are required for storage. By reshaping

the tensor Ql, we form a matrix Ql ∈ RẐ where Ẑ = K2 × (IN) or Ẑ = K × (INK) and

represent our scalar matrix multiplication as diag(αl)QT
l with the square diagonal matrix,

diag(αl) ∈ RK2×K2 or diag(αl) ∈ RK×K respectively. FC layers are represented as a matrix

Ql ∈ RL×H where H is the number of hidden nodes and L the activation neurons. As FC

layers are more robust to quantization, one learnable scaling factor (layer-wise) for the FC

layer can sufficiently approximate the distribution and also can be represented with scalar
77

matrix computation. All elements in αl are then equal and we only require storage of one

value.

5.4.2 Subgroups

More fine-grained quantization can improve approximations of the statistical distributions

of weights. We implement pixel-wise scaling for CONV layers which involves grouping

all spatially equivalent pixels along the I × N dimension. This results in different values

for all the main diagonal elements in diag(α) ∈ RK2×K2 . With this representation, we

can still decompose the matrix computation along each pixel dimension and exploit the

parallel nature of convolutions as shown in Figure 5.1. We do this by creating subgroups

1 ≤ i ≤ K2 with codebook indices Sil =
{
j|Wli,j

}
. Other granularities such as row-

wise scaling involve grouping all pixels along a row or column (I × N ×K), resulting in

Sjl = Sil ∪ Si+1
l ... ∪ SKl where 1 ≤ j ≤ K (as illustrated in Figure 5.1) and also layer-wise

scaling: Sl = Sil ∪Si+1
l ...∪SK2

l . Different granularities affect both accuracy and computation

as further explored in Sections 6 & 7.

5.5 SYQ Training

In this section, we now describe the methodology to efficiently train SYQ networks.

5.5.1 Symmetric Quantizer

When training low-precision inference networks, the aim is to have the smallest possible

codebook. Typically, as the codebook size increases, a network will approach full-precision

performance but increase hardware cost. However, there are certain codebook representations

which are significantly more hardware friendly than others and won’t necessarily impose any

hardware costs. Given a codebook C, and the nonzero codebooks Cp =
{
ci|ci > 0

}
and

78

Cn =
{
cj|cj < 0

}
, a quantizer is denoted as symmetric if:

∀ci ∈ Cp, ∃ |cj| ∈ Cn where ci = |cj| (5.9)

Learning this type of codebook requires updating one scaling factor during training for two

bi-polar codebook values. The gradient of each scaling factor for each subgroup becomes:

∂E

∂αil
=
∑
j∈Si

l

∂E

∂Wli,j

(5.10)

When computing binary/ternary weight representations followed by a scale, it is ideal to

have a codebook which is symmetric around zero, as the codebook storage requirements are

almost halved. This is because only the absolute value of the two symmetric values needs

to be stored. Additionally, codebook indices become highly regular and ordered for the

scalar multiply which greatly reduces computational complexity. The nature of symmetric

quantization enables the opportunity to implement fine-grained quantization (pixel/row-wise)

whilst maintaining the scalar matrix multiplication structure used in layer-wise scaling. This is

also advantageous as the scaling factors become fine-grained adaptive learning rate multipliers

for each pixel/row in a CONV layer, i.e. the STE becomes:

∂E

∂Wli,j

=
∂E

∂Qli,j

= αil
∂Ê

∂Qli,j

(5.11)

As the use of scaling factors can more accurately approximate subgroups and are gradient-

based, the gradient mismatch is significantly reduced for weight quantization which enhances

network learning.

5.5.2 Initialization

The solution to non-convex functions using gradient descent optimizations depend heavily

on parameter initialization to avoid vanishing or exploding activations/gradients and ensure

network convergence [35]. For low-precision networks, excessive gradient mismatches

between the forward and backward functions must be minimized, otherwise the gradients will

not propagate well. To deal with this concern, the scaling factors coefficients are initialized as

the mean of full precision weights in it’s corresponding subgroup. For example, the scaling
79

factor in pixel-wise scaling is:

αil0 =

∑
j∈Si

l

∣∣Wli,j

∣∣
I ×N

(5.12)

Layer-wise scaling in FC layers has αl0 as the mean of all layer weights. By incorporating

information from the full precision weights, we aim to reduce the mismatch initially and the

scaling factors are then optimized during backpropagation.

5.5.3 Activations Quantization

Our forward path approximation to g in (??) uniformly quantizes a real number x ∈ [0,M] to

a k-bit number:

G(x) =
1

2f
floor((2f)x+

1

2
) (5.13)

where floor represents the round down operation and M is the upper bound. M itself is

bounded by its arbitrary unsigned two’s complement fixed point representation where f is

the number of fractional bits and M = 2k−f − 2−f . Uniform quantization translates to a

reduction in hardware implementation complexity. To achieve this, we use the following STE

for the activations:

∂E

∂x
=
∂E

∂G
(5.14)

Differences in the forward and backward activation functions create a gradient mismatch

which can result in unstable and inefficient learning. To minimize this issue, we adjust M as

a hyperparameter. The overall SYQ training process is summarized in Algorithm 5.

5.6 Experiments

To demonstrate the versatility of SYQ, we applied it to several state-of-the-art benchmark

models, all with different network topologies. We use binary/ternary weights and varying

activation bitwidths for classification of the large-scale ImageNet dataset. The ILSVRC-2012

ImageNet is a natural high resolution visual classification dataset consisting of 1000 classes,
80

Algorithm 4 SYQ Training Summary For DNNs.

Initialize: Set subgrouping granularity for Sil and set αil0 .
Inputs: Minibatch of inputs & targets (I, Y), Error function E(Y, Ŷ), current weightsWt

and learning rate, γt
Outputs: UpdatedWt+1, αt+1 and γt+1

SYQ Forward:
for l=1 to L do

Ql = sign(Wl)�Ml with η, using (5.2) & (5.3)
for ith subgroup in lth layer do

Apply αil to Sil
end for

end for
Ŷ = SYQForward (I, Y,Ql,αl) using (6.5)

SYQ Backward:
∂Ê
∂Ql

= WeightBackward(Ql,αl,
∂Ê

∂Ŷ
) using (5.11) & (5.14)

∂Ê
∂αl

= ScalarBackward(∂Ê
∂Ql
,αl,

∂Ê

∂Ŷ
) using (5.10)

Wt+1 = UpdateWeights(Wt,
∂Ê
∂Ql
, γ)

αt+1 = UpdateScalars(αt, ∂Ê∂αl
, γ)

γt+1 = UpdateLearningRate(γt, t)

1.28 million training images and 50K validation images. Inputs are resized to 256 × 256

before being randomly cropped to 224× 224. We report our single-crop evaluation results

using Top-1 and Top-5 accuracy.

5.6.1 Networks

We compare our results to the full precision baseline and benchmark reference model ac-

curacies in Table 6.91, showing that SYQ training achieves similar accuracy to floating point.

This suggests the noise induced from replacing floating point weight layers with SYQ versions,

provides effective regularization during training. An AlexNet [60] variant is implemented

which eliminates dropout and includes batch normalization [58]. A mini batch size of 64 is

used, L2 weight decay of 5e-6, and our learning rate is initially 1e-4 with step decays of scale

factor 0.2. For ResNet [48], we test on the 18, 34 and 50 layer variations. Our batch size is
1Our ResNet and AlexNet reference results are obtained from https://github.com/facebook/fb.resnet.torch

and https://github.com/BVLC/caffe, respectively

81

TABLE 5.1. Summary of Results for 8-bit activations and binary (1-8) and
ternary (2-8) weights

Model 1-8 2-8 Baseline Reference

AlexNet Top-1 56.6 58.1 56.6 57.1
Top-5 79.4 80.8 80.2 80.2

VGG Top-1 66.2 68.7 69.4 -
Top-5 87.0 88.5 89.1 -

ResNet-18 Top-1 62.9 67.7 69.1 69.6
Top-5 84.6 87.8 89.0 89.2

ResNet-34 Top-1 67.0 70.8 71.3 73.3
Top-5 87.6 89.8 89.1 91.3

ResNet-50 Top-1 70.6 72.3 76.0 76.0
Top-5 89.6 90.9 93.0 93.0

128, learning rate is initially 1e-3 with step decay of factor 0.2. We also test on a variant of

VGG-16 [109], using model-A in [49] with the spp layer replaced by a max pool and only 3

CONV layers rather than 5 for input size blocks of 56, 28 and 14, as in [10]. Batch sizes are

set to 32 and our learning rate is initially 1e-4 with a step decay of factor 0.2. The VGG and

ResNet models were initialized from floating point baseline weights. Full-precision weights

are used for the first and last layer. All other CONV layers are quantized with SYQ pixel-wise

scaling, FC layers with layer-wise scaling and the activations of all layers using (6.5).

5.6.2 Changing Granularity Via Weight Subgroups

Weight subgroups can be arbitrarily designed for a given hardware application. Table 5.2

shows accuracy differences between using row/layer-wise vs pixel-wise scaling on AlexNet

and suggests pixel-wise and row-wise are marginally different, especially for higher precisions,

but both are considerably more accurate than layer-wise. This demonstrates the effectiveness

of fine-grained quantization of CONV layers over layer-wise and promotes the exploration

for efficient representations of scalar computation. It also shows the effectiveness of row-wise

quantization as it typically incurs a smaller memory requirement with a small accuracy drop,

for a significant gain in the potential parallelism of the network.
82

TABLE 5.2. AlexNet accuracy differences between using row/layer-wise and
pixel-wise symmetric quantization

Row-wise Layer-wise
Weights Act. Top-1 Top-5 Top-1 Top-5
1 2 -0.7 -0.5 -1.4 -2.2
1 8 -0.1 -0.3 -0.4 -2.2
2 2 +0.1 -0.0 -1.3 -1.5
2 8 -0.1 -0.1 -1.9 -1.7

TABLE 5.3. Comparison to previously published AlexNet results

Model Weights Act. Top-1 Top-5
DoReFa-Net [144] 1 2 49.8 -
QNN [55] 1 2 51.0 73.7
HWGQ [10] 1 2 52.7 76.3
SYQ 1 2 55.4 78.6
DoReFa-Net [144] 1 4 53.0 -
SYQ 1 4 56.2 79.4
BWN [100] 1 32 56.8 79.4
SYQ 1 8 56.6 79.4
SYQ 2 2 55.8 79.2
FGQ [82] 2 8 49.04 -
TTQ [146] 2 32 57.5 79.7
SYQ 2 8 58.1 80.8

5.6.3 Comparisons To Previous Work

We compare SYQ explicitly using AlexNet, ResNet-18 and ResNet-50 in Tables 5.3, 5.4

& 5.5 as they’ve been extensively studied in the literature. Our ternary results with 8 bit

activations (2w-8act) improves on the state-of-the-art for all three networks. Our 2w-4act

for ResNet-50 also improves on the state-of-the-art FGQ. This is also the case for binary

weights, such as 1w-8act ResNet-18 and AlexNet with 1w-2/4act. For extremely low 1w-2act

representations, SYQ also has a 2.7% increase in Top-1 accuracy over the state-of-the-art

HWGQ. This demonstrates SYQ’s superiority for producing high accuracy. Additionally, it

shows that multiple learnable scaling factors effectively reduce the gradient mismatch in the

forward and backward paths, translating to efficient learning under low-precision constraints.
83

TABLE 5.4. Comparison to previously published ResNet-18 results

Model Weights Act. Top-1 Top-5
BWN [100] 1 32 60.8 83.0
SYQ 1 8 62.9 84.6
TWN [73] 2 32 65.3 86.2
INQ [143] 2 32 66.0 87.1
TTQ [146] 2 32 66.6 87.2
SYQ 2 8 67.7 87.8

TABLE 5.5. Comparison to previously published ResNet-50 results

Model Weights Act. Top-1 Top-5
HWGQ [10] 1 2 64.6 85.9
SYQ 1 4 68.8 88.7
SYQ 1 8 70.6 89.6
FGQ [82] 2 4 68.4 -
SYQ 2 4 70.9 90.2
FGQ [82] 2 8 70.8 -
SYQ 2 8 72.3 90.9

FIGURE 5.2. Top-1 training and validation error for binary AlexNet with
varying activation precisions

5.6.4 Varying Activation Bitwidth

The most important result is that SYQ efficiently quantizes networks with low-precisions for

both weights and activations. From Figure 5.2, we can see that lowering the precision of the

activations does not severely alter the training curve, suggesting that the gradient information

from pixel-wise scaling factors in SYQ compensates well for the loss of information. How-

ever, when quantizing down to 2-bits, the training error curve does become more volatile,

demonstrating instabilities in network learning. We also report the classification accuracies

for varying activations and bitwidths on AlexNet and ResNet-50 in Tables 5.3 & 5.5, which

shows that there is minimal discrepancy from the full-precision networks with as low as

4-bit activations. These results are extremely promising and have strong implications for

specialized hardware implementations of low-power DNNs.
84

TABLE 5.6. Number of scaling factors and operations per layer, for different
techniques

Method Scalars Ops
Layer (DoReFa) 1 P
Row (SYQ) K P
Pixel (SYQ) K2 P
Asymmetric (TTQ) 2 P + Z
Grouping (FGQ) K2N/4 P
Channel (HWGQ/BWN) N P

5.7 Hardware Implications

In this section we discuss the computational implications of different scaling operations and

present a design for specialized hardware implementations.

5.7.1 Computational and Memory Complexity

Considering a CONV layer with Ops, P = K ×K × I ×N × F × F , where F is the IFM

dimension. The layer-wise scaling, as in DoReFa-Net, requires one scaling factor per P

operations. For channel-wise scaling in HWGQ and BWN, it requires N scaling factors as

there is one per output feature map, where typically N � 1. TTQ implements asymmetric

layer-wise quantization which requires two scaling factors per layer and P + Z operations as

we add a branching operation for each weight due to irregular codebook indices, as described

in Section 3.3. FGQ uses pixel-wise scaling for every 4 filters, whereas SYQ uses pixel-wise

scaling per N filters, hence it requires K2N/4 scaling factors and P operations. For pixel-

wise SYQ scaling, K2 scaling factors and P operations are required, where K = 3 for most

CONV layers in modern networks. For row-wise SYQ scaling it requires K scaling factors

and P operations. These results are displayed in Table 5.6, demonstrating the benefits of

maintaining a diagonal representation for the scalar matrix multiplication of each layer as we

either improve computational or memory complexity against all other fine-grained methods.

Another key benefit of SYQ is its amenability to highly parallel processors.
85

5.7.2 Architectural Design

For the CONV layer, the operations are a sum of dot products between the input and kernel

filter. In order to reduce compute complexity, we increase the number of operations in each

dot product, while significantly decreasing the complexity of each operation. For example,

the size of the input vector, in the calculation of each dot product is: Lv = K2I . The number

of operations is OpLmul = Lv for multiplies and OpLadd = Lv − 1 for additions. Given that

we have a limited codebook for our weights, we can break it into sub-dot products where

we apply the scaling factor, αi, after we have computed the sub-dot product for that set of

symmetrically constrained weights. For pixel-wise quantization, the total multiplies becomes

OpPmul = Lv+K
2 and the total adds become OpPadd = K2(Lv/K

2−1)+(K2−1) = Lv−1.

However, the first term in each of these calculations can be done at significantly lower

precision. For multiplies this means a binary or ternary multiple - which can often be

implemented as a bit-flip. To compute this in specialized hardware, for layer-wise scaling, we

have a parallel MAC tree which consists of a multiply of an input and binary/ternary number

(represented as a dot) followed by an adder tree to sum up the outputs. Outputs of these are

fed into a multiplier to compute the scale, followed by an accumulator to store the outputs

before being fed into the activation function. This architecture is shown in Figure 5.3. For

every hardware block of this type, our per-pixel/row scaling only requires one additional ring

counter which stores scaling factors and shifts the input to the scaling multiplier through an

index counter as each row/pixel is finished computing which is computationally inexpensive.

As in the equivalent layer-wise scaling architecture, we can still maintain one multiplier in

hardware and only increase memory slightly to store the scaling factors. Table 5.7 shows

the resource and performance estimates provided by Vivado HLS of the described hardware

architecture for a target Xilinx ZU3 FPGA device at an estimated clock frequency of over 300

MHz. The main design is based on the MVTU described in FINN [115], with an extension

to 2-bit activations and pixel-wise and row-wise SYQ. The layer-wise baseline uses no

multiplies, as these can absorb into quantization thresholds for activations [115]. The MVTU

was configured for a convolution layer with I = 384, N = 256, K = 3, while scaling the size

of the MAC tree (SIMD) and the number of parallel processors (PE). As shown, the BRAM
86

FIGURE 5.3. Hardware description of MAC for SYQ layers

TABLE 5.7. Resource Usage of a Matrix-Vector Processing Unit with Layer-
wise and Pixel-wise Quantization for target Xilinx ZU3

Config SIMD PE BRAMs LUTs (k) DSPs
Layer 32 32 64 29.8 4
Layer 64 32 64 56.5 4
Layer 32 64 64 58.9 4
SYQ(P) 32 32 64 29.4 36
SYQ(P) 64 32 64 56.1 36
SYQ(P) 32 64 64 57.7 68
ZU3 - - 432 70.6 360

(memory blocks on an FPGA (18k)) and LUT usage is almost identical, while the DSP usage

increases proportionally with the number of parallel output channels which are processed.

The increase in DSPs is not necessarily costly for the ZU3 as we are able to utilize more of

the total available resources. Resource usage is only shown for pixel-wise SYQ, as row-wise

only differed in LUT usage by less than 2%.
87

5.8 Summary

In the previous chapters, we focused on techniques for compressing bitwise networks using

sparse representations to improve hardware performance and maintain accuracy. However,

achieving higher accuracy with low-precision is pertinent for DNN applications requiring

mission-critical decisions, especially on embedded platforms. In this chapter, we explored

improving the accuracy of bitwise networks whilst maintaining their hardware simplicity. The

SYQ training methodology focuses on designing efficient quantization methods for bitwise

neural networks. A representation consisting of fine-grained scaling factors was derived.

These scaling factors were learnt via gradient-based optimizations. The arithmetic includes

scaling factors such that the product of the scaling factor matrix and quantization matrix main-

tains regular data access patterns in hardware. This is ensured by ensuring the scaling factor

matrix is a diagonal matrix. This helps maximize the potential parallelism of implementing

the network in hardware. The training setup is described and results are evaluated on several

benchmark networks such as VGG, AlexNet and ResNet on the ImageNet dataset. We then

describe an architecture for implementing this type of arithmetic on specialized hardware.

This was followed by a resource exploration of the architecture on an FPGA.

88

CHAPTER 6

Increasing Precision With Low Hardware Cost

In the previous chapter, we discussed how we can alter the numerical representation of our

networks to improve accuracy whilst maintaining hardware performance. This was done

through the addition of ordered scaling factors to more accurately quantize the network. The

improvements from this resulting representation can likely be attained on a broad range of

hardware platforms such as CPUs, GPUs, FPGAs and ASICs. In this chapter, we discuss

explore a new technique with a similar idea. We aim to improve accuracy further without

impinging on the hardware cost. Conventional methods to increase accuracy will maintain

the same fixed-point arithmetic and increase precision. This typically comes at at a cost

in hardware which is especially not ideal for resource-constrained environments such as

embedded platforms. In this Chapter, we increase the precision of our networks, however

we design a custom arithmetic using non-uniform quantization as a strategy to minimize

the hardware cost. This enables us to optimize the accuracy-hardware tradeoff. To achieve

this for DNN applications, the new design must not exceed the device’s capacity and the

implementation should not significantly degrade accuracy.

More specifically, in this chapter, we firstly design our custom arithmetic method for FPGA

hardware using reconfigurable constant coefficient multipliers (RCCMs) which offer a better

alternative for saving silicon area than utilizing low-precision arithmetic. RCCMs multiply

input values by a restricted choice of coefficients and can be implemented using only adders,

subtractors, bit shifts and multiplexers, meaning they can be heavily optimised for FPGAs.

We propose a family of RCCMs tailored to FPGA logic elements to ensure their efficient

utilization. To minimize information loss from quantization, we then develop novel training

techniques which map the possible coefficient representations of the RCCMs to neural

89

network weight parameter distributions. This enables usage of the RCCMs in hardware, while

maintaining high accuracy. In Chapter 5, we introduced the concept of learnable scaling

factors. This inspired the learnable scaling factors in this training methodology, however

coarse-grained factors in the form of layer-wise are used.

We demonstrate the benefits of these techniques using AlexNet, ResNet-18 and ResNet-50

networks. The resulting implementations achieve up to 50% resource savings over traditional

8-bit quantized networks, translating to significant speedups and power savings. Our RCCM

with the lowest resource requirements exceeds 6-bit fixed point accuracy, while all other

implementations with RCCMs achieve at least similar accuracy to an 8-bit uniformly quantized

design, while achieving significant resource savings.

6.1 AddNet: DNNs Using FPGA-Optimized Multipliers

One limitation with traditional fixed point quantization is that it is uniformly quantized.

However, it has been demonstrated that a non-uniform quantization with the same number of

potential weights in the codebook can result in better accuracy. By alleviating the uniformity

restriction, the codebook may represent the desired full-precision neural network weight

distribution with less quantization error [85, 77].

It follows that reducing precision may not be the best method to save silicon area. Reconfigur-

able constant coefficient multiplications (RCCMs) are an alternative method to reduce FPGA

resources through time-multiplexing and resource sharing [20]. They are usually realized

using additions, subtractions, bit shifts and multiplexers, meaning multiplies are implemented

without requiring digital signal processing (DSP) blocks on an FPGA. However, RCCMs are

restricted to a given number of target coefficients; this has restricted their use to digital signal

processing application domains including digital filtering and linear transformations, e.g.,

[47]. We propose a method, AddNet, to design RCCMs with coefficient sets that approximate

the desired distribution of neural network weights [27]. Furthermore, we develop a method

to train neural networks to take advantage of RCCMs. In doing so, we demonstrate that
90

using AddNet to optimize neural networks outperforms low precision arithmetic in terms of

accuracy for a given silicon area budget.

AddNet consists of the following stages. First, we design a family of RCCMs which are

customized to the underlying logic elements on the FPGA. These exhibit very low resource

usage and have varying coefficient sets. The RCCM coefficient set whose distribution

best replicates the weight distribution of a pre-trained network is chosen and the network

is re-trained with weights restricted to these coefficients. This allows the optimizer to

update network weight parameters during training while incorporating information about

the underlying hardware. This study does not consider the embedded multipliers present in

all modern FPGAs; in practical implementations, we envisage different CNN layers using

embedded multipliers or our RCCM, depending on resource and throughput requirements.

The trained network is able to learn a representation compatible with the underlying optimized

RCCM, achieving both high performance and accuracy. This allows a significant reduction in

resource usage for a given throughput, making our designs suitable for resource-constrained

implementations. Additionally, we can scale the parallelism of the design to achieve much

higher frame rates for similar resource usages. Specifically, our work makes the following

contributions:

• A novel family of arithmetic RCCM circuits tailored to the FPGA fabric for neural

network applications which significantly reduces resource requirements.

• A distribution matching technique which allows a specific RCCM to be selected

based on the required distribution of weights in a CNN, and a training algorithm

which finds solutions compatible with the selected RCCM.

• We demonstrate our method achieves significant improvement in accuracy over

low-precision (1-6 bit) implementations, and significant reductions in Look-up Table

(LUT) usage over 8-bit fixed point precision with no loss in accuracy for state-of-

the-art networks such as ResNet [48] implemented in fixed-point. Moreover, weight

storage requirements are reduced through implicit weight sharing.
91

The remainder of the this Chapter is structured as follows: Section 6.2 provides a background

to training CNNs and constant coefficient multipliers. In Section 6.3, recent state-of-the-

art research on quantization training and hardware architectures for the implementation of

CNNs is reviewed. Our methodology for designing our RCCMs is described in Section 6.4.

Our training techniques and selection of RCCM is presented in Section 6.5. The hardware

architecture used for evaluating the effects of our methods is described in Section 6.6, followed

by training and resource usage results in Section 6.7. Finally, we conclude the article in

Section 6.8.

6.2 Background

An alternative to reducing the precision of weight parameters, is to use a weight sharing

approach [11, 126]. Weight sharing involves choosing a finite set of full-precision weights

indexed by a codebook. Typically, these weights are chosen to match the desired distribution

to reduce information loss, unlike traditional fixed-point quantization where weights are

uniformly distributed. Keeping the number of different weights in the codebook small

reduces the word size of the indices leading to a small memory footprint. However, weight

sharing is normally not applied in FPGA implementations as the weight mapping process

introduces additional delays in the critical path of the circuit and requires extra hardware.

Furthermore, higher precision arithmetic units also consume more area. For the proposed

RCCM, an implicit weight sharing is utilized, reducing coefficient memory without requiring

any mapping hardware. Meanwhile our RCCMs are optimized for FPGA hardware meaning

they consume less area than fixed-point equivalents.

6.2.1 Small Softcore Multipliers

Due to the low precision requirements of neural networks, efficient implementations of small

multipliers recently have gained growing interest [67, 33]. As FPGAs provide embedded

multipliers it seems natural to use them. For small multiplications, there is a way to perform

two multiplications up to 8×8 bit in a single DSP of typically 18 bit [33]. In case the embedded
92

multipliers are not sufficient, efficient logic-based (i.e. softcore) multiplier implementations

are necessary. The use of radix-4 Booth encoding together with an FPGA mapping that maps

both Booth encoder and decoders in the same LUT showed to be the most efficient way to

implement softcore multipliers leading to up to 50% resource reductions [123, 64] on Xilinx

FPGAs. Unfortunately, they are only this efficient for large word sizes of 16 bit and above.

For lower word sizes, Xilinx Coregen showed the best results [64]. An optimization which

is particularly suited for small multipliers by re-structuring common multiplier algorithms

was recently proposed in [67]. They were optimized for Intel Stratix 10 FPGAs showing

the smallest resources and latency. The optimizations described in our work add further

constraints designing multipliers which do not allow arbitrary fixed-point number support.

This is achieved by applying concepts from reconfigurable multipliers.

6.3 Related Work

As discussed in Chapters 3, 4 & 5 quantization methods for neural networks have been

explored with the aim of achieving efficient inference in hardware. An efficient way of

training networks with different forward and backward function was introduced in [8]. This

led to new derivations of uniform quantization functions for low-precision neural networks

in [16, 144]. In Chapter 5, SYQ [30] further explored the importance of initializations and

designing a quantization function which reduces the forward and backward mismatch. State-

of-the-art accuracies were achieved under low-precision weights and activations. This inspired

the derivation of the distribution matching initialization method for efficient quantization.

Effective non-uniform quantization forms were also explored in the form of log representations

[85]. This form can also compute multiplierless multiply-accumulates (MACs), however the

distribution of the representations is restricted to the log domain.

There have been several accelerator architecture designs for low-precision CNNs with uniform

quantization arithmetic. Recent literature includes commercial architectures [1, 127] and also

academic approaches [22, 46, 119, 2, 39]. The benefits, in terms of power and throughput, of
93

fitting a design on-chip was described in [116]. Other FPGA architectures have been imple-

mented to utilize the highly amenable nature of CNNs which constrain weight parameters to

be only binary or ternary representations [91, 121]. With restrictions in the efficiency of both

software and hardware implementations of neural networks, software-hardware co-design

is considered an effective approach to achieve optimal performance [66], [132]. A method

for designing a quantization function for both increasing accuracy of binarized CNNs while

maintaining efficient multiplierless hardware was proposed in [34]. Additionally, an efficient

LSTM implementation in [44] utilized load-balance-aware pruning to achieve both network

compression and high hardware utilization. Similarly, training highly sparse ternary networks

and designing efficient CNN hardware for exploitation was described in [121]. To the best

of our knowledge, AddNet is the first quantization scheme which embeds reconfigurability

directly into its representations.

6.4 AddNet Reconfigurable Multipliers

In this section, we introduce reconfigurable multipliers and describe their design in AddNet.

6.4.1 Reconfigurable Multipliers

A constant coefficient multiplier is a circuit which computes y = cx, using only additions,

subtractions and bit shifts, where c is some pre-defined number. For example, to compute

y = 6x in terms of additions and shifts, we can use

(x << 2) + (x << 1) = 6x (6.1)

The "<<" operator represents an arithmetic left shift.

An RCCM is a circuit which computes y = csx where cs is an element from a discrete

coefficient set C = {c0, c1, . . . , cN−1}, chosen from a dlog2(N)e bit select signal s [114].

RCCMs are usually realized using additions, subtractions, bit shifts and multiplexers (MUXes).

Previous work has shown potential for reducing resource usage compared to a generic

multiplier, especially for small values of N [20, 114, 87, 88].
94

FIGURE 6.1. Example of a reconfigurable multiplier with the coefficient set
{12305, 20746}

figure 6.1 shows an example of an RCCM with coefficient set C = {12305, 20746}. In this

example, there is one 2:1 multiplexer for each adder, each having s as the select line input.

The three adders sum various shifted versions of x. Each adder is assigned a coefficient set

where the value of each row corresponds to the multiple for each configuration. For instance,

the top-most adder computes:x+ (x << 1) = 3x if s = 0

x+ (x << 2) = 5x if s = 1

95

The bottom-most adder outputs the final output y with coefficient set C = {c0, c1} =

{12305, 20746} multiplier-less by:

y =

x+ ((x << 3) + ((x+ x << 1) if s = 0

<< 11) << 1) = 12305x

(x << 8) + ((x+ x << 2)+ if s = 1

((x+ x << 2) << 11) << 1) = 20746x

By utilizing multiplexers in this way, the computation of c1 = 12305 is able to reuse the

adders from computing c2 = 20746, and vice-versa.

To date, prior research with RCCMs has focused on the design of an RCCM for a predefined

set of target constants (e.g., obtained from a digital filter design). This design using minimal

resources is an NP-complete optimization problem [87]. However, we want to use RCCMs

in neural networks where the coefficients (weights) are not known in advance. As a result,

we invert the RCCM design, and instead of searching for an RCCM circuit for a given

coefficient set, this work aims to find one with very low resource usage and a maximum of

“useful” coefficients. This low-cost RCCM then replaces multipliers in a conventional CNN

implementation. Instead of storing the coefficients, the corresponding select values are stored,

which also has the side-effect that it requires fewer bits of storage than the direct coefficient

value.

6.4.2 FPGA Multiplier Mapping

We searched for building blocks that efficiently map to the logic fabric of an FPGA. Our

designs are optimized for the latest Xilinx FPGAs (Virtex 5+6, the 7th generation FPGAs and

UltraScale/UltraScale+ FPGAs), but similar circuits can be found for other FPGAs. For these

devices, a slice provides either 6-input LUTs with a single output (used in Topology A) or two

5-input LUTs with shared inputs (used in Topology B) (Refer to Section 2.6.2 for definitions

of LUTs and slice). As such, we designed our base topologies to ensure the MUXes fit into

the same LUTs that are required for the adders.
96

Topology A

0 1 2 3 4 5 6

+

0

A1 A2 A3 B1

+/-

s0 s1

σ(s)

11 W W W
W

W+1

1

Y Topology B

++/-

0 1 2 3 4

0

A1 A2

0 1 2

0

B1

σ(s)

W+1

W

s0 s1
11 W W

Y

FIGURE 6.2. Base topologies used to build reconfigurable multipliers

figure 6.2 shows the two base topologies used to build the RCCM units in this work. Each of

these consists of an adder with at least one input being the output of a MUX. These topologies

allow operations of the form±Ap±Bq. For Topology A,Ap can consist of up to four different

input values (p ∈ 1, .., 4) with A4 = 0 and Bq can only take one value, (q = 1). For Topology

B, p ∈ 1, .., 3 with A3 = 0 and q ∈ 1, 2, with B2 = 0. The sign and source signals are

selected using a 2-bit input signal s. Since there are more possibilities than MUX inputs, a

function σ(s) is used to choose the actual operation, where σ(s) is determined at design time,

but may be different for each individual RCCM. Note that there is another possibility to map

more input sources to the adder as described in [86], however to ensure the topology fits into a

single LUT, this comes at a cost of less select inputs. Through our experimentation, we found

that the chosen topologies were sufficient for creating RCCMs with a desired coefficient set

to simplify the training process. This is further described in Section 6.5.

All contemporary FPGA devices are similar in that their logic blocks consist of LUTs followed

by a fast carry chain. Hence, a simple adder can be extended by multiplexers with no additional

cost for certain multiplexer sizes when carefully selected for the target device. The detailed

slice mappings of our base topologies are shown in figure 6.3, highlighting how our design

consumes exactly the same silicon area as a traditional ripple-carry adder with the same word

size on that FPGA (which would only implement the XOR gate to complete the carry logic to

a full adder).
97

FIGURE 6.3. Bit level FPGA slice mapping of base topologies of figure 6.2.
This is applicable to any FPGA using 6-input LUTs, including Xilinx Ultras-
cale and Intel Stratix X devices

.

6.4.3 Architectures Considered

The base topologies described above can be combined in many ways to design RCCM

units. Topology A has the advantage of a potentially larger coefficient set as it allows

three different sources at input Ap. On the other hand, Topology B has the property that

input Bq can be negated or zeroed, which provides symmetric coefficients around zero (as
98

TABLE 6.1. Properties of the evaluation of the proposed RCCM units with
maximum possible set size S = 2ws

RCCM ws #unique coefficient sets

2-Add 4 1145
3-Add 6 44198
4-Add 8 4040952

FIGURE 6.4. Selected RCCM circuits

Ap − B1 = −(−Ap + B1)). We designed three different RCCM architectures from these

topologies shown in figure 6.4. These consist of one to three elements of Topology A in the

early stages and Topology B at the output stage to ensure symmetric coefficients. Symmetric

coefficients improve the ability to match the distribution of the coefficient sets to the pre-

trained neural network weights which are typically also approximately symmetric around

zero. The benefits of this are further discussed in Section 6.5. Note also that these designs

can be trivially pipelined.
99

As can be seen in figure 6.4, the Ap inputs to the topologies are all connected to left shift

operations ϕij , which are all hard-wired since these do not require any LUT resources. It

follows that the supported coefficient set depends on the operation mapping function σ(s)

and the fixed bit shifts ϕij . As mentioned in Section 6.4.2, each instance of base Topology A

or B consumes the same area as a traditional ripple-carry adder. Hence, as the RCCMs of

figure 6.4 consists of 2, 3 and 4 base topologies, they are, respectively, called 2-Add, 3-Add

and 4-Add RCCMs in the following.

The obtained RCCM architectures can multiply with up to 2ws different coefficients where

ws denotes the total number of bits used for the select signal. For the 2-Add, 3-Add and

4-Add RCCMs, this translates to ws = 4, 6 and 8 respectively, as can be seen in figure 6.4.

We chose to evaluate coefficient sets where Topology A had 4 different mapping functions

and Topology B a single one. In addition all maximum bit shifts were set to ϕmax = 3. This

limits the total number of unique combinations, as shown in table 6.1. With these coefficient

sets, an exhaustive enumeration of possible coefficient combinations is feasible with a few

minutes of computation time. This allows us to then find the desired coefficient set based

on its similarity to the pre-trained neural network weight distribution. We note that it may

be possible to improve on our results by exploring more mapping functions, which would

generate a larger number of unique coefficient sets, but at the cost of longer execution time.

6.5 AddNet Training

The previous section described a family of optimized multipliers. In this section, we now

address the issue of finding the best coefficient set for a given neural network. As discussed in

Chapter 1, neural networks can typically tolerate a certain amount of regularization for their

weight representations before the accuracy is impinged upon. Thus our strategy is to utilize

this knowledge and select an RCCM coefficient set which exhibits a distribution similar to the

distributions of the neural network weights and re-train the network to learn the representation

of the coefficient set.
100

FIGURE 6.5. Distribution for CNN weights and constant multiplier coefficients

6.5.1 Distribution Matching

To achieve high accuracy in quantized neural network training, it is important to reduce

quantization error by using a function which can efficiently map its representations to the

full-precision values. This is important to minimize information loss and to achieve a

good initialization for training [30]. Fixed-point representations using quantization typically

uniformly partition the weight parameter space. However, representations using RCCM

coefficient sets discussed in Section 6.4 are non-uniformly partitioned and can vary in size,

range and the nature of the distribution. Thus, for efficient training, we choose an RCCM

with a coefficient set to match the distribution of a pre-trained model. We use the Kullback-

Leibler divergence [63] as a measure of the similarity of two distributions. Let R denote

the distribution of the coefficient set of the RCCM, and P is the reference distribution of

the pre-trained model weights and N the total number of weights. The Kullback-Leibler

divergence DKL is defined as

DKL(P‖R) =
N−1∑
i=0

P (i) log
P (i)

R(i)
. (6.2)

Thus, for each enumeration of the coefficient sets, we measured the divergence DKL to the

pre-trained network weights and selected the top-5 sets with the smallest divergence. We call
101

TABLE 6.2. Optimized RCCM coefficients

arch. #coeff Coefficient set (±)

2-Add 15 0 1 2 8 28 36 44 92

3-Add 59 0 1 2 3 4 5 6 7 9 10 12 13 14 16
23 29 30 32 63 69 70 72 87 93 94
96 119 125 126 128

4-Add 207 0 1 2 4 5 7 8 9 11 13 14 15 16
18 19 20 21 22 23 24 25 26 27 28
29 30 31 32 33 34 36 37 38 39 40
46 48 54 58 64 69 70 71 74 75 76
78 80 81 82 84 85 87 94 96 102
114 118 126 134 142 150 166 174
182 190 194 198 206 214 222 230
238 246 258 262 270 278 286 302
310 318 326 334 382 398 446 450
526 566 574 582 614 622 654 662
670 686 694 710 766 782 830
1214

this technique distribution matching. From the top-5 sets, we selected the set with the largest

number of coefficients, to maximize the number of representable states for the weights during

re-training. As a secondary criteria, we only selected coefficient sets that include zero. Note

that a zero weight could alternatively also be realized by resetting the output flip-flop in a

pipelined implementation. Since this leads to an additional select-bit, that has to be stored in

the coefficient memory or a separate decoder, this was not further investigated.

To give an example, the weight distribution (using 31 bins) from AlexNet on ImageNet is

given in figure 6.5 (a). As shown, the weight parameters in this example follow a distribution

similar to a Gaussian distribution, meaning that small weight values near zero occur much

more often than large values. The coefficient sets of the RCCM circuits of figure 6.4 with the

best distribution matching are given in table 6.2. Their distributions are shown in figure 6.5

(b), (c) and (d), which are similar to the pre-trained model. We call these optimized 2-Add,

3-Add and 4-Add RCCM circuits.

The exhaustive search for coefficient combinations yields distributions of different nature,

meaning this method would most likely be able to efficiently map to other potential network
102

TABLE 6.3. Configuration parameters of the the RCCM units

s1 s0 shifts

R
C

C
M

ty
pe

00 01 10 11 ϕi1ϕi2ϕi3ϕi4

AI A1+B1A2+B1A3+B1 B1 0 1 3 2
2-

A
dd

B -A1+B1-A2+B1 A1-
B1

A2-
B1

0 3 2 –

AI A1+B1A2+B1A3+B1 -A2+B10 2 3 3
AII A1+B1A2+B1A3+B1 -A1+B10 1 3 0

3-
A

dd

B -A1+B1-A2+B1 A1-
B1

A2-
B1

0 3 0 –

AI A1+B1A2+B1A3+B1 -A3+B10 1 3 0
AII A1+B1A2+B1A3+B1 -A2+B10 1 3 1

4-
A

dd

AIII A1+B1A2+B1A3+B1 -A1+B10 1 3 3
B -A1+B1-A2+B1 A1-

B1
A2-
B1

0 3 1 –

TABLE 6.4. Accuracy change from optimized distribution matching on
AlexNet for the 2-Add case

Unoptimized Distribution Matching 32bit Float.

Top-1 53.8% 55.8% 55.1%
Top-5 76.9% 79.8% 79.2%

weight distributions. To further justify our approach of distribution matching, we also study

an RCCM with an unoptimized choice of coefficient set with differing distribution nature.

figure 6.5 (e) shows the distribution with the worst (i.e., largest DKL) divergence score for

63 coefficients. It is not obvious that the corresponding coefficient set, C = {0 8 12 14

16 18 20 21 23 24 36 38 40 42 44 45 47 49 51 52 54 56 58 60 68 70 72 74 76 77 79 88},

would lead to poor CNN inference accuracy. However, as shown in table 6.4, when used with

AlexNet [62] in the 2-Add case, Top-1/Top-5 accuracy is 53.8%/76.9% (results are presented

as a Top-k percentage, where a classification is considered correct if the actual class is among

the highest k probabilities). With distribution matching, the accuracy is 55.8%/79.8%, which

is significantly better than the unoptimized set and equivalent to full-precision floating point

accuracy.
103

6.5.2 Weight Quantization

To both exploit our RCCM and achieve high accuracy, our network should be trained to

match the underlying inference hardware. During our fixed-point training, for each layer l,

we firstly clip the weights so that wl ∈ (−M,M), where M is a range hyperparameter, at

each inference step and then quantize them to fixed-point representations. As discussed in

Section 6.4 our multiplier consists of a fixed point input and a value from C. During AddNet

training, we introduce a function whereby every floating point weight is quantized according

to

q(wl) = arg min
ci∈C′
|ci − |wl|| (6.3)

where ci ∈ C ′ represents the possible positive coefficients of C scaled by λl. Here, (6.3) aims

to minimize the quantization error between the quantized weight values and the representations

in our coefficient set. The scaling with λl is done so that qi ∈ (−M,M) where M is initially

the range of the pre-trained model. By using distribution matching, we minimize this

quantization error to achieve an efficient initialization. We then re-train the network using

the straight through estimator (STE) approach as described in [8]. This approach allows a

non-differentiable function defined in the forward path to use a non-zero surrogate derivative

function in the backward path gradient calculations. Thus, in our case, we allow:

∂L

∂q
=
∂L

∂w
(6.4)

where L is the loss function. The quantized weights q(wl) are used for inference in the

forward path and the floating point weights wl are updated in the backward path. During

training, λl becomes a parameter which is also updated during backpropagation. By using

a representation compatible with the multiplier in the forward path, the network learns a

representation both high in accuracy and hardware efficiency. After training, the floating point

weights are discarded and q(wl) is used for hardware deployment.
104

Algorithm 5 Training a CNN using AddNet representations
Initialize: Pre-train model
Set adder size
c = DistributionMatching(σ(s)) using (6.2)
Inputs: Minibatch of inputs & targets (I, Y), Loss function L(Y, Ŷ), current weightsWt

and learning rate, γt
Outputs: UpdatedWt+1, λt+1 and γt+1

Forward propagation:
for l=1 to L do

Ql = Quantize(Wl) using (6.3) and (6.5)
end for
Ŷ = ForwardPropagation (I, Y,Ql) using (6.5)

Backward Propagation:
∂L̂
∂Ql

= WeightBackward(Ql,
∂L̂

∂Ŷ
)

∂L̂
∂λl

= ScalarBackward(∂L̂
∂Ql
,λl,

∂L̂

∂Ŷ
)

Wt+1 = UpdateWeights(Wt,
∂L̂
∂Ql
, γ)

λt+1 = UpdateScalars(λt, ∂L̂∂λl
, γ)

γt+1 = UpdateLearningRate(γt, t)

6.5.3 Activation Quantization

As initial training results did not show accuracy degradations compared to activations larger

than 8-bit two’s complement, we first uniformly quantize the activations to 8-bit. We also

selected the input word size of the RCCM accordingly. In the forward path, we approximate

the function g in (??) with G, which uniformly quantizes a real number x ∈ [0,m] to a k-bit

number:

G(x) =
1

2f

⌊
2fx+

1

2

⌋
(6.5)

where b·c returns the greatest integer less than or equal to the argument and m is the upper

bound. m itself is bounded by its arbitrary unsigned two’s complement fixed point representa-

tion where f is the number of fractional bits and hence m = 2k−f − 2−f . A summary of the

training process is given in Algorithm 5, which is similar to references [15, 116], with the

addition of distribution matching and incorporating the quantization scheme of (6.3).
105

6.6 Experimental Setup

In this section, we present the system used to evaluate the benefits of our AddNet optimizations.

We implemented the circuits in Figures 6.2, 6.3 and 6.4 in the hardware description language

(HDL) VHDL, as they were more naturally described in a HDL than using other high level

synthesis tools. We then chose to integrate it into the open source FPGA CNN Library

by Alpha Data in VHDL [3], which provides basic neural network layers for generating

custom 8-bit fixed point CNN implementations. We instantiate the multiplier in replace of

the traditional VHDL fixed point multiplication used in the original Alpha Data source code.

This is used as our hardware library.

The bitstream generation workflow is illustrated in figure 6.6. After defining the CNN archi-

tecture and pre-training the network, the RCCM coefficients are calculated using distribution

matching. The user provides this information to our AddNet tensorflow software library which

then trains the network for a specified adder size. Once trained, the weights are written to a file.

These weights, along with the parallelism factors and architectural preferences are provided

to the hardware library. The bitstream is then generated using Vivado 2018.1 with both the

Peripheral Component Interconnect Express (PCIe) interface and Network Accelerator Core

which are downloaded onto the FPGA. We tested both our tensorflow inference and hardware

accelerator output to ensure correctness of the design.

6.6.1 System Overview

The Network Accelerator core is integrated with a PCIe interface as illustrated in Figure 6.7

(a) which uses a streaming approach to direct memory access (DMA) data at an efficient rate

across the PCIe bus and back. The design is targeted to the Alpha Data ADM-PCIe-8K5 board

with a Xilinx KU115 FPGA, which consists of 2160 BRAMs (36K), 5520 DSPs and 663,000

LUTs. A board-specific PCIe Alpha Data IP core is used to interface between PCIe and

our network accelerator core. This IP core can be configured to provide and consume AXI4

DMA streams of width 256 bits at a clock rate of 250 MHz in response to API function calls

from the host. This stream width is reduced to match the buffer sizes for the inputs (24 bits)
106

FIGURE 6.6. Bitstream generation design flow

FIGURE 6.7. Hardware Accelerator System Design

and weights (4 . . . 8 bits) which control data ingress. The weight data is sent in contiguous

bursts to each layer in the Network Accelerator core to match the expected input behavior.

DMA channel 0 is used to provide the input data for layer 0 and weights are initialized on

DMA channel 1. The layer output is sent back over PCIe using a separate DMA channel.
107

Additionally, a memory mapped direct slave port is used to access a bank of registers which

can be read by the host to measure performance.

6.6.2 Network Layer Accelerator Core

The Network Layer Accelerator Core performs the MAC operations in parallel to compute the

convolution as in equation (2.10). The core receives input from the feature and weight buffers

and writes to the output buffer. The feature and weight buffers stream data into a serial to

parallel converter to fan-out the data to n parallel Processing Elements (PEs). This is shown

in Figure 6.7 (a). Once all data reaches the PE, up to p multiplications between features and

weights are performed in parallel, and the results accumulated. Here, we replace the standard

8-bit multiplier with our AddNet constant coefficient multiplier described in Section 4 to

reduce the cost per MAC over fixed point implementations. The data is then accumulated

before being fed into a ReLU activation function. The output then fans-in via a parallel

to serial converter before being streamed out of the current layer and into the subsequent

layer. After fanning in, the feature stream data is multiplied by an 8-bit scaling constant λl,

which is pre-computed. The number of multipliers is significantly larger than the number of

layers in neural network designs. Hence, although we add one additional scale operation per

layer, it only constitutes a tiny proportion of the overall area in comparison to high precision

architectures.

6.6.3 Architectures

To quantify the benefits of the AddNet optimizations, we use two different architectures with

2-Add, 3-Add and 4-Add RCCMs, as well as traditional 8-bit fixed point. The architectures

we study are a single layer CNN accelerator and a full AlexNet-variant network [62] which

reduces the filter size in the first layer to 7x7 and changes the stride of the first and second

layers to 2. The single layer implementation represents a loopback architecture. To implement

a full network using this architecture, data is sent between the host and FPGA after each layer

is computed sequentially. To minimize the amount of loopback iterations, we instantiate 2048
108

PEs as this equates to the number of neurons in the largest layer for all our networks. As such,

we can compute all layer output feature maps for any of our networks during each loopback

iteration. The AlexNet implementation represents a full dataflow where all convolutional

layers are processed on the FPGA. For all AlexNet implementations using RCCMs, the first

layer uses the 4-Add RCCM. This was because a higher number of coefficients was required

in the first layer to achieve higher accuracy.

Both architectures were developed by AlphaData, we have not added any optimizations aside

from our arithmetic operators. This enables us to focus on the benefits of our optimizations;

we believe AddNet could improve on any 8-bit fixed-point deep learning circuit.

6.6.4 Memory Use

One important advantage of the RCCM designs is the reduction in the number of coefficients

required for storage. Instead of storing the coefficients cs, only the index s has to be stored.

This is similar to the weight sharing approach. However, no decoder circuit is necessary to

realize the codebook as this is implicitly done by the proposed RCCM. While the coefficients

in table 6.2 would require 8, 10 and 12 bit to represent in two’s complement, storing the index

requires only 4, 6 and 8 bits for the 2-Add, 3-Add and 4-Add, respectively. So, significant

savings in storage and memory bandwidth are possible for the 2-Add and 3-Add cases. For

the Kintex Ultrascale devices, BRAMs can be a 36K unit or 18K units. As the number of 36K

BRAMs are reported, the weight buffers at each PE are calculated as 0.5 to represent 18k

BRAMs or 1 to represent 36K BRAMs.

6.7 Results

We now display various hardware utilization and accuracy results to demonstrate applicability

in neural network computation. The hardware results were obtained after place and route

(PAR) using the Vivado 2018.1 design tool.
109

6.7.1 Reconfigurable Multiplier Resources

First, we made a comparison of the resource usage of our proposed RCCM compared to a

generic multiplier. As generic multiplier, we selected the native Xilinx multiplier as it showed

the best results for low word sizes [64]. figure 6.8 shows the LUT resources for varying input

(activation) word sizes win from 3 to 16 bits. While the generic multiplier grows at about 7.4

LUTs/bit, the proposed 2-Add, 3-Add and 4-Add RCCMs only grow at 2, 3 and 4 LUTs/bit,

respectively. It can be seen that the 2-Add and 3-Add RCCMs always outperform the generic

multiplier for win > 4 bit while the 4-Add RCCM is only interesting for larger word sizes of

win > 9 bits. For the considered 9 bit activation, 55.2% and 32.8% of the LUTs can be saved

by using the 2-Add and 3-Add RCCMs. This improves further as we increase the activation

precision, suggesting that this multiplier and quantization method can be very effective for

CNN inference applications and potentially on-chip neural network training, which both

benefit from higher activations precision. For the multipliers used in this experiment, the

pipelined RCCMs can operate between 350 MHz (4 bit) and 250 MHz (16 bit) while the

generic multiplier can be clocked at between 200 MHz (4 bit) and 150 MHz (16 bit). Here, it

is expected that the generic multiplier can be faster for faster timing constraints at the cost of

additional resources.

6.7.2 Architecture Resource Utilization

In this section, we ran PAR experiments to compare our RCCMs against conventional 8-bit

multipliers in a single CNN layer. Table 6.5 shows the resource utilization as well as the

obtained speed.

The first row uses the fewest LUTs as multiplication is done in the DSPs. When DSPs are

disabled, LUT usage dramatically increases. Our 2-Add design achieves the highest frequency

at a significantly reduced LUT count compared to the 8-bit DSP disabled implementation.

However, we note that the LUT usage could be reduced if implemented with tree-structured

optimizations as in [67]. The 3-Add and 4-Add designs have more flexibility compared with

the 2-Add, but require slightly more LUTs and operate with reduced frequency.
110

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

win

L
U

T
s

2-Add 3-Add
4-Add generic mult. 8bit

FIGURE 6.8. LUT results from synthesis for the proposed RCCMs and a
generic 8× win multiplier

TABLE 6.5. PAR result comparison one layer with 10 neurons (with and
without DSP mapping enabled)

Method LUTs FFs DSPs BRAM Freq. [MHz]

8-bit, with DSPs 238 1015 10 5 446.63
8-bit, no DSPs 1407 1515 0 5 355.11
2-Add 818 1421 0 5 464.11
3-Add 928 1365 0 5 415.15
4-Add 1179 1385 0 5 342.68

table 6.6 shows resource utilization for the two architectures, using the 2,3,4-Add and 8-bit

DSP disabled designs. The 2,3,4-Add cases all achieve significant LUT savings. The PCIe

interface uses 48 DSPs and 100 BRAMs. Weight storage memory reduction is also apparent

in the form of a decrease in BRAM utilization from 1557 in the 8-bit model to 1365 for 2-Add.

This is because the reduction in bits per weight by using 2-Adders results in a 50% savings

in BRAMs in the 3rd convolutional layer, as highlighted in table 6.7. This large savings is

due to the discrete size of Xilinx BRAMs. Xilinx BRAMs can be configured to have a data

width of 1, 2, 4, 9 and 18 bits. The wider the data width, the fewer number of words that

can be stored per BRAM. The required data width for each PE is given by the bits stored per
111

TABLE 6.6. Summary Of PAR Utilization on the Xilinx KU115 for all arith-
metic types with PCIe interface included.

Xilinx Architecture 2-Add 3-Add 4-Add 8-bit 8-bit
KU115 disab. enab.

[3]. [3]

BRAM Conv Layer 1154 1154 1154 1154 170
(2160) AlexNet 1365 1557 1557 1557 1229

DSP Conv Layer 48 48 48 48 96
(5520) AlexNet 48 48 48 48 3760

LUTs Conv Layer 187.0 205.6 255.8 383.0 36.2
(663K) AlexNet 331.7 372.8 430.7 467.1 128.8

Estim. Conv Layer 7.6W 7.6W 7.8W 7.5W 7.2W
Power AlexNet 39W 44W 48W 52W 29W

TABLE 6.7. Per Layer BRAM usage, p represents the parallelism of the PE
and b represents the bits required to store each coefficient

p PE b BRAMs Memory (MB)

2-Add 8-bit 2-Add 8-bit 2-Add 8-bit

Conv1 4 96 8 8 96 96 0.04 0.04
Conv2 4 256 4 8 256 256 0.15 0.31
Conv3 1 384 4 8 192 384 0.44 0.88
Conv4 2 384 4 8 384 384 0.33 0.66
Conv5 2 256 4 8 256 256 0.44 0.88

weight, b multiplied by the parallelism of the PE, p. In the case of Conv3, where p = 1, by

reducing b to 4-bits, it is possible to store all the required weights for a PE using only a single

18K BRAM, in contrast to a 36K BRAM for the 8-bit case. In other layers where p is higher,

reduced memory use of 2-adders does not result in fewer BRAMs used due to their discrete

sizes.

In Table 6.6, we also present the estimated overall board power. Evidently there is an increase

in board power when we disable DSPs. This is due to the increase of LUT resources which

typically leads to more switching. However, comparing the 8-bit with DSPs disabled with

AddNet implementations, we see reductions in power. Again, this is largely due to the

reduction in LUTs.
112

The silicon area savings could also be used to scale-up the parallelism to improve throughput,

reduce latency or fit the design on a smaller FPGA. For example, while the AlexNet and

Conv Layer implementations already have one PE per output feature map, we can increase

pl and compute more output feature map pixels in parallel to reduce the number of PE

iterations required to compute a layer. This trivial optimization could be applied when

accelerating most large neural networks. Typically such networks have lots of inherent

parallelism and high computational requirements, with FPGA accelerators implementing

some form of layer folding due to resource restrictions. This is especially the case for higher

precision implementations when accuracy preservation is paramount. Thus, the AddNet

multiplier is a very widely applicable tool for improving the parallelism of existing FPGA

DNN architectures. Alternatively, these area reductions allow the current design to fit on a

smaller device, such as the Xilinx VU3P, which would lead to expected reductions in power

consumption as less hardware is being used.

6.7.3 Frequency

The AlphaData CNN Library can operate conservatively at 250 MHz [3] and the critical path

lies in the PCIe interface. Therefore, since our RCCMs can operate at a higher frequency, it

does not translate to an increase in operating frequency of the overall system. However, as

mentioned in Section 6.4.3, the RCCMs designed can also be trivially pipelined to improve

their operating frequencies. As the multipliers were additionally implemented without

the PCIe interface as both standalone components and within a CNN layer, we explored

the frequencies of pipelined versions. The post PAR frequencies with a clock constraint

of 250 Mhz (more aggressive time constraints will lead to higher frequencies than what

is reported) for the standalone multipliers are shown in Table 6.8. Significant frequency

improvements are demonstrated from the pipelined versions which would lead to designs

achieving higher frequencies when the multiplier lies in the critical path of the system. As

the frequency is maintained at 250 MHz for all our implementations, the throughput remains

constant.
113

TABLE 6.8. PAR frequencies for pipelined versions of the RCCMs

Type 2-Add 3-Add 4-Add

Original 447.43 MHz 483.09 MHz 342.82 MHz
Pipelined 770.42 MHz 578.03 MHz 623.83 MHz

FIGURE 6.9. Relationship between LUTs and amount of parallelism for
different arithmetic

6.7.4 Effect of Layer Size

We now explore how the resources usage scales with parallelism for a single layer convolu-

tional core without the PCIe interface. This is an important metric for data flow implementa-

tions as we want to instantiate a higher number of PEs in layers with the most operations to

achieve load balancing with less operationally intensive layers. Figure 6.9 shows LUT usage

from PAR where the number of parallel PEs is equal to typical neuron layer sizes used in our

trained networks. Using such sizes allows us to simulate computing all output feature maps
114

TABLE 6.9. Accuracy results [%] for AddNet, floating-point (32 bit) and
fixed-point training over various ImageNet models

Model 2-Add 3-Add 4-Add float. 8-bit 6-bit 4-bit Ternary Binary

AlexNet Top-1 55.8 55.8 55.9 55.1 55.5 54.7 53.9 53.2 52.0
Top-5 79.8 79.8 80.0 79.2 78.6 78.5 78.3 78.1 76.9

ResNet-18 Top-1 65.1 67.4 68.1 68.6 66.0 63.5 62.0 61.6 57.5
Top-5 86.4 87.6 87.8 88.2 87.5 85.9 85.4 84.2 81.2

ResNet-50 Top-1 72.1 72.7 73.8 76.0 72.5 69.6 68.4 67.0 65.0
Top-5 91.2 91.5 92.0 92.9 91.6 89.5 89.1 88.7 86.5

of a layer in parallel. As expected, all implementations scale linearly with the number of

PEs. However, for the AddNet multipliers, as we increase the number of PEs we see smaller

increase in LUTs in comparison to the 8-bit version. This is amplified further with the smaller

multiplier implementations which demonstrate smaller gradients to the 4-Add version. For

example, with 2048 PEs instantiated, we achieve a substantial 52% LUT reduction. Typically

neural network implementations are constrained by the number of PEs we can instantiate per

layer due to resource scaling.

6.7.5 Accuracy

To demonstrate the robustness of our quantization strategy, we implement the training on

several benchmark networks for image classification. The proposed method is evaluated on the

ILSVRC-2012 ImageNet dataset which contains natural high resolution visual classification

dataset consisting of 1000 classes, 1.28 million training images and 50K validation images.

The images are preprocessed as per the reference models by resizing the inputs to 256×256

before being randomly cropped to 224×224. We report our single-crop performance evalu-

ation results using Top-1 and Top-5 accuracy, where the cross-entropy loss of the predicted

classification against the actual classification is minimized during training. The AlexNet

network consists of 5 convolutional and 3 fully-connected layers. ResNet networks consist of

blocks of two or three convolutional layers and a residual connection [48]. Two models are

explored with varying depths of these blocks.
115

In Table 6.9, we display the accuracies of quantizing for different multiplier sizes and compare

them to fixed point re-training and floating point network accuracies. All results were trained

with the 4-Add RCCM in the first and last layers to preserve accuracy and were trained for

a fixed number of epochs. For all these networks we achieve at least 8-bit accuracy with

resource savings through our multiplier. This demonstrates the effectiveness of AddNet. In

particular, we can achieve equivalent to floating point accuracy for AlexNet with only 2-Add

multipliers which translates to large resource savings. In some instances, the accuracy is

improved and this is due to the regularization effect of the quantization which improves the

generalization of the network.

6.7.6 Accuracy vs Area

Fundamentally, our goal is to achieve the highest possible accuracy while consuming the

smallest amount of resources. Thus, it is important to evaluate the accuracy achieved against

the amount of resources used. To do this, we have analyzed the area consumed for different

precisions of traditional fixed-point training against AddNet training. figure 6.10 shows these

evaluations for each network. The closer data points are to the top left corner of the graphs,

the more optimized and more efficient the method. We see that both the 2-Add and 3-Add

cases show improvements over the traditional quantization methods. This demonstrates the

effectiveness of our training methodology. The 4-Add case achieves the same or greater

accuracy than the 8-bit but with significantly less resources. Additionally, for all three

networks, the 2-Add and 3-Add case significantly improve accuracy and area over 6-bit

implementations and the 2-Add case significantly improves accuracy and area over the 4-bit

implementations. This is a very important contribution of this work: instead of reducing

precision, which is a standard approach to save silicon area, our method gets better area

savings and much better accuracy for all networks.

After investigating the effect of weight precision, we also analyze the effect of activation

precision on both accuracy and area. table 6.10 shows the accuracy against different sizes

for win using the 2-Add multiplier coefficients for ResNet-18. We particularly analyze 2-

Add ResNet-18 as it has the highest discrepancy from our 8-bit and full-precision models.
116

FIGURE 6.10. Accuracy-Area comparison of uniform and AddNet quantiza-
tion for AlexNet and ResNet

TABLE 6.10. Accuraciy results from changing activation bit width for 2-Add
ResNet-18

2-bit 4-bit 8-bit 12-bit 16-bit

Top-1 54.3% 57.7% 58.2% 58.2% 58.2%
Top-5 79.8% 81.4% 82.0% 82.0% 82.0%

As shown, increasing the activation to 16-bits does not close the accuracy gap. Observing

figure 6.8, the area of the 2-Add with win = 16 is roughly equivalent to the 3-Add with

win = 8. Thus, in this case, it is much more effective to use the 3-Add with win = 8 as the

accuracy is improved.

6.8 Summary

In this Chapter, RCCMs are designed to utilize low-level FPGA architecture properties.

RCCMs restrict their inputs by only allowing a certain types of coefficient sets. Thus,

following the design of RCCMs, a training methdology is described to train CNNs, such

that their representations are compatible with the multiplier. The is done via a distribution

matching technique and quantization training using the STE method. We then describe our

FPGA hardware design for evaluating the performance of our training methods. We compare

different multiplier sizes which allow for different coefficient set sizes. We also compare

against using standard fixed-point arithmetic. Hardware results regarding resource usage,

estimated power consumption and frequency are reported. We also investigate the effect
117

of multiplier sizes have on network accuracy and present results for an accuracy-hardware

trade-off between using our RCCM arithmetic against conventional fixed-point arithmetic.

118

CHAPTER 7

Conclusion

The overall goal of this thesis was to design DNN representations that are amenable to

hardware implementation, but still maintain high accuracy. Over the course of this thesis,

different training techniques were developed to achieve this. Their accuracy was evaluated on

benchmark image classification/object detection datasets and resource utilisation/performance

on specialized hardware. They were able to improve on previous state-of-the-art methods

for different accuracy-performance tradeoffs, making these techniques suitable to various

applications on embedded systems. The contributions, and to what extent they satisfied our

original aims, are explored in greater detail in the following paragraphs.

The first aim of this thesis was to explore whether the use of sparse representations could

enhance DNN hardware performance on embedded platforms. To simplify the problem,

bitwise networks were the focus. A representation with high sparsity was trained, without

impinging on accuracy, and then lossless compression algorithms were used to compress the

model. This work was effective in reducing memory and improving throughput of state-of-

the-art bitwise networks via hardware cost models. Additionally, these models improved or

maintained accuracy on the MNIST and CIFAR10 datasets. This illustrates that for very high

amounts of sparsity, bitwise networks can be compressed and/or accelerated further on FPGA

technology and other specialized hardware platforms. Implementations of DNNs on smaller

devices and/or with higher throughput is therefore possible.

The next aim of this thesis was to design sparse representations in a way that requires minimal

additional hardware for its implementation. Sparsity is induced in bitwise networks by

making all weights in certain convolutional kernels equal to zero. Since computation for those

kernels can be ignored, the regular data access patterns of dense matrices are maintained,

119

meaning no decompressor is required in hardware. This ensures these are applicable to

improving many existing DNN hardware implementations. This is done via a hardware-

aware filter pruning framework for customizing low-precision CNNs to underlying FPGA

architectures. By prioritizing hardware implications of pruning rather than sensitivities of

each layer, performance improvements are achieved for bitwise networks over existing state-

of-the-art pruning techniques. Additionally, state-of-the-art FPGA performance was achieved

for several metrics in terms of FPS, FPS/kLUT and FPS/BRAM for the AlexNet and TinyYolo

networks on the ImageNet dataset. These results illustrated that by using a software-hardware

co-design approach, performance improvements were possible on various hardware platforms.

This broadens the applicability of DNNs, making them more useful for high-throughput

applications.

Another aim of this thesis was to improve the accuracy of hardware-friendly DNN imple-

mentations, with minimal additional overhead. This was studied once again in the context of

improving the accuracy of bitwise networks, which previously achieved high performance at

the cost of a hit in terms of accuracy. Learning scaling factors was proposed using gradient-

based optimizations and ordering them via a diagonal scalar matrix for efficient computation.

In contrast to other quantization approaches, this reduced the computational requirements

of fine-grained quantization and significantly improved state-of-the-art accuracy on modern

benchmark networks such as AlexNet, ResNet and VGG, on the ImageNet dataset. In addition,

to demonstrate the amenability of our representations on specialized hardware, an architecture

was designed and implemented on an FPGA for varying parallelisms which incurred minimal

hardware complexity. These results show that achieving equivalent floating point accuracy is

possible whilst maintaining similar computational complexity to bitwise networks, meaning

DNN implementations on embedded platforms may be suitable for life-critical decision

making applications.

The final aim of this thesis was to increase precision of the network without incurring the

typical hardware costs associated with conventional fixed point arithmetic. To do this, a custom

arithmetic was developed which utilized low-level hardware optimizations to efficiently

utilize FPGA resources. Following this, a training algorithm was described to make CNN

120

representations which are compatible with the hardware. More specifically, reconfigurable

constant coefficient multipliers were explored for CNN inference. A novel distribution

matching scheme which restricts the allowable coefficient values in a computationally tractable

manner is proposed, as well as an associated training algorithm. Our results showed that

this approach achieves better accuracy on the ImageNet dataset than bitwise networks, while

allowing the expensive multipliers usually used in fixed-point implementations to be replaced

by shifts, adds and small multiplexers. Overall, the approach reduces mismatch between CNN

computation and existing FPGA device architectures, making more efficient implementations

possible. It also demonstrates the benefits of designing a custom arithmetic and training

technique for a given hardware platform. This also motivates an investigation into new

low-level DNN hardware designs which don’t rely on conventional arithmetic methods.

7.1 Future outlook

In Chapters 3, the direct hardware architecture performance values were not integrated into

the training algorithm. Instead, sparsity was used in the training algorithm as the metric for

considering hardware performance. It was assumed the more sparsity, the better the hardware

performance. However, a potentially more effective approach to these, would be to implement

automated hardware-software co-design. More specifically, Automated Machine Learning

(AutoML) methods [23]. By directly embedding the target hardware’s performance into

the learning algorithm, it is possible to rely on gradient-based optimizations to find better

accuracy-performance trade-offs. This could potentially guide the training process to choose

sparsity in more specific areas. It would also be interesting for researchers to extend this work

by applying these techniques for more complex datasets and models and hence potentially

improve the accuracy and its applicability to real-world problems.

In Chapter 4, the layers pruned were chosen based on their hardware performance impacts. I.e.

layers which were bottlenecks for performance were targeted. Again, this type of optimization

may benefit from AutoML methods by embedding the hardware costs of each layer into the

training algorithm. Additionally, further work in this area could explore using various other
121

network layers such as the addition of residual layers to improve accuracy with potentially a

small hardware cost. Hardware cost models could be designed for other DNN implementations

on other hardware platforms such as CPUs, GPUs and ASICs with similar pruning techniques

applied.

In Chapter 5, learnable scaling factors were introduced in a pixel-wise/row-wise. However,

exploring scaling factor granularity along the kernel axis, is only suitable for some hard-

ware architectures. Conducting further research in this area could investigate relaxing the

restriction of scaling factor placement having to satisfy a diagonal scalar matrix. This could

either improve accuracy further or generalize this technique to a broader range of hardware

architectures. Exploring different granularities along the input and/or output feature map

channels may achieve this.

In Chapter 6, while the benefits of developing customised training techniques for RCCMs

were demonstrated on CNNs, it is expected that training any type of neural network to make

use of RCCMs is possible. This technique introduces a new dimension for optimization of

neural networks in which the arithmetic is directly customized, and is orthogonal to matrix

decomposition and sparsity-inducing approaches. This approach should be explored as an

alternative to simply studying the use of reduced precision fixed point arithmetic. Further

research in this area may also explore designing custom arithmetic for various hardware

platforms and other FPGA architectures. Additionally, for the same FPGA architecture,

other more efficient multipliers, or alternative arithmetic operators, may be designed and an

accompanying training algorithm derived that builds on our presented approach.

122

Bibliography

[1] Mohamed S. Abdelfattah et al. ‘DLA: Compiler and FPGA Overlay for Neural

Network Inference Acceleration’. In: 2018 28th International Conference on Field

Programmable Logic and Applications (FPL) (2018), pp. 411–4117.

[2] Kamel Abdelouahab et al. ‘Accelerating CNN inference on FPGAs: A Survey’. In:

CoRR abs/1806.01683 (2018). arXiv: 1806.01683. URL: http://arxiv.org/

abs/1806.01683.

[3] Alpha Data. An Open Source FPGA CNN Library. May 2017. URL: ftp://ftp.

alpha-data.com/pub/appnotes/cnn/ad-an-0055_v1_0.pdf.

[4] Arash Ardakani, Carlo Condo and Warren J Gross. ‘Sparsely-connected neural net-

works: towards efficient vlsi implementation of deep neural networks’. In: arXiv

preprint arXiv:1611.01427 (2016).

[5] Utku Aydonat et al. ‘An OpenCL(TM) Deep Learning Accelerator on Arria 10’. In:

CoRR abs/1701.03534 (2017).

[6] Mohammad Babaeizadeh, Paris Smaragdis and Roy H Campbell. ‘Noiseout: A simple

way to prune neural networks’. In: arXiv preprint arXiv:1611.06211 (2016).

[7] Philip Bachman, Alessandro Sordoni and Adam Trischler. ‘Learning Algorithms for

Active Learning’. In: Proceedings of the 34th International Conference on Machine

Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Ma-

chine Learning Research. International Convention Centre, Sydney, Australia: PMLR,

June 2017, pp. 301–310. URL: http://proceedings.mlr.press/v70/

bachman17a.html.

[8] Yoshua Bengio, Nicholas Léonard and Aaron C. Courville. ‘Estimating or Propagating

Gradients Through Stochastic Neurons for Conditional Computation’. In: CoRR

abs/1308.3432 (2013). arXiv: 1308.3432. URL: http://arxiv.org/abs/

1308.3432.

123

https://arxiv.org/abs/1806.01683
http://arxiv.org/abs/1806.01683
http://arxiv.org/abs/1806.01683
ftp://ftp.alpha-data.com/pub/appnotes/cnn/ad-an-0055_v1_0.pdf
ftp://ftp.alpha-data.com/pub/appnotes/cnn/ad-an-0055_v1_0.pdf
http://proceedings.mlr.press/v70/bachman17a.html
http://proceedings.mlr.press/v70/bachman17a.html
https://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432

[9] Kiran Bhageshpur. ‘Data Is The New Oil – And That’s A Good Thing’. In: 2019.

URL: https://www.forbes.com/sites/forbestechcouncil/2019/

11/15/data-is-the-new-oil-and-thats-a-good-thing/?sh=

62ea340e7304.

[10] Zhaowei Cai et al. ‘Deep Learning with Low Precision by Half-wave Gaussian

Quantization’. In: CoRR abs/1702.00953 (2017).

[11] Wenlin Chen et al. ‘Compressing Neural Networks with the Hashing Trick’. In: Pro-

ceedings of the 32Nd International Conference on International Conference on Ma-

chine Learning - Volume 37. ICML’15. Lille, France: JMLR.org, 2015, pp. 2285–2294.

URL: http://dl.acm.org/citation.cfm?id=3045118.3045361.

[12] Sharan Chetlur et al. ‘cuDNN: Efficient Primitives for Deep Learning’. In: arXiv

preprint arXiv:1410.0759 (2014).

[13] Yoni Choukroun et al. ‘Low-bit quantization of neural networks for efficient inference’.

In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

IEEE. 2019, pp. 3009–3018.

[14] Corinna Cortes, Mehryar Mohri and Afshin Rostamizadeh. ‘L2 regularization for

learning kernels’. In: arXiv preprint arXiv:1205.2653 (2012).

[15] Matthieu Courbariaux and Yoshua Bengio. ‘BinaryNet: Training Deep Neural Net-

works with Weights and Activations Constrained to +1 or -1’. In: CoRR abs/1602.02830

(2016). arXiv: 1602.02830. URL: http://arxiv.org/abs/1602.02830.

[16] Matthieu Courbariaux, Yoshua Bengio and Jean-Pierre David. ‘BinaryConnect: Train-

ing Deep Neural Networks with Binary Weights During Propagations’. In: Proceed-

ings of the 28th International Conference on Neural Information Processing Systems

- Volume 2. NIPS’15. Montreal, Canada: MIT Press, 2015, pp. 3123–3131. URL:

http://dl.acm.org/citation.cfm?id=2969442.2969588.

[17] Matthieu Courbariaux, Yoshua Bengio and Jean-Pierre David. ‘BinaryConnect: Train-

ing Deep Neural Networks with binary weights during propagations’. In: CoRR

abs/1511.00363 (2015). URL: http://arxiv.org/abs/1511.00363.

124

https://www.forbes.com/sites/forbestechcouncil/2019/11/15/data-is-the-new-oil-and-thats-a-good-thing/?sh=62ea340e7304
https://www.forbes.com/sites/forbestechcouncil/2019/11/15/data-is-the-new-oil-and-thats-a-good-thing/?sh=62ea340e7304
https://www.forbes.com/sites/forbestechcouncil/2019/11/15/data-is-the-new-oil-and-thats-a-good-thing/?sh=62ea340e7304
http://dl.acm.org/citation.cfm?id=3045118.3045361
https://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
http://dl.acm.org/citation.cfm?id=2969442.2969588
http://arxiv.org/abs/1511.00363

[18] Matthieu Courbariaux, Yoshua Bengio and Jean-Pierre David. ‘Binaryconnect: Train-

ing deep neural networks with binary weights during propagations’. In: Advances in

neural information processing systems. 2015, pp. 3123–3131.

[19] Matthieu Courbariaux et al. ‘Binarized neural networks: Training deep neural networks

with weights and activations constrained to+ 1 or-1’. In: arXiv preprint arXiv:1602.02830

(2016).

[20] S S Demirsoy, A.G. Dempster and I Kale. ‘Design guidelines for reconfigurable

multiplier blocks’. In: Circuits and Systems, 2003. ISCAS ’03. Proceedings of the

2003 International Symposium on. 2003.

[21] J. Deng et al. ‘ImageNet: A Large-Scale Hierarchical Image Database’. In: CVPR09.

2009.

[22] Caiwen Ding et al. ‘REQ-YOLO: A Resource-Aware, Efficient Quantization Frame-

work for Object Detection on FPGAs’. In: Proceedings of the 2019 ACM/SIGDA In-

ternational Symposium on Field-Programmable Gate Arrays. FPGA ’19. Seaside, CA,

USA: ACM, 2019, pp. 33–42. ISBN: 978-1-4503-6137-8. DOI: 10.1145/3289602.

3293904. URL: http://doi.acm.org/10.1145/3289602.3293904.

[23] Xuanyi Dong and Yi Yang. ‘Network pruning via transformable architecture search’.

In: Advances in Neural Information Processing Systems. 2019, pp. 760–771.

[24] Yueqi Duan et al. ‘Learning Deep Binary Descriptor With Multi-Quantization’. In:

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July

2017.

[25] The Economist. ‘The world’s most valuable resource is no longer oil, but data’. In:

2017. URL: https://www.economist.com/leaders/2017/05/06/the-

worlds-most-valuable-resource-is-no-longer-oil-but-data.

[26] M. Everingham et al. ‘The Pascal Visual Object Classes (VOC) Challenge’. In: Inter-

national Journal of Computer Vision 88.2 (June 2010), pp. 303–338.

[27] Julian Faraone et al. ‘AddNet: Deep Neural Networks Using FPGA-Optimized Mul-

tipliers’. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28

(2020), pp. 115–128.

125

https://doi.org/10.1145/3289602.3293904
https://doi.org/10.1145/3289602.3293904
http://doi.acm.org/10.1145/3289602.3293904
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

[28] Julian Faraone et al. ‘Compressing Low Precision Deep Neural Networks Using

Sparsity-Induced Regularization in Ternary Networks’. In: CoRR abs/1709.06262

(2017).

[29] Julian Faraone et al. ‘Customizing Low-Precision Deep Neural Networks for FP-

GAs’. In: 2018 28th International Conference on Field Programmable Logic and

Applications (FPL) (2018), pp. 97–973.

[30] Julian Faraone et al. ‘SYQ: Learning Symmetric Quantization for Efficient Deep

Neural Networks’. In: The IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). June 2018.

[31] Nicholas J. Fraser et al. ‘Scaling Binarized Neural Networks on Reconfigurable Logic’.

In: Proceedings of the 8th Workshop and 6th Workshop on Parallel Programming and

Run-Time Management Techniques for Many-core Architectures and Design Tools

and Architectures for Multicore Embedded Computing Platforms. PARMA-DITAM

’17. Stockholm, Sweden: ACM, 2017, pp. 25–30. ISBN: 978-1-4503-4877-5. DOI:

10.1145/3029580.3029586. URL: http://doi.acm.org/10.1145/

3029580.3029586.

[32] Nicholas J Fraser et al. ‘Scaling binarized neural networks on reconfigurable logic’.

In: Proceedings of the 8th Workshop and 6th Workshop on Parallel Programming and

Run-Time Management Techniques for Many-core Architectures and Design Tools and

Architectures for Multicore Embedded Computing Platforms. 2017, pp. 25–30.

[33] Yao Fu et al. Deep Learning with INT8 Optimization on Xilinx Devices (White Paper).

Tech. rep. Xilinx, Inc., 2017.

[34] Mohammad Ghasemzadeh, Mohammad Samragh and Farinaz Koushanfar. ‘ReBNet:

Residual Binarized Neural Network’. In: 26th IEEE Annual International Symposium

on Field-Programmable Custom Computing Machines, FCCM 2018, Boulder, CO,

USA, April 29 - May 1, 2018. 2018, pp. 57–64. DOI: 10.1109/FCCM.2018.

00018. URL: https://doi.org/10.1109/FCCM.2018.00018.

[35] Xavier Glorot and Yoshua Bengio. ‘Understanding the difficulty of training deep

feedforward neural networks’. In: In Proceedings of the International Conference on

126

https://doi.org/10.1145/3029580.3029586
http://doi.acm.org/10.1145/3029580.3029586
http://doi.acm.org/10.1145/3029580.3029586
https://doi.org/10.1109/FCCM.2018.00018
https://doi.org/10.1109/FCCM.2018.00018
https://doi.org/10.1109/FCCM.2018.00018

Artificial Intelligence and Statistics (AISTATS’10). Society for Artificial Intelligence

and Statistics. 2010.

[36] David Goldberg. ‘What every computer scientist should know about floating-point

arithmetic’. In: ACM Computing Surveys (CSUR) 23.1 (1991), pp. 5–48.

[37] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. http://

www.deeplearningbook.org. MIT Press, 2016.

[38] Robert M. Gray and David L. Neuhoff. ‘Quantization’. In: IEEE transactions on

information theory 44.6 (1998), pp. 2325–2383.

[39] Kaiyuan Guo et al. ‘A Survey of FPGA Based Neural Network Accelerator’. In: CoRR

abs/1712.08934 (2017). arXiv: 1712.08934. URL: http://arxiv.org/abs/

1712.08934.

[40] Suyog Gupta et al. ‘Deep Learning with Limited Numerical Precision’. In: Proceed-

ings of the 32Nd International Conference on International Conference on Machine

Learning - Volume 37. ICML’15. Lille, France: JMLR.org, 2015, pp. 1737–1746. URL:

http://dl.acm.org/citation.cfm?id=3045118.3045303.

[41] Song Han et al. ‘Dsd: Dense-sparse-dense training for deep neural networks’. In:

arXiv preprint arXiv:1607.04381 (2016).

[42] Song Han, Huizi Mao and William J. Dally. ‘Deep Compression: Compressing Deep

Neural Network with Pruning, Trained Quantization and Huffman Coding’. In: 4th

International Conference on Learning Representations, ICLR 2016, San Juan, Puerto

Rico, May 2-4, 2016, Conference Track Proceedings. Ed. by Yoshua Bengio and Yann

LeCun. 2016. URL: http://arxiv.org/abs/1510.00149.

[43] Song Han et al. ‘EIE: Efficient Inference Engine on Compressed Deep Neural Net-

work’. In: CoRR abs/1602.01528 (2016). arXiv: 1602.01528. URL: http://

arxiv.org/abs/1602.01528.

[44] Song Han et al. ‘ESE: Efficient Speech Recognition Engine with Compressed LSTM

on FPGA’. In: CoRR abs/1612.00694 (2016).

[45] Song Han et al. ‘Learning both weights and connections for efficient neural network’.

In: Advances in neural information processing systems. 2015, pp. 1135–1143.

127

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://arxiv.org/abs/1712.08934
http://arxiv.org/abs/1712.08934
http://arxiv.org/abs/1712.08934
http://dl.acm.org/citation.cfm?id=3045118.3045303
http://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1602.01528
http://arxiv.org/abs/1602.01528
http://arxiv.org/abs/1602.01528

[46] Martin Hardieck et al. ‘Reconfigurable Convolutional Kernels for Neural Networks

on FPGAs’. In: Proceedings of the 2019 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, FPGA 2019, Seaside, CA, USA, February 24-

26, 2019. 2019, pp. 43–52. DOI: 10.1145/3289602.3293905. URL: https:

//doi.org/10.1145/3289602.3293905.

[47] R. I. Hartley. ‘Subexpression sharing in filters using canonic signed digit multipli-

ers’. In: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal

Processing 43.10 (Oct. 1996), pp. 677–688. ISSN: 1057-7130. DOI: 10.1109/82.

539000.

[48] Kaiming He et al. ‘Deep Residual Learning for Image Recognition’. In: CoRR

abs/1512.03385 (2015). arXiv: 1512.03385. URL: http://arxiv.org/

abs/1512.03385.

[49] Kaiming He et al. ‘Delving Deep into Rectifiers: Surpassing Human-Level Perform-

ance on ImageNet Classification’. In: CoRR abs/1502.01852 (2015). arXiv: 1502.

01852. URL: http://arxiv.org/abs/1502.01852.

[50] Yang He et al. ‘Progressive deep neural networks acceleration via soft filter pruning’.

In: arXiv preprint arXiv:1808.07471 1.2 (2018), p. 8.

[51] Itamar Ben Hemo. ‘Big Data Statistics: How Much Data Is There in the World?’ In:

2020. URL: https://rivery.io/big-data-statistics-how-much-

data-is-there-in-the-world/.

[52] John L Hennessy and David A Patterson. Computer architecture: a quantitative

approach. Elsevier, 2011.

[53] Catherine F. Higham and D. Higham. ‘Deep Learning: An Introduction for Applied

Mathematicians’. In: ArXiv abs/1801.05894 (2019).

[54] Andrew G. Howard et al. ‘MobileNets: Efficient Convolutional Neural Networks for

Mobile Vision Applications’. In: CoRR abs/1704.04861 (2017).

[55] Itay Hubara et al. ‘Quantized Neural Networks: Training Neural Networks with

Low Precision Weights and Activations’. In: CoRR abs/1609.07061 (2016). arXiv:

1609.07061. URL: http://arxiv.org/abs/1609.07061.

128

https://doi.org/10.1145/3289602.3293905
https://doi.org/10.1145/3289602.3293905
https://doi.org/10.1145/3289602.3293905
https://doi.org/10.1109/82.539000
https://doi.org/10.1109/82.539000
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1502.01852
https://rivery.io/big-data-statistics-how-much-data-is-there-in-the-world/
https://rivery.io/big-data-statistics-how-much-data-is-there-in-the-world/
https://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1609.07061

[56] Itay Hubara et al. ‘Quantized neural networks: Training neural networks with low

precision weights and activations’. In: The Journal of Machine Learning Research

18.1 (2017), pp. 6869–6898.

[57] IEEE. IEEE standard for binary floating-point arithmetic. Note: Standard 754–1985.

New York: Institute of Electrical and Electronics Engineers, 1985.

[58] Sergey Ioffe and Christian Szegedy. ‘Batch Normalization: Accelerating Deep Net-

work Training by Reducing Internal Covariate Shift’. In: CoRR abs/1502.03167 (2015).

arXiv: 1502.03167. URL: http://arxiv.org/abs/1502.03167.

[59] Alex Krizhevsky, Vinod Nair and Geoffrey Hinton. ‘CIFAR-10 (Canadian Institute for

Advanced Research)’. In: (). URL: http://www.cs.toronto.edu/~kriz/

cifar.html.

[60] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton. ‘ImageNet Classification with

Deep Convolutional Neural Networks’. In: Advances in Neural Information Processing

Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc., 2012, pp. 1097–1105. URL:

http://papers.nips.cc/paper/4824-imagenet-classification-

with-deep-convolutional-neural-networks.pdf.

[61] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. ‘ImageNet Classifica-

tion with Deep Convolutional Neural Networks’. In: Proc. Int. Conf. on Neural

Information Processing Systems. Lake Tahoe, Nevada: Curran Associates Inc., 2012,

pp. 1097–1105. URL: http://dl.acm.org/citation.cfm?id=2999134.

2999257.

[62] Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. ‘ImageNet Classification

with Deep Convolutional Neural Networks’. In: Commun. ACM 60.6 (May 2017),

pp. 84–90. ISSN: 0001-0782. DOI: 10.1145/3065386. URL: http://doi.acm.

org/10.1145/3065386.

[63] S Kullback and R A Leibler. ‘On information and sufficiency’. In: The Annals of

Mathematical Statistics 22.1 (1951), pp. 79–86.

[64] M Kumm, Shahid Abbas and Peter Zipf. ‘An Efficient Softcore Multiplier Architecture

for Xilinx FPGAs’. In: IEEE Symposium on Computer Arithmetic (ARITH). 2015,

pp. 18–25.

129

https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://doi.org/10.1145/3065386
http://doi.acm.org/10.1145/3065386
http://doi.acm.org/10.1145/3065386

[65] Ian Kuon and Jonathan Rose. ‘Measuring the gap between FPGAs and ASICs’. In:

IEEE Transactions on computer-aided design of integrated circuits and systems 26.2

(2007), pp. 203–215.

[66] Kiseok Kwon et al. ‘Co-design of Deep Neural Nets and Neural Net Accelerators

for Embedded Vision Applications’. In: Proceedings of the 55th Annual Design

Automation Conference. DAC ’18. San Francisco, California: ACM, 2018, 148:1–

148:6. ISBN: 978-1-4503-5700-5. DOI: 10.1145/3195970.3199849. URL:

http://doi.acm.org/10.1145/3195970.3199849.

[67] Martin Langhammer and Gregg Baeckler. ‘High Density and Performance Multiplica-

tion for FPGA’. In: IEEE Symposium on Computer Arithmetic. 2018.

[68] Guillaume Leclerc et al. ‘Smallify: Learning network size while training’. In: arXiv

preprint arXiv:1806.03723 (2018).

[69] Yann LeCun. ‘The MNIST database of handwritten digits’. In: http://yann. lecun.

com/exdb/mnist/ (1998).

[70] Yann LeCun, Yoshua Bengio et al. ‘Convolutional networks for images, speech, and

time series’. In: ().

[71] Yann LeCun, Yoshua Bengio and Geoffrey Hinton. ‘Deep learning’. In: nature

521.7553 (2015), pp. 436–444.

[72] Yann LeCun, Yoshua Bengio and Geoffrey Hinton. ‘Deep learning’. In: Nature 521

(May 2015), 436 EP -. URL: http://dx.doi.org/10.1038/nature14539.

[73] Fengfu Li and Bin Liu. ‘Ternary Weight Networks’. In: CoRR abs/1605.04711 (2016).

URL: http://arxiv.org/abs/1605.04711.

[74] Huimin Li et al. ‘A high performance FPGA-based accelerator for large-scale con-

volutional neural networks’. In: Proc. Int. Conf. on Field Programmable Logic and

Applications (2016), pp. 1–9.

[75] Sicheng Li et al. ‘An FPGA Design Framework for CNN Sparsification and Accelera-

tion’. In: FCCM. IEEE Computer Society, 2017, p. 28.

[76] Ling Liang et al. ‘Crossbar-aware neural network pruning’. In: IEEE Access 6 (2018),

pp. 58324–58337.

130

https://doi.org/10.1145/3195970.3199849
http://doi.acm.org/10.1145/3195970.3199849
http://dx.doi.org/10.1038/nature14539
http://arxiv.org/abs/1605.04711

[77] Darryl D. Lin, Sachin S. Talathi and V. Sreekanth Annapureddy. ‘Fixed Point Quant-

ization of Deep Convolutional Networks’. In: Proceedings of the 33rd International

Conference on International Conference on Machine Learning - Volume 48. ICML’16.

New York, NY, USA: JMLR.org, 2016, pp. 2849–2858. URL: http://dl.acm.

org/citation.cfm?id=3045390.3045690.

[78] Zhouhan Lin et al. ‘Neural Networks with Few Multiplications’. In: CoRR abs/1510.03009

(2015). URL: http://arxiv.org/abs/1510.03009.

[79] Clark S Lindsey and Thomas Lindblad. ‘Review of Hardward Neural Networks: A

User’s Perspective’. In: INTERNATIONAL JOURNAL OF NEURAL SYSTEMS 6

(1995), pp. 215–224.

[80] Christos Louizos, Karen Ullrich and Max Welling. ‘Bayesian compression for deep

learning’. In: Advances in neural information processing systems. 2017, pp. 3288–

3298.

[81] Huizi Mao et al. ‘Exploring the Regularity of Sparse Structure in Convolutional Neural

Networks’. In: CoRR abs/1705.08922 (2017).

[82] Naveen Mellempudi et al. ‘Ternary Neural Networks with Fine-Grained Quantization’.

In: CoRR abs/1705.01462 (2017). URL: http://arxiv.org/abs/1705.

01462.

[83] Asit K. Mishra et al. ‘WRPN: Wide Reduced-Precision Networks’. In: CoRR abs/1709.01134

(2017). arXiv: 1709.01134. URL: http://arxiv.org/abs/1709.01134.

[84] Janardan Misra and Indranil Saha. ‘Artificial Neural Networks in Hardware: A Survey

of Two Decades of Progress’. In: Neurocomput. 74.1–3 (Dec. 2010), pp. 239–255.

ISSN: 0925-2312. DOI: 10.1016/j.neucom.2010.03.021. URL: https:

//doi.org/10.1016/j.neucom.2010.03.021.

[85] Daisuke Miyashita, Edward H. Lee and Boris Murmann. ‘Convolutional Neural

Networks using Logarithmic Data Representation’. In: CoRR abs/1603.01025 (2016).

arXiv: 1603.01025. URL: http://arxiv.org/abs/1603.01025.

[86] Konrad Möller et al. ‘Dynamically Reconfigurable Constant Multiplication on FPGAs’.

In: Methoden und Beschreibungssprachen zur Modellierung und Verifikation von

Schaltungen und Systemen (MBMV). 2014, pp. 159–169.

131

http://dl.acm.org/citation.cfm?id=3045390.3045690
http://dl.acm.org/citation.cfm?id=3045390.3045690
http://arxiv.org/abs/1510.03009
http://arxiv.org/abs/1705.01462
http://arxiv.org/abs/1705.01462
https://arxiv.org/abs/1709.01134
http://arxiv.org/abs/1709.01134
https://doi.org/10.1016/j.neucom.2010.03.021
https://doi.org/10.1016/j.neucom.2010.03.021
https://doi.org/10.1016/j.neucom.2010.03.021
https://arxiv.org/abs/1603.01025
http://arxiv.org/abs/1603.01025

[87] Konrad Möller et al. ‘Reconfigurable Constant Multiplication for FPGAs’. In: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 36.6

(2017), pp. 927–937.

[88] K Möller et al. ‘Optimal Shift Reassignment in Reconfigurable Constant Multiplication

Circuits’. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems 37.3 (Mar. 2018), pp. 710–714.

[89] Gareth W Morris, David B Thomas and Wayne Luk. ‘FPGA accelerated low-latency

market data feed processing’. In: 2009 17th IEEE Symposium on High Performance

Interconnects. IEEE. 2009, pp. 83–89.

[90] Duncan J. M. Moss et al. ‘High performance binary neural networks on the Xeon+FPGA™

platform’. In: FPL. IEEE, 2017, pp. 1–4.

[91] Duncan J.M Moss et al. ‘A Customizable Matrix Multiplication Framework for the

Intel HARPv2 Xeon+FPGA Platform: A Deep Learning Case Study’. In: Proceedings

of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays. FPGA ’18. Monterey, CALIFORNIA, USA: ACM, 2018, pp. 107–116. ISBN:

978-1-4503-5614-5. DOI: 10.1145/3174243.3174258. URL: http://doi.

acm.org/10.1145/3174243.3174258.

[92] Rene Mueller, Jens Teubner and Gustavo Alonso. ‘Data processing on FPGAs’. In:

Proceedings of the VLDB Endowment 2.1 (2009), pp. 910–921.

[93] Markus Nagel et al. ‘Data-free quantization through weight equalization and bias

correction’. In: Proceedings of the IEEE International Conference on Computer Vision.

2019, pp. 1325–1334.

[94] Marcelo Gennari do Nascimento, Roger Fawcett and Victor Adrian Prisacariu. ‘DSConv:

Efficient Convolution Operator’. In: Proceedings of the IEEE International Conference

on Computer Vision. 2019, pp. 5148–5157.

[95] Stephen Neuendorffer and Fernando Martinez-Vallina. ‘Building zynq® accelerat-

ors with Vivado® high level synthesis’. In: The 2013 ACM/SIGDA International

Symposium on Field Programmable Gate Arrays, FPGA ’13, Monterey, CA, USA,

February 11-13, 2013. Ed. by Brad L. Hutchings and Vaughn Betz. ACM, 2013,

132

https://doi.org/10.1145/3174243.3174258
http://doi.acm.org/10.1145/3174243.3174258
http://doi.acm.org/10.1145/3174243.3174258

pp. 1–2. DOI: 10.1145/2435264.2435266. URL: https://doi.org/10.

1145/2435264.2435266.

[96] Andrew Y. Ng. ‘Feature Selection, L1 vs. L2 Regularization, and Rotational Invari-

ance’. In: Proceedings of the Twenty-First International Conference on Machine Learn-

ing. ICML ’04. Banff, Alberta, Canada: Association for Computing Machinery, 2004,

p. 78. ISBN: 1581138385. DOI: 10.1145/1015330.1015435. URL: https:

//doi.org/10.1145/1015330.1015435.

[97] Eriko Nurvitadhi et al. ‘Accelerating Binarized Neural Networks: Comparison of

FPGA, CPU, GPU, and ASIC’. In: Int. Conf. on Field-Programmable Technology

(2016), pp. 77–84.

[98] Eriko Nurvitadhi et al. ‘Accelerating recurrent neural networks in analytics servers:

Comparison of FPGA, CPU, GPU, and ASIC’. In: FPL. IEEE, 2016, pp. 1–4.

[99] Eunhyeok Park, Junwhan Ahn and Sungjoo Yoo. ‘Weighted-Entropy-Based Quantiza-

tion for Deep Neural Networks’. In: The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). July 2017.

[100] Mohammad Rastegari et al. ‘XNOR-Net: ImageNet Classification Using Binary

Convolutional Neural Networks’. In: CoRR abs/1603.05279 (2016). URL: http:

//arxiv.org/abs/1603.05279.

[101] Mohammad Rastegari et al. ‘Xnor-net: Imagenet classification using binary convolu-

tional neural networks’. In: European conference on computer vision. Springer. 2016,

pp. 525–542.

[102] Joseph Redmon and Ali Farhadi. ‘YOLO9000: Better, Faster, Stronger’. In: CoRR

abs/1612.08242 (2016).

[103] Sébastien Ricard. ‘AI’s Effect On Productivity Now And In The Future’. In: 2020.

URL: https://www.forbes.com/sites/forbestechcouncil/2020/

03/20/ais-effect-on-productivity-now-and-in-the-future/

?sh=586676237591.

[104] Juan J Rodrıguez-Andina, Maria D Valdes-Pena and Maria J Moure. ‘Advanced

features and industrial applications of FPGAs—A review’. In: IEEE Transactions on

Industrial Informatics 11.4 (2015), pp. 853–864.

133

https://doi.org/10.1145/2435264.2435266
https://doi.org/10.1145/2435264.2435266
https://doi.org/10.1145/2435264.2435266
https://doi.org/10.1145/1015330.1015435
https://doi.org/10.1145/1015330.1015435
https://doi.org/10.1145/1015330.1015435
http://arxiv.org/abs/1603.05279
http://arxiv.org/abs/1603.05279
https://www.forbes.com/sites/forbestechcouncil/2020/03/20/ais-effect-on-productivity-now-and-in-the-future/?sh=586676237591
https://www.forbes.com/sites/forbestechcouncil/2020/03/20/ais-effect-on-productivity-now-and-in-the-future/?sh=586676237591
https://www.forbes.com/sites/forbestechcouncil/2020/03/20/ais-effect-on-productivity-now-and-in-the-future/?sh=586676237591

[105] David E Rumelhart, Geoffrey E Hinton and Ronald J Williams. ‘Learning representa-

tions by back-propagating errors’. In: nature 323.6088 (1986), pp. 533–536.

[106] Olga Russakovsky et al. ‘ImageNet Large Scale Visual Recognition Challenge’. In: Int.

J. Comput. Vision 115.3 (Dec. 2015), pp. 211–252. ISSN: 0920-5691. DOI: 10.1007/

s11263-015-0816-y. URL: http://dx.doi.org/10.1007/s11263-

015-0816-y.

[107] Herman Schmit. ‘Extra-dimensional island-style FPGAs’. In: New Algorithms, Ar-

chitectures and Applications for Reconfigurable Computing. Springer, 2005, pp. 3–

13.

[108] Bruno da Silva et al. ‘A Multimode SoC FPGA-based acoustic camera for wire-

less sensor networks’. In: 2018 13th International Symposium on Reconfigurable

Communication-centric Systems-on-Chip (ReCoSoC). IEEE. 2018, pp. 1–8.

[109] Karen Simonyan and Andrew Zisserman. ‘Very Deep Convolutional Networks for

Large-Scale Image Recognition’. In: CoRR abs/1409.1556 (2014). arXiv: 1409.

1556. URL: http://arxiv.org/abs/1409.1556.

[110] Yi Sun, Xiaogang Wang and Xiaoou Tang. ‘Sparsifying neural network connections

for face recognition’. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2016, pp. 4856–4864.

[111] Vivienne Sze et al. ‘Efficient Processing of Deep Neural Networks: A Tutorial and

Survey’. In: CoRR abs/1703.09039 (2017). arXiv: 1703.09039. URL: http:

//arxiv.org/abs/1703.09039.

[112] Mingxing Tan and Quoc Le. ‘EfficientNet: Rethinking Model Scaling for Convolu-

tional Neural Networks’. In: International Conference on Machine Learning. 2019,

pp. 6105–6114.

[113] Wei Tang, Gang Hua and Liang Wang. ‘How to Train a Compact Binary Neural

Network with High Accuracy?’ In: AAAI. 2017.

[114] P Tummeltshammer, J C Hoe and M Püschel. ‘Time-Multiplexed Multiple-Constant

Multiplication’. In: IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 26.9 (Sept. 2007), pp. 1551–1563.

134

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1703.09039
http://arxiv.org/abs/1703.09039
http://arxiv.org/abs/1703.09039

[115] Yaman Umuroglu et al. ‘FINN: A Framework for Fast, Scalable Binarized Neural

Network Inference’. In: CoRR abs/1612.07119 (2016). arXiv: 1612.07119. URL:

http://arxiv.org/abs/1612.07119.

[116] Yaman Umuroglu et al. ‘FINN: A Framework for Fast, Scalable Binarized Neural Net-

work Inference’. In: Proceedings of the 2017 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays. FPGA ’17. Monterey, California, USA: ACM,

2017, pp. 65–74. ISBN: 978-1-4503-4354-1. DOI: 10.1145/3020078.3021744.

URL: http://doi.acm.org/10.1145/3020078.3021744.

[117] Yaman Umuroglu et al. ‘Finn: A framework for fast, scalable binarized neural network

inference’. In: Proceedings of the 2017 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays. 2017, pp. 65–74.

[118] Stylianos I. Venieris and Christos-Savvas Bouganis. ‘fpgaConvNet: A Framework

for Mapping Convolutional Neural Networks on FPGAs’. In: Int. Symp. on Field-

Programmable Custom Computing Machines. May 2016, pp. 40–47.

[119] Stylianos I. Venieris, Alexandros Kouris and Christos-Savvas Bouganis. ‘Toolflows for

Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions’.

In: ACM Comput. Surv. 51.3 (June 2018), 56:1–56:39. ISSN: 0360-0300. DOI: 10.

1145/3186332. URL: http://doi.acm.org/10.1145/3186332.

[120] Ganesh Venkatesh, Eriko Nurvitadhi and Debbie Marr. ‘Accelerating Deep Convolu-

tional Networks using low-precision and sparsity’. In: CoRR abs/1610.00324 (2016).

arXiv: 1610.00324. URL: http://arxiv.org/abs/1610.00324.

[121] Ganesh Venkatesh, Eriko Nurvitadhi and Debbie Marr. ‘Accelerating Deep Convo-

lutional Networks using low-precision and sparsity’. In: 2017 IEEE International

Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, New Orleans,

LA, USA, March 5-9, 2017. 2017, pp. 2861–2865. DOI: 10.1109/ICASSP.2017.

7952679. URL: https://doi.org/10.1109/ICASSP.2017.7952679.

[122] Ganesh Venkatesh, Eriko Nurvitadhi and Debbie Marr. ‘Accelerating deep convo-

lutional networks using low-precision and sparsity’. In: 2017 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2017,

pp. 2861–2865.

135

https://arxiv.org/abs/1612.07119
http://arxiv.org/abs/1612.07119
https://doi.org/10.1145/3020078.3021744
http://doi.acm.org/10.1145/3020078.3021744
https://doi.org/10.1145/3186332
https://doi.org/10.1145/3186332
http://doi.acm.org/10.1145/3186332
https://arxiv.org/abs/1610.00324
http://arxiv.org/abs/1610.00324
https://doi.org/10.1109/ICASSP.2017.7952679
https://doi.org/10.1109/ICASSP.2017.7952679
https://doi.org/10.1109/ICASSP.2017.7952679

[123] E G Walters. ‘Partial-Product Generation and Addition for Multiplication in FPGAs

with 6-Input LUTs’. In: Asilomar Conference on Signals, Systems and Computers

(2014), pp. 1247–1251.

[124] Haohan Wang and Bhiksha Raj. ‘On the origin of deep learning’. In: arXiv preprint

arXiv:1702.07800 (2017).

[125] Paul Webster. ‘Patient data in the cloud’. In: 1 (Dec. 2019). URL: https://doi.

org/10.1016/S2589-7500(19)30202-X.

[126] Jiaxiang Wu et al. ‘Quantized convolutional neural networks for mobile devices’. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

2016, pp. 4820–4828.

[127] Xilinx DPU. Accessed: 2019-05-09. URL: https : / / www . xilinx . com /

products/intellectual-property/dpu.html.

[128] Yuhui Xu et al. ‘Trained rank pruning for efficient deep neural networks’. In: arXiv

preprint arXiv:1812.02402 (2018).

[129] Jiwei Yang et al. ‘Quantization networks’. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2019, pp. 7308–7316.

[130] Tien-Ju Yang, Yu-Hsin Chen and Vivienne Sze. ‘Designing Energy-Efficient Convo-

lutional Neural Networks using Energy-Aware Pruning’. In: CoRR abs/1611.05128

(2016).

[131] Tien-Ju Yang et al. ‘Netadapt: Platform-aware neural network adaptation for mo-

bile applications’. In: Proceedings of the European Conference on Computer Vision

(ECCV). 2018, pp. 285–300.

[132] Yifan Yang et al. ‘Synetgy: Algorithm-hardware Co-design for ConvNet Accelerators

on Embedded FPGAs’. In: Proceedings of the 2019 ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays. FPGA ’19. Seaside, CA, USA: ACM,

2019, pp. 23–32. ISBN: 978-1-4503-6137-8. DOI: 10.1145/3289602.3293902.

URL: http://doi.acm.org/10.1145/3289602.3293902.

[133] Jiecao Yu et al. ‘Scalpel: Customizing DNN Pruning to the Underlying Hardware

Parallelism’. In: SIGARCH Comput. Archit. News 45.2 (June 2017), pp. 548–560.

ISSN: 0163-5964.

136

https://doi.org/10.1016/S2589-7500(19)30202-X
https://doi.org/10.1016/S2589-7500(19)30202-X
https://www.xilinx.com/products/intellectual-property/dpu.html
https://www.xilinx.com/products/intellectual-property/dpu.html
https://doi.org/10.1145/3289602.3293902
http://doi.acm.org/10.1145/3289602.3293902

[134] Chen Zhang et al. ‘Optimizing FPGA-based Accelerator Design for Deep Convolu-

tional Neural Networks’. In: Proceedings of the 2015 ACM/SIGDA International Sym-

posium on Field-Programmable Gate Arrays. FPGA ’15. Monterey, California, USA:

ACM, 2015, pp. 161–170. ISBN: 978-1-4503-3315-3. DOI: 10.1145/2684746.

2689060. URL: http://doi.acm.org/10.1145/2684746.2689060.

[135] Dejiao Zhang et al. ‘Learning to share: Simultaneous parameter tying and sparsific-

ation in deep learning’. In: International Conference on Learning Representations.

2018.

[136] Dongqing Zhang et al. ‘LQ-Nets: Learned Quantization for Highly Accurate and

Compact Deep Neural Networks’. In: Proceedings of the European Conference on

Computer Vision (ECCV). Sept. 2018.

[137] Tianyun Zhang et al. ‘Adam-admm: A unified, systematic framework of structured

weight pruning for dnns’. In: arXiv preprint arXiv:1807.11091 2.3 (2018).

[138] Ritchie Zhao, Christopher De Sa and Zhiru Zhang. ‘Overwrite Quantization: Op-

portunistic Outlier Handling for Neural Network Accelerators’. In: arXiv preprint

arXiv:1910.06909 (2019).

[139] Ritchie Zhao et al. ‘Accelerating Binarized Convolutional Neural Networks with

Software-Programmable FPGAs’. In: Proc. Int. Symp. on Field-Programmable Gate

Arrays. 2017, pp. 15–24.

[140] Ritchie Zhao et al. ‘Improving neural network quantization without retraining using

outlier channel splitting’. In: arXiv preprint arXiv:1901.09504 (2019).

[141] Zhong-Qiu Zhao et al. ‘Object detection with deep learning: A review’. In: IEEE

transactions on neural networks and learning systems 30.11 (2019), pp. 3212–3232.

[142] Aojun Zhou et al. ‘Explicit loss-error-aware quantization for low-bit deep neural

networks’. In: Proceedings of the IEEE conference on computer vision and pattern

recognition. 2018, pp. 9426–9435.

[143] Aojun Zhou et al. ‘Incremental Network Quantization: Towards Lossless CNNs with

Low-Precision Weights’. In: CoRR abs/1702.03044 (2017). URL: http://arxiv.

org/abs/1702.03044.

137

https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2684746.2689060
http://doi.acm.org/10.1145/2684746.2689060
http://arxiv.org/abs/1702.03044
http://arxiv.org/abs/1702.03044

[144] Shuchang Zhou et al. ‘DoReFa-Net: Training Low Bitwidth Convolutional Neural

Networks with Low Bitwidth Gradients’. In: CoRR abs/1606.06160 (2016).

[145] Zhengguang Zhou et al. ‘Progressive Learning of Low-Precision Networks for Image

Classification’. In: IEEE Transactions on Multimedia (2020).

[146] Chenzhuo Zhu et al. ‘Trained Ternary Quantization’. In: CoRR abs/1612.01064 (2016).

URL: http://arxiv.org/abs/1612.01064.

1 Appendix A

Something

138

http://arxiv.org/abs/1612.01064

	Abstract
	Acknowledgements
	Author Statement
	Publications
	Contents
	List of Figures
	Chapter 1. Introduction
	1.1. Aims and Contributions
	1.2. Thesis Structure

	Chapter 2. Background
	2.1. Deep Neural Networks
	2.1.1. Inference
	2.1.2. Training
	2.1.3. Convolutional Neural Networks

	2.2. Data Representations
	2.2.1. Floating-point
	2.2.2. Fixed-point

	2.3. Quantization Network Training
	2.3.1. Quantization
	2.3.2. Network Quantization
	2.3.3. Bitwise Networks
	2.3.4. Straight Through Estimator Learning

	2.4. Pruning
	2.4.1. Quantization and Pruning for Efficient Hardware Designs

	2.5. Applications
	2.5.1. Image Classification
	2.5.2. Object Detection

	2.6. Hardware Implementations
	2.6.1. Specialized Hardware For DNNs
	2.6.2. FPGAs
	2.6.3. FPGAs For DNN implementations

	2.7. Summary

	Chapter 3. Using Sparsity To Enhance Bitwise Network Performance
	3.1. Compressing Bitwise Using Sparsity-Induced Regularization
	3.2. Sparse TNN Training
	3.2.1. Quantization Threshold
	3.2.2. L2 Regularization
	3.2.3. Quantization Pruning
	3.2.4. Weight Representations
	3.2.5. Algorithm

	3.3. Sparsity and Networks
	3.3.1. MNIST
	3.3.2. CIFAR10

	3.4. Hardware Implications of Sparse TNNs
	3.4.1. Hardware Decompressor
	3.4.2. A Sparse TNN Accelerator
	3.4.3. Accelerator Architecture
	3.4.4. Exploiting Sparsity Through Data Reuse

	3.5. Summary

	Chapter 4. Customizing Bitwise Networks For Hardware Platforms
	4.1. Background
	4.2. Contributions
	4.3. Network Quantization Setup
	4.4. CNN Acceleration
	4.4.1. CNN acceleration on CPUs/GPUs
	4.4.2. FPGA-based CNN acceleration of Dataflow Architectures

	4.5. Hardware-Aware Pruning
	4.5.1. Layer Selection
	4.5.2. Model-finetuning
	4.5.3. Quantization Error Pruning
	4.5.4. Filter Ranking
	4.5.5. Data Fine-tuning

	4.6. Experimental Setup
	4.6.1. Networks
	4.6.2. Computing Core

	4.7. Results
	4.7.1. Streaming Dataflow
	4.7.2. Comparison To Previous Work

	4.8. Summary

	Chapter 5. Improving Quantization Of Bitwise Networks
	5.1. SYQ: Learning Symmetric Quantization For Efficient Bitwise Networks
	5.2. Related Work
	5.2.1. Low-precision Networks

	5.3. Ordered Scaling Factor Representations
	5.3.1. Reducing Information Loss Through Scaling Factors

	5.4. SYQ Structural Representations
	5.4.1. Layers
	5.4.2. Subgroups

	5.5. SYQ Training
	5.5.1. Symmetric Quantizer
	5.5.2. Initialization
	5.5.3. Activations Quantization

	5.6. Experiments
	5.6.1. Networks
	5.6.2. Changing Granularity Via Weight Subgroups
	5.6.3. Comparisons To Previous Work
	5.6.4. Varying Activation Bitwidth

	5.7. Hardware Implications
	5.7.1. Computational and Memory Complexity
	5.7.2. Architectural Design

	5.8. Summary

	Chapter 6. Increasing Precision With Low Hardware Cost
	6.1. AddNet: DNNs Using FPGA-Optimized Multipliers
	6.2. Background
	6.2.1. Small Softcore Multipliers

	6.3. Related Work
	6.4. AddNet Reconfigurable Multipliers
	6.4.1. Reconfigurable Multipliers
	6.4.2. FPGA Multiplier Mapping
	6.4.3. Architectures Considered

	6.5. AddNet Training
	6.5.1. Distribution Matching
	6.5.2. Weight Quantization
	6.5.3. Activation Quantization

	6.6. Experimental Setup
	6.6.1. System Overview
	6.6.2. Network Layer Accelerator Core
	6.6.3. Architectures
	6.6.4. Memory Use

	6.7. Results
	6.7.1. Reconfigurable Multiplier Resources
	6.7.2. Architecture Resource Utilization
	6.7.3. Frequency
	6.7.4. Effect of Layer Size
	6.7.5. Accuracy
	6.7.6. Accuracy vs Area

	6.8. Summary

	Chapter 7. Conclusion
	7.1. Future outlook

	Bibliography
	1. Appendix A

