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Abstract

In recent years, machine learning algorithms have been taking over traditional pro-
gramming approaches and are being used to great effect in a broad range of applica-
tions. In this thesis, we look at kernel adaptive filters (KAFs): a class of non-linear
adaptive filters which utilise a Mercer kernel function. These algorithms have been
shown to provide high accuracy in a number of applications, including those that
would require extremely high data rates, such as channel equalisation, extremely
low latency, such as financial market prediction, and many other applications from
embedded to cloud computing.

The purpose of this thesis is to determine whether or not it is feasible to apply
KAFs to such a range of applications. To do this, we propose new KAF algorithms
which are hardware friendly in nature. We also explore exotic computing platforms
from field programmable gate arrays (FPGAs) to distributed computing settings. We
show that with these techniques, orders of magnitude increases in performance can
be achieved and as such, KAFs can be applied to a wide range of problems.
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Chapter 1

Introduction

1.1 Motivation and Aims

Machine learning has been defined generally as a “Field of study that gives computers
the ability to learn without being explicitly programmed” (Simon, 2013). In recent
years it has grown in popularity as it has been found to have almost limitless applica-
tions. Often the algorithms associated with machine learning are surprisingly simple
but allow computers to perform a variety of complex tasks. These algorithms also
provide solutions to several computational problems for which no explicit solutions
have been found including:

• computer vision, such as image classification (Krizhevsky, Sutskever, and
Hinton, 2012), object detection (Redmon and Farhadi, 2017) and semantic seg-
mentation (He et al., 2017);

• recommender systems (Naumov et al., 2019); and

• natural language processing, such as speech recognition (Amodei et al., 2016).

Difficult problems which are solved with machine learning implementations
often suffer from high computational complexity and latency. Many non-trivial
machine learning problems require large amounts of training examples with many
features in order to perform adequately. Furthermore, in online learning problems
training examples are not known beforehand. The machine learning algorithm must
be able to provide predictions while continuously learning in order to improve
future predictions. Online tracking algorithms must also be able to provide accurate
predictions even if there are changes in the underlying unknown process.

Online tracking problems often require real-time learning and predictions in order
to be useful. These applications include:

• channel equalisation (Engel, Mannor, and Meir, 2004);

• anomaly detection in networks (Moustafa and Slay, 2015);

• prediction of financial data (Silva et al., 2016); and

• audio signal processing, such as dereverberation (Naylor and Gaubitch, 2005)
and audio compression (Silva et al., 2016).

A recent group of algorithms, known as KAFs (Liu, Prı́ncipe, and Haykin, 2011) have
shown promise in addressing such problems. However, little work has been done
to demonstrate the feasibility of utilising such algorithms in the above applications
domains, but rather most prior works have simply shown that there are accuracy
benefits for using such algorithms. Compared with linear adaptive filters, KAFs
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exhibit a moderate increase in algorithmic and computational complexity, along with
increased storage requirements (Liu, Prı́ncipe, and Haykin, 2011).

In this thesis, we attempt to bridge this gap. Specifically, we ask ourselves the
following research question: “can algorithmic enhancements and custom accelerators
show the feasibility of applying KAFs to a wide range of application domains?”
Throughout this thesis, we show that KAFs may be applicable in a wide range of
areas from learning small scale online models with extreme data rate requirements
(Chapter 5), to learning extremely large models on a distributed computing platform
(Chapter 6). We show that with careful algorithmic selection and custom computing
architectures, orders of magnitude in overall performance improvements are possible.

1.2 Contributions

This thesis presents two methods which can be applied to KAFs in order to parallelise
them in two distinct ways, through pipelining and through data parallelism.

Firstly, we introduce delayed model adaptation, which previously had only been
applied to linear adaptive filters (Long, Ling, and Proakis, 1989), which allows
KAFs to be pipelined in a way which overcomes some dependency issues. We
demonstrate its effectiveness by modifying the kernel normalised least mean squares
(KNLMS) (Richard, Bermudez, and Honeine, 2009) to create a family of similar algo-
rithms. Specifically, the delayed kernel normalised least mean squares (DKNLMS),
multi-delayed kernel normalised least mean squares (MDKNLMS), delayed kernel
normalised least mean squares with dictionary guarding (DKNLMS-DG) and de-
layed kernel normalised least mean squares with correction terms (DKNLMS-CT)
algorithms. Secondly, we demonstrate a method to parallelise kernel recursive least
squares (KRLS) in a way that significantly reduces the interdependencies between
compute nodes, doesn’t require multiple iterations through the dataset, but still
provides an upper bound on the overall modelling error. The resultant algorithm,
distributed kernel recursive least squares (DistKRLS), is amenable to acceleration on
distributed platforms.

We propose scalable architectures and subsequent implementations of core genera-
tors capable of implementing: KNLMS, DKNLMS, MDKNLMS and DKNLMS-DG in
Chisel (Bachrach et al., 2012). We also provide a library containing highly performant
C and CUDA implementations for standard CPUs / GPUs respectively. The CPU
library significantly outperforms prior works (Van Vaerenbergh, 2012) for smaller
scale models, while the GPU library is the only implementation of KAFs of which
we’re aware. Both of these libraries and the Chisel-based core generators have been
open sourced.12 We also provide a Vivado HLS-based (Xilinx, 2016) architecture
and implementation for scalable, foldable, deeply pipelined implementations of
KNLMS which are suitable for hyperparameter optimisation, or for online predictive
modelling of multi-channel systems.

We perform analysis of various hardware platforms and algorithmic analysis
of various KAFs to understand their amenability to highly performant hardware
implementations. Finally, we perform dynamic rounding analysis of various KAFs
using Monte Carlo arithmetic (MCA) (Parker, 1997).

1https://bitbucket.org/nick_fraser/libkaf
2https://github.com/nickfraser/rosetta

https://bitbucket.org/nick_fraser/libkaf
https://github.com/nickfraser/rosetta
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1.3 Structure of the Thesis

This thesis is organised as follows:

• Chapter 2 provides a background in machine learning, computer arithmetic
and we review some prior computer architectures with a focus on online kernel
based algorithms known as KAFs;

• Chapter 3 identifies and compares some available computing platforms and
studies properties (in particular, arithmetic intensity (AI) and roundoff error
analysis) of some popular KAFs to determine which computing platforms
would be best suited as deployment targets under various conditions;

• Chapter 4 considers the problem of hyperparameter optimisation (or multi-
channel online learning problems) for smaller scale KAFs and proposes a core
generator, along with several FPGA implementations capable of extremely high
throughput;

• Chapter 5 considers extremely high throughput applications, such as channel
equalisation, and proposes a new class of KAFs along with a core generator
capable of generating FPGA implementation capable of handling extremely
high data rates;

• Chapter 6 looks at decomposing large scale, offline KAF problems into smaller
scale problems capable of being distributed and later recombined while main-
taining high accuracy and avoiding multiple iterations over the training set;

• Conclusions of this work are discussed in Chapter 7 along with potential future
work;

• Lastly, Chapter A contains the work of a paper which formed part of my PhD
work, but does not fit into the main story of this thesis on the subject of FPGA
implementations of BNNs.

In terms of the structure of this thesis, Chapter 3, Chapter 4, Chapter 5 and
Chapter 6 consider vastly different application domains. As such, much of the
introductory and background material associated with each chapter is retained within
the chapter itself. The background chapter of this thesis then provides general
background required for the reader to quickly pickup the background material
associated with the content chapter. In terms of content chapters, they relate to the
following publications which were published during the course of my PhD studies:

• Chapter 3 is related to no specific publication, but can be seen as core material
which guides the decision making process for the subsequent chapters;

• Chapter 4 is heavily based on Fraser et al. (2015a) and Fraser et al. (2017a),
Fraser et al. (2017a) being a journal extension of Fraser et al. (2015a);

• Chapter 5 is heavily based on Fraser and Leong (2020);

• Chapter 6 is based on Fraser et al. (2015b) while also containing significant extra
material;

• Finally A is heavily based on Fraser et al. (2017b).
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Chapter 2

Background

This section provides a background in machine learning, kernel methods, error
analysis in finite precision arithmetic and an overview of FPGA architectures for
machine learning.

2.1 Machine Learning

Machine learning refers to a field of study in which computers are taught to perform
tasks without being explicitly programmed to do so (Samuel, 1959; Koza et al., 1996).
In recent years, with the increase in computational resources available, machine
learning has been found to be a simple and effective tool in solving many complex
algorithm design problems. Such problems include:

a) series forecasting (Tay and Cao, 2001);

b) channel equalisation (Engel, Mannor, and Meir, 2004);

c) image classification (Krizhevsky, Sutskever, and Hinton, 2012); and

d) object detection (Redmon and Farhadi, 2017).

In this work, we focus on non-linear adaptive filtering tasks, such as time-series pre-
diction and channel equalisation. Adaptive filters are well known online algorithms
which can model linear systems and have modest computational requirements. Ex-
tending them to address non-linear problems raises a number of challenges which will
be discussed in this section. A relatively new set of algorithms, known as KAFs (Liu,
Prı́ncipe, and Haykin, 2011), address several of these issues by introducing the kernel
trick (Cortes and Vapnik, 1995) and this forms a foundation for the work in this
thesis. However, before we discuss the specifics of KAFs, we must understand linear
regression, adaptive filters and the so-called kernel trick.

In this section, we aim to lay the foundation for several common machine learning
concepts and KAFs. In subsequent chapters, we build on this foundation and describe
in detail the specific KAF associated with each content chapter.

2.1.1 Linear Regression

Linear regression is commonly used in many machine learning problems and in statis-
tics. Let X = {x1,x2, · · · ,xN} ∈ RN×M be the input training set of N observations
of dimension M , and the target be y ∈ RN . Least-squares linear regression attempts
to find the optimal vector h ∈ RM which satisfies

J = min ‖y −Xh‖2 . (2.1)
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FIGURE 2.1: Example of linear regression applied to a 2D problem.

This is a minima when

∂

∂h
(y −Xh)T (y −Xh) = −2XTy + 2XTXh = 0 . (2.2)

Linear regression is often used to find a linear trend in some noisy data. Figure 2.1
shows linear regression applied to a 2-dimensional problem, where the entries of h
represent the y-intercept and gradient of the line. Note that linear regression can be
applied to higher order problems in which case the model is assumed to be a plane
or hyper-plane. There are many iterative methods for finding the optimal solution
for h including batch gradient descent (BGD) (Cauchy, 1847) algorithm shown in
Algorithm 2.1. Note that xi,j refers to the jth element of xi.

Algorithm 2.1 Pseudocode for the BGD algorithm. Note η is the step-size parameter
and the hypothesis function, fh(x), is given by hTX for linear regression problems.

Initialise h = 0. Choose a step size parameter η.
while Not converged do

for j = 1, 2, · · · ,m do
hj = hj − η 1

n

∑n
i=1(fh(xi)− y)xi,j

end for
end while

BGD is a very common algorithm as it is simple to implement and can be used for
a range of hypothesis functions, fh(x). Note that batch gradient descent algorithm
slowly converges towards optimal values for the weights, h. Batch gradient descent
can be quite slow in practice as it needs to iterate through all of the training data
before making a single “step” towards an optimal solution for h. A modification to
BGD known as mini batch gradient descent improves the convergence of BGD by
breaking the training sets into k smaller groups of size N/k. Using the mini BGD
algorithm, a single step can be taken after iterating through N/k training examples.
For least squares linear regression problems if (XTX) is not singular, a direct solution
can be computed for h as follows:

h = (XTX)−1Xy . (2.3)

Finally, if an approximate solution for h is sufficient, another common technique
to find h is stocastic gradient descent (SGD) (Robbins and Monro, 1951). SGD has
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gained popularity in recent years as it is an optimiser commonly used in training on
deep neural networks.

Linear regression assumes that the model which underlies the data is linear.
Unfortunately, for non-trivial problems this is often not the case. Consider the four
data sets, shown in Figure 2.2, which all produce the same linear regression model.1

These datasets are known as Anscombe’s quartet (Anscombe, 1973), In particular, note
that in the set denoted by x2 there is a relationship between input and output but it is
a non-linear relationship which is not modelled well using a linear model. Anscombe
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FIGURE 2.2: Anscombe’s quartet - four completely different data sets
with almost exactly the same statistical properties.

argues the need for plotting data, instead of relying on statistical measurements. For
the four datasets in Figure 2.2 several statistical measurements of the data are almost
exactly the same including: mean, variance, equation of regression lines, estimated
standard error and several others (Anscombe, 1973). Although high dimensional
spaces are difficult to graph in machine learning, it highlights the need to understand
your dataset in order to avoid making modelling mistakes.

2.1.2 Non-linear Regression

A common way to adapt linear regression to non-linear problems is to apply a non-
linear mapping, Φ(x) ∈ RM → RM ′ , to the input data. Linear regression can then
be applied to this new data to find h̃ ∈ RM ′ . The cost function for this new space
becomes:

J ′ = min
h̃

∥∥∥y − X̃h̃
∥∥∥2

. (2.4)

1Within a tolerance of 1%
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where X̃ = [Φ(x1),Φ(x2), · · · ,Φ(xn)]T ∈ RN×M ′ . For most non-linear mapping
functions, Φ(x), an optimal solution for h̃ can be found using BGD or the normal
equation, i.e., Equation (2.3). Using the set denoted by x2, we can create a mapping
function, Φx2 , which allows us to model x2 effectively. By looking at the shape created
by the data in x2, we may guess that there is a parabolic relationship between input
and output. Given this guess, consider the following mapping function:

Φx2(x) =
[
x0, x1, x

2
1

]T
, (2.5)

where x0 = 1 is the bias term and x1 is the x-coordinate of the current input sample.
Figure 2.3 shows Anscombe’s quartet modelled using Φx2 as the mapping function.
Notice that in particular, x2 is modelled almost perfectly by this new mapping
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FIGURE 2.3: Anscombe’s quartet - modelled using the mapping func-
tion Φx2

.

function. Similarly, other more complex systems can be modelled well by using linear
regression and a non-linear mapping function. However, in the context of machine
learning, there can be several challenges in taking this approach, in particular the
selection of Φ.

In many instances, machine learning algorithms are used to model so-called
“black box” systems in which the relationship between input and output is unknown
or difficult to observe. For example, it’s not clear how one would design feature
mapping functions to model:

a) how a set of pixels map to decimal digits (LeCun et al., 1998);

b) how much electricity a city will consume at a particular time, based on the time
of the year and the electricity consumed in the several days proceeding the
current day (Silva et al., 2013); and
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c) whether a particular currency will increase or decrease in value, based on prior
values of several different currencies (Silva et al., 2016).

Particularly for high dimensional input data, designing such functions can involve
sophisticated learning techniques, such as grammatical evolution (Silva et al., 2013),
multi-variate Taylor Series (Taylor, 1715) or Volterra Series (Volterra, 1887) expansions.
These techniques can incur significant computational costs themselves. For complex
models, the dimension of M ′ can dramatically increase, causing a significant increase
in computational complexity of regression algorithms. This increase in complexity is
often referred to as the curse of dimensionality (Bellman, 1957).

2.1.3 Kernel Methods

Unfortunately, in many applications the feature space, M ′, is so large that a real
time implementation would not be practical. To find an efficient solution which
minimises J ′, the problem needs to be framed slightly differently. To do this, we
need to represent our linear regression problem in the dual representation. The dual
representation can be obtained by pre-multiplying Equation (2.3) by the identity
(XTX)(XTX)−1 to obtain:

h = (XTX)(XTX)−1(XTX)−1XTy

h = XTα ,
(2.6)

which makes h =
∑N

i=1 αixi a linear combination of the training set (Shawe-Taylor
and Cristianini, 2004).

Let K = X̃X̃
T

be the kernel matrix where Ki,j , the entry corresponding to the ith
row and jth column of the kernel matrix, is given by the kernel function, κ(xi,xj). For
a standard linear regression problem the kernel function is the dot product between
to input vectors κ(xi,xj) = xTi xj . With this new representation, the cost function can
be updated to the following:

J ′′ = min
α
‖y −Kα‖2 , (2.7)

where α is a N × 1 vector of weights. Using Equation (2.2), the minima of J ′ can be
found using the dual representation as follows:

XTXh = XTy

XXTXXTα = XXTy

K2α = Ky

α = K−1y .

(2.8)

To find the entries of the matrix K, only the dot product between two mapped
vectors needs to be calculated, κ(xi,xj) = Φ(xi)

TΦ(xj). Kernel functions provide
a solution for κ(xi,xj) without directly mapping the inputs vectors. For example,
consider the polynomial kernel:

κ(xi,xj) = (xTi xj + c)d , (2.9)

where c is a constant bias and d ∈ N is the order of the polynomial. In order to
calculate its corresponding mapping function, let us first consider a simple example.
Let x,v ∈ RM , where M = 2 and κ(x,v) = (xTv + c)d, where c = 1 and d = 2.
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Note, for this example we switch the notation from κ(xi,xj) → κ(x,v) to improve
readability of the subsequent indexing. We wish to find a mapping function Φ(x) ∈
R2 → RM ′ , such that:

κ(x,v) = Φ(x)TΦ(v) = (xTv + c)d = (xTv + 1)2 (2.10)

κ(x,v) = (x1v1 + x2v2 + 1)2 (2.11)

κ(x,v) = x2
1v

2
1 + x2

2v
2
2 + 2x1v1x2v2 + 2x1v1 + 2x2v2 + 1 , (2.12)

where xi/vi are the ith terms of x/v respectively. By grouping terms associated with
x and v, we can see that Φ(x) =

[
x2

1, x
2
2,
√

2x1x2,
√

2x1,
√

2x2, 1
]T

.
Following a similar procedure as in the previous example, further generalisation

of Equation (2.12) for when d = 2 and M = m leads to the following mapping
function:

κ(x,v) = Φ(x)TΦ(v) = (xTv + 1)2 (2.13)

κ(x,v) = (x1v1 + · · ·+ xmvm + 1)2 (2.14)

κ(x,v) =

m∑
i=1

x2
i v

2
i +

m∑
i=1

m∑
j=1

xivj +

m∑
i=1

xivi + 1 . (2.15)

Again, by carefully grouping terms, we end up with the following:

Φ(x) =
[
x2

1, · · · , x2
m,
√

2xmxm−1, · · · ,
√

2xmx1, · · · ,
√

2x2x1,
√

2xm, · · · ,
√

2x1, 1
]T

.
(2.16)

The calculation of the mapping function for the second order polynomial kernel has
a computational complexity of O(m2) while the equivalent kernel function is of order
O(m).

We now further generalise Equation (2.16) for arbitrary values of d. Without loss
of generality, we set c = 0, and following similar steps to Shashua (2009, Chapter 4.3),
we get:

κ(x,v) = Φ(x)TΦ(v) = (xTv)d (2.17)

κ(x,v) = (x1v1 + · · ·+ xmvm)d (2.18)

κ(x,v) =
∑

∑m
i=1 ni=d

(
d

n1, · · · , nm

) m∏
i=1

xnii v
ni
i , (2.19)

where ni ∈ N ∀ i and
(

d
n1,··· ,nm

)
is the multinomial coefficient, given by:(

d

n1, · · · , nm

)
=

d!∏m
i=1 ni!

. (2.20)

An interpretation of Equation (2.19) is that every term in the sum is a unique permu-
tation of the multi-index n = (n1, · · · , nm) ∈ Nm0 such that

∑m
i ni = d, e.g., a unique

arrangement of packing d balls into m bins. Using multi-index notation, we can write
Equation (2.19) compactly as follows:

κ(x,v) =
∑
|n|=d

(
d

n

)
xnvn . (2.21)
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Following on from this, the polynomial mapping function can be written as follows:

Φ(x) =

(√(
d

n

)
xn

)
|n|=d

. (2.22)

This formulation can be used for cases where c 6= 0, by simply augmenting the input
vectors, i.e., x̂ =

[
xT ,
√
c
]T .

The number of terms,M ′, in Φ(x) is given by the number of possible combinations
of the multi-index, n. As stated previously, this is analogous to the number of unique
packing of d balls into m bins, or more concisely as:

M ′ =

(
m+ d− 1

m− 1

)
(2.23)

M ′ =

(
m+ d− 1

d

)
(2.24)

M ′ =
(m+ d− 1)!

d!(m− 1)!
(2.25)

In terms of scalability, the calculation of Φ(x) is of order O(md) complexity, while the
calculation of κ(x,v) is order O(m+ d) complexity.

One of the most common kernel functions (and the one which is the main focus
in this work) is the Gaussian kernel, given by:

κ(x,v) = e−
‖x−v‖2

2σ2 , (2.26)

where σ is a constant often referred to as the kernel “width”. The mapping function
associated with the Gaussian kernel (often referred to as the radial basis function
kernel) can be derived as follows (again, we follow the same approach as Shashua
(2009)): without loss of generality, let σ = 1.

κ(x,v) = ex
Tv− ‖x‖

2

2
− ‖v‖

2

2 (2.27)

κ(x,v) = ex
Tve−

‖x‖2
2 e−

‖v‖2
2 (2.28)

κ(x,v) =
∞∑
j=0

(
xTv

)j
j!

e−
‖x‖2

2 e−
‖v‖2

2 (2.29)

κ(x,v) =

∞∑
j=0

e− ‖x‖22j

√
j!

e
− ‖v‖

2

2j

√
j!

(
xTv

)j (2.30)

κ(x,v) =

∞∑
j=0

∑
|n|=j

e− ‖x‖22j

√
j!

1/j

e
− ‖v‖

2

2j

√
j!

1/j

(
j

n

)
xnvn

 (2.31)

where Equation (2.29) takes advantage of the Taylor series expansion of the exponen-
tial function: ex =

∑∞
j=0

xj

j! and Equation (2.31) uses the expansion of the polynomial
kernel, given in Equation (2.21). By carefully collecting terms in Equation (2.31), the
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mapping function, Φ(x), can expressed as:

Φ(x) =


e− ‖x‖22j

√
j!

1/j

√(
j

n

)
xn


|n|=j


j=0,··· ,∞

(2.32)

Φ(x) =

e− ‖x‖22j

√
j!

1/j

√(
j

n

)
xn


j=0,··· ,∞, |n|=j

. (2.33)

Clearly, this expression is a little hard to parse. An alternative understanding of
Equation (2.33) is as follows: for every value of j ∈ 0, · · · ,∞, there are

(
m+j−1

j

)
different possible values for |n| = j. Therefore, the number of terms in Φ(x), M ′,
is every possible value of n for every value of j. The terms in Φ(x) contains every
combination of power of the terms within x, i.e.,

∏∑m
i=1 ni=j

xnii multiplied by some
scalar term. Given there are infinitely many values for j, there are clearly M ′ =∞.
To put another way, the Gaussian kernel represents a mapping of our input vector,
x into an infinite dimensional feature space. In terms of scalability, calculating Φ(x)
is of order O(∞) complexity, while calculating κ(x,v) is of order O(m) complexity.
The Gaussian kernel is often described as a “universal approximator” since it is
able to approximate any continuous function with arbitrary accuracy (Hammer and
Gersmann, 2003), this is a direct consequence of its mapping into infinite dimensional
feature space.

Now that we’ve derived the mapping function of the Gaussian kernel, let’s
develop an intuitive understanding of how it can be used to model functions. To
calculate the Gaussian kernel, the square of the Euclidean distance between x and
v must be calculated. This value is then scaled, negated and finally the exponential
is taken of the result. If x = v, then the distance between them is zero and the
result of κ(x,v) = 1. If the distance between x and v is a large value, ω, and σ = 1,
then the result of κ(x,v) = e−ω. As the distance between x and v approaches ∞,
κ(x,v) approaches zero. Based on the above understanding, a common intuitive
understanding of the Gaussian kernel as a measure of “similarity” between two
vectors, x and v. Figure 2.4 shows how linear regression in the dual space using the
Gaussian kernel performs on the same data sets as Figure 2.2. Note that the dataset x2

is modelled quite accurately by linear regression in the mapped space of the Gaussian
kernel. The regression models shown in Figure 2.4 are remarkably similar to those
found in Figure 2.3. The key difference is that for the models shown in Figure 2.3
we had to design our own mapping function. For complex problems, the design of
such mapping functions is an open research problem and often significant domain
knowledge is required to design them effectively. Alternatively, use of the Gaussian
kernel requires only the selection of σ to be applied effectively to the problem at hand.

Finally, other popular kernel functions include the hyperbolic tangent kernel,
κ(xi,xj) = tanh(αxTi xj + c), and the Laplacian kernel. The Laplacian kernel, κ(xi,
xj) = 2−‖xi−xj‖/σ, has gained some interest recently, since it can be implemented in
hardware efficiently (Anguita et al., 2007). There have been kernel functions proposed
for handling several different types of data, including strings (Lodhi et al., 2002) and
graphs (Vishwanathan et al., 2010). For a good summary of several kernel functions
and their applications, we refer readers to Souza (2010). Interestingly, despite not
meeting all the requirements of a valid kernel function, the hyperbolic tangent kernel
is reasonably popular. This is likely due to the hyperbolic tangent function:

a) being a popular activation function for neural networks; and
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FIGURE 2.4: Anscombe’s quartet - non-linear models created using
linear regression in the space mapped by the Gaussian kernel.

b) working quite well in practice (Boughorbel, Tarel, and Boujemaa, 2005).

2.1.4 Properties of Kernel Functions

In Section 2.1.3, we discussed the dual representation and some mapping functions
associated with popular kernel functions. We have shown that two popular kernel
functions are equivalent to dot-products between two vectors in a space inferred by
a mapping function, Φ. In this section, we discuss these kernel functions in a more
theoretical way, i.e., the theory that underpins the examples provided in the previous
section. We also detail several properties of kernel functions, and how to create new
kernel functions through composition.

Firstly, we can see that from Equation (2.8) that the kernel matrix, K, must be
invertible, otherwise a solution for α cannot be found. Explicitly, a chosen kernel
function, κ, must be a positive-definite function, i.e., K is a positive semi-definite
matrix. Explicitly, K is positive semi-definite if:

zTKz ≥ 0 , (2.34)
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where z ∈ RN . The proof is as follows (Domke, 2012a):

zTKz =
N∑
i=1

N∑
j=1

ziκ(xi,xj)zj (2.35)

zTKz =

N∑
i=1

N∑
j=1

ziΦ(xi)
TΦ(xj)zj (2.36)

zTKz =
N∑
i=1

ziΦ(xi)
T (

N∑
j=1

Φ(xj)zj) (2.37)

zTKz =

(
N∑
i=1

ziΦ(xi)

)T ( N∑
i=1

ziΦ(xi)

)
(2.38)

zTKz =

∥∥∥∥∥
N∑
i=1

ziΦ(xi)

∥∥∥∥∥
2

(2.39)

zTKz ≥ 0 , (2.40)

where z = [z1, · · · , zN ]. Equation (2.40) shows us that if κ(xi,xj) = Φ(xi)
TΦ(xj)

then K is positive semi-definite. Mercer’s theorem (Aronszajn, 1950) states that
the opposite is also true, i.e., if κ is a continuous positive semi-definite kernel on
a compact set X , then there is an orthonormal basis of eigenfunctions, {ϕi}, such
that the corresponding eigenvalues, {λi}, are non-negative. The eigenfunctions
which correspond to non-zero eigenvectors are continuous on X and κ(xi,xj) can be
represented as follows:

κ(xi,xj) =
∞∑
i=1

λiϕi(xi)ϕi(xj) , (2.41)

where xi,xj ∈ X . Note, that X is a compact set, and therefore refers to any possible
training example, xi. It is possible, that for a limited dataset that a K is positive
semi-definite for a non-valid kernel function, but it is not guaranteed for all possible
examples in the dataset. A full proof of this theorem is beyond the scope of this thesis,
we recommend Bartlett (2008) and Daumé III (2004) for those interested readers.

2.1.5 Overfitting and Regularisation

As shown in Section 2.1.3, many kernel functions map the input data to a much higher
(possibly infinite) feature space. Given this fact, it is common that kernel regression
algorithms create complex models which effectively model the training data, but do
not generalise well when applied to unseen data. This undesirable trait is referred
to as overfitting and it’s often necessary to employ several measures to avoid it. In
this section, we’ll discuss two methods for tackling this problem: cross-validation and
regularisation. However, before we delve into these subjects, let us first look at an
example of overfitting.

Let us again consider the dataset in Figure 2.4 and the Gaussian kernel function,
given in Equation (2.26). To create the models in Figure 2.4, we used σ = 32 while
performing kernel regression using approximate linear dependency kernel recursive
least squares (ALD-KRLS) (Engel, Mannor, and Meir, 2004). We’ll discuss KRLS in
further detail in Section 2.1.6, for now consider it an algorithm for solving Equa-
tion (2.7). Our choice of σ = 32 was arbitrary, and on inspection it seemed to work
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Dataset MSE (f1) MSE (f16) MSE (f32) MSE (f64)

Anscombe(1) 4.45× 10−30 1.19 1.17 1.25
Anscombe(2) 8.79× 10−31 4.04× 10−4 1.10× 10−4 1.23
Anscombe(3) 3.59× 10−30 1.18 1.18 1.25
Anscombe(4) 1.25 1.25 1.25 1.25

TABLE 2.1: Modelling accuracy of different configurations of Gaussian
kernels on Anscombe’s quartet

well, so no further thought was given to this value. However, in real scenarios our
training data might be very high-dimensional and not easy to plot and inspect. In
this more common situation, we often have to rely on measurements to understand
the quality of our model.

Let’s again look at the data and models in Figure 2.4 and compare the mean
squared error (MSE) between the dataset and the predicted values. Specifically, for
each dataset we’ll calculate: MSE = 1

N

∑N
i=1 (yi − fσ(xi))

2, where i is the ith value
in the given dataset and fσ is the function learned by training ALD-KRLS using σ
as the parameter in the Gaussian kernel. Table 2.1 shows the effect that changing σ
has on the accuracy of modelling each of the Anscombe’s quartet datasets. Clearly, in
this table f1 outperforms all other models. It achieves significantly lower modelling
error on the first 3 datasets, while performing equally as well as the others on the
4th dataset. Let’s now plot all of these models together to see how they behave.
Figure 2.5 shows the models found by f1, f16, f32 and f64 when trained on each of the
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FIGURE 2.5: Anscombe’s quartet - non-linear models created using
linear regression in the space mapped by the Gaussian kernel using

different values of σ.
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Dataset MSE (f1) MSE (f16) MSE (f32) MSE (f64)

Anscombe(1) 10.96 2.36 1.99 1.86
Anscombe(2) 1.48 0.0013 0.0075 2.17
Anscombe(3) 2.97 4.16 3.09 2.15
Anscombe(4) 15.75 5.96 4.71 4.40

TABLE 2.2: Validation error of different configurations of Gaussian
kernels on Anscombe’s quartet

datasets shown in each figure. Interestingly, we can now see why f1 achieves such
low modelling error, it’s able to interpolate between the points of datasets Ans. 1-3
very well. By inspection of Equation (2.26), we can quickly understand why smaller
values of σ can model more complex datasets, as σ → 0, κ(xi,xj)→ 0 when xi 6= xj .
When xi = xj , κ(xi,xj) = 1. Intuitively, we can think σ as a tuning parameter,
allowing κ(xi,xj) to model more complex and varying functions when σ is small,
but possibly at the cost of generality. For example, let’s consider Ans. (1) in Figure 2.5,
f1 has found a significantly more complex model than f32 and because of that, it
is able to model each of the points in the dataset very well. However, what if the
training data is corrupted by some noise? Or what if x1 does not capture all of the
information necessary to accurately predict y1? In either of these cases, it’s possible
that f1 performs worse than f32 on unseen data, despite being more accurate on the
training set. In this instance, we refer to f1 as overfitting to the training data.

Cross-validation

Cross-validation is an important, but relatively basic technique to try to prevent
overfitting. The key idea is that while a data scientist is selecting the hyperparameters
(e.g., choice of κ, σ, etc.), they split the training data into two subsets: the training set
and the validation set. The validation set is not used at all to train the model, it’s only
used to evaluate the accuracy of the model. The training hyperparameters which
perform best on the validation set will then be selected to train the model.

The purpose of the validation set is to simulate how a training algorithm or a
trained model will perform on unseen data, which represents a better estimate of
how these will be used under deployment.

There are several types of cross-validation methods, for an introduction to the
subject we recommend Domke (2012b). In this section, we briefly describe k-fold
cross-validation, as the technique is leveraged several times in subsequent chapters
in order to tune training hyperparameters. In k-fold cross validation, we partition the
original training data up into k randomly sampled, equally sized datasets. We then
train and validate our training hyperparameters k times, each time using a different
subset of our original dataset as the validation set, while using the other (k − 1)/k
subsets as the training set. In most cases, the overall accuracy of the technique is then
determined by using the average validation score across the k runs.

Let’s now use this approach to update Table 2.1 to show validation error, rather
than training error. Table 2.2, the average validation error for k-fold cross-validation
of each of the datasets when k = 11. Note, that since the entire training dataset
contains 11 values, i.e., N = 11, this type of cross-validation is also known as leave-
one-out cross-validation (LOOCV). Comparing Tables 2.1 and 2.2, we get a very
different story after cross-validation. In Table 2.1, f1 performed equally well, or
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outperformed every other model, While in Table 2.2, f1 does not perform the best in
any dataset in Anscombe’s quartet. For Ans. (1-3), f1 achieves a MSE > 1029 higher
during cross-validation, than when simply testing on the training set. Conversely,
f64, which was preferred for no dataset in Table 2.1, now outperforms all others for
datasets Ans. (1,3,4), while f16 outperforms the others for Ans. (2). Note, that for
all models (fσ) and datasets the cross-validation MSE shown in Table 2.2 is higher
than the MSE shown in Table 2.2. This shows that all models trained in Table 2.1 did
overfit somewhat to the training data.

In reality, we have no way of knowing which model will generalise the best to
unseen data, in particular Ans. (1) in Figure 2.5. However, we suggest that in the
absence of evidence to support higher model complexity, we should prefer models of
lower complexity. Again, with reference to Ans. (1) and the models in Figure 2.5, more
training data would be required to prefer f1 over any of the other models. Prior works
make similar reasoning about model selection, with some likening this preference
for simpler models to an application of Occam’s Razor to model selection (Nannen,
2003).

Regularisation

Regularisation is a term used to describe a group of methods which are used to
solve ill-posed problems or to prevent overfitting. Regularisation methods achieve
this by adding extra constraints or objectives to the cost function of the problem, to
prefer certain solutions over others. Similar to cross-validation, it is often used to
promote simpler models over more complex models. Regularisation can be used to
promote dense solutions (Tikhonov, 1943), sparse solutions (Gorodnitsky and Rao,
1997) and various combinations and complex patterns on our solutions (Yuan and
Lin, 2006). In this work we look at L2-regularisation, a specific case of Tikhonov
regularisation (Tikhonov, 1943) (otherwise known as weight decay), a common form
of regularisation which is used in this work.

When L2-regularisation is introduced, the cost function (provided in Equation (2.4))
becomes:

J ′′ = min
h̃

(∥∥∥y − X̃h̃
∥∥∥2

+ λ
∥∥∥h̃∥∥∥2

)
(2.42)

J ′′ = min
α

(
‖y −Kα‖2 + λαTKα

)
, (2.43)

where λ ∈ R+ is the regularisation term and in Equation (2.43) we invoke the property
that h̃ = X̃Tα. In the primal formulation in Equation (2.42), this is referred to as
ridge regression, while in the dual, kernelised formulation in Equation (2.43), this
is referred to as kernel ridge regression (Shawe-Taylor and Cristianini, 2004). With
regularisation, the ideal solution of weights becomes:

α = (K + λI)−1y (2.44)

where I is the identity matrix.
Training a model with L2-regularisation has multiple benefits:

a) ill-posed problems can now be solved, for example if K is singular;

b) trained models tend to generalise better, perhaps due to the equivalence be-
tween L2-regularisation and noise injection (Bishop, 1995);
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c) it reduces an algorithm’s sensitivity to finite precision effects, which we discuss
in more detail in Section 2.3.

The choice of λ is often dataset and algorithm specific, as such it is usually one of the
hyperparameters chosen during cross-validation.

2.1.6 Online Machine Learning

In previous sections, we’ve discussed linear regression, non-linear regression and
kernel regression. In this section, we discuss a class of problems know as online
problems and classes of algorithms, known as adaptive filters (Haykin, 2005), which
attempt to create regressive models of online problems. For an online problem, not all
training data is known in advance and therefore a new solution must be recalculated
as new observations are provided. As such, techniques like batch gradient will often
perform very badly as the entire training set will often need to be iterated through
several times in order find a solution for h. Another approach known as SGD provides
a more efficient means to estimate h. For least-squares regression problems, like ones
trying to find the solution for the cost function in Equation (2.1), this approximation
to BGD becomes equivalent to the least mean squares (LMS) algorithm (Widrow and
Hoff, 1960).

The Least Mean Squares Algorithm The LMS algorithm is a very simple and useful
linear adaptive filter. It updates the solution vector, h, for each new sample using the
following method:

hn = hn−1 + η
(
yn − xTnhn−1

)
xn , (2.45)

where xn is the latest input vector, yn is the desired output, hn is the nth estimate
of the optimal solution for weights and η is the step size parameter. Also, h0 = 0.
Equation (2.45) is comprised of the following: the a priori prediction,

ỹn = xThn−1 , (2.46)

and the estimation error,
en = yn − ỹn , (2.47)

The LMS algorithm makes a small, incremental update to the current solution vector,
hn−1, which reduces the instantaneous error in the a priori prediction, i.e., en. LMS is
easy to compute but it does not provide an optimal solution for hn, rather it updates
its estimate based on the amount prediction error for the nth training sample. In
practice, the solution often oscillates in the space around the optimal weights. This
property means that the prediction capability of algorithms based around SGD, such
as the LMS algorithm, is often impaired slightly, though it does also have the effect of
allowing algorithms to track non-stationary systems.

Recursive Least Squares (RLS) For online problems where an optimal solution
for h is preferred, the recursive least squares (RLS) algorithm provides a direct and
computationally efficient solution for h for every new sample. RLS achieves this
without needing to fully recalculate the matrix inverse, from Equation (2.3). It uses
the previously known value of (XTX)−1 to calculate the next value when a new
input/output pair is received using the matrix inversion lemma (Woodbury, 1950),
given in Equation (2.48). This provides a recursive solution for (XTX)−1 with a
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computational complexity of O(M2).

(
A + xnx

T
n

)−1
= A−1 − A−1xnx

T
nA−1

1 + xTnA−1xn
(2.48)

where xn is the latest vector of observations and A = XT
n−1Xn−1 where Xn−1 is given

by Xn−1 = {x1,x2, · · · ,xn−1}.
The RLS algorithm is designed to calculate recursive updates for the inverse

covariance matrix, P = R−1
x =

(
XTX

)−1, and the change in the cross-covariance,
rxy = XT y, while trying to reuse as much computation is possible. In order to calcu-
late an update to the model found by the RLS algorithm, given a new input/output
pair, xn/yn, we first calculate the gain vector, gn, as follows:

gn =
Pn−1xn

ζ + xTnPn−1xn
, (2.49)

where 0 < ζ ≥ 1 is the forgetting factor, a parameter providing recent samples an
exponentially higher weighting than old samples, and Pn−1 is the inverse covariance
matrix after sample n− 1.

Pn = ζ−1Pn−1 − gnx
T
n ζ
−1Pn−1 . (2.50)

Finally, the parameter update, hn, is calculated as follows:

hn = hn−1 + engn , (2.51)

Where en is estimation error given in Equation (2.47). Algorithm 2.2 shows pseu-

Algorithm 2.2 Pseudocode: a training step for the RLS algorithm.
Select values for the regularisation parameter, λ, and the forgetting factor, ζ.
Initialise P0 as λ−1I and h0 as 0.
for n = 1, 2, · · · do

Calculate the a priori prediction, ỹn, using Equation (2.46)
Calculate prediction error, en, using Equation (2.47)
Calculate the gain vector, gn, using Equation (2.49)
Update the inverse covariance matrix, Pn, using Equation (2.50)
Calculate the updated solution vector, hn, using Equation (2.51)

end for

docode for the RLS with regularisation and exponential weighting. The exponential
weighting means that over time, older examples are progressively forgotten. De-
spite the common term for ζ being a “forgetting factor”, it’s easier to think of it as
a remembering factor. If ζ = 1, prior examples are effectively remembered without
any weighting applied. Otherwise, ζ determines a multiplicative amount by which
each older example is remembered when a new example arrives. Specifically, the
weighting that’s applied to (x1, y1) when (x2, y2) arrives is ζ. When (x3, y3) arrives,
(x1, y1) will be weighted by ζ2 and (x2, y2) by ζ. Generalising this, when the nth

example arrives, the weighting, ω, that’s applied to the ñth example, where 0 ≥ ñ ≥ n,
is given by: ω = ζn−ñ. The effect of this is that, similar to the LMS algorithm, the RLS
algorithm with exponential weighting can track non-stationary systems.
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Kernel Adaptive Filtering

Now that we’ve looked at some standard adaptive filters, specifically the LMS algo-
rithm and the RLS algorithm, we can study their kernel-based equivalents: kernel
adaptive filters (KAFs). Specifically in this section, we look at the equivalent of the
LMS, the kernel least mean squares (KLMS) algorithm (Pokharel, Liu, and Principe,
2007; Liu, Pokharel, and Principe, 2008). Furthermore, we discuss variants of kernel-
based versions of RLS, in particular, the KRLS algorithm (Engel, Mannor, and Meir,
2004; Liu, Pokharel, and Principe, 2008) and the sliding window kernel recursive least
squares (SW-KRLS) algorithm (Van Vaerenbergh, Via, and Santamaria, 2006).

The Kernel Least Mean Squares Algorithm The KLMS algorithm is a formulation
of LMS in the dual representation, which then allows us to utilise a kernel function,
κ. Recalling Equations (2.45) to (2.47) which define the LMS algorithm, specifically,
the prediction function, the estimation error and the weight update function. Firstly,
let us write equivalent variants of the above function, but with the introduction of
the mapping function, Φ. The weight update function for the nth input/output pair,
(xn, yn), becomes:

h̃n = h̃n−1 + η
(
yn − Φ(xn)T h̃n−1

)
Φ(xn) , (2.52)

where again, η is the step-size parameter, and h̃n is the nth estimate of the solution
vector. The problem with this formulation, as we motivated in Section 2.1.3, is that if
we want Φ to map our input vectors to a very high dimensional feature, e.g. M ′ →∞,
it might not be feasible to calculate Φ(xn) or to store or calculate h̃n. Given this, we
need to reformulate the LMS algorithm. Firstly, let’s consider the a priori prediction
function at time 2, given by:

ỹ2 = Φ(x2)T h̃1 (2.53)

ỹ2 = Φ(x2)T
(
h̃0 + η (ηe1Φ(x1))

)
(2.54)

ỹ2 = ηe1Φ(x2)TΦ(x1) (2.55)
ỹ2 = ηe1κ(x2,x1) (2.56)
ỹ2 = α1κ(x2,x1) , (2.57)

where e1 is the a priori prediction error for example (x1, y1), which is:

e1 = y1 − Φ(x1)T h̃0 (2.58)
e1 = y1 , (2.59)

in Equation (2.54) we substitute in Equation (2.52) for h̃1, in Equations (2.55) and (2.59)
we use the fact that h̃0 = 0 and α1 = ηe1.

Now the we have an expression for ỹ2, we can use this to calculate e2 = y2 − ỹ2

and α2 = ηe2. We can subsequently use these expressions to find an expression for
the a priori prediction for example (xn, yn), given by:

ỹn =

n−1∑
i=1

αiκ(xn,xi) , (2.60)

where
αn = ηen , (2.61)
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where
en = yn − ỹn . (2.62)

At first these equations appear to have a circular dependency, but note that ỹn only
depends on the calculations of {ỹ1, · · · , ỹn−1}, and that ỹ1 = 0. Pseudocode for the

Algorithm 2.3 Pseudocode: a training step for the KLMS algorithm.
Select a value for the step-size parameter, η, and a kernel function, κ.
Initialise α0 as an empty vector, i.e., α0 = [ ].
for n = 1, 2, · · · do

Calculate the a priori prediction, ỹn, using Equation (2.60)
Calculate prediction error, en, using Equation (2.62)
Calculate the updated weight vector using αn =

[
αT
n−1, αn

]T and Equa-
tion (2.61)
end for

KLMS algorithm is provided in Algorithm 2.3. Note, in the pseudocode example,
we define a weight vector αn, which is slowly appended with each value of αn.
At this point, we have derived a kernel-based version of LMS, known as KLMS.
Although LMS is a very popular and useful adaptive filter, we can see that KLMS
has an issue which limits its use in online settings. Specifically, the calculation of
Equation (2.60) depends on a kernel evaluation between the current example, xn, and
all previous examples, {x1, · · · ,xn−1}, resulting in a linear increase in memory usage
and computational time for each new input/output pair, O(nm) in both memory
and computational requirements. This means that KLMS may not be suitable for
applications where:

a) there are strict throughput requirements (e.g., there is a specific sample rate
which must be maintained);

b) there are tight memory restrictions (e.g., in an embedded system); and

c) the algorithm is expected to run for long periods of time or indefinitely.

We will address these issues in a subsequent section, for now we wish to show that we
can define a kernel-based version of LMS which is mathematically exactly equivalent
to the original, but with the inclusion of a mapping to some high dimensional feature
space via a kernel function.

Kernel Recursive Least Squares A similar technique can be applied to the RLS algo-
rithm resulting in the KRLS algorithm (Engel, Mannor, and Meir, 2004; Liu, Prı́ncipe,
and Haykin, 2011). We start with a simple version of KRLS, as described by Liu,
Prı́ncipe, and Haykin (2011), then we move onto more practical, but algorithmically
complex versions, described by Engel, Mannor, and Meir (2004), Van Vaerenbergh,
Via, and Santamaria (2006) and Van Vaerenbergh et al. (2010). Firstly, we start with
the dual formulation and solution to the regularised least squares problem, given in
Equations (2.43) and (2.44) respectively. We briefly reiterate these equations below.
The dual formulation of the least squares problem is given by:

J ′′ = min
α

(
‖y −Kα‖2 + λαTKα

)
, (2.63)

where Ki,j , the entry in the ith row and jth column of K, is given by κ(xi,xj),
y = [y1, · · · , yn]T , λ is the regularisation term, and α ∈ Rn is the solution vector. The
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ideal solution is given by:
α = (K + λI)−1y (2.64)

Similar to RLS, the goal of KRLS is to be able to efficient find an updated version of
α. Given a solution for αn−1 and K−1

n−1, we need to find αn and K−1
n given (xn, yn),

where αn/K−1
n is the optimal weight vector / inverse kernel matrix respectively after

receiving the nth example. Firstly, let’s note that Kn becomes:

Kn =

[
Kn−1 kn
kTn κ(xn,xn) + λ

]
, (2.65)

where kn is the kernel vector, given by:

kn = [κ(xn,x1), · · · , κ(xn,xn−1)] . (2.66)

Given this observation, it’s clear we can use the block matrix inversion identity (Wolf,
1978) to find an efficient solution for K−1

n . There are several ways of expressing
the block matrix identity, we choose the formulation which relies on the fewest
calculations as possible, as follows:[

A B
C D

]−1

=

[
A−1 + A−1B

(
D−CA−1B

)−1
CA−1 −A−1B

(
D−CA−1B

)−1

−
(
D−CA−1B

)−1
CA−1 −

(
D−CA−1B

)−1

]
,

(2.67)
where A, B, C, D are arbitrarily sized sub-matrices and both A and (D−CA−1B)
are invertible. Relating Equation (2.65) and Equation (2.67), we can see that: A = K,
B = kn, C = kTn and D = κ(xn,xn) + λ. Defining zn and rn as follows:

zn = K−1
n−1kn , (2.68)

and
rn = λ+ κ(xn,xn)− zTnkn , (2.69)

We get the update expression for the inverse kernel matrix, K−1
n , as follows:

K−1
n =

1

rn

[
rnK

−1
n−1 + znz

T
n −zn

−zTn 1

]
. (2.70)

Now that the inverse kernel matrix, K−1
n has been calculated, we can calculate

the updated weight vector, αn, as follows:

αn = K−1
n yn (2.71)

αn =

[
K−1
n−1 + r−1

n znz
T
n −r−1

n zn
−r−1

n zTn r−1
n

] [
yn−1

yn

]
(2.72)

αn =

[
αn−1

0

]
+ r−1

n

[
znz

T
n −zn

−zTn 1

] [
yn−1

yn

]
(2.73)

αn =

[
αn−1

0

]
+ r−1

n

[
znỹn
−ỹn

]
+ r−1

n

[
−znyn
yn

]
(2.74)

αn =

[
αn−1 − r−1

n enzn
r−1
n en

]
, (2.75)
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where yn = [y1, · · · , yn], ỹn is the a priori prediction, given by:

ỹn = kTnαn−1 , (2.76)

en is the prediction error: en = yn − ỹn, and in Equation (2.74) we take advantage of
the following:

zTyn−1 =
(
K−1
n−1kn

)T
yn−1 (2.77)

zTyn−1 = kTnK−1
n−1yn−1 (2.78)

zTyn−1 = kTnαn−1 (2.79)

zTyn−1 = ỹn , (2.80)

where in Equation (2.79) we substitute in Equation (2.64), and in Equation (2.80) we
substitute in Equation (2.76). Finally, pseudocode for the KRLS algorithm is provided

Algorithm 2.4 Pseudocode: a training step for the KRLS algorithm.
Select a value for the regularisation parameter, λ, and a kernel function, κ.
Initialise K−1

1 = 1
λ+κ(x1,x1) and α1 = K−1

1 y1.
for n = 2, 3, · · · do

Calculate the kernel vector, kn, using Equation (2.66)
Calculate zn using Equation (2.68)
Calculate rn using Equation (2.69)
Calculate the a priori prediction as ỹn = kTnαn−1

Calculate the prediction error, en, as en = yn − ỹn
Update the inverse kernel matrix, K−1

n , using Equation (2.70)
Update the weight vector, αn, using Equation (2.75)

end for

in Algorithm 2.4. Note, that the regularisation factor is handled by the initialisation
of K−1

1 and the calculation of rn using Equation (2.69).
Clearly, KRLS suffers from similar problems as KLMS, which limit its use in online

settings. In the dual representation, the update step of the KRLS algorithm scales
with O(n2 + nm) in both memory and computational requirements. When KRLS is
used for online applications n will increase unbounded as the algorithm continues
to train and makes predictions. Similar to KLMS, KRLS has properties which limit
its use in online applications. Specifically, online applications which have any of the
following requirements:

a) strict throughput requirements (e.g., there is a specific sample rate which must
be maintained);

b) tight memory restrictions (e.g., in an embedded system); or

c) long or indefinite run times.

Furthermore, KRLS scales worse than KLMS, O(n2 + nm) versus O(nm), though at
every iteration KRLS will calculate an optimal, least squares solution for α, rather
than converge towards the optimal solution, like KLMS does. In reality, it’s a trade-off
which will need to be made between accuracy and performance for each application.
Finally, the length of the feature vector, m, is fixed while n increases with every
new training example. Given this, the n2 term will quickly dominate the memory
and compute requirements for KRLS. Again, our aim here is not to the say that
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this formulation of KRLS is practical, rather to show that we can describe a kernel-
based equivalent of the RLS algorithm. It should also be noted that an exponentially
weighted variant of KRLS can also be derived, we do not describe this as it’s not used
in this work. For those interested, we recommend reading Liu, Prı́ncipe, and Haykin
(2011). In this next section, we look at methods to make these algorithms applicable
to online applications.

Kernel Adaptive Filtering with Compact Dictionaries There are several methods
for reducing the computational cost of both KLMS-like and KRLS-like algorithms.
One of the key methods to achieve this, is to reduce the memory and computational
costs associated with the kernel regression model itself. Recalling Equation (2.60), the
a-priori prediction function for both KLMS and KRLS at time n is:

ỹn =
n−1∑
i=1

αiκ(xn,xi) . (2.81)

The calculation of ỹn is dependent on every previous training example, x1 → xn−1.
In other words, the trained model is parametrised by all previously seen training
examples. The consequence of this is that the model increases linearly over time
in its computational and memory requirements. An alternative is to parameterise
the model on a subset of training examples, known as a dictionary. Methods on
how to decide which training examples are stored in the dictionary is an active area
of research. For context, the dictionary in KAFs are very similar to the support
vectors in support vector machine (SVM) literature. In Engel, Mannor, and Meir
(2004), a sparsification procedure is employed to prevent any samples from being
admitted to the dictionary if they can be represented by linear combinations of the
previous samples. This helps to reduce the computational complexity but does not
bound the computational requirements as would be required by a online, embed-
ded solution with precise timing requirements. Previous works have bounded this
computation cost including the SW-KRLS algorithm (Van Vaerenbergh, Via, and
Santamaria, 2006), the fixed budget kernel recursive least squares (FB-KRLS) algo-
rithm (Van Vaerenbergh et al., 2010) and the kernel recursive least squares tracker
(KRLS-T) algorithm (Van Vaerenbergh, Lázaro-Gredilla, and Santamarı́a, 2012). These
modifications to the KRLS bound the computation cost by setting a limit, N ′, to
the number of training samples which can be stored in the dictionary. The variants
on the KRLS algorithms are very similar at their core but have different techniques
for determining which training samples get added/removed from the dictionary.
The SW-KRLS algorithm is described in detail below as it provides good predic-
tion/tracking capability while also being the simplest to implement in hardware.
The SW-KRLS algorithm removes any training samples that are not in a fixed time
window, N ′. Given a stream of input/output pairs, {(x1, y1), (x2, y2), · · · }, at training
sample n, the input matrix becomes Xn = [xn, xn−1, · · · , xn−N ′+1] and the output
vector becomes Yn = [yn, yn−1, · · · , yn−N ′+1].

In order to calculate αn, the nth estimate of the weights, K−1
n , the inverse kernel

matrix can be calculated using K−1
n−1 and Kn, the nth kernel matrix. Kn can be

calculated as follows:

K̂n =

[
Kn−1 kn(xn)
kn(xn)T knn + c

]
(2.82)

where kn(xn) = [κ(xn−N ′+1, xn), · · · , κ(xn−1, xn)]T , knn = κ(xn, xn), c is a regularisa-
tion constant, discussed in the following subsection, and Kn−1 is the kernel matrix
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calculated from the previous training sample. Kn is defined as follows:

Kn =

[
kn−N,n−N + c pT

p K̂n−1

]
(2.83)

where p = [κ(xn−N ′ , xn−N ′+1), · · · , κ(xn−N ′ , xn)]T and kn−N ′,n−N ′ = κ(xn−N ′ , xn−N ′).
K̂−1
n can then be calculated using:

K̂−1
n =

[
K−1
n−1(I + bbTK−1T

n−1g) −K−1
n−1bg

−(K−1
n−1b)T g g

]
(2.84)

where b is given by kn = [b d]T and g is given by g = (d− bTK−1
n−1b)−1.

K−1 is then calculated using Equation (2.85)

K−1
n = G− ffT /e (2.85)

where G, e and f are given by:

K̂−1
n =

[
e fT

f G

]
. (2.86)

and G is a (N ′ − 1)× (N ′ − 1) matrix, f is a (N ′ − 1)× 1 vector and e is a scalar.
Other pruning techniques have also been suggested including: approximate linear

dependency (ALD) (Engel, Mannor, and Meir, 2004), the surprise criterion (Liu, Park,
and Prı́ncipe, 2009) and error minimisation (De Kruif and De Vries, 2003).

Since the SW-KRLS algorithm removes the oldest training pair with each new
sample it is able to track non-stationary systems/processes. Psuedocode for the
SW-KRLS algorithm, derived from (Van Vaerenbergh, Via, and Santamaria, 2006)
and (Van Vaerenbergh, 2012) is provided in Algorithm 2.5.

Algorithm 2.5 Pseudocode: a training step for the SW-KRLS algorithm.

Initialise K0 as (1 + c)I and K−1
0 as I/(1 + c).

for n = 1, 2, ... do
Get K̂n from Kn−1 with Equation (2.82)
Calculate K̂−1

n−1 from Equation (2.84)
Get Kn from Equation (2.83)
Calculate K−1

n from Equation (2.85)
Calculate αn using α = K−1

n Yn

end for

2.1.7 Support Vector Machines

SVMs, first described by Cortes and Vapnik (1995), are another use for kernel methods
in machine learning. SVMs are designed for classification problems and regression
problems. Some common classification problems include text and speech recogni-
tion. Least-squares support vector machines (LS-SVMs) solve the same least squares
problem as the KRLS, however they are often solved using iterative techniques such
as the sequential minimal optimisation (SMO) algorithm (Platt et al., 1998). Support
vector machines are beyond the scope of this work, but, computationally the problem
is very similar to kernelised least squares provided by the KRLS. As such, in Sec-
tion 2.2 hardware implementations of SVMs are discussed and their architectures are
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analysed as this represents the most similar computational problem in the previous
literature.

2.1.8 Summary

Section 2.1 touches on many aspects of machine learning and covers the fundamentals
of kernel methods and KAFs. In this subsection, we summarise the key points and
ideas that readers should take into the subsequent chapters. In particular, the readers
should now be familiar with the following:

• kernel regression is an extension to linear regression to a (possibly) non-linear
feature space through a Mercer kernel function, κ;

• the application of a kernel function to linear regression means that we can
perform non-linear regression without directly computing the high-dimensional
non-linear feature vectors;

• the Gaussian kernel is commonly used, because it is a universal approximator
and it maps the input vectors to an infinite dimensional feature space;

• the Gaussian kernel can be intuitively thought of as the similarity between two
input vectors;

• many KAFs are kernelised versions of linear adaptive filters, which have been
expressed in the dual formulation to accommodate a Mercer kernel;

• KAFs are online algorithms which make small updates to their model with each
new training example; and

• in order to apply any machine learning algorithm (including KAFs) to a problem,
care must be taken to optimise the hyperparameters of the algorithm and to
prevent overfitting, often using cross-validation.

2.2 High Performance Machine Learning

Machine learning techniques can be applied to a wide variety of applications. As
such, performance problems in machine learning can be application specific. In
applications where the processing of large amounts of data is required, memory
bottlenecks may cause the majority of performance problems (Hsu et al., 2011). In
other applications where the memory requirements are small, the latency may be
critical and the input/output (I/O) latency may cause the majority of performance
problems. In this section, performance problems in common machine learning appli-
cations are discussed with a particular focus on latency critical applications where the
inputs may be the result of some high frequency sampled data. Previous hardware
architectures for kernel based learning problems are also summarised.

2.2.1 High Throughput Machine Learning

High throughput machine learning is critical to the accessibility and performance
of learning problems as often machine learning is performed on huge datasets. The
throughput on a machine learning algorithm is often highly dependent on the appli-
cation. In this subsection, several applications are presented and summarised in order
to highlight several performance issues which may be encountered when attempting
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to develop high throughput machine learning systems. In many cases, machine
learning problems require huge amounts of data and the problem of transferring and
accessing this data becomes more important than the computational performance of
the algorithm. For example, in the work by Hsu et al. (2011) bandwidth limitations
are highlighted by an SGD algorithm running on a classification problem with 781K
training examples and 60M of total non-unique features, using the dataset from Bot-
tou (2008) which was derived from the work from Lewis et al. (2004). According to
Hsu et al. (2011), SGD would take about 20 seconds to load this data and 0.4 seconds
to learn a predictor. This shows that in some cases, memory bottlenecks outweigh
the algorithmic bottlenecks. However, Hsu et al. (2011) notes that a performance
of 0.4 seconds on such data represents performance roughly 100× slower than the
peak performance of modern CPUs. This suggests that memory issues, such as cache
misses, potentially play a role in machine learning problems.

In other problems, the complexity of the algorithm plays a larger role. For example,
larger SVM classification problems, about 6000 features and 4000 training examples,
GPU implementations (Athanasopoulos et al., 2011) can outperform an optimised
CPU implementation, LIBSVM (Chang and Lin, 2011), by up to 10× as shown in
Figure 2.6.
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FIGURE 2.6: SVM training performance comparison - GPU SVM verses
LIBSVM. Adapted from Athanasopoulos et al. (2011).

Machine learning problems can be much larger than those described by Athana-
sopoulos et al. (2011). In data mining problems, training examples can be as large as
106. For such datasets, when using a Nvidia GeForce 8800 GTX GPU, Do, Nguyen,
and Poulet (2008) report a speedup of 100× against their own optimised CPU imple-
mentation for a LS-SVM problem and up to 1000× speedup over LIBSVM, both CPU
implementations were run on an Intel Core 2 at 2.6GHz.

Lin, Lebedev, and Wawrzynek (2010) developed an FPGA based Bayesian com-
puting machine capable of executing many algorithms which can be represented
as Bayesian probabilistic networks. This includes several machine intelligence and
signal processing problems. Lin, Lebedev, and Wawrzynek (2010) developed a so-
phisticated scheduling scheme in order to avoid memory stalls and their highly
parallel FPGA implementation achieved on average 40×/15× higher throughput
than CPU/GPU implementations.

For very large machine learning problems it is common to distribute the problem
across N machines in order to achieve up to N× speedup. Common methods for
achieving this include feature sharding and instance sharding. Instance sharding
involves splitting the set of training examples into N smaller training sets. These sets
are then distributed to N computers. Each computer then uses a machine learning
algorithm, like SGD, in order to develop a model for the training data. These N
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models are then combined, often by taking the mean of all the parameters of each
model, to create a new model. While this approach can be effective for machine
learning problems with large datasets, the latency introduced by such an approach
can increase by an order of magnitude (Hsu et al., 2011).

2.2.2 Low Latency Machine Learning

When machine learning algorithms are applied to digital signal processing (DSP)
problems, often there are strict requirements on throughput and latency. For example,
if a machine learning algorithm needs to be applied to some uniformly sampled data
at a sample rate of F . Then in most cases the algorithm needs to provide new output
at the same rate. For high sample rates, this high throughput is often achieved on
CPUs by buffering the data. This can help one achieve high throughput but at the
cost increasing the latency of the system. In other applications, such as algorithmic
trading, the input data is not uniformly sampled but to be able to process the data
with low latency provides an advantage as opportunities for “risk free” profitable
trades may be possible.

2.2.3 FPGA Based SVM Implementations

SVM algorithms are usually quite complex with large datasets. As such, many
challenges need to be overcome in order to produce highly optimised FPGA im-
plementations. SVM algorithms also have large data dependencies within a single
training step of the algorithm. This can be an obstruction for achieving low latency
for kernel based algorithms but it does provide opportunities to develop intricate
architectures in order to circumvent these dependencies. In this section, selected
previous SVM architectures are summarised.

An early SVM architecture (Anguita, Boni, and Ridella, 2003) used 7 separate
computing modules in order to train an SVM. The main SVM training block uses
parallel processing elements in order to accelerate SVM computation.

Cadambi et al. (2009) use an FPGA co-processor in order to accelerate the dot
product computations involved in SVM classification. The FPGA architecture is
designed around a single instruction multiple data (SIMD) vector processor. A block
diagram of the FPGA architecture is given in Figure 2.7.
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FIGURE 2.7: FPGA based co-processor for SVM classification. Adapted
from Cadambi et al. (2009).

The heterogeneous CPU/FPGA architecture provides up to 21× speedup com-
pared to CPU based SVM implementations. Use of a SIMD vector processor utilises
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the FPGA area more efficiently as processing elements are easily reused for different
computations. This implementation is heterogeneous and as such suffers from latency
from the Peripheral Component Interconnect Extended (PCI-X) bus and the operating
system (OS) of the host machine.

2.2.4 Real-time Applications

In this section, we consider real-time applications where high performant implemen-
tations of KAFs may provide some additional benefit. For most of the applications
described below, little study has been conducted on whether KAFs provide additional
modelling accuracy over their linear counterparts. However, we expect that if there
were a demonstration that KAFs could be implemented at sufficient data-rates for the
applications below, that research in these subjects would become significantly more
likely.

In the subsection, we briefly describe several real-time applications where KAFs
may be applied.

Audio Compression

Many lossless audio compression algorithms contain linear prediction algorithms
at their core. A channel of audio data can be thought of as a time series, x. The
prediction algorithm operates over a window of previous examples up to xn and
attempts to predict the next sample, xn+1. Let the prediction of the nth sample be x̃n.
The prediction error, e, at sample n is given by en = xn − x̃n. For real audio signals,
where samples are not necessarily independent, e is likely to have lower variance
than the signal original signal, x. As such, e can potentially be stored at a lower
bitrate than x using compression techniques such as Golomb-Rice coding (Golomb,
1966; Rice, 1979).

The general prediction equation is given by:

en = xn −Q(
M∑
k=1

âkxn−k −
N∑
k=1

b̂ken−k) , (2.87)

where the function Q(x) represents quantisation to the same wordlength as the
original signal and â,b̂ represent the coefficients of the feedforward/feedback transfer
functions given by Â(z), B̂(z) respectively. A generic structure for a linear prediction
equation is given in Figure 2.8.

FIGURE 2.8: Linear predictor structure for encoding data. Adapted
from Hans and Schafer (2001).
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If B̂(z) = 0 then the predictor behaves like a finite impulse response (FIR) filter,
if B̂(z) 6= 0 the predictor behaves like an infinite impulse response (IIR) filter. For
reconstruction, Equation (2.87) can be rearranged and solved for xn. The structure for
reconstruction is shown in Figure 2.9.

FIGURE 2.9: Linear predictor structure for reconstructing data.
Adapted from Hans and Schafer (2001).

The coefficients ân and b̂n are often determined using an online tracking machine
learning algorithm such the LMS or RLS algorithms. In order to provide a non-
linear modelling to the predictor, occasionally polynomial features are added to the
regression algorithm in order to improve its prediction capability.

Modern audio processing techniques, particularly mastering, involve many non-
linear techniques such as dynamic range compression/expansion, limiting and clip-
ping (Nielsen and Lund, 2000). Also, many sound sources in modern audio are
better modelled as non-linear systems. For example guitar amplification, a common
feature in popular music, behaves highly non-linearly (Pakarinen and Yeh, 2009). We
propose that a general non-linear approximator, such as the KRLS algorithm with
the Gaussian kernel, may provide higher audio compression than current lossless
techniques. Finally, although in this section the focus was audio compression, these
techniques are used in many types of signal compression and as such, the same
algorithms may be used in a wide array of applications with significantly differing
requirements.

Dereverberation

Dereverberation is the process of removing the effects of reverberation from signals.
Dereverberation is a blind problem with no known solution (Naylor and Gaubitch,
2005). Given a sound source, s(n), in an acoustic environment characterised by the
impulse response, h, the dereverberation problem is characterised by

x(n) = hT s(n) + v(n) , (2.88)

where x(n) is the reverberant signal and v(n) is some system noise. The aim of a
dereverberation algorithm is to extract the signal, s(n). The effect of dereververation
on speech is to improve its intelligibility. Figure 2.10 shows how the performance of
speech recognition software improves with the reduction of reverberation (Kinoshita,
Nakatani, and Miyoshi, 2006).

Dereverberation is often considered as a linear prediction problem which can
be computed on the time series, x, using a linear regression algorithm. The linear
prediction problem is often framed as follows
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FIGURE 2.10: Speech recognition performance compared with dif-
ferent reverberation times. Adapted from Kinoshita, Nakatani, and

Miyoshi (2006)

x(n) =
M∑
i=1

α(i)x(n− i−D) + e(n) , (2.89)

where α is a calculated set of coefficients, M is the filter order, e(n) is the prediction
error and D is the prediction delay. The error signal e(n) is then used as the output of
the dereverberation algorithm. The prediction delay D is introduced to prevent the
dereverberation algorithm from removing parts of the signal that are wanted. For
example, imagine the sound source, s, is an acoustic guitar and a concert hall. Sound
is created by the guitar when an impulse is applied to a string, when a string is picked.
After the initial picking, the string continues to vibrate in a feedback system due to the
tension on the string and the structure of the guitar. Since this feedback system could
be approximated using a linear model, its behaviour could be predicted by the linear
predictor. However, the goal of dereverberation is not to remove the vibration of the
string but to remove the effect the environment has on the sound of that vibrating
string. The prediction delay (or “predelay”), D, is often adjusted experimentally
depending on the sound source and the environment (Kinoshita, Nakatani, and
Miyoshi, 2006). This prevents an algorithm with a large prediction delay from
removing early reflections, however late reflections are often more important in
improving tasks like speech recognition (Naylor and Gaubitch, 2005). Kinoshita,
Nakatani, and Miyoshi (2006) also advocate adding white noise to the input signal,
x(n) in order to improve the calculation of the coefficients, α. Figure 2.11 shows the
performance of the algorithm described by Kinoshita, Nakatani, and Miyoshi (2006)
for an artificial dereverberation test.

Channel Equalisation

Lastly, let us consider the application of channel equalisation. Channel equalisation
is the process of reconstructing a signal that has been corrupted as it passes through
a communication channel, e.g., transmission along an electrical wire. Often, the
distortion which corrupts the signal as it passes through the channel has time-varying
characteristics. As such, a model to reconstruct the original signal from the corrupted
one must be learned online and must be able to adapt to changes in the communi-
cation channel’s characteristics. A common method to address this is with adaptive
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FIGURE 2.11: Waveforms of reverberant speech (top), original sound
source (middle) and reconstruction from reverberant speech (bottom).

Adapted from Kinoshita, Nakatani, and Miyoshi (2006)

filtering (Haykin, 2005). Commonly, the problem of channel equalisation is addressed
as follows (Engel, Mannor, and Meir, 2004; Sebald and Bucklew, 2000):

1. a binary signal known to the receiver is transferred across the channel by the
source;

2. the receiver receives the corrupted signal and creates a model to reconstruct the
original binary signal;

3. the source now sends the actual binary data it wishes to transmit over the
communication channel;

4. the receiver reconstructs the binary signal by quantising the result of it’s predic-
tion to either a ‘0’ or a ‘1’;

5. the receiver updates its reconstruction model to reduce the quantisation error
between the real valued result at the output of it’s model, and the quantised
binary valued prediction.

All of the steps above except for the final one fall under the category of a generic
online time series prediction problem. Note, that since the output is binary this is a
classification task, but this can be addressed with regression algorithms followed by
a simple quantiser. For example, one could map the binary values to either a -1 or a 1
and attempt to model these points using a regression algorithm, followed by the sign
function.

Explicitly, given a binary signal: u = [u0, · · · , uN ], where un ∈ {−1, 1}∀n and
some corrupted, measured signal: y = [y0, · · · , yN ], where yn ∈ R∀n. The aim of
channel equalisation is to reconstruct un using only samples from the measured signal,
[yn−1, · · · , yn−M ], where M is the feature length. At first, this task seems impossible,
as we cannot make any assumptions about the desired signal, u. However, there is
some portion, let us say N̂ samples, at the beginning of the signal u which is known
to the receiver beforehand. We can call this mode the training mode of channel
equalisation, which is followed by the online mode. As such, the desired signal for
the entirety of training becomes:

dn =

{
un ifn < N̂

sign (ũn) ifn ≥ N̂
, (2.90)
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where dn is the desired signal, ũn is the a-prior prediction of un by the adaptive filter
and sign(·) is the sign function:

sign (x) =

{
−1 ifx < 0

1 ifx ≥ 0
. (2.91)

Channel equalisation has been studied as a possible application for kernel meth-
ods and they show promising accuracy (Engel, Mannor, and Meir, 2004; Sebald and
Bucklew, 2000). However, as far as we are aware there are no publications (excluding
this work, Chapter 5) showing that kernel methods could be computed at rates fast
enough for many channel equalisation problems.

2.3 Error Analysis

Computer arithmetic lies at the heart of any scientific computation. However, since
most CPUs only support a few discrete different number representations in hardware,
including: 32/64 bit integer/fixed point and 32/64 bit floating point, often only
a few representations are considered when implementing algorithms in software.
This is because the computational cost of using a number representation which
is not supported in hardware will be large. FPGAs are reconfigurable by nature,
and as such any bit depth/number representation could be chosen to implement
a particular algorithm. Reducing the bit depth of an algorithm on FPGAs has the
effect of reducing the area requirements and the algorithm while also increasing the
maximum theoretical clock rate. The downside of reducing the bit depth is that, in
general, round off error can cause an increase in error in the results or can cause
an algorithm to have seemingly random output. The use of fixed point arithmetic,
as opposed to floating point, is another means to reduce area requirements and
increase the maximum theoretical clock rate. However, the range requirements of
some machine learning algorithms mean that they may not benefit from the use of
fixed point and care must be taken during the implementation of such algorithms.
In this section, a background of error analysis in computer arithmetic is given along
with some information on tools for automatic error analysis with a focus on MCA, an
automatic stochastic method for error and sensitivity analysis.

2.3.1 Fixed Point

Fixed point numbers are a digital representation of numbers which are similar to inte-
gers. Like integers, fixed point numbers can be stored as unsigned or signed. Signed
representations can take many forms including one’s complement and commonly
two’s complement. The difference between an integer representation and a fixed
point representation is the range of values that can be stored. An integer or fixed
point number with a word length of B bits can represent 2B unique numbers. For
an integer representation in two’s complement this can represent any integer in the
range [−2B−1, 2B−1 − 1]. For a fixed point representation in two’s complement the
range could potentially be bounded by any real number though there still are only
2B representable numbers. In digital signal processing (DSP) a fixed point number
usually has the range [−1, (1− 21−B)]. Where this fixed point representation is able
to represent numbers throughout this range with a 21−B interval. Fixed point repre-
sentations have a fraction length which is used to interpret a fixed point number into
its true value. A fixed point representation using a fraction length of f and a word
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length of N can be denoted by A(i, f). Where i = N − f and sometimes referred to
as the magnitude or integer bits. The quantisation of an infinite precision number,
x, into a two’s complement fixed point representation of A(i, f) is given by (Yates,
2001):

Qi.f (x) = −bB−12i−1 +
B−2∑
j=0

bj2
j−f , (2.92)

where Qi.f is a function which maps x to the fixed point representation and bn is the
nth bit of the resultant fixed point value. Usually, the bits bn∀n are chosen such that
|x−Qi.f (x)| is minimised (Lindstrom, Dahl, and Claesson, 2003) for some input x.

Rules of Fixed-Point Arithmetic

The following rules for fixed point arithmetic assume a two’s complement representa-
tion of A(a, b). The wordlength, w, of a fixed point number using this representation
is given by:

w = a+ b . (2.93)

The range is given by:

− 2a−1 ≤ α ≤ 2a−1 − 2−b . (2.94)

During addition between two fixed point numbers, represented by A(a1, b1) and
A(a2, b2), the output can be represented exactly by A(max(a1, a2) + 1,max(b1, b2)).
If two fixed-point numbers, represented by A(a1, b1) and A(a2, b2), are multiplied
together the result will be A(a1 + a2, b1 + b2). In DSP algorithms, it is common
that a = 1 and that the result of an operation will be rounded back to the same
representation as the inputs. This results in a loss in precision which causes potential
rounding error in the output of all fixed point operations.

2.3.2 Floating Point

Floating point number representation is conceptually similar to scientific notation
used in science and mathematics. A generic floating point representation is given by:

fl = (−1)s ·m · βe , (2.95)

where s is the sign, m is the mantissa, e is the exponent and β is the base. In this
section, it is assumed that β = 2 as this is the most common base used in modern
computers.

We define ◦ as a generic floating point operation where ◦ is one of the following
⊕	⊗�. These are the floating point equivalent of the exact operations +−×/. An
assumption is made that for any floating-point operation ◦, the following holds:

(x ◦ y) = (x · y)(1 + δ) , (2.96)

where |δ| ≤ u, where u is the unit round-off of the precision which is being used and
(·) represents an exact operation. The unit round-off is defined by:

u =
1

2
β1−t . (2.97)

This unit round-off assumes that the values x and y are able to be stored perfectly in
the number system that we are using. The unit round-off for single precision is u =
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2−24 ≈ 5.96×10−8 and for double precision is u = 2−53 ≈ 1.11×10−16 (Castaldo, 2007).
These values for unit round off suggest that approximately 7/16 significant decimal
digits can be represented by single/double precision floating point respectively.

The error for a single floating-point operation is quite small and is usually accurate
enough for most purposes. Unless catastrophic cancellation occurs when two very
similar numbers are subtracted. In many modern scientific computations, the number
of calculations that are performed can be enormous. As such, small errors will grow
exponentially until they may cause large errors in the output. An example is when a
vector is summed, as would occur in a dot product (Castaldo, 2007).

2.3.3 Error Analysis Techniques

Floating point error analysis can be grouped into two distinct techniques; static and
dynamic error analysis. Static error analysis, such as the work by Goubault (2001),
does not require code execution, rather a program is abstracted using mathematical
techniques along with the semantics of the programming language. Often, static
techniques create finite state machines (FSMs) or control flow graphs (CFGs) which
completely define the mathematical behaviour of an algorithm which can then be
analysed for robustness. Static error analysis techniques often do not scale well to
large problems and often give overly cautious precision requirements, especially if
those requirements are largely based on nature of the input data.

Dynamic error analysis, such as interval arithmetic (IA) (Hickey, Ju, and Van
Emden, 2001), affine arithmetic (AA) (De Figueiredo and Stolfi, 2004), the contrôle et
estemation stochastique des arrondis calculs (CESTAC) method (Vignes, 1996) and
Monte Carlo arithmetic (MCA) (Parker, 1997), provide error analysis based on code
execution.

Interval arithmetic (IA) (Hickey, Ju, and Van Emden, 2001) is a method whereby
for each floating point operation, the error in the output is bounded by an interval.
This interval is then used to calculate the error bounds for subsequent operations.
The result is that the output, x, of any algorithm will lie in the interval [xl, xh] which
is calculated using IA. The error bounds which are found using interval arithmetic
provide worst case performance of an algorithm, given a set of inputs, but in practise
it tends to produce bounds which are overly pessimistic (Wilkinson, 1971).

Affine arithmetic (AA) is similar to IA as it provides error bounds on the output of
an algorithm given a set of inputs. AA (Fang, Chen, and Rutenbar, 2003) attempts to
compensate for the pessimistic error bounds given by IA. It does this by tracking the
source of errors for each variable within an algorithm. Since the source of errors are
known, these errors can be subtracted under certain conditions allowing for tighter
error bounds in the output variable. This can be illustrated by the following example,
given two floating point intervals, x̄ and ȳ, both with the range [−1, 1]. Let these two
values be related such that ȳ = −x̄ and we wish to calculate the range for z̄ = ȳ + x̄.
Using standard IA, the calculated range for z is [−2, 2]. Using affine arithmetic, it is
recognised that the errors for x and y are correlated and can be cancelled out. As
such, the calculated range for z using affine arithmetic is [0, 0]. The range calculated
by affine arithmetic still defines worst case error bounds but they are marginally
tighter than ones calculated using interval arithmetic. Affine arithmetic is a powerful
technique but requires large modifications to source code in order to implement.

The CESTAC technique (Vignes, 1996) uses normally distributed random round-
ing for each floating point operation. Using this method, the algorithm can be
executed several times each producing a potentially different result. After running
several simulations, frequency histograms can be examined to determine how many



36 Chapter 2. Background

significant bits are lost during execution due to rounding error. This technique also
provides insight into the sensitivity of the algorithm due to rounding. The CESTAC
technique has been criticised for using a normal distribution to model rounding errors
which can result in overly optimistic claims for accuracy (Kahan, 1996).

2.3.4 Monte Carlo Arithmetic

MCA is another stochastic method to estimate the effect of rounding error in floating
point arithmetic. MCA applies random perturbations to the inputs and outputs
of floating point operations such that the value for δ in Equation (2.96) becomes a
random variable as opposed to a strictly defined value for each operation. MCA uses
an inexact function (Parker, 1997) defined as:

inexact(x, t, ξ) = x+ 2ex−tξ , (2.98)

where ex is the value of the exponent of the floating point value given by x 6= 0, t
is a positive integer representing virtual precision and ξ is a uniformly distributed
random variable in the range of (−1/2, 1/2). The inexact function is then applied to
an arbitrary floating point operation as follows:

fl(x ◦ y) = round(inexact(inexact(x) ◦ inexact(y))) , (2.99)

where x, y are non-zero floating point numbers. If all floating-point operations are
replaced with their MCA equivalents, then the output of floating point operations
act like random variables. Large programs can then be executed using MCA over
multiple runs and virtual precisions and the outputs may be analysed statistically
in order to give the algorithm designer an understanding of its sensitivity due to
rounding. If the algorithm is behaving in a numerically stable way at a virtual
precision of t then its outputs often act like normally distributed random variables.
As t decreases, the relative standard deviation of the output increases and can be
considered as a loss in significant bits (Frechtling and Leong, 2015).

We advocate the use of MCA in determining the precision requirements of ma-
chine learning algorithms because:

• It provides data for robust sensitivity analysis due to rounding.

• It is a dynamic technique, which means it can provide specific precision require-
ments for a specific machine learning problem.

• It is faster than most other techniques.

• It can be run with very little modifications to the source code.

2.3.5 Mixed Precision

Mixed precision is the concept of using different number representations for differ-
ent parts of an algorithm. For example, sections of an algorithm which have been
identified as being sensitive to round-off error may be executed using a higher pre-
cision while other parts of an algorithm may be executed using a lower precision.
This concept introduces several possible ways of optimising algorithms for higher
performance and lower memory usage. Mixed precision also provides opportunities
to increase the performance of hardware implementations. Consider an algorithm
where thorough sensitivity analysis has been performed and it is determined that h%
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arithmetic operations need to be at a precision of H . The rest of the l = 100%− h%
operations may be performed at a precision of L. Any variable which is only used in
the l% operations may only need to be stored at a precision of L thus introducing a
space saving of H/L× for each identified variable. For operations involving large ma-
trices, this space saving provides opportunities for better cache usage on CPU/GPU
architectures thus reducing time spent waiting to retrieve data from global memory.
If H = L × C where C is a positive integer, then opportunities for performance
improvement as mixed precision hardware architectures may be used or designed
in order to improve the performance of a calculation. For example, many modern
CPUs/GPUs are theoretically capable of 2× higher throughput if 32-bit floating point
is used as opposed to 64-bit (Baboulin et al., 2009). For a Texas Instruments (TI)
TMS320C6748 DSP processor, peak single precision performance is 4× greater than
double precision performance. For the case of FPGAs, arithmetic units may be de-
signed so that they are capable of performing operations at any custom precision.
This finer granularity allows hardware designers to pick specific datatypes for several
parts of an algorithm’s compute graph. As a result, FPGAs are capable of gaining a
significant advantage from using mixed precision, compared with other platforms.
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Chapter 3

Properties of Kernel Adaptive
Filters and Accelerators

In any real system, there will be one or more application requirements which must
be met, or that need to be optimised. Consider the following example: an object
detection system for autonomous driving. The requirements of this system may be:

• accuracy (the algorithm needs to be able to detect and classify objects of interest);

• power (not exceeding a given power envelope);

• throughput (the system might be connected to a camera with a specific frame-
rate); and

• latency (the system may need to react quickly to detected objects).

Similarly, other applications will have different requirements. In general, these
requirements will often dictate what algorithm and hardware combinations are
possible deployment options. In order to be sure which algorithm and hardware
combinations will meet the applications, one needs to implement a given algorithm
on a given platform to see if it meets the requirements. Doing this however, could
incur significant costs if multiple platform / algorithm combinations need to be tried
before one can be found which matches the application requirements.

In this chapter, we perform some algorithm and hardware analysis in order to
understand the costs and benefits of different algorithms and different hardware
platforms. While this doesn’t necessarily guarantee performance on given hardware,
it can give us an upper bound on throughput of a given algorithm on a given platform.
The sections in this chapter cover memory bandwidth and throughput of several
devices, along with the arithmetic intensity and precision requirements of several
KAFs. We then identify applications, algorithms which are amenable for acceleration
while also identifying some promising acceleration platforms.

3.1 Accelerator Platforms

Choosing an accelerator platform for which to deploy a particular algorithm is no
easy task. Several requirements and desirable attributes that need to be taken into
consideration, include:

• throughput,

• power consumption,

• latency and



40 Chapter 3. Properties of Kernel Adaptive Filters and Accelerators

• system integration.

A requirement could be any of the following:

• a certain throughput to match the line rate of attached data converters, or
network interfaces;

• meeting certain power constraints to avoid a rack server from overheating; and

• being able to integrate the system with various sensors, or certain interfaces.

Similarly, desirable attributes could be:

• reducing energy consumption to extend the life of a battery powering the
device;

• decreasing latency to achieve an edge over the competition (for example, in
foreign exchange prediction); and

• increasing throughput, simply to reduce some associated server cost (for exam-
ple, in server hire).

Clearly, these are not exhaustive lists. The specific requirements and desirables will
regularly depend entirely on the target application. In this section, various properties
of particular CPUs, GPUs and FPGAs are compared to understand the strengths
and weaknesses of each platform. From this data, we can make informed decisions
about which platform to select for a given application. In particular, we look at the
power consumption, external memory bandwidth, operations per second and on-chip
memory size. Finally, we use the information in this section to make algorithmic and
architectural choices in subsequent chapters.

Firstly, let us pick some devices from ones we have available, and some others
that may be utilised through cloud services, such as Amazon Web Sevices (AWS).
From ones locally available, we select the following:

• an Intel Xeon E5-2670 (Intel Xeon Processor E5-2670)

• an Intel i7-4500U (Intel Core i7-4500U Processor)

• a Xilinx XC7Z020 (Xilinx, 2019e)

• a Xilinx XCZU3EG (Xilinx, 2018c)

• a Xilinx XC7VX485 (Xilinx, 2018a)

From devices available through services, we select the following:

• an Nvidia GRID K520 (NVIDIA GRID K520)

• a Xilinx XCVU9P (Xilinx, 2019b)

Overall, the device features which affect their possible choice as a deployment
platform are in Table 3.1. Unless otherwise specified, the power consumption is
quoted as the device thermal design power (TDP). The XC7Z020 power consump-
tion is derived from the reference manual of the Pynq-Z1 board (PYNQ-Z1 Reference
Manual). For the XCZU3EG, XC7VX485 and XCVU9P devices, board power is used
from the Ultra96 (Avnet, 2018), VC707 (Xilinx, 2019c) and Alveo U200 (Xilinx, 2019a)
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TABLE 3.1: Summary table of the properties of several devices of
interest

Tech. Ext. Mem. On-chip Int16 Float32 Power
Device Mfr. Node (nm) BW (GB/s) Mem. (MB) Perf. (GOps/s) Perf. (GFLOPS) Cons. (W)

Xeon E5-2670 Intel 32 51.2 20.0 - 211.2 115
i7-4500U Intel 22 25.6 4.0 - 96.0 15
GRID K520 Nvidia 28 320 0.5 - 4577 225†

XC7Z020 Xilinx 28 12.8 0.61 242 - 2.6
XCZU3EG Xilinx 16 25.6 0.95 558 - 24†

XC7VX485 Xilinx 28 12.8 4.0 3640 - 60†

XCVU9P Xilinx 16 77 43.2 10602 - 225†

†Maximum board power used from a commercially available product.

respectively. The peak floating point performance for the Intel processors was cal-
culated using the technique proposed by Dolbeau (2015). For the Xilinx devices, the
peak performance was calculated as follows:

P = 2NDSPFMax , (3.1)

where NDSP is the number of DSP48 slices available on the given device, FMax is
the maximum operating frequency of those DSPs. The factor 2 denotes that each
DSP slice can calculate a multiply accumulate (MAC) every cycle. The FMax of the
XC7Z020, XCZU3EG, XC7VX485, XCVU9P is 551MHz (Xilinx, 2018b), 775MHz (Xil-
inx, 2019f), 650MHz (Xilinx, 2018a), 775MHz (Xilinx, 2019d) respectively. Note, for
FMax, we assume a −2 speed grade device. Clearly, each of the devices available are
not necessarily equivalent. The most similar devices across manufacturers are the
Xeon E5-2670, GRID K520 and XC7VX485 which are from a similar time period, rely
on similar manufacturing technology and consume similar amount of power. The
DSP slices available in the Xilinx devices work well for Int16 computations, while the
Nvidia and Intel devices are optimised for single precision floating point compute.
While, all devices are capable of floating point and Int16 compute, the Xilinx devices
will perform roughly an order-of-magnitude slower than their quoted Int16 perfor-
mance. Clearly to utilise an Int16 datatype, the numerical stability of the algorithms
at hand must be amenable to performing correctly with a low-precision datatype. The
Nvidia platform features significantly higher external memory bandwidth, meaning
it will scale better for more memory demanding problems. The Xilinx and Intel plat-
forms have significantly more on-chip memory than the Nvidia platform which could
be used to achieve better performance for smaller problems where all the memory
associated with an algorithm can fit purely on-chip.

3.1.1 Roofline Analysis

Table 3.1 shows several key pieces of information about each available device, but
it’s still difficult to distill this information into some key aspects which help us
understand if a given device is suitable for a given application. In this section we
introduce the roofline model (Williams, Waterman, and Patterson, 2009) associated
with each device, which provides more insights into selecting a particular hardware
platform over another.

Figure 3.1 shows the roofline model associated with each of our selected devices.
The x-axis shows AI, i.e., the number of arithmetic operations performed per byte
of memory read from memory. The y-axis shows performance in GOps/s. Each
line represents a performance ceiling for each device depending on the AI of the
particular algorithm which is being implemented. The sloped lines of the figure
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FIGURE 3.1: Rooflines of several different CPU, GPU and FPGA de-
vices.

represent algorithms which are memory bound while the flat portions of the figure
represent algorithms which are performance bound. The Nvidia device has very high
external memory bandwidth, and a very high peak performance ceiling. The Intel
and Xilinx devices have low external memory bandwidth, while the Xilinx devices
have generally higher peak performance ceilings. Note, these performance ceilings
represent Int16 for the Xilinx platforms, while they represent single precision float-
ing point for the CPU and GPU platforms. Again, this means that the application
algorithms themselves must be amenable to implementation with a 16-bit integer
datatype, otherwise the CPU/GPU platforms will be much more attractive for such
algorithms. At first glance, it may appear that the GRID K520 platform is the best plat-
form on average. It provides very high bandwidth for low AI applications and quite
a high performance ceiling for high AI applications. However, this type of roofline
analysis can miss some of the subtleties associated with each device. For example,
the peak performance ceiling itself does not capture the granularity of parallelism
which is available on the target device, i.e., the GRID K520 provides high amount of
course-grained parallelism which can easily be exploited for embarrassingly parallel
problems, while the CPU and FPGA platforms can easily accelerate applications
with a finer granularity of parallelism, such as those with internal dependencies.
All of those subtleties are difficult to capture without providing an algorithm or
implementation, but the performance ceiling provided by roofline analysis is useful
in:

• determining the theoretical peak performance of a given algorithm (with a
certain AI) on a given device;

• understanding whether certain algorithms are memory or compute bound on a
particular device; and

• how close a given implementation of an algorithm is to the device’s theoretical
peak performance.

In the next section, we will look at how these device properties can be combined
with algorithmic properties of KAFs to make informed decisions about choosing
algorithms and acceleration platforms.
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3.2 Algorithmic Analysis of Kernel Adaptive Filters

In this section, the properties of several KAFs are analysed under several differ-
ent assumptions. The main metric that is of interest is arithmetic intensity, which
is the number of mathematical operations per byte of memory read and written.
The following algorithms are considered: KRLS (Engel, Mannor, and Meir, 2004),
KNLMS (Richard, Bermudez, and Honeine, 2009) and quantised kernel least mean
squares (QKLMS) (Chen et al., 2012). In all cases we’re considering the training phase
of the development. A calculation of arithmetic intensity is provided for small scale
problems (where the predictive model fits in on-chip memory of the device) and large
scale problems where the predictive model is stored in external memory. Throughout
the analysis, we assume that scalar values within each algorithm can be stored in
on-chip memory / registers and therefore are not included in the value for memory
reads.

3.2.1 Notation

The following notation is used throughout this section:

• xn, the nth input vector.

• yn, the nth output or target value.

• M , the length of the input vector.

• N , the size of the training set.

• D, the dictionary/support vectors (a subset of input vectors).

• Ñ , the size of the dictionary.

• x̃i, the ith entry in the dictionary.

• α, the vector of weights (one element for each dictionary entry).

• κ, the kernel function. Unless stated otherwise, the exponential kernel is as-
sumed: κ(xi,xj) = e−γ‖xi−xj‖

2
2 . Note that with other kernels, the arithmetic

intensity will be slightly different.

• w, the wordlength for the datatype (in bytes) which is in use.

For a recap on what these terms mean, see Section 2.1.

3.2.2 Compute and Memory Requirements

In this section, the numbers of operations / memory read are computed for several
KAFs (Liu, Prı́ncipe, and Haykin, 2011). Specifically, KRLS (Engel, Mannor, and
Meir, 2004), KNLMS (Richard, Bermudez, and Honeine, 2009) and QKLMS (Chen
et al., 2012). The implementation of QKLMS uses the coherence criterion (Richard,
Bermudez, and Honeine, 2009) instead of Euclidean distance to select the dictionary
entries, which saves computations for that particular algorithm. Note that while the
following algorithms have different arithmetic intensities, they also have different
performance in terms of their modelling accuracy / OP and accuracy / memory
requirements. Van Vaerenbergh and Santamarıa (Van Vaerenbergh and Santamarıa,
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TABLE 3.2: Summary of the operations required to update the model
based on a new example

Algorithm KRLS KNLMS QKLMS

exp Ñ Ñ Ñ

× 3Ñ2 +MÑ + 5Ñ +
∑Ñ

i=1 i (M + 4)Ñ + 1 (M + 2)Ñ + 1

+ 3Ñ2 + 3MÑ +
∑Ñ

i=1 i 2(M + 1)Ñ 2MÑ + 1
÷ 1 1 -
< 1 Ñ Ñ

Total 6Ñ2 + 4MÑ + 6Ñ + 2 + 2
∑Ñ

i+1 i (3M + 8)Ñ + 2 (3M + 4)Ñ + 2

Mem. (input) (M + 1)w (M + 1)w (M + 1)w

Mem. (model) (ÑM + Ñ + 2
∑Ñ

i=1 i)w (Ñ + ÑM)w (ÑM + Ñ)w

Mem. (update) (Ñ +
∑Ñ

i=1 i)w Ñw w

Intensity as Ñ →∞ 4.7/w (3M + 8)/(M + 2)w (3M + 4)/(M + 1)w

Intensity as M →∞ 4/(Ñ + 1)w 3Ñ/(Ñ + 1)w 3Ñ/(Ñ + 1)w

Intensity as Ñ ,M →∞ 4.4/w 3/w 3/w

2013) provide a nice comparison between the modelling accuracy, floating point oper-
ations and memory requirements of a number of popular KAFs. Their comparison
could be used in conjunction with the static analysis provided here to determine
which are the most promising KAFs suitable for implementation. In order to calculate
an incremental update based on a new training example, {xn, yn}, several operations
are required. These are summarised in the Table 3.2. Operations are split up into
the different common operators found in each algorithm. In practice, exponential
evaluation may be performed using polynomial evaluation (several multiply and ac-
cumulates if Horner’s method is used), but no such substitution appears in Table 3.2.
Memory is split into three components:

1. memory reads required to receive the next input example;

2. memory reads required to access the model parameters; and

3. memory writes required to update the model parameters.

For both memory accesses and operations, we assume the current entry is not added
to the dictionary. To calculate the arithmetic intensity for large models, we assume
that both the input and the model parameters are stored off-chip.

Interestingly, Table 3.2 shows very low AI as Ñ ,M →∞, in the range of 3→ 4.4
operations per datatype word. For single precision floating point w = 4, and for
Int16 w = 2, meaning the actual AI is 0.75 → 1.1 for single precision floating point
and 1.5→ 2.2 for Int16. These AI numbers refer to how the algorithm scales as the
size of the internal model increases. However, there are extra datapoints to consider.
For example, for problems where the entire model fits in on-chip memory, the only
external memory reads / writes will be:

• fetching the latest training pair, {xn, yn}, from an external source (let us assume
it’s from external memory); and

• optionally writing back the a-prioi prediction, ỹn, to an external sink (again, let
us assume it’s to external memory).

Furthermore for small time series prediction problems, the memory read operations
per update reduces even further to just two words of data.
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FIGURE 3.2: Rooflines of several different CPU, GPU and FPGA de-
vices.

3.2.3 Hardware Implications

Putting together all of the information from Sections 3.1 and 3.2.2 we can build a
picture for if / when a certain device should be used over a another one. Let us add
vertical lines to our previous roofline figure, Figure 3.1, which denotes the AI of each
algorithm under various assumptions. Figure 3.2 shows this updated figure.

The arithmetic intesity shown in Figure 3.2 uses the large model assumption, as
Ñ ,M → ∞. Recall that the performance ceilings for the FPGA platforms relate to
Int16 computations, while the CPU and GPU platforms relate to single precision
floating point. As a result, we have 4 vertical lines corresponding to two algorithms,
KRLS and KNLMS,1 with two different datatypes, single precision floating point and
Int16. Clearly, with the large model assumption we can see that these algorithms are
memory bound for all platforms of interest. With this in mind, it is clear that the GPU
device is the best platform available to accelerate these algorithms with the large
model assumption. Although this view ignores some of the subtleties of fine-grained
versus coarse-grained parallelism, it is likely under the large model assumption the
coarse-grained parallelism available on the GPU can be well utilised for large vectors
and matrices. In terms of overall performance, an efficient implementation of these
KAFs would be an order of magnitude below the peak performance of each device.

Secondly, let us consider the AI of the largest model which can fit on the on-chip
memory of each device. In this scenario, we only consider the reading of the latest
target, yn, and the writing of the a-priori prediction, ỹn as the memory reads / writes
respectively. We select values for Ñ , M which produce the highest AI for each device,
with the constraint that the model memory (from Table 3.2) fits in the device on-chip
memory. As the memory reads are constant for each configuration, we can simply
model this search as the following constrained optimisation problem:

Ñmax,Mmax = argmax
Ñ,M∈N∗

(
Oalg(Ñ ,M)

)
s.t. Salg(Ñ ,M)w ≤ Sdevice , (3.2)

where Oalg(Ñ ,M) is a function which returns the number of operations for a given
algorithm, given values for Ñ , M (i.e., the “Total” row in Table 3.2), Salg(Ñ ,M) is

1QKLMS is omitted as it has the same AI as KNLMS
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TABLE 3.3: Maximum arithmetic intensity for models which fit on-chip
for all algorithms and all hardware configurations

Algorithm KRLS KNLMS
Device w Ñmax Mmax AI (Ops / Byte) Ñmax Mmax AI (Ops / Byte)

Xeon E5-2670 4 2288 1 4 583 722.25 2621440 1 3 604 480.25
i7-4500U 4 1022 2 915 840.0 524288 1 720 896.25
GRID K520 4 360 2 114 075.25 65536 1 90 112.25
XC7Z020 2 510 2 457 088.0 131072 1 360 448.5
XCZU3EG 2 704 1 869 264.5 249036 1 684 849.5
XC7VX485 2 1446 2 3 664 526.0 1048576 1 2 883 584.5
XCVU9P 2 4757 1 39 618 675.0 11324620 1 31 142 705.5

a function which returns the size of the model for a given algorithm, given values
for Ñ , M (i.e., the “Mem. (model)” row in Table 3.2), and Sdevice is the amount of
memory available on a given device.

The results of solving the constrained optimisation problem given in Equation (3.2)
for each device and algorithm is given in Table 3.3. Clearly on average, increasing Ñ
results in more operations per update than increasingM , as such,Mmax ∈ {1, 2}while
Ñmax is much larger, and varies depending on the algorithm and the memory capacity
of the device. Note, QKLMS is omitted from this table, as it resulted in identical
values for Mmax and Ñmax as KNLMS. Furthermore, the AI was negligibly different
to KNLMS. The values for Ñmax are significantly larger for KNLMS than for KRLS,
this is because KRLS needs to store an inverse matrix, K̃−1 ∈ RÑmax×Ñmax , in order
to calculate the optimal model update for each new training example. KNLMS and
QKLMS are SGD based algorithms and do not have this constraint. As expected, with
the different storage model, i.e., all model memory stored on-chip, each configuration
has extremely high AI, as such, all of these configurations are compute bound on all
devices. When algorithms have high AIs, the performance of the compute kernels
used to implement them become vitally important. Any pipeline bubble or processor
stall will be noticed in the overall throughput of the hardware. It’s this property,
along with the larger on-chip memory, that makes FPGAs an attractive platform
for implementing KAFs. The larger on-chip memory allows for larger models to be
trained before needing to spill to external memory, and the flexibility in hardware
allows one to design a custom accelerator for the given algorithm that can experience
fewer pipeline bubbles and processor stalls than general purpose processors, like
CPUs and GPUs.

3.3 Precision Requirements of Kernel Adaptive Filters

Another aspect of an algorithm which has significant impact on it’s amenability to
high performance implementations is the precision. Intel CPUs / Nvidia GPUs often
have a 2× / 10× speedup when using single precision floating point over double
precision floating point. For FPGAs it becomes even more interesting, as an arithmetic
unit can be implemented either with DSP blocks, LUTs or a combination of both.
This combination of DSPs and LUTs means that FPGAs are able to exploit reduced
precision arithmetic at a much finer granularity than their CPU/GPU counterparts.
Specifically, a reduction in the number of bits required results in less logic resources
being used to implement that arithmetic, as such a higher computational density can
be achieved on the device. FPGAs have been shown to be efficient at performing
arithmetic at extremely low precision, e.g., 1-bit to 3-bit operands, which can provide
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significantly improved performance and lower overall memory footprint (Blott et al.,
2018).

In this section, we look at the sensitivity of KAFs to rounding using MCA (Parker,
1997).

3.3.1 Precision Analysis of Kernel Adaptive Filters Using Monte Carlo
Arithmetic

MCA involves adding noise to inputs and outputs of every floating point operation in
an algorithm (Parker, 1997). Due to this, floating point numbers behave like random
variables on which we can perform some statistical analysis. In this section, we use
MCA as a tool to estimate the amenability of several KAFs to rounding. As such, we
can understand which algorithms are more amenable to highly performant FPGA
implementations. In order to do this, we leverage MCALIB (Frechtling and Leong,
2015) to apply MCA where regular floating point operations would occur. MCALIB
introduces a virtual precision, t, which determines how many bits will be randomly
modified at the input and output of each operation. The virtual precision, t, refers to
the number of bits in the mantissa (including the implicit bit), while the number of
exponent bits and the sign bit does not change. With this in mind, setting t to various
values can approximate several popular floating point formats, including:

• double precision floating point, when t = 53;

• a mantissa size equivalent to single precision floating point when t = 24;

• a mantissa size equivalent to half precision floating point when t = 11; and

• a mantissa size equivalent to BFLOAT16 (Kalamkar et al., 2019) when t = 8.

Note that only the mantissa size in modelled for single precision floating point, half
precision floating point and BFLOAT16, due to MCALIB using double precision
floating point as its carrier datatype. With this in mind, care needs to be taken to
ensure underflow or overflow would not occur in the modelled datatype. This is
defined by the exponent size of single precision floating point, half precision floating
point and BFLOAT16 being 8, 5 and 8 respectively, compared to the exponent size
of double precision floating point, of 11. We then perform 100 trials of MCA at each
value of t and observe the relative standard deviation in the output. The relative
standard deviation tells us two things:

1. the amount of noise the virtual precision will introduce in the result due to
rounding, i.e., the number of bits of precision that are lost during the computa-
tion;

2. the value for t for which the algorithm still behaves in a stable way, i.e., values
for t which purely result in an increase in noise in the output, rather than
numerical instability.

In order to test the sensitivity of KAFs to rounding, two algorithms are tested:
SW-KRLS (Van Vaerenbergh, Via, and Santamaria, 2006) and KNLMS (Richard,
Bermudez, and Honeine, 2009). SW-KRLS is a recursive least-squares algorithm
which calculates an inverse matrix update using a few operations via the matrix
inversion lemma (Woodbury, 1950). KNLMS is a stochastic gradient descent type
algorithm with its update equations resembling LMS while also utilising a kernel
function (Aronszajn, 1950). The inverse matrix calculation of SW-KRLS allows an



48 Chapter 3. Properties of Kernel Adaptive Filters and Accelerators

20 30 40 50
10−14

10−10

10−6

10−2

102

Virtual Precision (t)

R
el

at
iv

e
St

an
da

rd
D

ev
ia

ti
on

SW-KRLS
1% of baseline error
.1% of baseline error
.01% of baseline error

FIGURE 3.3: Sensitivity of SW-KRLS due to rounding.

optimal model to be calculated for every update, while KNLMS tends towards an
optimal model over time. These two algorithms represent the two main types of
KAFs. We expect other RLS based KAFs to behave similarly to SW-KRLS and other
LMS based KAFs to behave similarly to KNLMS. For the input, the Mackey-Glass
chaotic time series (Mackey, Glass, et al., 1977) was used. This time series is generated
with the following differential equation:

dx(t)/dt = −ax(t) + bx(t− τ)/(1 + x(t− τ)10) , (3.3)

where a = 0.1, b = 0.2 and τ = 30. A feature length of 7 is used throughout, M = 7,
i.e., the proceeding 7 samples are used to predict the next example. The training set
contains 3000 samples, and the last 500 examples are used to evaluate each algorithm.
MSE is used as the evaluation metric, where a lower value corresponds to better
modelling accuracy. This configuration is identical to the configuration used by Engel,
Mannor, and Meir (2004). We chose hyperparameters from Van Vaerenbergh (2012).
Explicitly, for SW-KRLS we use: Ñ = 20 and c = 0.0001, where Ñ is the sliding
window length and c is the regularisation factor. For KNLMS we use: µ0 = 0.9,
η = 0.1 and ε = 0.0001, where µ0 is the coherence criterion parameter, η is the
step-size and ε is the regularisation factor. For both SW-KRLS and KNLMS we use

the Gaussian kernel, given by: κ(x,v) = e−
‖x−v‖2

2σ2 , where σ = 0.6. When double
precision floating point is used without MCA a MSE of MSESW−KRLS = 7.38× 10−3

for SW-KRLS and MSEKNLMS = 9.47× 10−3 for KNLMS. These serve as baselines
throughout this section. Figure 3.3 shows the relative error, represented here as the
absolute relative change in MSE, which occurs as a result of using MCA at various
virtual precisions. There are also 3 horizontal reference lines which signify when
there is a 1%, 0.1% and 0.01% relative standard deviation. When these lines intersect
with the measured relative standard deviation line for SW-KRLS, this tells us the
t value associated with that amount of error tolerance. The straight line between
t = 20 and t = 53 is the region where the SW-KRLS algorithm is behaving as expected.
The values of t within this range signify various levels of noise due to rounding.
In the region where t < 20, the algorithm is not longer behaving as expected. It’s
likely that some catastrophic cancellation (Higham, 1996) is occurring during the
computations at these values of t. In this range small changes to the input will



3.3. Precision Requirements of Kernel Adaptive Filters 49

0 10 20 30 40 50
10−16

10−12

10−8

10−4

100

Virtual Precision (t)

R
el

at
iv

e
St

an
da

rd
D

ev
ia

ti
on

KNLMS
1% of baseline error
.1% of baseline error
.01% of baseline error

FIGURE 3.4: Sensitivity of KNLMS due to rounding.

result in high variance in the modelling capability of SW-KRLS. Considering the 3
reference lines, it’s possible that an application requirement would tolerate any of
the suggested relative increases in MSE. However, the 1% bar, t = 19, falls into the
region of algorithmic instability and as such, would not be recommended. The 0.1%
bar, t = 20, is right on the edge of algorithmic instability and again is probably not a
recommended value for t. The 0.01% bar, t = 24, is in the stable region with a few bits
of padding, and corresponds to single precision floating point. Given the popularity
and availability of the this format, single precision floating point would be a good
candidate datatype for SW-KRLS, assuming that this level of relative increase in MSE
was acceptable. Finally, note that this assumes that all values within the computation
fall within the exponent range of 8-bits, which is highly likely.

Figure 3.4 shows the relative error which occurs as a result of using MCA at
various virtual precisions. Again, the relative error refers to absolute relative change
in MSE. There are also the same 3 horizontal reference lines which signify when
there is a 1%, 0.1% and 0.01% relative standard deviation. Again, when these lines
intersect with the measured relative standard deviation line for KNLMS, this will tell
us the t value associated with that amount of error tolerance. KNLMS appears to be
significantly more stable than SW-KRLS. For example, the stable region from KNLMS
is from t = 6 to t = 53. This is 14 bits lower than the lower bound for SW-KRLS.
Below that value, t < 6, KNLMS begins to behave in an unstable way, meaning that
datatypes below this precision will behave unpredictably for KNLMS. For KNLMS all
3 reference lines, fall in the region of algorithmic stability. This suggests that all three
reference points may be useful for applications which tolerate these levels of relative
increase in MSE. The 1%, 0.1% and 0.01% occur at virtual precisions t = 10, t = 13
and t = 17 respectively. On that basis of these results, it appears a half precision
floating point format or some other kind of custom floating point format would work
well with KNLMS. Note, this also assumes that the exponent does not overflow or
underflow. Even so, it is likely that simple bias shifting (known in the deep learning
literature as loss scaling (Micikevicius et al., 2017)) would alleviate the problem.

Given the results, KNLMS can be considered as a suitable candidate for high per-
formance implementations. Particularly, on FPGA platforms where custom datatypes
can be tailored to the application requirements and can significantly increase their
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computational density. For both SW-KRLS and KNLMS, MCA only tested the man-
tissa sizes of floating point datatypes. Although a similar trend for fixed point
datatypes is likely, it is also likely that several extra bits may be required to compen-
sate for the dynamic range.

3.4 Conclusion

In this chapter, we looked at potential accelerator platforms, the arithmetic intensity
of several KAFs and the amenability of those KAFs to quantisation. Based on the large
model roofline assumption, it was shown that GPUs would be superior at accelerating
large scale KAFs. This is due to KAFs being memory bound as the size of the model
size increases, as such, GPUs excel due to their higher external memory bandwidth.
CPUs and FPGAs were seen as good candidates for smaller scale problems, due to
their larger on-chip memory storage. For high performance implementations, SGD
based algorithms like KNLMS seem to be good candidates, as their on-chip memory
requirements are lower per dictionary entry. Furthermore, KNLMS appears more
amenable to heavy quantisation and as such, may be able to exploit the potential
higher compute density available on FPGAs at lower bit widths.

The next two chapters in this document, take the lessons learned from this chapter
and as a result, two different core generators are created for KNLMS based KAFs
targeting FPGAs.
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Chapter 4

FPGA Accelerators for
Hyperparameter Optimisation

4.1 Introduction

Machine learning and data mining focus on the development of mathematical ideas
and algorithms to learn from data. Interest in these fields has been steadily increasing
in recent years as advancements have addressed previously intractable problems such
as speech recognition, handwriting recognition, image processing, credit card fraud
and automatic fault detection. Kernel methods are an important class of machine
learning algorithms which include support vector machines (SVMs) (Scholkopf and
Smola, 2001), Gaussian processes (GPs) (Rasmussen and Williams, 2006), and kernel
adaptive filters (KAFs) (Liu, Prı́ncipe, and Haykin, 2011).

Reconfigurable computing, the application of field programmable gate arrays
(FPGAs) to computing problems, has been successfully applied in accelerating certain
classes of problems. The following computational conditions are desirable for an
efficient FPGA implementation: (1) instruction and task level parallelism; (2) high
ratio of computation to memory accesses (arithmetic intensity); (3) modest precision
requirements; and (4) low input/output bandwidth.

Standard implementations of SVMs (Platt et al., 1998) and GPs (Lawrence, Seeger,
and Herbrich, 2003) involve batch-mode algorithms which perform multiple passes
over the training set in order to converge towards an optimal solution/model. These
have time complexities which are O(n2

TST ) or higher, where nTST is the number of
training samples, and the resultant models cannot be incrementally updated when
new data becomes available. They do not satisfy conditions (1)-(2) because: storage of
the entire training set is required; the result of one iteration is required before the next
iteration can proceed; and many memory accesses are required per data input with
processing time increasing with data size. In contrast, KAFs are recursive algorithms
which perform a small, fixed amount of computation per data input, and meet all the
above conditions, making them amenable to efficient FPGA implementations.

Different KAF algorithms have been proposed for classification, regression and
anomaly detection tasks (Liu, Prı́ncipe, and Haykin, 2011). In this chapter, we de-
scribe a particularly efficient implementation of the kernel normalised least mean
squares (KNLMS) algorithm. KNLMS was chosen because of its simple computa-
tional structure and its ability to approximate any continuous function with arbitrary
accuracy (Liu, Prı́ncipe, and Haykin, 2011). The computational bottleneck for KNLMS
is the evaluation of an inner product in the feature space. Our implementation is heav-
ily pipelined which leads to high latency which is normally undesirable. However,
our core is specifically designed to address the problem of algorithm configuration in
machine learning, which is known as a hyperparameter search (Bergstra and Bengio,
2012a). For a given machine learning algorithm with P parameters, each parameter
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needs to be tuned to suit the dataset at hand. If P parameters are explored, at B
different values, the number of hyperparameter sets is nh = BP . Training needs to
be performed on each hyperparameter set to determine its suitability to the given
dataset. We exploit the independence of the parameter search to evaluate L indepen-
dent parameter settings in parallel, neatly filling the KNLMS pipeline with L cycles of
latency. As a result, our implementation achieves very high computational efficiency.

The key contributions of this work are:

• The first fully pipelined datapath for a KAF. Compared with previous vector-
processor architectures, much higher performance can be attained because all
pipeline stages do useful work and never stall. Pipeline latency is addressed by
filling all stages with independent parts of a hyperparameter search.

• A number of optimisations for the KNLMS algorithm: pipelining, memory
optimisations, and scheduling are combined to achieve a 575× speedup over a
naı̈ve implementation for parameter optimisation for floating point arithmetic.

• A complete PCI Express (PCIe)-based system implementation with a speedup
of 10× over a processor, 2.66× over a GPU and a speedup of 660× over a
previous microcoded kernel recursive least squares implementation, by Pang
et al. (2013).

Contributions of this chapter include: expanded background and architecture
sections; a new fixed-point implementation which uses 35% of LUTs and 17% of
DSPs, while achieving 60% lower latency than the previously reported floating-point
implementation; addition of a random search which often finds better hyperparame-
ters than the previously reported grid search (Bergstra and Bengio, 2012a); and an
improved PCIe interface which obviates the transfer of nh regression values per input
vector and achieves 4× higher throughput over the previously reported design. In
this work, we’ve also included the results of a much improved CPU implementation
of a parameter search and also included a GPU implementation as a comparison.
Finally, different problem sizes have been considered by experimenting with folding
the algorithm on the core, allowing larger problems to be tackled while reducing the
cores throughput.

This chapter is organised as follows: Section 4.2 describes the KNLMS algo-
rithm (Richard, Bermudez, and Honeine, 2009), hyperparameter search, and literature
review; Section 4.3 describes the proposed architecture; Section 4.4 shows the perfor-
mance and accuracy results of the proposed architecture compared with CPU/GPU
implementations; and conclusions are drawn in Section 4.5.

4.2 Background

4.2.1 Kernel Normalised Least Mean Squares

In this section, the KNLMS algorithm (Richard, Bermudez, and Honeine, 2009) is
summarised with particular attention to aspects which affect hardware implementa-
tions. Also, some basic concepts of kernel methods are repeated from Section 2.1 in a
way that highlights the key information which is relevant to this chapter.

In a standard supervised learning problem, training examples are input/output
pairs {xi, yi}, where xi ∈ RM is the input vector and yi ∈ R is the output or target.
In regression, the goal is to estimate a function, f(xi), which maps xi → yi. Kernel
regression attempts to estimate this function by learning a dictionary D, containing
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a subset of input vectors, and corresponding weights, α. A prediction, ỹi, is then
calculated as follows:

ỹi =

N∑
n=1

αnκ(xi, x̃n), (4.1)

where x̃n is the nth entry in D, αn is the nth entry of α, N is the maximum size of
D, and κ(xi,xj) is the kernel function, specified at design time. Although different
kernels can be accommodated, in this work we focus on the commonly used radial
basis function (RBF) kernel, κ(xi,xj) = e−γ‖xi−xj‖

2

, where γ is a free parameter
chosen to suit the problem at hand.

The KNLMS algorithm is a stochastic gradient descent based algorithm which
learns its model by taking small steps in the direction of the instantaneous gradient,
to minimise the error in the current training example. Similar to algorithms such as
the least mean squares (LMS) algorithm (Widrow and Hoff, 1960), it slowly converges
to a solution over time.

The coherence criterion (Richard, Bermudez, and Honeine, 2009) is used to select
the entries in the dictionary. For unit norm kernel functions, the coherence criterion
is defined as follows: given a new input example at iteration t, xt is added to the
dictionary if max (|kt|) ≤ µ0, where kt is the kernel vector with the nth element being
given by κ(xt, x̃n), µ0 is the coherence parameter chosen at design time. The weights
for each iteration are then calculated by solving the instantaneous approximation to
the following affine projection problem:

min
α
‖α− α̂t−1‖2 subject to yt = k†tα , (4.2)

where α̂t−1 is the set of weights obtained from the previous iteration and † denotes
the vector transpose operation. Assuming that the current input vector, xt, can be
adequately represented by the current dictionary and is not added to the dictionary,
Equation (4.2) can be solved by minimising the following Lagrangian function:

J(α, λ) = ‖α− α̂t−1‖2 + λ(yt − k†tα) . (4.3)

A solution, α̂t, is found by differentiating Equation (4.3) with respect to α and λ and
setting the derivatives to zero, giving:

2(α̂t − α̂t−1) = ktλ

yt =k†tα̂t . (4.4)

Multiplying each term in the first equation by k†t and substituting in for yt, we get
λ = 2(k†tkt)

−1(yt − k†tα̂t−1). This yields the following recursive update equation:

α̂t = α̂t−1 +
η

ε+ k†tkt
(yt − k†tα̂t−1)kt (4.5)

where η is a step-size parameter and ε is a regularisation factor.
For the case where the current training example cannot be adequately represented

by the dictionary, the current input, xt, is appended to the dictionary and the update
equation becomes:

α̂t =

[
α̂t−1

0

]
+

η

ε+ k†tkt
(yt − k†t

[
α̂t−1

0

]
)kt (4.6)
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FIGURE 4.1: Pipelined implementation of a kernel adaptive filter.

Pseudocode for the KNLMS algorithm, adapted from (Richard, Bermudez, and
Honeine, 2009) and (Yukawa, 2012), is shown in Algorithm 4.1.

Algorithm 4.1 KNLMS Algorithm with coherence criterion
Initialise the step-size, η, the regularisation factor, ε,
the coherence parameter, µ0, and select a kernel function, κ.
Insert x1 into the dictionary, denote it as x̃1.
k1 = κ(x1, x̃1), α̂1 = 0, n = 1.
while t > 1 do

Get {xt, yt}
Calculate kt = [κ(xt, x̃1), · · · , κ(xt, x̃n)]†.

if max (|kt|) > µ0 then
Update α̂t using Equation (4.5) n = n+ 1.
Append κ(xt,xt) to kt.
Insert xt into the dictionary, denote it as x̃n.
Update α̂t using Equation (4.6).

end if
end while

A simplified block diagram of a KAF implementation is shown in Figure 4.1.
For KNLMS, the universal approximator block implements Equation (4.1), and the
modify weights block, Equation (4.6). A high degree of pipelining is necessary for
high throughput, but it should be evident that a new input cannot be processed until
after the weights are modified. Assuming L cycles of latency from the input xi to
when the new weights have been determined, the next input cannot be processed
until at least L cycles later, i.e. the initiation interval is L cycles.

4.2.2 Hyperparameter Search

In general, machine learning engineers make predictive models of data. When a
machine learning engineer is confronted with a new dataset, they must choose the
following: 1) which algorithm they will use to model the data; and 2) for a given
algorithm, how to set its hyperparameters. In KNLMS, the dictionary, D, and weights,
α, are parameters which define the model, not hyperparameters which define the
algorithm configuration. The parameters are learned from the training data, while
the hyperparameters affect how a particular algorithm learns from that data.
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The setting of hyperparameters has been shown to have significant impact on the
modelling accuracy of a given algorithm. In particular, Cox and Pinto (2011) show
that hyperparameter selection can be the difference between state-of-the-art or chance
modelling accuracy. As such, to ensure that high modelling accuracy can be achieved,
some sort of hyperparameter space exploration must be performed. In this work, we
focus on a hyperparameter search, which seeks an optimised parameter set which
minimises a cost function (Claesen and Moor, 2015), E. For regression problems, this
cost function is often the least squares error function: E =

∑N
n=0(f(xn)− yn)2. For

classification problems, this is often the number of misclassified examples in a set. In
Algorithm 4.1, the hyperparameter set is {η, γ, µ0, ε}, these values being required by
Equation (4.5), Equation (4.6) and the kernel function κ.

As previously mentioned, dependencies in Algorithm 4.1 exist on the update of
α̂t and Dt. However, if P parameters are tested at B different values, the number of
hyperparameter sets to test is: nh = BP . A pipelined implementation with latency,
L, less than or equal to nh can thus be fully utilised by evaluating hyperparameter
settings in different stages as shown in Figure 4.2. Put another way, hazards on
contiguous inputs with the same ID in Figure 4.2 can be resolved by evaluating
independent hyperparameter settings on successive cycles. For practical problems,
this is almost always the case.

An alternative search algorithm uses random rather than evenly-spaced candi-
dates (Pinto et al., 2009; Bergstra and Bengio, 2012a), e.g. for 4 hyperparameters,
random search generates points randomly in a 4 dimensional space. This has the
advantage that the experiment can be stopped at any time and the trials form a
complete experiment, new trials can be added at any time, each trial is independent,
and random search can be more efficient (Bergstra and Bengio, 2012a).

4.2.3 Literature Review

Kernel methods are eminently amenable to efficient hardware implementations and
several implementations of SVM have been reported. Anguita et al. (2011) described
an SVM core generator which allowed for different speed, resource and accuracy
tradeoffs and utilised fixed point arithmetic. Papadonikolakis and Bouganis (2008)
described a scalable SVM module generator which supported different kernel types.
Their design supported different numbers of parallel computing tiles which allowed
for performance/resource tradeoffs, and was partitioned into fixed point and floating
point sections to achieve high performance while maintaining high accuracy. The
MAPLE architecture as described by Majumdar et al. (2012) was designed to improve
many learning algorithms, including SVM. MAPLE utilised two-dimensional vector
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FIGURE 4.3: A block diagram of the KNLMS processor showing the
various submodules.

processing elements to accelerate linear algebra routines. The architecture also sup-
ported off-chip memory, allowing it to accommodate large learning problems. While
much of the computation is similar to KNLMS, as explained in the introduction, SVM
is not suitable in online applications in which storage of the entire training set is
undesirable, nor when incremental model updates are required.

Pang et al. (2013) proposed a compact and low latency microcoded soft vector
processor. Parallelism was achieved using up to 128 floating-point vector process-
ing elements, and kernel evaluations were accelerated through the inclusion of a
hardware exponentiation unit. An implementation of the sliding window kernel
recursive least squares (SW-KRLS) algorithm (Van Vaerenbergh, Via, and Santamaria,
2006) was used as an example in the work. The floating-point implementation of the
quantised kernel least mean squares (QKLMS) algorithm (Chen et al., 2012) utilising
the survival kernel (Chen, Zheng, and Principe, 2013) by Ren et al. (2014) is most
comparable to this work. Differences include: (1) their work was limited to a single
dimensional kernel vs arbitrary dimensions, (2) they employed the survival kernel
compared to the much more commonly used Gaussian kernel in this design, (3) they
achieve parallelism through pipelining and 128 parallel processing elements whereas
our efficiency is by virtue of a fully pipelined design.

In this work, we avoid the dependency problem created by the recursive up-
date expressions of KNLMS by filling the pipeline with independent models which
are training during the hyperparameter phase of training a machine learning algo-
rithm. Alternative approaches to avoiding this problem include: delayed model
adaptation (Long, Ling, and Proakis, 1989), correction terms (Poltmann, 1995) and
braiding (Tridgell et al., 2015).

As far as the author is aware, there are no specific FPGA based coprocessors for
GPs. Although, general purpose machine learning accelerators (such as Majumdar
et al. (2012)) and in particular, ones which include specific kernel function accelerators
(such as Pang et al. (2013)) would most likely be able to accelerate GPs. Coproces-
sors may not have been implemented for GPs because of their close relationship
to SVMs (Seeger, 2000) or perhaps simply because few hardware designers have
knowledge of GPs.

Delayed model adaptation has been applied effectively to the least mean squares
(LMS) algorithm (Widrow and Hoff, 1960). The resultant delayed LMS (DLMS) al-
gorithm (Long, Ling, and Proakis, 1989) has been shown to be stable under certain
configurations and that high frequency FPGA implementations can be achieved (Yi
et al., 2005). Since introducing a model adaptation delay changes the learning charac-
teristics of an algorithm, it may not be suitable for hyperparameter optimisation for
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the following reasons: (1) as far as the author is aware, no stability analysis has been
done for a version of LMS which uses a kernel function; (2) the hyperparameters
found using a delayed version of KNLMS may differ significantly from KNLMS itself,
i.e., the learned hyperparameters would need to be deployed on a system which
also implements KNLMS with a model adaptation delay; and (3) the computational
complexity of KNLMS is higher than LMS, as such the number of pipeline stages
(see Section 4.4) required to achieve high clock frequencies would most likely cause
undesirable learning behaviour.

Correction terms are a way of rearranging the equations of a recursive algorithm
in order to reduce the critical path of the dependency loop. They have been applied
to the LMS algorithm (Poltmann, 1995) and utilised effectively in hardware to create
high frequency implementations of LMS (Douglas, Zhu, and Smith, 1998) which
maintain the same learning characteristics of LMS. Adding correction terms usually
introduces redundant calculations (when compared with a serial implementation.)
Also, the amount of extra computations required is proportional to the number of
pipeline stages used and as such, would significantly reduce the maximum dictionary
size / feature length that can be realised by our core.

Braiding (Tridgell et al., 2015) was used effectively to overcome the dependencies
present in the Naive Online regularised Risk Minimisation Algorithm (NORMA) (Kivi-
nen, Smola, and Williamson, 2004), and endeavours to optimise latency rather than
throughput which is the topic of the present work. It can be seen as an extension of
correction terms to kernel based online learning algorithms when the dictionaries
of such algorithms are created from a sliding window. The KNLMS algorithm used
in this work does not have this property for the entries of its dictionary, rather it
uses the coherence criterion (Richard, Bermudez, and Honeine, 2009) to select its
entries. However, it is possible the technique could be extended to KNLMS, but
braiding also suffers from an increase in calculation requirements proportional to the
number of pipeline stages in the circuit. Similar to correction terms, this would likely
significantly limit the problem sizes that could be tackled by our core.

4.3 Architecture

In this section, our fully pipelined KNLMS architecture is described, highlighting
areas suitable for optimisation. In addition, scalability of the design is explored.

Referring to Algorithm 4.4, our main insight is to reorder the commonly used
search loop on the left to that on the right. This allows the independent hyperparam-
eter evaluations to fill the pipeline and avoid dependencies, as previously explained
in Section 4.2.2. Note that nh is the numbers of hyperparameter sets to be evaluated.

4.3.1 High Level Description

The idea behind the design is to create a module to accelerate the operations required
to update the kernel regression model from time step t− 1 to t, i.e. those within the
while loop of Algorithm 4.1. We call this the forward path. In doing this, we completely
unrolled the algorithm and instantiated dedicated hardware for every operation
within the algorithm. For scaling the design, we kept the same basic structure of this
unrolled, dataflow implementation of the design, but folded any dot products to be
executed over multiple cycles. A block diagram showing the basic structure of the
processor is shown in Figure 4.3. The submodules are responsible for the following
functions: (1) the kernel modules calculate the kernel vector, kt; (2) the coherence
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Algorithm 4.4 Difference between a regular parallel search and a pipelined search.
Initialise hyperparameter sets Λ1−nh , training data TR1−nTR , and testing data
TST1−nTST
αΛi : Weights trained with Λi,
kj(Λi): a kernel vector produced from TSTj and dictionary trained with Λi

Normal Grid/Random Search:
begin

Initialise the sums of errors
E1−nh = 0

for i = 1 : nh do
for j = 1 : nTR do

Execute Algorithm 4.1 us-
ing Λi with TRj

end for
for j = 1 : nTST do

Ei+ = (yj − k†j(Λi)αΛi)
2

end for
end for
Pick Λβ , where β = argminβEβ

end

Pipelined Search:
begin

Initialise the sums of errors
E1−nh = 0

for i = 1 : nTR do
for j = 1 : nh do

Execute Algorithm 4.1 us-
ing Λj with TRi

end for
end for
for i = 1 : nTST do

for j = 1 : nh do
Ej+ = (yi − k†i(Λj)αΛj )

2

end for
end for
Pick Λβ , where β = argminβEβ

end
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criterion module decides whether to add the latest input example to the dictionary,
and updates it if necessary; (3) the dot product modules, which produce the a-priori
estimate of yt, denoted by ỹt, and the normalisation term, ‖kt‖2; and (4) the α update
module produces the updated weights, αt. In order to compute multiple iterations of
the KNLMS algorithm, the forward path module is controlled by a scheduler, which
is described in Section 4.3.5.

4.3.2 Kernel Module

Figure 4.4 shows the dataflow graph of a kernel module. The kernel module computes
the Gaussian kernel, given by: κ(xi,xj) = e−γ‖xi−xj‖

2

. Each kernel module requires
2M − 1 adders, M + 1 multipliers and 1 exponential unit, where M is the feature
length. N kernel modules are required for a design supporting a maximum dictionary
size of N . The most computationally expensive part of the KNLMS processor is the
calculation of the kernel vector.

4.3.3 Alpha Update Module

The α update module finishes the training step by calculating αt as shown in Equa-
tion (4.5). The dataflow graph for the α update module is shown in Figure 4.5. The α
update module first calculates the prediction error and the normalisation term. This
is followed by a scalar vector product and an elementwise vector addition. The α up-
date module operates on vectors of length N and as such, requires N + 1 multipliers,
N + 2 adders and 1 divider.

4.3.4 Coherence and Dot Product Modules

The coherence module is a simple control module. It takes kt, xt, µ0, n and D as
inputs. kt is padded with zeros for each unused entry in D. If max (|kt|) ≤ µ0, then n
becomes n+ 1 and xt is appended to D. Otherwise, n and D are unchanged.

The two dot product modules are made using parallel multipliers followed by
an adder tree. Each module operates on vectors of length N and as such, require N
multipliers and N − 1 adders.
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4.3.5 Optimisations

In order to maximise performance, the optimisations described in this subsection
were implemented.

A fully pipelined design cannot be directly synthesised from a C++ description
of the algorithm in Algorithm 4.1, due to the dependency of the updated dictionary
D and weights α̂t on the new kernel vector kt. By omitting the update steps, we
can turn the datapath into an acyclic one. The feedback connection is then made by
externally connecting outputs to corresponding inputs in Figure 4.3. This results in
the desired design with initiation interval of 1. Dictionary and weight updates are
delayed by L, the latency of the KNLMS core.

A significant bottleneck in creating accurate machine learning models is parameter
optimisation. Even if the kernel function is fixed to be the Gaussian kernel, a search is
required over the hyperparameters. This involves performing regression over a test
data set using different parameter settings. Since these are independent problems,
they can be executed in parallel as nh independent tasks. Each task is executed in a
different pipeline slot so all hardware units in the KNLMS forward path evaluation
pipeline can be fully utilised.

Hyperparameter search using KNLMS requires control logic and BRAMs beyond
that of Figure 4.3. In order to perform regression on nh independent problems, we
require storage of nh× dictionaries of size MN , and nh× length-M weight vectors.
This is achieved by using block RAMs and indexing them with a counter l ∈ [0, . . . , nh)
so that every nh cycles, we return to the same dictionary and weight vector. This
arrangement removes the need for an nh : 1 multiplexer per dictionary and weight
entry. Since writing and reading dictionary and weight vector entries is required each
cycle, dual-port BRAMs are used. The architecture produces an error e, and updates
D, α, and n every cycle.

One further improvement over (Fraser et al., 2015a) is support for random search.
A parameter memory (as shown in in Figure 4.7) per hyperparameter allows runtime
downloading of parameter choices to be searched. If initialised to grid points, a grid
search is realised; whereas if the parameter memory is initialised to random points, a
random search will be performed. An alternative approach might be to replace the
parameter memory with a state machine that generates grid or random points. In
practice, the current architecture is usually preferable since it is more flexible and the
number of search points per parameter is modest.

Computing the kernel function κ(xi,xj) for the Gaussian kernel requires an M -
input adder tree which has a total latency of dlog2Me times the latency of a single
adder. We observe that: (1) the inputs to this adder are strictly positive, so unsigned
arithmetic can be used; (2) the output is passed through a function e−γ

∑
x2 which is

not sensitive to small changes in the input; and (3) computation can be done in fixed
point. This can reduce latency and allow accuracy-speed tradeoffs.

4.3.6 Implementation of the KNLMS Core

For this work, Vivado High Level Synthesis (HLS) was used to implement the core.
Vivado HLS was used because it allows the core designer to explore a large space of
possible designs while making only small changes to the code. Also, if there are no
data dependencies present within the C++ used to describe the core, Vivado HLS will
automatically pipeline the core in an attempt to meet the desired clock constraint.

Firstly, the forward path of the KNLMS algorithm was implemented as a C++
function which takes the hyperparameters, the model parameters (D, α), and a single
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training example as inputs. As outputs, the function returns the updated weights,
dictionary and an a priori prediction for the training example. Unlike some other
implementations of adaptive filters (such as Douglas, Zhu, and Smith (1998) and Yi
et al. (2005)) the model parameters are not stored within the core itself, rather they
are passed as inputs to the core. As such, there are no dependencies within the core
which means it may be pipelined arbitrarily without affecting the accuracy of the
resultant updated model.

The top level module (in HLS), sits outside the core. It uses BRAMs to store the dif-
ferent parameter configurations and the corresponding models, i.e., the dictionaries
D, and weights, α. The module then feeds each training example, parameter configu-
ration and model into the core while ensuring that the same parameter configuration
does not exist within the pipeline of the KNLMS core multiple times.

4.3.7 System Implementation of Hyperparameter Search

The floating-point KNLMS core can be integrated with a PCIe interface as illustrated
in Figure 4.6. Data ingress is controlled by a FIFO, and a nh-word parameter memory
(nh ≥ L) for each of the 4 parameters shown in the bottom left module of Figure 4.3
was used to store the parameters to be searched. Separate memories indexed by l (as
detailed in Section 4.3.5) were used to store dictionary and weight values.

When the input FIFO becomes non-empty, the serial to parallel converter converts
the data to a vector. A sequence of nh independent optimisations with different
parameter values is then streamed through the KNLMS processor. In our previous
implementation (Fraser et al., 2015a), an output FIFO was used to collect nh output
values per input vector. In such an implementation, care must be taken to limit the
number of inputs sent before the outputs are read. While this avoids deadlocks, it
also limits the burst transfers made on the PCI bus and reduces performance.

An improved system implementation, illustrated in Figure 4.7, avoids transfers
from the KNLMS processor by accumulating the squared error values on-chip. The
host code simply writes the parameters and training set to the core via the RIFFA2 (Ja-
cobsen et al., 2015) interface, and reads back an expected number of words from the
same interface. This allows all of the training input data to be transferred to the core
with a single data stream transfer RIFFA API function call for each training-validation
set. Therefore, this improved system implementation minimises the overhead from
the blocking operations between sending and receiving data for the RIFFA interface.
We implemented a 2-fold cross-validation platform with the architecture of Figure 4.7.
A subsequent read of nh sum of squared error values is required to determine which
set achieved the lowest error. The nh numeric values from the system implementation
were verified, comparing to the results from the C implementation. In summary,
these changes allowed for more efficient use of the available PCI bandwidth through:

1. reducing the amount of data transferred between the host and the accelerator;
and

2. changes to the host code, allowing larger burst sizes to be used during memory
transfers.

4.3.8 Arithmetic

Two implementations were made, one using floating-point and the other fixed-point.
The former has advantages of large dynamic range and ease of comparison with
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microprocessor-based implementations, whereas the fixed-point implementation
offers lower latency and smaller area.

Implementation of the basic operators in fixed point arithmetic is straightforward.
In this work, we chose a 21-bit two’s complement fixed-point representation (5 integer
bits and 16 fraction bits) with truncated rounding and saturating arithmetic. As shown
later, this is sufficient precision to obtain comparable results with single-precision
floating-point.

Hardware architectures for evaluating the exponential function have been previ-
ously reported (Jamro, Wiatr, and Wielgosz, 2007; Wielgosz, Jamro, and Wiatr, 2008;
Detrey and Dinechin, 2005; Pottathuparambil and Sass, 2009; Alachiotis and Sta-
matakis, 2011). We employed a look-up table based approach presented in (Wielgosz,
Jamro, and Wiatr, 2008), without the Taylor series expansion. The approximation is
based on the mathematical property

ex = 2x·log2e = 2xI · 2xF , (4.7)

where xI is the integer part and xF is the fraction part of x · log2e. Since we only use
ex in computing the Gaussian function, e−γ‖·‖

2
, x = −γ‖ · ‖2 ≤ 0. Hence, the input

domain for Equation (4.7) can be expressed using non-negative numbers x+, i.e., x
= −x+. We further represent x+ in terms of its integer and fractional parts so that
x+ = x+

I .x
+
F , and break x+

F into most significant (x+
FMSB

) and least significant (x+
FLSB

)
parts to give

ex = 2xI · 2xF = 2−x
+
I · 2−x

+
FMSB · 2−x

+
FLSB . (4.8)

Figure 4.8 illustrates our implementation using two lookup tables. The width for
both FMSB[x+ · log2e] and FLSB[x+ · log2e] was chosen to be 8 bits. Consequently, the
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TABLE 4.1: Formulae for the number of floating-point operators re-
quired and latency in cycles for (Float, Fixed: 5 bits for integer and 16

bits for fraction with saturating arithmetic).

+ (11,3) × (7,6) / (30,41) exp (20,9) < (4,1)

Operation 2MN + 2N
MN+

1 N N − 1
4N + 1

Latency
log2N+

5 1 1 log2Nlog2M + 3

size of each of the two LUTs is 28. N exponentiation modules are required in a fully
pipelined KNLMS design.

The fixed-point implementation produces an error less than or equal to one half
of one unit in the last place (Detrey and Dinechin, 2005; Wilkinson, 1994), i.e.

|ex − êx| = 2−x
+
I · |2−x

+
F − 2̂−x

+
F | ≤ ξ (4.9)

where l is the number of bits in xF , ξ = 2−(l+1) is a machine epsilon in a fixed point
data format and êx is the exponential estimation of the implementation.

4.3.9 Area and Latency

We estimated the scalability of the architecture with the key parameters N and M .
The number of required operators and estimated latency is shown in Table 4.1. The
operator latency is given in parentheses next to the operator symbol. In order to
estimate the latency for a given design, the operator latency is multiplied by the
expression in the latency row. In terms of worst case scalability, the area of arithmetic
operators is O(MN), memory usage is O(MN), and latency O(log2N + log2M).

In the following section, linear regression is used to model area (LUTs and DSPs)
and latency (L) using the formulae

LUTs = l1MN + l2N + l3 (4.10)
DSPs = d1MN + d2N + d3 (4.11)

L = L1 log2MN + L2 log2N + L3 (4.12)
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TABLE 4.2: Summary of place and route output for each of the KNLMS
designs

Naı̈ve (N=16) Float (N=16) Fixed (N=16) Fixed (N=32)

BRAM18K (2060) 8 (0.4%) 145 (7.0%) 138 (6.8%) 274 (31.3%)
DSP48 (2800) 12 (0.4%) 1267 (45.3%) 210 (7.5%) 418 (14.9%)
LUTs (304K) 4,550 (1.5%) 150,494 (49.5%) 53,273 (17.3%) 109,546 (36.2 %)
Latency (cycles) 756 207 121 124
II (cycles) 757 1 1 1
Fmax(MHz) 96.7 314 286 206
GOPS 0.07 161.1 146.7 211.2

4.4 Results

This section describes the resource utilisation, performance and accuracy of the
implementation written in C. The design was synthesised and implemented using
Xilinx Vivado HLS 2015.3. The target platform was a Xilinx VC707 evaluation board
using a Xilinx Virtex 7 XC7VX485TFFG1761-2 FPGA.

4.4.1 Synthesis and PAR Results

Table 4.2 shows place and route (PAR) results for the four different implementations
of Figure 4.3: (1) Naı̈ve - an unoptimised Vivado HLS synthesised implementation
derived from KAFBOX (Van Vaerenbergh, 2012), representing a design without
consideration of the resulting hardware datapath; (2) Float - a single precision floating
point design which uses the Xilinx floating point cores throughout and contains all
optimisations described in Section 4.3.5; and (3) Fixed (5 integer bits and 16 fraction
bits) - with all optimisations described in Section 4.3.8.

Floating-point operations are single precision and IEEE-754 compliant with the
exception that denormalised numbers are not supported. Although our design is
parameterised, results for the settings N = 16 and M = 8, are reported unless stated
otherwise. The GOPS are estimated using Fmax, the initiation interval (II) and the
number of operations required for single update. With reference to Table 4.1, the
number of operations is 513. Note that for the Naı̈ve and Float designs, GOPS is
equivalent to GFLOPS.

Table 4.3 shows the relationship between the design parameters M and N , and
the latency and hardware resources. These numbers are different to Table 4.2 because
they are post-synthesis estimates rather than place and route results.

Using the formulae in Sections 4.3.9 to 4.3.9, linear regression was applied to
obtain linear models. The estimates are given in parentheses in Table 4.3 and a
maximum percentage error of less than 10% was observed. This confirms that the
simple area and latency models in Table 4.1 are capable of accurate prediction.

As expected, Fixed requires fewer resources, and can support a larger dictionary.
For N = 32 and M = 8, Fixed achieved 211 GOPS (1,025 operations at 206 MHz) and
only used 36% of LUTs, 15% of DSPs and 31% of BRAMs.

4.4.2 Learning Accuracy with a Grid/Random Search

We examine out-sample error for our implementations for the chaotic MG-30 Mackey-
Glass benchmark modelling the differential equation dx(t)/dt = ax(t− τ)/(1 + x(t−
τ)10) − bx(t) with (a = 0.2, b = 0.1, τ = 30), as implemented in KAFBOX (Van
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TABLE 4.3: Area utilisation of different designs obtained from synthe-
sis. Estimates obtained via linear regression are in parentheses.

Type M N LUTs (Est) DSPs (Est) L (Est) Fmax

Float

2 16 77K (77K) 595 (595) 185 (185) 385
4 16 109K (109K) 819 (819) 196 (196) 385
16 16 307K (307K) 2163 (2163) 218 (218) 385
8 2 23K (25K) 161 (161) 162 (162) 385
8 4 46K (47K) 319 (319) 177 (177) 385
8 8 95K (90K) 635 (635) 192 (192) 385
8 16 173K (175K) 1267 (1267) 207 (207) 385

Fixed

2 16 31K (31K) 196 (197) 112 (109) 321
4 16 47K (47K) 260 (261) 115 (116) 321
16 16 142K (142K) 644 (645) 133 (130) 321
8 2 13K (14K) 54 (59) 108 (107) 321
8 4 23K (24K) 106 (106) 111 (112) 321
8 8 47K (42K) 210 (201) 116 (118) 321
8 16 78K (79K) 388 (389) 121 (123) 321

Vaerenbergh, 2012). A training set of 3,999 samples was used for hyperparameter
search with 3-fold cross validation. We use 4 hyperparameter candidates for each
hyperparameter in a grid search (i.e, nh = 44) and 256 random hyperparameter sets
in a random search. The ranges for parameter sets for grid and random parameter
searches are set as follows: γ = [0.01, 2], η = [0.05, 0.3], ε = [0.001, 0.5] and µ0 =
[0.5, 0.8]. The result of this execution was two hyperparameter sets.

The quality of the hyperparameters were tested on 100, 1100 out-sample data
points, which we call the testing sets. On each of the 100 testing sets, we perform the
following experiment: 1) split the 1100 samples up into 1000 training points and 100
validation points; 2) train a KNLMS model on a single training point; 3) after training
on a single point, test the models prediction accuracy on the 100 validation points and
calculate the mean squared error (MSE); and 4) repeat steps 2) and 3) until all training
points are trained. After calculating the above steps on each of the 100 testing sets,
for float and fixed point, with the fractional length, FL = 8 and FL = 16, we then
calculate the average MSE at each training iteration, as well a average relative error
and maximum relative error with respect to floating point. The left plot of Figure 4.9
shows the average MSE of our KNLMS configurations using the hyperparameters
found using the abovementioned methodology. Explicitly, the parameters (σ, η, ε, µ0)
found were 0.85, 0.3, 0.001, 0.8 for the grid search, and 0.5857, 0.1912, 0.3907, 0.7815
for the random search. The values on the x-axis represent the current training iteration
and the y-axis represents the average MSE over the validation set. On the right, the
relative MSE is shown between float and fixed point with FL = 8 and FL = 16. Bit-
accurate Vivado HLS C simulations were used to obtain this figure. When FL = 16
it is clear that float and fixed point produce almost identical results with less than
1/1,000 relative error for all data points and on average 1/10,000 relative error. While
when FL = 8, the average relative error becomes over 1/100 and the maximum
relative error over 1/10. In our experiements, random search resulted in a lower error
than grid search, indicating a better hyperparameter set was found. This observation
is consistent with others studies which found random search to often superior to
grid search (Bergstra and Bengio, 2012a). Based on Figure 4.9, 16 bits are enough for
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Fixed fraction width to produce almost identical learning accuracies to Float. In this
work, we employed a dictionary size of N = 16 for our Float design due to resource
limitations. Since Fixed uses less area, the same FPGA can support a larger dictionary
size of N = 32. In some cases, it may be possible that fixed can achieve improved
accuracy by employing a larger dictionary.

We end this subsection by noting that these results are data dependent and it is
not possible to make any generalisations for other data sets. Moreover, insight into
how precision requirements, hyperparameter values and dictionary size affect the
quality of predictions is a research problem beyond the scope of this work and, in the
opinion of the authors, not currently tractable for non-linear KAFs.

4.4.3 KNLMS Processor Performance

A comparison of performance with other KAF implementations is challenging since
previous work implemented different algorithms. SW-KRLS (Van Vaerenbergh, Via,
and Santamaria, 2006) requires a matrix inversion per update and has O(N2 +NM)
time complexity. This is in contrast to KNLMS which is O(NM) and uses stochastic
gradient descent techniques (Liu, Prı́ncipe, and Haykin, 2011). Moreover, one should
be careful in comparing Altera and Xilinx LUTs and DSP blocks as they are different.
Nevertheless, a summary of previous online KAF implementations of which we are
aware is presented in Table 4.4. Clearly, the different versions of our KNLMS processor
have much higher throughput when compared to the other implementations.

The CPU (C) and GPU (CUDA) are versions of KNLMS with a parallelised
parameter search implemented using C/CUDA for CPU/GPU respectively.1 For the
CPU (C) version, many linear algebra libraries were tested including: BLAS (Lawson
et al., 1979), ATLAS (Whaley and Petitet, 2005) (with and without multithreading),
OPENBLAS (Xianyi, Qian, and Chothia, 2014) and hand coded routines. The fastest
version was chosen to populate Table 4.4, which to our surprise, was our hand coded
routines. We suspect that the vector sizes (define by M ≤ 8, N ≤ 16) were not large
enough to take advantage of cache blocking, and the vectorisation methods provided
by ATLAS/OPENBLAS, while aggressive compiler optimisations caused the hand
coded routines to be inlined, removing the function call overhead associated with an
external library. A parallel parameter search was implemented using OpenMP (Sato,
2002) on the outer loop described in Algorithm 4.4 (the normal grid search). Similar to

1Software available at: https://bitbucket.org/nick_fraser/libkaf/

https://bitbucket.org/nick_fraser/libkaf/
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TABLE 4.4: Comparison of online kernel method implementations

Implementation Algorithm Device M N DSPs LUTs BRAM Freq Time Slowdown
MHz ns rel. to Float

Naı̈ve KNLMS Xilinx XC7VX485-2 8 16 12 4550 8 96.7 7,829 2,462
Float KNLMS Xilinx XC7VX485-2 8 16 1267 150,494 145 314 3.18 1
Fixed KNLMS Xilinx XC7VX485-2 8 16 210 53,273 138 286 3.50 1.1
System (Float) KNLMS VC707 dev board 8 16 1272 142,900 229 250 4 1.3
System (Fixed) KNLMS VC707 dev board 8 16 226 54,689 230 125 8 2.5
CPU (C) KNLMS Intel Xeon E5-2670 8 16 - - - 2,600 41 12.89
GPU (CUDA) KNLMS Nvidia GRID K520 8 16 - - - 800 11 3.46

Pang et al. (2013) SW-KRLS
Altera

7 16 30 41,476 227 237 9,000 2,830
Stratix V 5SGXEA7C2

the CPU (C) code, the GPU (CUDA) implements the KNLMS parameter search loop
described in Algorithm 4.4 (the normal grid search). Each GPU thread implements
KNLMS training on a different set of parameters in the parameter search. For both
CPU and GPU parameter searches, great care was taken to ensure that as many
variables as possible were private to each thread. Also, for both CPU and GPU
parameter searches, the number of parameters and the length of the training set were
scaled to find the best average time per prediction. As stated in Section 4.2, Pang et al.
(2013) implement a different kernel adaptive filtering algorithm using a microcoded
vector processor, rather than a fully parallel, fully pipelined implementation described
herein. The goal of the work from Pang et al. (2013) is to optimise latency, rather than
throughput and as such, their performance is much lower than ours. However, their
work constitutes the highest performing FPGA implementation of a KAF available in
the literature and therefore, is included in Table 4.4.

4.4.4 System Performance

RIFFA 2.2.0 (Jacobsen, Freund, and Kastner, 2012) was used to provide high speed
data communication between our host computer and the FPGA via a PCIe GEN2 bus.
The VC 707 board used supports a maximum bandwidth 4 GB/s for uni-directional
transfers and RIFFA could reach around 80% of this value. However, high bandwidth
can only be achieved if sufficient data is sent to amortise transaction overheads. The
optimised interface requires modest I/O bandwidth because each input vector is
used nh = 256 times before the next one is required.

Using the optimised system interface, with both the KNLMS Float core and PCI
interface operating at 250 MHz, the same MG-30 benchmark set samples were trained
over a parameter space of nh = 256 values. Figure 4.10 shows the performance as a
percentage of the peak performance where f = 250 MHz is the operating frequency,
while varying the training set size.

While the design in (Fraser et al., 2015a) only achieved 23% of the highest achiev-
able performance for the core, our new design can achieve full performance for
training sets of more than 1000 input vectors. The main sources of inefficiencies
in (Fraser et al., 2015a) can be attributed to turnaround time of the PCIe bus (i.e.
transfers were made in small blocks to avoid filling the FIFO and the result was read
into the host before the next block was sent), these were overcome in the present
design by calculating the sums of errors in the FPGA, rather than the host. This
significantly reduced the amount of data that needed to be sent from the FPGA to the
host. The entire data set could be sent in a single transfer without filling the FIFOs, as
detailed in Section 4.3.6.

Note that, the system implementation used a different clock constraint in Vivado
HLS in order to meet the timing requirements of the 250MHz clock on the VC707 dev
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FIGURE 4.10: Plot illustrating system performance of the KNLMS
processor vs training set size.

TABLE 4.5: Scaling the KNLMS core to larger FPGAs and larger prob-
lem sizes

Implementation Device M N DSPs LUTs Freq II Latency Time
MHz ns

Float Xilinx XC7VX485-2 8 16 126 39,351 283 16 331 3.53
Float Xilinx XC7VX485-2 8 32 247 77,195 283 16 475 3.53
Float Xilinx XC7VX485-2 8 64 441 175,031 283 16 772 3.53
Float Xilinx XC7VX485-2 8 128 882 394,130 283 16 1348 3.53
Float Xilinx XC7VX485-2 8 256 1769 977,716 283 16 2500 3.53
Float Xilinx XC7VX485-2 8 32 222 70,924 246 32 483 4.06
Float Xilinx XC7VX485-2 8 64 439 138,254 246 32 771 4.06
Float Xilinx XC7VX485-2 8 128 405 291,576 246 32 1367 4.06
Float Xilinx XC7VX485-2 8 256 808 682,692 246 32 2519 4.06
Float Xilinx XC7VX485-2 8 64 96 112,487 246 64 994 4.06
Float Xilinx XC7VX485-2 8 128 216 224,675 240 64 1386 4.17
Float Xilinx XC7VX485-2 8 256 432 540,213 240 64 2538 4.17
Device Xilinx XC7VX485-2 - - 2800 303,600 - - - -

board. When synthesised without the PCI interface, the Fixed and Float were capable
of clock frequencies of 314 MHz and 286 MHz respectively, however, inclusion of
the RIFFA core caused the maximum frequencies to drop to 250 MHz and 125 MHz.
Separate clocks for the core and interface should support a higher KNLMS core clock
rate and a further improvement in throughput.

4.4.5 Scaling the KNLMS Core

In all previous sections, we only considered a fully parallel, fully spatialised imple-
mentation of the KNLMS core. In this subsection, we consider how the core will scale
to larger FPGAs and also larger problem sizes. In order to handle larger problem sizes,
we fold the design over the maximum dictionary size, N . We use initiation intervals
(IIs) of 16, 32 and 64 while scaling the maximum dictionary size. The performance
and area estimates, shown in Table 4.5 were created using presynthesis results from
Vivado HLS. For the most part, increasing the II by a factor of 2 allows a dictionary
which is twice as large to be accommodated for a similar area cost. Surprisingly, for
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high initiation intervals and dictionary sizes, the DSP usage is lower for the same
N/II ratio. In the case of the Xilinx XC7VX485-2 device, the largest problem that can
fit, based on Table 4.5, is N = 128 at a folding factor of 64. In practice, values of M
and N can vary significantly to meet the demands of the specific application and the
selected hyperparameters. Richard, Bermudez, and Honeine (2009) report sizes for
M ≤ 10 and as low as M = 2, while values for N range from 5 ≤ N ≤ 20. For other
applications of kernel methods, sizes for M , N can range into the tens, hundreds and
even thousands (Engel, Mannor, and Meir, 2004).

4.5 Conclusion

A fully pipelined FPGA implementation of hyperparameter search for KNLMS was
presented which achieves higher performance than any previously reported design.
Pipeline stages are filled with multiple independent tasks, corresponding to different
machine learning parameter values, allowing high utilisation of resources. This work
demonstrated the feasibility of performing parameter search at nanosecond periods
and opens the way for Big Data applications which were previously computation-
ally intractable. Our PCI system achieves 9.9 / 2.6× speedup over a CPU / GPU
implementation respectively.

Future work will focus on techniques to further increase parallelism, explore
precision tradeoffs, reduce the latency of the design and to further explore how to
accelerate larger problem sizes. Another possible use case for this design is to process
high-bandwidth, independent streams of data. The system can process 8 × 32 bits
continuously at 250 MHz, equating to a throughput of 64 Gbps.
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Chapter 5

The Delayed Kernel Normalised
Least Mean Squares Algorithm and
Architectures

5.1 Introduction

In recent years, several online kernel-based adaptive filters have been proposed to
solve non-linear regression problems. These KAFs utilise the Mercer kernel (Aron-
szajn, 1950) to allow linear techniques to be applied to non-linear feature spaces
without directly computing the feature vectors (Cortes and Vapnik, 1995). Most KAFs
are conceptually similar to their linear counterparts, e.g., the LMS and RLS algo-
rithms, but have been reformulated in the dual space (Liu, Prı́ncipe, and Haykin, 2011)
and utilise Mercer kernels. KAFs form a growing research field related to machine
learning and digital signal processing, particularly in real-time environments. KAFs
are popular in applications that require: non-linear modelling capability; adaptation
to changing conditions; and less computational demand than deep neural networks.

The potential benefits of KAFs have been demonstrated by several previous works
including applications, such as channel equalisation (Van Vaerenbergh, Via, and San-
tamaria, 2006) and time series prediction (Richard, Bermudez, and Honeine, 2009),
where high data rates may be required. However very few works, with the notable
exception of Tridgell et al. (2015), have considered whether high throughput imple-
mentations are feasible. All KAFs are online algorithms with recursive expressions
in order to update their models based on new examples. These create dependencies
which must be addressed in order for high performance hardware to be created.

This chapter addresses this problem by considering the effect of pipelining the
KNLMS algorithm. We show that by modifying the KNLMS algorithm to have delayed
model adaptation (described in Section 5.3), high frequency implementations can be
realised using FPGA technology. Specifically, the contributions of this chapter are:

• a technique for modifying KAFs, delayed model adaptation, to allow them to
be pipelined;

• an application of delayed model adaptation to the KNLMS algorithm, pro-
ducing the DKNLMS algorithm and further generalisation to multiple delays
MDKNLMS;

• two further variations of DKNLMS, DKNLMS-DG and DKNLMS-CT, the latter
of which can achieve higher accuracy while maintaining high performance;

• a description of hardware architectures to implement the KNLMS and DKNLMS
algorithms with comparisons of speed, area and scalability;
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• an empirical analysis of the learning accuracy of the DKNLMS algorithm in-
cluding comparisons with LMS, KNLMS and other KAFs;

• an empirical analysis of the effect of using 18-bit fixed point precision and some
function approximation (exponential, division) on the overall accuracy and
stability of DKNLMS; and

• all source code used to generate the results in Section 5.6 has been open sourced,1

so that interested readers may easily reproduce and extend the work.

The delayed model adaptation used in this work, can be considered as an extension
to similar work on pipelining linear adaptive filters. In particular, the work by Long,
Ling, and Proakis (1989), Poltmann (1995), Douglas, Zhu, and Smith (1998) and Yi et
al. (2005). The architecture described in this work, can be considered as an extension
to the work by Fraser et al. (2015a) to implement the DKNLMS variants.

The chapter is arranged as follows: Section 5.2 briefly explains kernel methods,
the KNLMS algorithm and previous pipelined adaptive filtering architectures; Sec-
tion 5.3 describes the delayed model adaptation method and the application of it
to the KNLMS algorithm; Section 5.4 and 5.5 describe the proposed architecture
and implementation details respectively; Section 5.6 shows accuracy results of the
algorithm and the performance of the implementation; and finally, conclusions are
drawn in Section 5.7.

5.2 Background

The KNLMS algorithm is a type of KAF (Liu, Prı́ncipe, and Haykin, 2011), which
are variants of adaptive filters (Haykin, 2005), such as LMS and RLS-based algo-
rithms (Widrow and Hoff, 1960; Ding, 2013; Ding et al., 2018), utilising the kernel
trick (Cortes and Vapnik, 1995). In this section, the KNLMS algorithm (Richard,
Bermudez, and Honeine, 2009) is described and summarised. Issues associated with
hardware implementations are highlighted including: dictionary growth and data
dependencies. Previous implementations of KAFs and high performance linear adap-
tive filters are also briefly reviewed. Note, in this section we do a recap of some
information from Sections 2.1 and 4.2. In particular, we recap some information about
KNLMS from Section 4.2, but with slightly different notation to allow for simpler
descriptions of the algorithms proposed in Section 5.3. If readers wish to skip the
description of KNLMS, they should take note of the slight changes in notation before
moving to Section 5.3.

5.2.1 Kernel Adaptive Filtering

KAFs are online algorithms which create non-linear models to fit a set of training
examples. The training examples consist of input/output pairs xn ∈ RM and yn ∈ R,
representing the input vector and desired output value. The kernel adaptive filter
model is represented by the following:

• A positive definite kernel function, κ(xi,xj), chosen at design time. Examples
of kernel functions are: the Gaussian kernel, κ(xi,xj) = e−γ‖xi−xj‖

2
2 , where

γ is a parameter chosen at design time; the polynomial kernel, κ(xi,xj) =(
xTi xj + c

)d, where c and d are chosen at design time; and the linear kernel,
κ(xi,xj) = xTi xj .

1https://bitbucket.org/nick_fraser/knlms_core_gen

https://bitbucket.org/nick_fraser/knlms_core_gen


5.2. Background 73

• A dictionary, given by D, which is a subset of training example inputs.

• A vector of weights, α, where one weight corresponds to a single dictionary
entry.

Given a new example, xn, a prediction, ỹn, is calculated as follows:

ỹn =

Ñn−1∑
i=1

αiκ(xn, x̃i) , (5.1)

where Ñn−1 is the number of entries in D at time n− 1, henceforth denoted as Dn−1,
x̃i is the ith entry of D, and αi is the ith entry of α. In general, the goal of KAFs is to
find α and D which accurately predicts yn ∀ n.

5.2.2 Kernel Normalised Least Mean Squares

Given a new example, {xn, yn}, the goal of training is to update the model, (Dn−1, α̂n−1),
from time n− 1 to time n, where α̂n−1 is the approximation to α at time n− 1.

In order to calculate the prediction of yn and to evaluate the coherence crite-
rion (Richard, Bermudez, and Honeine, 2009) (which decides whether to add xn
to the dictionary), a kernel evaluation must be made between xn and all entries in the
dictionary. We first define kn−1(·) ∈ RM → RÑn−1 as a function which, when applied
to a new input, xn is given by:

kn−1(xn) = [κ(xn, x̃1), . . . , κ(xn, x̃Ñn−1
)]T , (5.2)

Conceptually, this kernel vector can be thought of as a vector of kernel evaluations
between input xn and each entry of Dn−1. The coherence between xn and Dn−1 is
given by:

µ = max
i

|κ(xn, x̃i)|√
κ(xn,xn)κ(x̃i, x̃i)

s.t. i ∈
{

1, · · · , Ñn−1

}
. (5.3)

The example, xn is added to the dictionary if µ < µ0, where µ0 is a parameter specified
at design time to control the size and coherence of the dictionary. The idea of the
coherence criterion is to prevent redundant training examples from being added to
the dictionary, i.e., if Dn−1 contains an entry very similar to xn, then there would be
limited benefit to adding xn to Dn−1. However, adding xn would cost us more in
memory and computational requirements of KNLMS at time n, so if µ ≥ µ0, then
we prefer not to add xn to the dictionary. Note that if κ(·, ·) is a unit norm kernel,
Equation (5.3) can be simplified to:

µ = max
i
|κ(xn, x̃i)| s.t. i ∈

{
1, · · · , Ñn−1

}
. (5.4)

The Gaussian kernel used in this work is a unit norm kernel, so we use Equation (5.4),
rather than Equation (5.3).

The kernel vector is then updated, creating kn(xn) = [kn−1(xn)T , κ(xn,xn)]T if
xn is added, or else simply kn(xn) = kn−1(xn). Similarly, α̂n−1 is appended with a
zero, if xn is added to the dictionary. The KNLMS update step is derived by solving
the following optimisation problem:

α̂n = argmin
α
‖α− α̂n−1‖2 s.t. yn = kn(xn)Tα . (5.5)



74
Chapter 5. The Delayed Kernel Normalised Least Mean Squares Algorithm and

Architectures

The solution to which can be found by minimising the following Lagrangian function:

J(α,λ) = ‖α− α̂n‖2 + λ(yn − kn(xn)Tα) . (5.6)

where λ is a Lagrangian multiplier. Differentiating Equation (5.6) with respect to α
and λ and solving for zero, results in the following expressions for α̂n:

2(α̂n − α̂n−1) = λkn(xn) (5.7)

kn(xn)T α̂n = yn . (5.8)

Solving these equations for α̂n leads to following update equation:

α̂n = α̂n−1 + η
yn − kn(xn)T α̂n−1

ε+ ‖kn(xn)‖22
kn(xn) , (5.9)

where η is a step size parameter and ε is a regularisation parameter, both of which
are chosen at design time.

The KNLMS algorithm can be described using the psuedocode given in Algo-
rithm 5.1. Note, that κ is assumed to be a unit norm kernel function.

Algorithm 5.1 KNLMS algorithm with coherence criterion and a unit norm kernel
function.

Choose values for the step-size, η, and the regularisation factor, ε.
Initialise D = {x̃1}, α1 = [ η

1+εy1], Ñ0 = 0
while n > 1 do

Get {xn, yn}.
Calculate kn−1(xn) = [κ(xn, x̃1), · · · , κ(xn, x̃Ñn−1

)]T .
µ = max (|kn−1(xn)|).
if µ < µ0 then

Ñn = Ñn−1 + 1.
Append xn to D.
Append 0 to α̂n−1.
kn(xn) = [kn−1(xn)T , κ(xn,xn)]T .

else
Ñn = Ñn−1.
kn(xn) = kn−1(xn).

end if
Calculate α̂n using Equation (5.9).

end while

5.2.3 KNLMS In Hardware

In order to make the KNLMS algorithm more amenable to high-performance hard-
ware implementations, the following modifications are made:

• a maximum dictionary size is chosen, Ñ ;

• the kernel vector is the same length, Ñ , at each iteration - if the dictionary is not
full, the unused entries are padded with zeros; and

• similarly, the weights remain the same length, Ñ , at each iteration - since the
kernel vector is padded with zeros, unused weights will remain zero.
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FIGURE 5.1: An illustration of the bottleneck in KAFs.

If Ñ is larger than the number of entries that would be allowed into the dictionary
due to the coherence criterion, then KNLMS will perform exactly the same with or
without the above modifications. The restriction on the maximum dictionary size
means we can ensure that D and α can always fit in on-chip memory, avoiding
potential bottlenecks reading and writing to off-chip memory. Furthermore, this
places a restriction on the maximum number of operations that are required per
training example, which allows us to design hardware to meet minimum throughput
requirements of a given target application. The padding of the kernel and weight
vectors to be of size Ñ mean that all vector sizes in every iteration are the same,
regardless of the number of entries in D. This allows us to simplify our datapath
design for fixed vector sizes and reduce control logic overhead.

5.2.4 Pipelined Adaptive Filters

The recursive nature of adaptive filters means that they suffer from a computational
bottleneck, as illustrated in Figure 5.1 for KNLMS. In order to start calculating the
model at time n, we must know the model at time n− 1. Typically, this means that
our data rate is limited by the latency of the critical path of the architecture for a
single update step.

For linear adaptive filters, such as LMS, this problem has been considered in
great detail. Long, Ling, and Proakis (1989) introduced the first analysis of the LMS
algorithm with delayed coefficient adaptation, i.e., the delayed least mean squares
(DLMS) algorithm. Yi et al. (2005) proposed variants of the DLMS algorithm together
with implementation architectures. In particular, their transpose-form delayed least
mean squares (TF-DLMS) implementation utilises a pipeline with different delay
factors depending on the spatial location of filter weights. The architectures proposed
by Yi et al. (2005) implement delayed LMS, TF-DLMS and some combinations in-
between along with analysis of operation counts and expected propagation delay.
Furthermore, Yi et al. (2005) then systematically compares these algorithms and
architectures and is able to achieve data rates up to 182 MS/s on a Virtex-II FPGA for
a variant they propose called transpose-form retimed delayed least mean squares (TF-
RDLMS). Douglas, Zhu, and Smith (1998) describe an architecture which utilises error
correction terms, proposed by Poltmann (1995), to create a pipelined LMS architecture
which has the same behaviour as the standard LMS algorithm. The error correction
terms allow the weights to be updated after some latency without diverging from the
original algorithm.

To our knowledge, no prior work has studied the effects of model adaptation
delay on KAFs. However, there are several works which propose architectures for
executing various types of KAFs. Ren et al. (2014) propose an architecture for the
KLMS algorithm which is designed to consume a small amount of resources while
using floating point arithmetic. A high degree of parallelism is achieved by replicating
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the design across an FPGA device. The design also utilised a very efficient kernel, the
survival kernel (Chen, Zheng, and Principe, 2013), which can achieve high accuracy
but is not as common as the Gaussian kernel used in this work.

Fraser et al. (2017a) describe a deeply pipelined processor generator which can
produce dataflow implementations of the KNLMS algorithm. Architecturally, it is
similar to this work. The authors provide resource and performance results for the
architecture using both floating point and fixed point arithmetic. However, the archi-
tecture and implementation described by Fraser et al. (2017a) requires deep pipelines
which would result in very high delay factors, if the hardware were repurposed for
implementing one of the DKNLMS-based algorithms described in this work. Despite
having vastly different architectures, the designs of both Ren et al. (2014) and Fraser
et al. (2017a) achieve parallelism across hyperparameter search and/or multi-channel
systems but are not optimised for the single-channel, high-throughput case. The
present work directly addresses this problem.

Pang et al. (2016) describe a pipelined, microcoded vector processor. The pro-
cessor is compact, power efficient and capable of achieving high performance on
SW-KRLS (Van Vaerenbergh, Via, and Santamaria, 2006), FB-KRLS (Van Vaerenbergh
et al., 2010) and KNLMS (Richard, Bermudez, and Honeine, 2009). The processor
used floating point arithmetic, and is one of the few KAFs architectures capable of
handling multiple algorithm types.

Fox, Boland, and Leong (2018) describe an architecture which implements the
Fastfood algorithm (Le, Sarlós, and Smola, 2013) which approximates kn−1(xn) using
random projections. The matricies used to compute kn−1(xn) can be defined in a way
which constrains them to be Hadamard matricies, allowing the most computationally
expensive part of the update step to be computed using the fast Walsh-Hadamard
transform (FWHT). This reduces the computational complexity from O(ÑM) →
O(Ñ log2M). A systolic structure of Hadamard blocks, with an internal butterfly
structure to efficiently implement the FWHT was utilised for its implementation. The
work targeted larger scale problems, which means they can achieve high Processing
Element (PE) efficiency, but lower sample rates, compared to this work.

Tridgell et al. (2015) describe the braiding technique to handle dependencies in
high performance KAFs. To minimise latency, braiding calculates both branches of a
conditional statement in parallel, and inserts the result of the appropriate branch into
a reduction tree once the condition is known. The authors demonstrate the technique
with a high throughput implementation of naive online regularised risk minimisation
algorithm (NORMA) (Kivinen, Smola, and Williamson, 2004), utilising fixed point
arithmetic. Their provided post-place-and-route results demonstrate cores capable
of achieving a throughput of 138 MS/s. The design suffers from only being able to
work on sliding window algorithms. In contrast, this work can be applied to arbitrary
dictionary storage schemes.

5.3 Kernel Normalised Least Mean Squares With Delayed
Model Adaptation

In this section, we provide a mathematical description of the DKNLMS algorithm.
This has KNLMS-like behaviour, with dependencies shifted temporally into the future
to facilitate pipelining. Motivations behind these choices are further elaborated upon
in the Architecture section (Section 5.4).

The DKNLMS algorithm is conceptually similar to the delayed LMS algorithm (Long,
Ling, and Proakis, 1989). The key idea is to introduce a delay factor, d ∈ N+, which
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FIGURE 5.2: Pipelining the gradient calculation increases d, but will
increase the sample rate. Pipelining the model adaptation will increase

the number of channels while decreasing the sample rate.

removes most of the dependencies between iterations up to time d. At time n, given
a new training pair, {xn, yn}, and a delayed version of the model, given by Dn−d
and α̃n−d, we wish to calculate Dn and α̃n. This is achieved by first, conceptually
breaking the KNLMS algorithm up into two components:

1. the gradient calculation; and

2. the model adaptation.

The gradient calculation is the most computational intensive part of the KNLMS
algorithm, whereas the model adaptation does not necessarily have long critical
paths. Specifically, we consider the gradient calculation to involve: the calculation
of k, the coherence criterion, the a-priori prediction and the change in weights. The
model adaptation is the storing of xn into Dn−d (if required) and the accumulation
of weights. If we design our dataflow so that that the algorithmic loop is contained
to the model adaptation, then we can pipeline the gradient calculation arbitrarily,
with each pipeline stage increasing d by 1. Figure 5.2, illustrates this mapping of the
dataflow. Note that the recursive loop is coupled to the model adaptation, allowing
the gradient calculation to be pipelined.

The kernel vector, kn−d(xn), is calculated for the new input example. Similarly,
the coherence between Dn−d and xn is used to decide whether or not to add xn to
Dn−1.

In order to update the weights, we need a prediction of yn using the model at
time n− d. This can be expressed as:

ŷn = kn−d(xn)T α̂n−d . (5.10)

A partially updated kernel vector, k̃n(xn), if xn is added to dictionary is given by:

k̃n(xn) =
[
kn−d(xn)T ,0T , κ(xn,xn)

]T
, (5.11)

where 0 is an (Ñn−1 − Ñn−d) vector of zeros to align the latest dictionary entry with
the corresponding entry in α̃n. Alternatively, if xn is not added then k̃n(xn) =
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[
kn−d(xn)T ,0T

]T . Finally, α̃n is calculated as follows:

α̃n = α̃n−1 + η
yn − ŷn

ε+
∥∥∥k̃n(xn)

∥∥∥2

2

k̃n(xn) , (5.12)

Note that if d = 1, then Equations (5.10) to (5.12) are equivalent to KNLMS, i.e., Equa-
tions (5.1), (5.2) and (5.9). As such, DKNLMS can be considered as a generalisation to
KNLMS to support d > 1.

The DKNLMS algorithm is described as psuedocode in Algorithm 5.2. Note that
Di = [ ], and α̃i = [ ] if i ∈ Z− and a unit norm kernel is assumed for the coherence
calculation. Also note, that we define Dn = D0, α̃n = α̃0 and Ñn = Ñ0, when n < 0.

Algorithm 5.2 DKNLMS algorithm with coherence criterion.
Initialise the step-size, η, and the regularisation factor, ε, and delay factor, d.
Define a kernel function, κ(·, ·).
Initialise D0 = [ ], α̃0 = [ ], and Ñ0 = 0.
while n > 0 do

Get {xn, yn}.
if Ñn−d == 0 then

kn−d(xn) = [ ].
µ = 0.

else
Calculate kn−d(xn) = [κ(xn, x̃1), · · · , κ(xn, x̃Ñn−d)]

T .
µ = max (|kn−d(xn)|).

end if
if µ < µ0 then

Ñn = Ñn−1 + 1.
Dn = [Dn−1; xn].
Append 0 to α̃n−1.
k̃n(xn) = [kn−d(xn)T ,0T , κ(xn,xn)]T .

else
Ñn = Ñn−1.
Dn = Dn−1.
k̃n(xn) = kn−d(xn).

end if
Calculate α̃n using Equation (5.12).

end while

5.3.1 Multiple Delays

When studying the dataflow in Algorithm 5.2 it is clear that the values for the
dictionary delay, dD ∈ N+, and the weight delay, dα ∈ N+, need not be the same.
A version of DKNLMS with multiple delays, which is henceforth referred to as
the MDKNLMS algorithm, can easily be implemented in hardware by splitting the
DKNLMS into the two parts shown in Figure 5.3. This modification incurs no further
computation cost, and actually reduces the number of registers required within the
design, which may reduce the resource usage of the design. Similar to Figure 5.2,
each hardware block shown in Figure 5.3 can be pipelined, resulting in specific values
for dD ∈ N+ and dα ∈ N+. It is unclear as to whether this change in delay of the
algorithm’s dependencies will have a positive or negative affect on the maximum
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FIGURE 5.3: A high level diagram of MDKNLMS.

clock frequency of an implementation, we analyse this empirically in Section 5.6.
Comparing the DKNLMS and MDKNLMS algorithms, for the same number of
pipeline stages, Np = d, MDKNLMS will reduce the effective delay of either dD, dα,
or both. That is, for DKNLMS the delay factors are given byNp = d = dD = dα, while
for MDKNLMS are Np = d = dD + dα. Furthermore, if a higher model adaptation
delay introduces an instability in the algorithm, as can occur for delayed LMS (Long,
Ling, and Proakis, 1989), then MDKNLMS will be more stable than the equivalent
DKNLMS with an equivalent delay.

Explicitly for MDKNLMS, the a-priori prediction, ȳ, becomes:

ȳn = kn−dD(xn)T ᾱn−dα , (5.13)

where either kn−dD(xn) or ᾱn−dα are appended with zeros to accommodate any size
mismatches, ᾱn−dα is given by:

ᾱn = ᾱn−1 + η
yn − ȳn

ε+
∥∥k̄n(xn)

∥∥2

2

k̄n(xn) , (5.14)

where k̄n(xn) is the partially update kernel vector, given by:

k̄n(xn) =
[
kn−dD(xn)T ,0T , κ(xn,xn)

]T
. (5.15)

Pseudocode for the MDKNLMS algorithm is given in Algorithm 5.3. Note, that κ
is assumed to be a unit norm kernel function. Comparing Algorithms 5.2 and 5.3 it is
clear that the only difference between to two algorithms is that MDKNLMS uses dD
and dα while DKNLMS uses only d. If Np = d = dD + dα then MDKNLMS should
be less impacted algorithmically from the delay (when compared to KNLMS) than
DKNLMS, as any delay introduced in update of its model parameters are less than or
equal to those in DKNLMS. This claim is evaluated empirically in Section 5.6.

5.3.2 Dictionary Guarding

An issue with applying delayed model adaptation to KNLMS is that the choice of
whether or not to add an example to Dn−1 is based on an outdated dictionary, Dn−dD .
This can result in a dictionary which contains redundant entries. For example, imagine
that two consecutive examples are equal, i.e., xn = xn+1 (the outputs yn, yn+1 can be
ignored for now), and the coherence between xn and all earlier examples are less than
µ0. Clearly, when training occurs on xn, the coherence between it and Dn−dD will be
less than µ0, and it will be added to the dictionary, Dn−1, to create Dn. When training
occurs on xn+1, the coherence between xn+1 and Dn−dD+1 will also be less than µ0.
As such, xn+1 is also added to the dictionary, creatingDn+1. Given that the prediction
function, Equation (5.1), is based on the weighted sum of kernel evaluations between
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Algorithm 5.3 MDKNLMS algorithm with coherence criterion.
Initialise the step-size, η, and the regularisation factor, ε, dictionary delay, dD and a
weight delay, dα.
Define a kernel function, κ(·, ·).
Initialise D0 = [ ], α̃0 = [ ], and Ñ0 = 0.
while n > 0 do

Get {xn, yn}.
if Ñn−dD == 0 then

kn−dD(xn) = [ ].
µ = 0.

else
Calculate kn−dD(xn) = [κ(xn, x̃1), · · · , κ(xn, x̃Ñn−d)]

T .
µ = max (|kn−dD(xn)|).

end if
if µ < µ0 then

Ñn = Ñn−1.
Dn = Dn−1.
Append 0 to ᾱn−1.
k̄n(xn) = [kn−dD(xn)T ,0T , κ(xn,xn)]T .

else
Ñn = Ñn−1.
Dn = Dn−1.
k̄n(xn) = kn−dD(xn).

end if
Calculate ᾱn using Equation (5.14).

end while
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the dictionary entries and the latest input, we can see thatDn+1 provides no improved
predictive power over Dn, i.e., a prediction made using Dn+1 could be rewritten as:

Ñn+1∑
i=1

αiκ(xj , x̃i) =
Ñ∑
i=1

αiκ(xj , x̃i) + (αÑn + αÑn+1
)κ(xj , x̃Ñn) . (5.16)

This means that Dn+1 uses more memory and has a higher computational cost, for no
improved modelling accuracy over Dn.

To address this effect, we propose a method to prevent redundant entries from
being added to the dictionary, which we call dictionary guarding. If xn is added, based
on the dictionary at time n−dD, it is not used to assist in making a decision of whether
or not a new example should be added until xn+dD arrives, i.e., we suggest, that the
examples {xn+1, · · · ,xn+dD−1} are prevented from being added to the dictionary.

In terms of implementation, the DKNLMS-DG is almost identical to MDKNLMS,
with the exception of the decision to add an entry to the dictionary, which now
based on the coherence criterion and a counter, cn. Psuedocode for the DKNLMS-DG
algorithm is given in Algorithm 5.4. Note, that κ is assumed to be a unit norm kernel
function.

Although the changes made to MDKNLMS to achieve DKNLMS-DG are minimal,
since KAFs are dynamic algorithms, the dictionary guarding technique may have a
significant impact on the behaviour of the algorithm. As DKNLMS-DG introduces
and extra requirement in order to introduce an entry to the dictionary, it will produce
a dictionary that’s more compact than MDKNLMS. However, this may also have the
following negative side-effects:

• a decrease in modelling accuracy;

• an increase in convergence time; and

• a reduction in coherence between the dictionary and previously seen input
examples, i.e., the coherence between D and all inputs is no longer guaranteed
to be greater than µ0.

How these issues relate to the resultant DKNLMS-DG algorithm are examined empir-
ically in Section 5.6.

5.3.3 Correction Terms

If the accuracy of MDKNLMS is not satisfactory, we can modify it to exhibit equiva-
lent learning behaviour to the original KNLMS algorithm. These modifications come
at the cost of extra hardware, and potentially, a decrease in clock frequency. This sec-
tion describes this modified version of MDKNLMS, DKNLMS-CT. These correction
terms can be considered as an extension to the work by Poltmann (1995) to KAFs, a
significant difference being that for KAFs the contents of the dictionary also need to
be considered. These correction terms also share similarity to braiding (Tridgell et al.,
2015), the difference being the correction terms described in this work can work for
non-sliding window based KAFs.

Firstly, let us consider the dictionary update step. In KNLMS, the current example,
xn, is added to the dictionary if µ < µ0, where µ is calculated using Equation (5.4).
The same applies to MDKNLMS, however, the calculation of µ is now based on an
older version of the dictionary, Dn−dD , rather than Dn−1. At each time step, either the
current input vector is added to the dictionary, or it remains unchanged. Therefore,
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Algorithm 5.4 DKNLMS-DG algorithm with coherence criterion.
Initialise the step-size, η, and the regularisation factor, ε, dictionary delay, dD and a
weight delay, dα.
Define a kernel function, κ(·, ·).
Initialise D0 = [ ], α̃0 = [ ], and Ñ0 = 0.
Initialise the dictionary guard counter c0 = 0
while n > 0 do

Get {xn, yn}.
if Ñn−dD == 0 then

kn−dD(xn) = [ ].
µ = 0.

else
Calculate kn−dD(xn) = [κ(xn, x̃1), · · · , κ(xn, x̃Ñn−d)]

T .
µ = max (|kn−dD(xn)|).

end if
if (µ < µ0) & cn−1 == 0 then

c̃n = dD + dα
Ñn = Ñn−1.
Dn = Dn−1.
Append 0 to ᾱn−1.
k̄n(xn) = [kn−dD(xn)T ,0T , κ(xn,xn)]T .

else
c̃n = cn−1

Ñn = Ñn−1.
Dn = Dn−1.
k̄n(xn) = kn−dD(xn).

end if
Calculate ᾱn using Equation (5.14).
if c̃n > 0 then

cn = c̃n − 1
else

cn = 0
end if

end while
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Dn−dD is a subset of Dn−1. Dn−1 can also potentially contain any of the vectors from
xn−dD+1 → xn−1. Given this, an expression for the decision value, ζn, the decision
whether or not to add xn to the dictionary, can be written as:

ζn = !
[
(κ(xn, x̃1) < µ0) & · · · & (κ(xn, x̃Ñn−1

) < µ0)
]

, (5.17)

where ‘&’, ‘!’ are the Boolean functions ‘AND’ and ‘NOT’ respectively. If ζn is true,
then xn is added to the dictionary. Note that unit norm kernel functions are assumed
in Equation (5.17). If only Dn−dD is available, Equation (5.17) can be rewritten as:

ζn =![(κ(xn, x̃1) < µ0) & · · · & (κ(xn, x̃Ñn−dD
) < µ0)

& (κ(xn,xn−dD+1) < µ0+!ζn−dD+1) & · · · & (κ(xn,xn−1) < µ0+!ζn−1)] . (5.18)

Note that in this equation, ‘+’ denotes the ‘OR’ function. While these expressions
are equivalent, Equation (5.18) can be implemented easily using pipelined hardware
and therefore allows tradeoffs between area usage and throughput to be made.
Conceptually, Equation (5.18) can be though of as checking the coherence between xn,
all dictionary entries and all training examples which are in the pipeline ahead of the
current entry. The final decision is then corrected if any preceding training examples
are added to the dictionary. This correction only takes place if the preceding entry is
also coherent with the current training example, xn.

Now that the dictionary,Dn, and kernel vector, kn(xn), found by DKNLMS-CT are
equivalent to KNLMS, we need to apply correction terms so that the weights, α̂, are
the same as those found by KNLMS. Let us consider Equations (5.9) and (5.12). Since
the kernel vectors have been corrected, the only differences between these equations
are the a-priori predictions. Defining the weight update step, δn, for KNLMS to be:

δn =
η
(
yn − kn(xn)Tαn

)
ε+ ‖kn(xn)‖22

, (5.19)

and similarly, δ̃n to be:

δ̃n =
η
(
yn − kn(xn)Tαn−dα

)
ε+ ‖kn(xn)‖22

, (5.20)

for MDKNLMS with a corrected kernel vector. To create the DKNLMS-CT algorithm,
we must find a way to modify Equation (5.20) to become Equation (5.19). In order to
realise a benefit from pipelining, these modifications to Equation (5.20) should only
depend on data available at sample n− dα. Given this requirement, an expression
for δn can be formed using Equations (5.9), (5.19) and (5.20):

δn =
η

ε+ ‖kn(xn)‖22

(
yn − kn(xn)T [αn−dα +

dα−1∑
i=1

δn−ikn−i(xn−i)]

)

δn =
η

ε+ ‖kn(xn)‖22

(
yn − kn(xn)Tαn−dα −

dα−1∑
i=1

δn−ikn(xn)Tkn−i(xn−i)

)
.

(5.21)

Using this expression for δn, we can rewrite Equation (5.9) as:

α̂n = α̂n−1 + δnkn(xn) . (5.22)
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Pseudocode for the DKNLMS-CT algorithm is given in Algorithm 5.5. Note that
mathematically, this is same as Algorithm 4.1, but it’s expressed in a different way to
allow it to be implemented on a pipelined accelerator.

Algorithm 5.5 DKNLMS-CT algorithm with coherence criterion.
Initialise the step-size, η, and the regularisation factor, ε, dictionary delay, dD and a
weight delay, dα.
Define a kernel function, κ(·, ·).
Initialise D0 = [ ], α̃0 = [ ], and Ñ0 = 0.
while n > 0 do

Get {xn, yn}.
if Ñn−1 == 0 then

kn−1(xn) = [ ].
ζn = 1.

else
Calculate ζn using Equation (5.18).
Get kn−1(xn) by selecting the appropriate entries used when calculating ζn.

end if
if ζn == 1 then

Ñn = Ñn−1 + 1.
Dn = [Dn−1; xn].
Append 0 to α̂n−1.
kn(xn) = [kn−1(xn)T , κ(xn,xn)]T .

else
Ñn = Ñn−1.
Dn = Dn−1.
kn(xn) = kn−1(xn).

end if
Calculate α̂n using Equation (5.22).

end while

Clearly, if α̂n is updated using Equation (5.21) rather than Equation (5.9), then
more operations are required. However, as we will see in Section 5.6, this way
of computing the weights is preferable since we can still receive the benefits of
pipelining the architecture. This is due to the fact that: (1) the vectors, {kn−1(xn−1),
· · · ,kn−dα+1(xn−dα+1)}, are available at time n; and (2) the only dependencies within
the pipeline are scalar values, {δn−1, · · · , δn−dα+1}, which can be easily fed back
where appropriate with only a small overhead.

The correction terms also do not need to be added completely. A subset of the
correction terms in Equation (5.21) may be used instead. This can allow for further
trade-offs to be made between area, accuracy and throughput.

Note that we only analyse the theoretical costs and benefits of DKNLMS-CT in
the subsequent sections. As we will see in Section 5.6, the other DKNLMS variants
achieve high accuracy and throughput and as such, empirically we deem that the
addition of correction terms is not a requirement. However, this may change for
future KAF algorithms and datasets, so this theoretical analysis could be useful for
future works.
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ỹt

{γ, η, ε, µ0}

−

FIGURE 5.4: High level view of the proposed architecture.

5.4 Architecture

In this section, the architecture of the DKNLMS algorithm is described in detail.
The variants MDKNLMS and DKNLMS-DG are simple extensions to DKNLMS, as
such, we described the modifications where they should occur. The architecture for
DKNLMS-CT is not described, rather we theoretically analyse the cost of implement-
ing it. Finally, in this section we omit the subscripts denoting time to reduce the
notation complexity.

5.4.1 High Level View

In order to understand the architecture at a high level, firstly consider the forward
path of the KNLMS algorithm. The forward path consists of the operations required
for the KNLMS algorithm to update its model (i.e., the contents of the while loop
in Algorithm 5.1), given a new training example, {xn, yn}. Since the forward path
contains no loops, it can be implemented using combinatorial logic, which is later
converted to implement DKNLMS. The design method can be summarised as follows:

1. begin with a combinatorial KNLMS design, created from a dataflow graph of
the KNLMS forward path with a maximum dictionary size of Ñ ;

2. add registers (or memories) to store the dictionary and weights internally
to the design (i.e., add the loops with the smallest possible critical path to
Equation (5.12) and to the dictionary update step); and

3. excluding the loops described in (2), pipeline the rest of the dataflow graph
until a desired d value (or clock frequency) is achieved.

A block diagram of the basic DKNLMS implementation is shown in Figure 5.4. The
design can be thought of as the combination of four different submodules: kernel
modules, the coherence criterion module, dot product modules and the α-update
module. Note that the coherence criterion module and the α update module contain
loops and registers (or memories) to store and update the dictionary (D) and weights
(α) respectively. Throughout the design, ‘optional’ registers are placed between each
arithmetic operation. Moreover, all arithmetic operations can also be pipelined while
only affecting the delay parameters of the DKNLMS variants, with the exclusion of
the accumulation on α.
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FIGURE 5.5: Exponential kernel evaluation module.

5.4.2 The Submodules

In this subsection, the submodules of the design (as shown in Figure 5.4) are explained
in detail. The kernel modules form the largest portion of the architecture and are
designed to calculate the kernel vector, k, given in Equation (5.2). The ith element
of the kernel vector is evaluated using the Gaussian kernel, given by: κ(xn, x̃i) =
exp(‖xn − x̃i‖22). Although there are several useful kernel functions described in
the literature, including several which are hardware friendly (notably the Laplacian
kernel, used by Anguita et al. (2007)), we chose to use the Gaussian kernel because:
(1) it’s a unit norm kernel; (2) it’s a universal approximator (Hammer and Gersmann,
2003); and (3) it’s a very popular kernel function, known to many familiar with
kernel methods. In order to calculate k, Ñ kernel modules are used, and Figure 5.5
illustrates the data path of a kernel module. Each kernel module takes the current
input sample and an element of the dictionary as inputs, and produces the Gaussian
kernel evaluation as an output. An adder tree is used to reduce latency. Note that
we use z−1 with a broken line border to denote the optional registers. In order to
use another unit norm kernel function, this module can simply be replaced with a
module implementing your kernel function of choice. If a non-unit norm kernel is
desired, the coherence module would also need to be modified to implement the
coherence criterion described by Richard, Bermudez, and Honeine (2009).

The dot product module is given in Figure 5.6. It features elementwise multipli-
cation followed by an adder tree. The dot product modules are used to calculate
the a-priori prediction and ‖k‖22, which is used to find the normalisation factor. For
both the kernel and dot-product modules, an adder tree was preferred to perform
accumulation, as we wish to minimise the overall latency.

The coherence criterion module calculates the coherence between the current
input and the dictionary. The coherence (given in Equation (5.4)) is then used to
determine whether or not to add the current input to the dictionary. Figure 5.7 shows
the architecture of the coherence criterion module. It features comparison modules
connected to a binary ‘OR’ tree, which produces the ‘AddToDict’ signal. This signal
feeds a multiplexer which determines whether or not the current example gets added
to the dictionary, and subsequently, whether or not the counter is incremented. The
dictionary can be stored in registers or memories, but the current design requires
that all dictionary entries must be read every cycle. This module also pads the kernel
vector, k, with zero entries for unused dictionary entries, and appends ‘1’ to k if the
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current input is added. In order to realise DKNLMS-DG, an extra counter must be
included which value corresponds to the number of elements seen since the last entry
was added to the dictionary. If this value is below dD, then ‘AddToDict’ is set to false.

Figure 5.8 shows the α update module. This module takes the prediction error, en,
the normalisation factor, ‖k‖22, and the kernel vector, k, as inputs. The output is the
updated weights, which are also stored internally in registers. The α update module
calculates the weight update using Equation (5.9).
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TABLE 5.1: Resource usage of each module and the complete design

Module Num. of Modules exp × + ÷ <

Kernel Ñ 1 M + 1 2M − 1 0 0

Dot Product 2 0 Ñ Ñ − 1 0 0

Coherence Criterion 1 0 0 0 0 Ñ

α Update 1 0 Ñ + 1 Ñ + 1 1 0

Design Total - Ñ (M + 4)Ñ + 1 2(M + 1)Ñ 1 Ñ

Correction Terms (dD) dD − 1 1 M + 1 2M − 1 0 1

Correction Terms (dα) dα − 1 0 Ñ + 1 Ñ 0 0

Both the coherence and α modules feature valid and reset signals. The valid signal
prevents unwanted entries from being added to the dictionary and from modifying
the weights. The reset signal restores the counter, dictionary and weights to zero
values.

5.4.3 Resource Usage and Latency

In this subsection, the resource usage and propagation delay of the proposed ar-
chitecture are given as a function of: (1) the maximum dictionary size, Ñ ; (2) the
feature length, M ; and (3) the operators, exp, ×, +, / and <. Since the design is fully
pipelined, modules do not share resources. Also, as shown in Figure 5.4, the four
difference modules are connected in series. Therefore, the total latency of the design
will be the sum of the latency of each of the four modules described above, plus a
subtraction. The total resource usage of the design will be the sum of all resources of
all modules used within the architecture, plus a subtraction.

By careful inspection of Figures 5.4 to 5.8 the total resource usage can be calculated,
remembering that Ñ kernel modules, two dot product modules, one coherence
module and one α update module are used. Table 5.1 shows the resource usage
for each module and the total for the whole design. Since Ñ kernel modules are
required, the kernel modules will dominate for large values of Ñ and M . The worst
case scalability of the resource usage of the complete design is O(ÑM). The extra
operations required to implement DKNLMS-CT are also shown in Table 5.1. Note
that the number of correction terms are proportional to the delay factors, dD − 1 and
dα − 1 respectively. The kernel vector evaluation scales the worst, O(ÑM), while the
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TABLE 5.2: Expected propagation delay of each module and the com-
plete design

Module exp × + ÷ <

Kernel 1 2 dlog2(M)e+ 1 0 0

Dot Product 0 1 dlog2(Ñ)e 0 0
Coherence Criterion 0 0 0 0 1
α Update 0 2 2 1 0

Design Total 1 5 dlog2(Ñ)e+ dlog2(M)e+ 4 1 1

Correction Terms (dD) 1 2 dlog2(M)e+ 1 0 1

Correction Terms (dα) 0 2 dlog2(Ñ)e+ dlog2(dα)e 0 0

number of correction terms will also incur significant overhead if dD − 1 and dα − 1
are large.

The expected propagation delay of each module and the whole design are given
in Table 5.2. The propagation delay is expressed as a sum of arithmetic operations
along the critical path. The overall expected propagation delay is the sum of the
expected propagation delay of each arithmetic operation which lie on this critical path.
Using this basic approximation of propagation delay, we can decide which optional
registers to enable in the design, shown in Figures 5.4 to 5.8, or in the arithmetic
operations themselves. Furthermore, α update and coherence criterion modules
appear to have constant latency, while the kernel and dot product modules scale as
log2(M) and log2(Ñ) respectively. As such, the worse case scalability of the expected
propagation delay isO(log2(M) + log2(Ñ)). In practice, larger designs will also likely
suffer from placement and routing issues which will also affect the propagation delay.
The expected propagation delay of the correction terms are also shown in Table 5.2.
For the most part, the correction terms are computed in parallel with other modules,
so the overall propagation delay does not change with the inclusion of correction
terms. The exclusion for this, is the dlog2(dα)ewhich increases the overall expected
propagation delay.

5.5 Implementation

In this section, several details / methods related to the implementation of the different
DKNLMS configurations are specified. Chisel v2.2.27 (Bachrach et al., 2012) was
used to create a core generator capable of generating all the architectures described
in Section 5.4. Chisel is a hardware construction language embedded in Scala which
generated Verilog. It’s a low abstraction domain specific language (DSL) which ben-
efits from meta-programming in Scala to allow core generators to be made easily.
Being a low abstraction DSL, Chisel allows complete control over the datapath while
allowing the design to be scalable. As such, a design made in Chisel is comparable
with an RTL design, but with increased productivity. All bitstreams and implementa-
tions in this work were generated using Vivado 2017.4 with aggressive optimisations
enabled. Fixed point arithmetic was used throughout the design, unless specified
otherwise, a wordlength of 18bits was used, although the design is parameterised
for any fixed point format. The integer length was chosen to avoid overflows on the
training dataset and the specific algorithm hyperparameters. In order to minimise
the overhead of arithmetic operations, all fixed point arithmetic was implemented
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with a custom fixed point library in which the input and output of every arithmetic
operation was the same fixed point format. When necessary, conversion from higher
precision to lower precision formats, e.g., after a multiplication, was achieved us-
ing simple truncation. Furthermore, no saturation logic was implemented to avoid
overflows. 18bit wordlengths were chosen as they map well to DSP blocks within
FPGAs, while providing little degradation in the accuracy of the algorithm, this is
explored further in Section 5.6. A further reduction in bitwidth may be achieved
with a finer grained approach to bitwidth and integer length selection, but this is
not explored in this work. The exponential evaluation and division operations can
consume a significant amount of hardware, and cause a significant increase in the
overall expected propagation delay. As such, signification attention was paid to the
implementation of these operations.

5.5.1 Exponential and Division Approximation

The exponential and division operators represent areas where significant performance
improvements can be made to the DKNLMS designs. Some specific improvements
made to this design were based on the following observations:

• the range of the inputs is significantly less than the range of the fixed point
datatype;

• both functions are differentiable;

• division can be implemented as an inversion and a multiplication; and

• the accuracy of DKNLMS is not very sensitive to approximations in both func-
tions.

Given the above, several different implementations were considered, including:

1. a simple lookup table;

2. a lookup table with linear interpolation; and

3. the Remez algorithm (Tawfik, 2005) implemented using Estrin’s polynomial
evaluation method (Estrin, 1960).

The exponential function was implemented as a simple single input function approx-
imation, while division was implemented as a reciprocal function, followed by a
multiplication. Although the Remez algorithm and linear interpolation methods can
provide many benefits, the rest of the design already used a significant amount of
DSP resources and as such, a simple lookup table was used for both reciprocal and
exponential functions with 1024 elements, we found this sufficient to provide good
accuracy. We further discuss the implications on accuracy in Section 5.6.1.

5.5.2 Register Parameterisation

As the number of pipeline stages directly affects d, the more pipeline stages are
added the more a DKNLMS variant will behave differently to KNLMS. As such, for
small values of d the placement of the registers becomes vitally important. As stated
in Section 5.4, the design was created with optional registers placed between each
operation. When a particular core is generated, an array of Boolean values control
whether or not a particular set of registers (i.e., a pipeline stage) is actually used in
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the design. This directly controls the delay parameters of DKNLMS and the variants,
i.e., d, dD and dα. Also, when operations themselves are pipelined, shift registers
are created to ensure that other signals (e.g., the valid signal) arrive at subsequent
locations at the correct times.

In order to generate the array of Boolean values, we break the design up into
approximate unit delays. Let us denote a unit delay with τ . For the given 18bit fixed
point implementation, the estimated propagation delay of several operations is as
follows:

• multiplication, τ ;

• addition/subtraction, τ ;

• exponentiation, 3τ ; and

• division, 4τ .

The above delay values were approximated by synthesising and place & routing the
individual arithmetic operators on the target FPGA device. The pipeline stages are
then placed so they have approximately equal delay values separating them. For
example, using Table 5.2, one can determine the expected propagation delay of each
submodule. This estimate can then be used to decide which pipeline stage to enable
to best improve the performance of the design. This is done by enabling the pipeline
register which produces paths with the smallest possible estimated propagation delay.

5.6 Results

In this section, we compare the accuracy and performance of all the KNLMS-like
algorithms discussed within: KNLMS, DKNLMS, MDKNLMS, DKNLMS-DG and
DKNLMS-CT. For accuracy, we study the effect of delayed model adaptation on the
modelling capability of the KNLMS. Issues with convergence, stability and model
size when delayed model adaptation is introduced are also explored. In terms of
performance, the throughput of the architectures described in Section 5.4 are provided
for varying dictionary size (Ñ ), feature length (M ) and latency (d). These performance
figures are compared to a C implementation of KNLMS running on a PC.

5.6.1 Accuracy

In this subsection, the accuracy the DKNLMS algorithms are analysed empirically.
In the first part of this section, we study the accuracy, convergence and stability of
all DKNLMS variants. Firstly, we consider the DKNLMS variants using floating
point arithmetic and without any of the function approximations described in Sec-
tion 5.5. The extra effect of using fixed point arithmetic and function approximations
is then considered in Section 5.6.1. For the accuracy experiments in this work, the
chaotic Mackey-Glass (Mackey, Glass, et al., 1977) time series was used. The Mackey-
Glass time series benchmark is generated using the following differential equation:
dx(t)/dt = −ax(t) + bx(t − τ)/(1 + x(t − τ)10) with (a = 0.1, b = 0.2, τ = 30), this
configuration is identical to the benchmark used by Engel, Mannor, and Meir (2004).
Our implementation was based off the KAF toolbox (KAFBOX) (Van Vaerenbergh,
2012).
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Hyperparameter Optimisation

In practice, we suggest optimising the parameters for the DKNLMS variants inde-
pendently of each other, allowing tradeoffs for convergence time and stability to be
captured within the cross validation process. In order to adequately compare the
different algorithms, hyperparameter optimisation must be performed for each algo-
rithm. Otherwise, we may accidentally compare one algorithm at optimal settings
to another at sub-optimal settings. The problem of hyperparameter optimisation is
non-convex and therefore, we cannot be certain of achieving optimal settings, but a
simple random search (Bergstra and Bengio, 2012b) will help us avoid extremely sub-
optimal settings. We can also quantify our effort in finding good hyperparameters in
terms of the number of samples required to achieve good accuracy. In this work, we
use the following hyperparameter optimisation procedure:

1. 10-fold cross validation was used, separating the training set into ten different
training and validation sets;

2. for each training example, the resultant model was tested, using MSE, on the
entire validation set to produce a model convergence series;

3. after removing an initial number of examples during the convergence period,
the remaining entries in the model convergence series are averaged; and

4. the model with the lowest average MSE in the convergence period, was assumed
to have the best hyperparameters.

For the examples in Section 5.6.1 the training set size was 1000 and the convergence
period was 500 samples. When there was negligible accuracy difference, sometimes
the 2nd best hyperparameters where used if they provided: 1) a more compact model;
or 2) a more stable convergence series. Table 5.3, shows the optimised hyperpa-
rameters for each DKNLMS configuration, along with average model size, Ñ , and
average MSE over the cross validation procedure. The baseline average MSE in
the final columns uses some common values for each of the hyperparameters of
KNLMS without specific optimisation for each algorithm. Specifically, the values of
the hyperparameters for the baseline were as follows: γ = 1.39, η = 0.1, ε = 10−4

and µ0 = 0.9. Interestingly, when the baseline results are compared, we get very
similar performance between KNLMS, DKNLMS (d ≤ 8) and MDKNLMS (d ≤ 16),
while DKNLMS-DG suffers significant accuracy degradation for all values of d. As
expected, all algorithms for all values of d perform better when their hyperparame-
ters are optimised specifically for them. By comparing the baseline and optimised
results for DKNLMS-DG it is clear this algorithm behaves very differently to the
original KNLMS algorithm. Through hyperparameter optimisation, the accuracy of
the DKNLMS-DG variants is significantly improved to the point where it appears
to perform better than the other variants for d = 4 and d = 8. However, it should
be noted that since the behaviour of DKNLMS-DG was significantly different to the
others, more time was spent optimising the hyperparameters in order to find accept-
able values. The search space was broader and roughly 20× points were sampled,
compared to the other configurations. If the other algorithms were allowed a larger
search space, this difference may be less pronounced. Next, the baseline DKNLMS
(d = 32) appears to have unstable behaviour, but, after hyperparameter optimisation
it appears to have achieved stability with some degradation in accuracy compared
KNLMS. As expected, DKNLMS-CT performs almost identically to KNLMS.
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TABLE 5.3: Cross-validation accuracy and hyperparameters for each
DKNLMS variant

Optimised Baseline
Algorithm d γ η ε µ0 Average Average Average Average

Ñ MSE (×10−2) Ñ MSE (×10−2)

KNLMS - 1.48 0.15 0.050 0.69 19.9 1.37 87.3 1.49

DKNLMS

4 1.48 0.15 0.050 0.69 25.7 1.35 88.2 1.44
8 1.48 0.15 0.050 0.69 26.1 1.31 88.7 1.37

16 0.88 0.068 0.090 0.75 23.6 1.58 88.3 1.61
32 2.14 0.036 0.061 0.77 66.9 1.60 103.4 3.16×105

MDKNLMS

4 1.23 0.13 0.063 0.87 54.1 1.53 88.2 1.54
8 1.48 0.15 0.050 0.69 25.7 1.41 88.2 1.44

16 1.48 0.15 0.050 0.69 26.1 1.32 88.7 1.39
32 0.89 0.063 0.089 0.85 32.9 1.63 88.3 1.70

DKNLMS-DG

4 1.36 0.27 2.55 0.94 128 1.28 90.5 2.07
8 2.21 0.38 3.06 0.70 36.7 1.21 80.3 4.23

16 1.92 0.49 3.72 0.42 9.1 1.49 66.7 6.96
32 3.24 0.72 3.89 0.28 10 2.28 48.3 4.60

DKNLMS-CT

4 1.48 0.15 0.05 0.69 19.9 1.37 87.3 1.49
8 1.48 0.15 0.05 0.69 19.9 1.37 87.3 1.49

16 1.48 0.15 0.05 0.69 19.9 1.38 87.3 1.50
32 1.48 0.15 0.05 0.69 19.9 1.40 86.9 1.53
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FIGURE 5.9: Comparison of prediction performance between
DKNLMS (d = 8) and other adaptive filtering algorithms.

Accuracy Comparison

The cross validation accuracy is useful for hyperparameter optimisation, but the real
test is the accuracy on the test set. Furthermore, when dealing with time series data, it
may be necessary to plot the convergence of a learning algorithm to better understand
its behaviour. In this subsection, we plot the convergence of each algorithm, firstly
with the baseline hyperparameters, secondly, with optimised hyperparameters and
compare the differences.

However, before we look closely at the proposed algorithms, let us first put some
of the results in context. Figure 5.9 shows the accuracy of DKNLMS (d = 8) versus
KNLMS and some other common adaptive filtering algorithms in the literature.
Firstly, we can see that ALD-KRLS (Engel, Mannor, and Meir, 2004) outperforms
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KNLMS by almost two orders of magnitude. However, the increased complexity of
the dependencies of ALD-KRLS mean that it’s not the subject of our study for now.
The purpose of the figure is to provide context around different types of adaptive
filters and their costs and benefits. ALD-KRLS scales withO(Ñ2 + ÑM) in operations
and memory, as such it would be a much more difficult task to implement at sample
rates in the order of hundreds of MHz as we do in this work. Secondly, we see that
KNLMS outperforms LMS (Widrow and Hoff, 1960) by almost an order of magnitude.
Currently, if high frequency (in the order of 100s of MHz) adaptive filtering is required,
variants of LMS are one of the few available options.

Figures 5.10 and 5.11 show the convergence pattern of DKNLMS while varying the
delay parameters. Figure 5.10 uses the baseline hyperparameters, while Figure 5.11
uses the optimised hyperparameters for each configuration. Figure 5.10 shows that for
DKNLMS (d ≤ 8), the accuracy and convergence are very similar to KNLMS. For d =
16, some instability begins to show, while for d = 32 DKNLMS becomes completely
unstable. In Figure 5.11 we see the stability for d = 32 significantly improve, at the
cost of convergence speed. For d = 16 with optimised hyperparameters, d = 16 seems
to perform effectively as good as KNLMS for this benchmark.

Moving on to the second variant, MDKNLMS, Figures 5.12 and 5.13 show the
convergence pattern of MDKNLMS while varying the delay parameters. Again,
Figure 5.12 uses the baseline hyperparameters, while Figure 5.13 uses the optimised
hyperparameters for each configuration. Figure 5.12 shows similar convergence for
all configurations of MDKNLMS (d ≤ 16), while some instability begins to show
when d = 32. After hyperparameter optimisation, all configurations of MDKNLMS
perform well, with d = 32 only show a slight deterioration of convergence speed.

Now for DKNLMS-DG, Figures 5.14 and 5.15 show the convergence pattern of
DKNLMS-DG while varying the delay parameters. Similar to the previous examples,
Figure 5.14 uses the baseline hyperparameters, while Figure 5.15 uses the optimised
hyperparameters for each configuration. In Figure 5.14, we see a significant dif-
ference between the accuracy of KNLMS and DKNLMS-DG for all factors of d. In
terms of accuracy, all configurations are visibly less accurate and have slower con-
vergence than KNLMS. For d ≥ 16, the DKNLMS-DG also show visible instability
in the convergence region, without exhibiting the extremely unstable behaviour of
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DKNLMS (d = 32). After hyperparameter optimisation, shown in Figure 5.15, all
configurations of DKNLMS-DG show significantly better accuracy, at the expense
of significantly worse convergence speeds. Furthermore, even after hyperparameter
optimisation, instability can be seen when d ≥ 16. We suspect this instability may
be caused by the fractional part of Equation (5.9) tending towards zero, which can
occur for DKNLMS-DG configurations. We also note that the ε value that was found
for DKNLMS-DG configurations was significantly higher than the other DKNLMS
variants, which may be to counteract this effect. Overall, the accuracy results of the
DKNLMS-DG configurations were underwhelming, and as such will often not be
used for comparisons in the subsequent sections.

Finally, Figures 5.16 and 5.17 show the convergence pattern of DKNLMS-CT while
varying the delay parameters. Again, similar to previous examples, Figure 5.16 uses
the baseline hyperparameters, while Figure 5.17 uses the optimised hyperparameters
for each configuration. As expected, DKNLMS-CT shows the exact same convergence
pattern as KNLMS itself, just shifted by the delay amount d. While from an accuracy
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point of view, DKNLMS-CT is promising, one must remember that this comes at the
cost of increased hardware resources and increased critical path delay. In practical
terms, this means reduced dictionary size and higher latency. Consider the results
shown in Table 5.3 for MDKNLMS and DKNLMS-CT when d = 16. Rounding the
values, MDKNLMS / DKNLMS-CT would require dictionary sizes of 20 / 26 re-
spectively. Using the feature length of Mackey-Glass of M = 7, and the arithmetic
counts in Table 5.1, the number of operations per update can be calculated for MD-
KNLMS / DKNLMS-CT as 756 / 1023 respectively, assuming dD = dα = 8. In all,
that would mean that for this example DKNLMS-CT would require a 35% increase in
Ops for no accuracy benefit over MDKNLMS. Although this may be useful in some
circumstances, in this benchmark we do not see a significant advantage in using
DKNLMS-CT over DKNLMS or MDKNLMS.

Now that each DKNLMS variant has been compared against KNLMS, let us now
compare these variants against each other. Figures 5.18 and 5.19 shows DKNLMS
and MDKNLMS convergence patterns plotted directly against each other using high
values of d. Specifically, Figure 5.18 uses d = 16 while Figure 5.19 uses d = 32.
In Figure 5.18 we see both algorithms working quite well at d = 16, with MD-
KNLMS perhaps showing a small amount of instability. In Figure 5.19 we see a larger
difference between each configuration, both DKNLMS variants exhibiting slower
convergence speeds than KNLMS, DKNLMS being much slower than MDKNLMS.
More importantly, DKNLMS clearly shows some accuracy degradation when d = 32,
while MDKNLMS behaves very similar to DKNLMS. Given this, we consider MD-
KNLMS to be the most promising DKNLMS variant when it comes to achieving high
throughput learning models. In the subsequent sections, in order to save space we’ll
mostly provide results for MDKNLMS.

Finite Precision and Function Approximation

In this section, we test accuracy with a full architecture simulation, as such finite pre-
cision effects and function approximation is taken into account. For the Mackey-Glass
time series and the hyperparameters described in Section 5.6.1 a wordlength of 18bits
with a 5bit integer length was used. Figure 5.20 shows the modelling accuracy of the
floating point vs several different fixed point versions with function approximations.
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Note, all fixed point formats use 5bits for the integer length which avoids overflow
and Mackey-Glass time series using MDKNLMS (d = 16). Figure 5.21 shows the
difference in accuracy between the floating point and fixed point versions. Note,
floating point refers to double precision, i.e., 64bit float. In Figure 5.20 we can see that
using 14bit fixed point arithmetic causes some accuracy issues, affecting the stability
of MDKNLMS. Meanwhile, 18bit and 22bit does not significantly affect the accuracy
of MDKNLMS (d = 16). In terms of quantifying the change in modelling error,
Figure 5.21 shows the accuracy difference between fixed point and floating point
formats. In particular, with reference to both Figures 5.20 and 5.21, we can see that
the difference in modelling accuracy is approximately an order of magnitude lower
than the modelling error incurred by the algorithm itself, for both 18bit and 22bit
fixed point formats. The 14bit format introduces some error which would noticeably
affect the overall accuracy of MDKNLMS. Interestingly, in many parts of the conver-
gence curve, the 18bit and 22bit fixed point models actually outperform the floating
point model, in terms of accuracy. This could be due to the rounding error perhaps
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for MDKNLMS

behaving as a regulariser in this model, by injecting noise in the form of quantisation
error. This injected quantisation could actually behave like l2 regularisation and help
the algorithm avoid overfitting (Bishop, 1995). Similar effects have been observed by
prior works, relating quantisation error to noise injection (Baskin et al., 2018b; Baskin
et al., 2018a) and relating quantisation to regularisation (Courbariaux, Bengio, and
David, 2015). Further study of this effect is future work.

5.6.2 Performance

In this section, we look at the potential performance and scalability of the DKNLMS
architectures described Section 5.4. This section contains post-place-and-route results
on a Xilinx VU9P FPGA. Full system implementations are found in Section 5.6.4.

Figure 5.22 shows how the throughput of DKNLMS, MDKNLMS and DKNLMS-
DG varies with the latency (clock cycles) of the design. For Ñ = 64 and M = 8, d = 4
pipeline stages are required to achieve a throughput of 100 MHz and a throughput of
280 MHz can be achieved if all of the optional registers described in Section 5.4 are
enabled, i.e., d = 31. These represent speedups of 4.4×/12.0× over a combinatorial
KNLMS design (i.e. d = 1), respectively. We do see a slight difference in maximum
clock frequency between the different DKNLMS variants, but this appears to be some
noise from the place-and-route tool, rather than any particular trend. Furthermore,
Figure 5.23 provides insights into the space of frequencies which can be achieved for
different values of Ñ and d. Overall, frequencies up to 420 MHz can be achieved for
high latencies (d ≥ 26) and low dictionary sizes (Ñ ≤ 4). However, with reference
to Section 5.6.1, for more practical values of Ñ (32 ≤ Ñ ≤ 64), and d (16 ≤ d ≤ 32),
frequencies of between 214 MHz to 296 MHz can be achieved.

5.6.3 Area Usage

Figures 5.24 and 5.25 show the DSP usage as a function of M and Ñ . All of the
DKNLMS variants have the same DSP usage so this chart is representative of the
entire design space described in Section 5.4. Figures 5.24 and 5.25 show that the DSP
usage is entirely predictable across the different DKNLMS variants. The DSP usage
corresponds exactly to the amount of multiplies specified in Table 5.1 until the number
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of DSPs increases beyond what is available in the target device, in which case the
extra multipliers are implemented in LUTs.

Figures 5.26 and 5.27 show the LUT usage as a function of M and Ñ . Note that in
this figure the resource of DKNLMS with all optional registers enabled is shown. The
other designs very closely match the resource usage shown in this figure, within 20%.
Interestingly, the resource usage is higher when d = 4 than when d = 8 we suspect
this is due to the routing tool replicating parts of the design to try to shorten the
critical path. Clearly, the LUT usage is significantly less than the DSP usage (when
one considers the availability of such resources on an FPGA device), meaning that
we’ll be DSP bound as we scale.
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5.6.4 Implementation and System Performance

In this section, we consider post-synthesis results along with system level perfor-
mance, latency and performance measurements. For comparison, we use two CPU-
based platforms: (1) a laptop PC running Ubuntu Linux 14.04 with an Intel Core
i7-4500 CPU running at 1.8GHz and GCC 4.8; and (2) an Ultra96 board from Agi-
lent, which features an ARM Cortex-A53 CPU running at 1.2GHz and GCC 6.2. For
the CPU implementations, a C library was created to implement KNLMS. During
testing, ATLAS (Whaley and Petitet, 2005), OpenBLAS (Wang et al., 2013) (both
with and without multi-threading) and a single-threaded hand-coded library were
used to provide the linear algebra routines. For each test, the fastest implementation
is reported, which was always the hand-coded library. Although the hand-coded
library was written in pure C, care was taken to ensure that GCC’s auto-vectorisation
capabilities could effectively optimise the code. This includes implementing loops
with compile-time static loop bounds on many loops and avoiding irregular mem-
ory access patterns. We examined the assembly code of several routines (including
the dot product) and ensured they were significantly unrolled and made use of the
processor’s SIMD instructions. Our C implementation was compiled using -O3, -
ffast-math and several other optimisation flags to improve performance. Surprisingly,
using highly tuned linear algebra libraries and multi-threading did not provide any
performance benefit, we suspect the small vector sizes used throughout meant the
overheads of multi-threading outweighed the benefits. Furthermore, the fine grained
parallelism available in the KNLMS algorithm make it difficult to parallelise on CPUs,
for a single model. Although we were unable to extract any extra performance by go-
ing to multiple cores/threads, there is still a theoretical benefit, as such all CPU results
in this section could possibly be improved by a factor c, the number of cores available
in the CPU, particularly if training of multiple parallel models is required. Also, CPU
implementations of DKNLMS (and the other variants) in C did not produce higher
performance, therefore we only provide the performance results of KNLMS when
running on the CPU. In terms of fabrication process, the i7-4500 CPU is 22nm, while
the FPGA devices, an XC7Z020 and an XCZU3EG, are 28nm and 16nm respectively.

The FPGA implementations in this section fall into two categories:

(1) post-synthesis estimates

(2) system implementations

The post synthesis estimates are post-place-and-route results of the MDKNLMS cores
only. The system implementations utilise AXI master to stream, AXI stream to master
and generated drivers from fpga-tidbits2 to move data between the DDR memory of
the ARM host and the accelerator core and to manage the core. The system implemen-
tation also contains an extra FIFO of length d to allow the stream to AXI controller
to apply backpressure to the core. For the system implementation, the time series
data starts and finishes on the host and this transfer time is included in the timing
measurements for system performance. Table 5.4 shows our results for MDKNLMS
(d = 16), along with key results of several previous works. In particular, note that
throughput refers the sample rate for a single model for which the implementation
is able to operate at. For our designs, this sample rate also corresponds to the clock
rate of the FPGA design. As with many machine learning algorithm families, KAFs
come in various different forms and target different application domains. As such,
readers should be wary when directly comparing results as the specific targets of each

2https://github.com/maltanar/fpga-tidbits

https://github.com/maltanar/fpga-tidbits
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work may not be reflected in Table 5.4. Given this, where possible the results from
previous works are shown which closely match the algorithm and parameters used
in this work. The throughput / latency numbers for the post-synthesis results refer
to the sample rate and pipeline depth of the core. For the system implementations,
the throughput / latency numbers refer to measured numbers from the host code
(C++ code running on the ARM core). Finally, the performance, measured in GOps/s,
is calculated as the number of Ops / Update for each new sample of the adaptive
filter, multiplied by the number of samples per second that can be processed by the
hardware, i.e., the throughput.

For power measurements, for the Ultra96 platform board power is measured
using device reported board power measurements.3 KNLMS and MDKNLMS were
run in a loop for approximately 10 minutes, with power measured every 10 seconds.
The reported power is the average of the power measurements over this period. For
the Pynq-Z1 platform, board power is measured using an inline USB power meter.
Again, average power is reported over a 10 minute test. For the PC platform, energy
dissipation was measured using OS reported battery charge over a 10 minute test
with the display switched off and the CPU governor set to “performance”, to prevent
throttling of the CPU clock.

Looking at the system implementations in Table 5.4, The CPU implementations
achieve 0.66 / 0.084 GOps/s for the Intel i7 / ARM Cortex-A53 respectively. The
architectures proposed by Ren et al. (2014) and Fraser et al. (2017a) were designed
for multi-channel systems, or hyperparameter optimisation, and therefore perform
poorly when constrained to accelerating a single channel. For Fraser et al. (2017a), this
translates into 0.50 GOps/s of floating-point performance. Although the hardware
by Pang et al. (2016) is designed to accelerate single-channel models, the authors
target flexibility over performance. This means that the most comparable design
(Ñ = 64, M = 7) achieves relatively low utilisation: a floating-point performance of
0.52 GOps/s. It should be noted, that the design proposed by Pang et al. (2016) can
be scaled to larger problems than this work. Furthermore, the design achieves better
performance for RLS-style kernel methods, such as FB-KRLS (Van Vaerenbergh et al.,
2010) and SW-KRLS (Van Vaerenbergh, Via, and Santamaria, 2006).

When comparing similar sized problem sizes, starting with Ñ = 30 and M = 7,
the Pynq-Z1 implementation achieves throughput 702 / 83× higher than the ARM
/ i7 implementations respectively. Similarly, it outperforms the implementation by
Pang et al. (2016), achieving 165× higher peak performance in GOps/s. When power
is taken into consideration, the Pynq-Z1 design consumes the least board power of
all designs 1.27 / 6.55× less than the ARM / i7 implementations respectively. Finally,
the energy consumed per update for the Pynq-Z1 design is 899 / 550× less than the
ARM / i7 implementations respectively.

Moving on to the larger problem size, Ñ = 46 and M = 7, the Ultra96 imple-
mentation achieves throughput 2975 / 360× higher than the equivalent ARM / i7
implementations respectively. For power, the ARM achieves 2.04× lower power
consumption than the Ultra96 platform. Conversely, the i7 consumes 2.52× more
power. In terms of energy, the Ultra96 is the most efficient design of all, achieving
1446 / 902× better efficient than the equivalent ARM / i7 implementations.

For architectures which are more similar, the design proposed in Fox et al. (2016)
achieves very high throughput, 104.2 MHz. In comparison, our Ultra96 implemen-
tation achieves 187.4 MHz for a larger model, at 250 GOps/s at a slightly lower
precision, Fixed24→ Fixed18. This corresponds to an increased data rate of 1.80×.

3Board power measured in µW by polling /sys/class/hwmon/hwmon0/power1 inputcat
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TABLE 5.5: Resource Usage of System Implementations

Algorithm Device Dict. Feat. Datatype DSPs LUTs BRAM (18k) Fmax
Size Len. (%) (%) (%) (MHz)

MDKNLMS(d = 16) Pynq-Z1 30 7 Fixed18 220 (100%) 42473 (79.84%) 16 (5.71%) 66.7
Dev. Tot. - XC7Z020 - - Fixed18 220 53200 280 -

MDKNLMS(d = 16) Ultra96 46 7 Fixed18 360 (100%) 54437 (77.15%) 37 (8.56%) 187.5
Dev. Tot. - XCZU3EG - - Fixed18 360 70560 432 -

The Pynq-Z1 also achieves respectable performance at 58 GOps/s. Note, we consider
all operations in Table 5.1, so exponential and division counts as a single operation,
even though they are lightweight table lookups in practice. Finally, the measured
latency of our designs are significantly higher than the theoretical latency of the cores
themselves. This is due to a combination of DRAM latency and batching that occurs
in our system implementation, These overheads would not occur in implementations
which are directly coupled to sensors.

Resource Usage

The resource usage of our system implementations is given in Table 5.5. These
numbers reflect the system designs reported in Table 5.4. Our designs utilise all of
the available DSPs on each device, after which multipliers are mapped to LUTs and
quickly fill the available LUT resources. For both designs, we scale the core to fill
almost all of the available device resources. Since the design is latency (specifically,
clock cycle latency) sensitive, the overall Fmax is not affected too much by scaling
the design. While the performance numbers are respectable for both the Pynq-Z1
and Ultra96 boards, the Fmax for all designs is quite low. Even High-Level Synthesis
(HLS)-based designs can usually achieve 100 / 300 MHz on the XC7Z020 / XCZU3EG
respectively. This again, is due to the sensitivity of the design to latency. Each design
is a core containing 16 pipeline stages, which utilises over 75% of the available LUTs
on each device. For comparison, Table 5.5 also contains the total resources available
on each device for the Pynq-Z1, Ultra96 platforms respectively.

5.7 Conclusion

In conclusion, in this work a new technique (delayed model adaptation) has been
proposed for modifying KAFs. The technique significantly reduces the dependency
problem of KAFs (due to their recursive nature) allowing for high throughput hard-
ware implementations. The delayed model adaptation technique is demonstrated by
modifying the KNLMS algorithm. In doing so, several new variants of KNLMS are
proposed which do not suffer from the same dependency problem. A core generator
is described which is able to generate all variants of KNLMS. For similarly sized
problems, the DKNLMS algorithms are able to achieve speedups of 360× over a CPU
and peak performance 165× higher than a previous FPGA implementation. Our
most performant design can operate at a data rate of 187.4 MHz and achieves a peak
performance of 250 GOps/s. Furthermore, the design also achieves a 1.80× speedup
over a prior FPGA implementation of NORMA. This work demonstrates that high
throughput implementations of KAFs are achievable on current FPGA hardware, and
hope this enables the use of KAFs in many more applications, with tight throughput
requirements.
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Finally, in comparison with other FPGA-based KAF designs, this work shows that
one-size-fits-all solutions might not be an effective way of addressing the computa-
tional demands of machine learning algorithms. This is because machine learning
algorithms are used in a vast number of application domains, with widely varying
problem sizes and constraints. In particular, we show how very few prior works have
addressed the high performant, single-channel online models as would be required
for certain applications, such as channel equalisation. Furthermore, if those require-
ments are addressed specifically, and algorithmic modifications are made, significant
gains can be attained.
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Chapter 6

Distributed Kernel Recursive Least
Squares

6.1 Introduction

The amount of data available continues to increase at an exponential rate (Szalay
and Gray, 2006) and fast implementations of data mining primitives are essential to
make sense of them. Parallelism is a common technique used to scale algorithms
to Big Data problems. Unfortunately, many standard data mining techniques have
dependencies which prevent them from being easily parallelised on a distributed
platform. As a result, standard machine learning algorithms such as SVM and kernel
based least-squares optimisers are often not considered suitable for large data mining
problems.

One method for performing a parallel computation whilst minimising communi-
cation overhead is to split the data up into several subsets, each of which is used to
create an independent submodel. If the learning algorithm is appropriate, the individ-
ual submodels may be good representations of their respective subsets, but they may
not necessarily be a good representation of the entire data set. The core issue facing
this technique then becomes how to combine the submodels into a single model.

An alternative method is to use a distributed platform to construct a single model.
This approach differs from the submodel approach in that there is often a single model
that is accessible from all computing nodes. The nodes then collectively optimise the
model. A notable example is the paper by Chang (2011). The authors report a large
speedup over LIBSVM (Chang and Lin, 2011). The main drawback of this approach
is the communication overhead, which accounts for over 50% of the running time on
some datasets for a large number of machines.

In this work, we take the approach of creating submodels and then combining
them. We show that a closed form solution for combining individual Kernel Recursive
Least Squares (KRLS) (Engel, Mannor, and Meir, 2004) submodels can be achieved.
This result can then be simplified to a more compact form by applying the KRLS
algorithm an additional time. We show that the final model is close to a serial,
single module solution and only requires one-pass through the data. A theoretical
analysis of the combined model is provided, along with an empirical analysis of its
performance and accuracy in relation to standard benchmarks.

The main contributions of this work can be summarised as follows:

• a technique to combine multiple kernel based regression models on distributed
nodes without requiring multiple passes over the data, furthermore, a large
portion of the compute of this technique is embarrassingly parallel, meaning it
can parallelised on loosely coupled accelerators;
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• a theoretical bound on the approximation error in the representation of the
kernel matrix while using this technique; and

• empirical analysis of its performance on benchmark datasets when compared
to other batch and distributed techniques.

This chapter is organised as follows: Section 6.2 covers relevant background of
the work. Section 6.3 describes our proposed algorithm including its theoretical
formulation and implementation. Section 6.4 covers testing the methods on several
different benchmark data sets. Section 6.5 provides and extension to the ALD criterion
and a generalisation to multi-layered tree structures. Finally, conclusions are drawn
in Section 6.6.

6.2 Kernel Recursive Least Squares

In this section we briefly survey the KRLS algorithm (Engel, Mannor, and Meir, 2004).
Note, before describing KRLS, we briefly recap some kernel methods background
from Section 2.1.

6.2.1 Kernel-based non-linear prediction

Consider a set of N observations in the form of input/output pairs {xn, yn}, n ∈
[1, N ], where the input entries xn are vectors of length M . We refer to this data set as
the training data. In a typical time series prediction scenario, the vector xn consists of
the few data samples that directly precede the value yn. Given a new input entry, x,
kernel-based methods predict the corresponding output as:

ŷ =

N∑
i=1

k(xi,x)αi , (6.1)

where k(·, ·) is a positive-definite kernel function.
Kernel-based prediction models thus consist of two types of data: a set of training

input vector examples, which we refer to as the dictionary, and the corresponding
coefficients α. The coefficients are typically calculated such that the prediction is as
accurate as possible for the entire training data, in the least-square sense. In other
words, the vector of the coefficients α = [α1, α2, . . . , αN ]T is defined as:

α = argmin
γ
‖y −Kγ‖2 , (6.2)

where y is the vector of the training output entries, y = [y1, y2, . . . , yN ]T , and K is the
matrix with coefficients Kij = k(xi,xj). Calculating the kernel for two input entries
(xi, xj) is equivalent to calculating the dot product of the vectors (φ(xi), φ(xj)) where
φ is a mapping function which transforms an input vector to a vector of features in
a high-dimensional feature space. Thus, Equation (6.2) is equivalent to solving the
following problem:

α = argmin
γ

∥∥y −ΦTΦγ
∥∥2

, (6.3)

where Φ is the matrix that concatenates the vectors of features corresponding to every
input entry, Φ = [φ(x1), φ(x2), . . . , φ(xN )]. Note that the function φ is implicit, as it
is determined by the choice of a kernel, and it is never calculated in practice. This
property is often referred to as the “kernel trick” (Cortes and Vapnik, 1995).
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6.2.2 Kernel-recursive least-squares

The Kernel-recursive least-squares (KRLS) algorithm (Engel, Mannor, and Meir, 2004)
is an online algorithm which computes an approximate solution to Equation (6.3).
The main advantage of KRLS is that the complexity of the obtained prediction model
does not depend directly on the size of the dataset, but rather on how complex the
dataset is. This is made possible by the fact that the training entries may be linearly
dependent in the feature space, i.e., matrix Φ can be approximated as:

Φ ≈ Φ̃ AT , (6.4)

where Φ̃ consists of a subset of the columns of Φ and matrix A expresses the columns
of Φ as linear combinations of the columns of Φ̃. In other words, KRLS selects a
subset of input entries and computes the prediction model coefficients, α̃, defined by:

α̃ = argmin
γ

∥∥∥y −ΦT Φ̃γ
∥∥∥2

= argmin
γ

∥∥∥y −AT K̃γ
∥∥∥2

, (6.5)

where K̃ is the matrix of the kernel values for the subset of training entries. The
solution to Equation (6.5) is given by: α̃ = K̃−1(ATA)−1ATy.

In the KRLS algorithm the approximation defined by Equation (6.4) is controlled
by a parameter, ν: the larger ν, the smaller the dictionary and the larger the error. As
in previous chapters, the dictionary refers to a subset of of training examples which
are used to define the model. The approximation error made on matrix K can be
expressed as:

K = AK̃AT + R , (6.6)

where R is a matrix of residual errors. Engel, Mannor, and Meir (2004) showed that
the l2 norm of R is bounded by Nν, where the l2 norm of a matrix is defined as:

‖R‖2 = max
u:‖u‖2=1

‖Ru‖2 . (6.7)

6.2.3 Related Work

Other works related to the problem of parallelising kernel based learning algorithms
can be loosely placed into two categories: (1) The data is partitioned and submodels
are created, which are later combined into a single model; (2) a distributed approach
is taken to construct a single model.

In general, works which take the approach of creating submodels, such as Graf
et al. (2004), Yang (2006), Lu, Roychowdhury, and Vandenberghe (2008), Caruana, Li,
and Qi (2011), Caruana, Li, and Liu (2013) and Lu, Wang, and Wen (2004), achieve
a high speedup over batch algorithms and have little I/O overhead between nodes.
However, this approach often has the following drawbacks: degradation in model
accuracy, particularly as the number of processing nodes increases (Caruana, Li, and
Qi, 2011; Caruana, Li, and Liu, 2013; Lu, Wang, and Wen, 2004); multiple passes
of the data are required to guarantee convergence (Graf et al., 2004; Yang, 2006;
Lu, Roychowdhury, and Vandenberghe, 2008); and the resultant model is much
larger than one resulting from a batch approach (Lu, Wang, and Wen, 2004). To our
knowledge, none of these methods provide a guarantee of the accuracy of the model
for a single pass of the data.

A notable example of a work which creates a single distributed model is the paper
by Chang (2011). The authors report a large speedup over LIBSVM (Chang and Lin,
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2011). The main drawback of this approach is the communication overhead, which
accounts for over 50% of the running time on some datasets for a large number of
machines.

There has been substantial work in this area regarding both the combination
of models and parallel training (Bhaduri et al., 2008). The important distinction
between the two lies in their methodology; the combination of models implies training
several submodels, whereas parallel training methods take a distributed approach to
constructing a single model.

Due to its popularity, the Support Vector Machine (SVM) has been the focus of
these two methods. In 2004, Graf et al. (2004) proposed a parallel SVM methodology
called the Cascade SVM (CSVM). Similar to the method presented in this work, it
operates by constructing a tree structure that trains and passes support vectors down
to the next layer. This process continues until a single set of support vectors and
weights are found. Using this approach, a significant speedup can be achieved by
reducing the active set size of each processing node. While convergence to a global
optimum is guaranteed, multiple passes of the data is required for this to be achieved.
The authors suggest that for many problems only a single pass of the data is required.
However, a bound on the error for a single pass is not provided.

Yang (2006) made modifications to CSVM, extending it to use multiple different
classifiers, and improving the accuracy over the standard CSVM for classification.
The feedback topology is also modified to improve the accuracy at each iteration.
The authors report a speedup of up to 40% when comparing to the standard cascade
SVM.

Taking a different approach, Chang (2011) presented a body of work that imple-
mented a methodology where several SVMs are trained across multiple nodes. Each
node creates an SVM model on a subset of the training data. During the submodel
training, once an SVM model finds a support vector (analogous to a dictionary entry
for KRLS), then that support vector is distributed amongst all other machines and
the process is restarted. This is repeated until all support vectors have been found.
The memory load on each node is reduced by efficiently calculating an approximate
factorisation of the kernel matrix as an initial step. The authors report 169× speedup
over LIBSVM (Chang and Lin, 2011) when running on 500 machines. The main draw-
backs of the methodology are the synchronisation and communication overheads,
which account for over 50% of the running time on some datasets for a large number
of machines.

Alham et. al. have presented two papers, one focusing on the distribution of the
SMO algorithms (Alham et al., 2011), and the second looking at a parallel bagging
approach (Alham et al., 2013). The first paper introduced MapReduce SMO (MRSMO),
which applied several SMO modules to sub sets of the overall dataset. MapReduce
Ensemble SVM (MRESVM) was presented in the second paper, focused on a parallel
bagging approach where the results from several predictors are combined to created
a weighted result of all predictors. MRESVM was tested in both experimental and
simulation environments and achieved significantly reduced training time and high
levels of accuracy.

Caruana, Li, and Qi (2011) and Caruana, Li, and Liu (2013) presented two papers
that developed and tested a parallel SMO training methodology based on MapReduce.
The methodology involves several SMO modules which identify support vectors
to train on. This reduces the overall training time significantly and uses ontology
based concepts. A speedup of 70× is reported using 5 nodes, however, convergence
is not guaranteed. The drawback in this approach is that there is a degradation in
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accuracy as the number of splits in the data increases, the authors report an increase
in classification error of up to 1.7× for splits of up to 48.

Lu, Roychowdhury, and Vandenberghe (2008) extended the ideas from Chang
(2011) and Yang (2006) and developed a Distributed Parallel SVM (DPSVM). The
DPSVM is designed to exchange support vectors, obtained from training multiple
sub-modules in a strongly connected network. The methodology presented offered
several different architectures, one of which was analogous to the cascade SVM. Lu,
Roychowdhury, and Vandenberghe (2008) provide performance results over a num-
ber of different topologies/sizes showing that several of their proposed architectures
scale well on network sizes of up to 15 nodes. Again, several iterations over the
dataset are required for convergence and only theoretically proved in a strongly
connected network.

Lu, Wang, and Wen (2004) developed the Min-Max Modular SVM (M3-SVM)
which is based on a similar technique used in neural networks (Lu and Ito, 1999). The
M3-SVM is used to combine the models created by SVM classifiers which is archi-
tecturally similar to the cascade SVM. The authors report up to 4× and 2× speedup
over the standard SVM and cascade SVM respectively. However, the approach does
degrade the accuracy of the model and up to 2× more support vectors are found
which increases the computational complexity for future predictions.

Alternating Direction Method of Multipliers (ADMM) (Boyd et al., 2011) has been
gaining popularity in recent years. ADMM can be applied to many optimisation
problems, including SVM (Forero, Cano, and Giannakis, 2010; Suzuki, 2013), which
allows them to be implemented using parallel and distributed processors with very
little inter-node communication.

6.3 Distributed KRLS learning

In the case where KRLS is used on large training data sets, it may be advantageous to
divide the learning operation into multiple processes running in parallel. The training
data set is divided into subsets, X = [X1, ...,XK] and y = [y1

T , ...,yK
T ]T , and sent to

individual computation nodes for processing. Each node creates a model represented
by a dictionary Dk, and the corresponding weights, αk. These models must then be
combined with each other to form a unique model representing the whole training
data set. In this section we show how multiple KRLS models can be combined so that
the data contained in the entire training set is optimally approximated.

6.3.1 Concatenating KRLS models

The simplest way to combine KRLS models is to form a dictionary which concatenates
the dictionary entries from every individual model, i.e., D̄ = [D1, . . . , DK ]. A new
set of weights corresponding to dictionary D̄, ᾱ, must then be calculated so that the
prediction error is minimal for the entire training data set. In other words, denoting
Φ̄ as the dictionary D̄ mapped into the feature space, we have:

ᾱ = argmin
γ

∥∥y −ΦT Φ̄γ
∥∥ ≈ argmin

γ

∥∥y − ĀΦ̄T Φ̄γ
∥∥ , (6.8)

where Ā is the diagonal-block matrix comprised of the A matrices for every KRLS
model, Ā = diag ([A1, . . . ,AK ]). The closed-form solution for ᾱ is therefore given
by:

ᾱ =
(
Φ̄T Φ̄

)−1 (
ĀT Ā

)−1
ĀTy . (6.9)
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FIGURE 6.1: High level view of the DistKRLS learning method.

We now show that the weights ᾱ can be calculated without using the entire training
data set, y. In other words, y does not have to be stored after the parallel training
stage. Using the block-diagonal structure of Ā, Equation (6.9) can be rewritten as:

ᾱ =
(
Φ̄T Φ̄

)−1
ȳ . (6.10)

where ȳ =
[
ŷT1 , . . . , ŷ

T
K

]T
and ŷk =

(
AT
kAk

)−1
AT
k yk .

Recalling that the weights obtained for an individual model are given by αk =(
ΦT
kΦk

)−1(
AT
kAk

)−1
AT
k yk, we have

ŷk =
(
ΦT
kΦk

)
αk , (6.11)

where Φk denotes the dictionary Dk mapped in the feature space. Therefore, the
coefficients of ȳ simply correspond to the data predicted by applying each KRLS
model to its dictionary entries.

6.3.2 Combining KRLS models using the KRLS algorithm

From Equation (6.10), we see that ᾱ is the solution to the following least-square
problem:

ᾱ = argmin
γ

∥∥∥ȳ − Φ̄
T
Φ̄γ
∥∥∥2

= argmin
γ

∥∥ȳ − K̄γ
∥∥2 . (6.12)

Comparing this equation with Equation (6.3), we observe that this problem is equiv-
alent to estimating a model for the training set data comprised of: a) the entries of
the concatenated dictionary, D̄; and b) the vector ȳ. Therefore, the KRLS algorithm
can be used to estimate this model. This leads to the distributed KRLS (DistKRLS)
learning method summarised in Figure 6.1:

1. the original training data set is divided into chunks that are sent to K parallel
computing nodes;

2. the KRLS algorithm is used to derive a prediction model for each data chunk;

3. a new training data set is formed of the dictionary D̄ and vector ȳ; and

4. the KRLS algorithm is used to estimate a model for the new data set.
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An advantage of this approach, is that it can leverage existing infrastructure used
to implement MapReduce (Dean and Ghemawat, 2008), such as Hadoop.1 Algo-
rithm 6.1 outlines the DistKRLS submodel training stage, which can be used as a map
function as part of a MapReduce framework. This map function is computed on each
computational unit, but with a different subsection of data. This algorithm illustrates
how the KRLS module first learns on the training set followed by the evaluation of
its labels, L, by predicting on its dictionary, D, and weights, α.

Algorithm 6.1 DistKRLS map function

procedure MAP(Xtrain, ylabels)
[D,α]← KRLS(Xtrain,ylabels) % Train the submodel.
L ← PredictD,α(D) % Re-evaluate each dictionary entry to make new labels,

using Equation (6.1).
return(D, L)

end procedure

These labels along with the dictionary are passed on to the final node which then
combines them as outlined in Algorithm 6.2. The function described in Algorithm 6.2
which can be used as the reduce function as part of a MapReduce framework. This
processes iteratively combines the submodules whilst retaining the compact nature
of the dictionary.

Algorithm 6.2 DistKRLS reduce function

procedure REDUCE(list(D1, ..DN ), list(L1, ..., LN ))
for i in 1 : N do

[Dc,αc]← KRLS(Di, Li)
end for
return(Dc,αc)

end procedure

It is important to keep in mind that KRLS is an online regression problem, hence
combining the submodels can be performed iteratively thus allowing the computation
of the reduce step to overlap with the computation of the map step. Depending on
the dataset size and the number of splits, this could result in significant performance
improvements over a batch approach.

Another advantage of this method is that it may lead to a more compact model
than that defined by D̄ if there exists redundancies between entries of this dictionary.
The drawback however is that discarding some dictionary entries may increase the
prediction error. Let us define the solution after a second application of KRLS as ᾰ,
with a corresponding compact kernel matrix, K̆, and expansion matrix, Ă. Matrices
K̆ and Ă provide an approximation of K̄, as follows:

K̄ = ĂK̆ĂT + R̆ , (6.13)

where R̆ is the residual error introduced by the second application of the KRLS
algorithm. Similarly, K̄ and Ā provide an approximation of K and we can write:

K = ĀK̄ĀT + R̄ = Ā(ĂK̆ĂT + R̆)ĀT + R̄ . (6.14)

1https://hadoop.apache.org/

https://hadoop.apache.org/
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TABLE 6.1: Summary of the operations required to update a KRLS
model based on a new example

Algorithm KRLS

exp Ñ

× 3Ñ2 +MÑ + 5Ñ +
∑Ñ

i=1 i

+ 3Ñ2 + 3MÑ +
∑Ñ

i=1 i
÷ 1
< 1

Total 6Ñ2 + 4MÑ + 6Ñ + 2 + 2
∑Ñ

i+1 i

Mem. (input) (M + 1)w

Mem. (model) (ÑM + Ñ + 2
∑Ñ

i=1 i)w

Mem. (update) (Ñ +
∑Ñ

i=1 i)w

Intensity as Ñ →∞ 4.7/w

Intensity as M →∞ 4/(Ñ + 1)w

Intensity as Ñ ,M →∞ 4.4/w

Thus, the l2 norm of the total residual error, RT , in the representation of K is:

‖RT ‖2 =
∥∥∥R̄ + ĀR̆ĀT

∥∥∥
2

≤ Nν + ψN̄ν , (6.15)

where ψ is the maximum singular value of ĀT Ā, N̄ is the length of ȳ and the second
line invokes the bound of the error introduced by the KRLS algorithm (Engel, Mannor,
and Meir, 2004). Interestingly, since Ā has block diagonal structure, Equation (6.15)
can be rearranged into a form that is easy to calculate.

ψmax(ĀT Ā) = max(ψmax(AT
1 A1), ..., ψmax(AT

KAK))

= 1/min(ψmin(P1), ..., ψmin(PK)) , (6.16)

where ψmax(B), ψmin(B) are the largest / smallest singular values of B respectively.
The last line in Equation (6.16) utilises the fact that Pk = (Ak

TAk)−1 (Engel, Mannor,
and Meir, 2004). Since Pk is already stored on the kth mapper, after training if an
error bound is required, each mapper can calculate ψmin(Pk) and send the result
to the combiner with a constant I/O overhead. The theoretical error bound on real
datasets in studied further in Section 6.4.

6.3.3 Performance Modelling

Considering Algorithms 6.1 and 6.2 and Table 3.2, a simple performance model
for DistKRLS can be made. For convenience, we repeat the KRLS column from
Table 3.2 in Table 6.1. Table 6.1 shows the required number of arithmetic operations,
memory reads/writes and arithmetic intensity (number of arithmetic operations per
byte of memory read/written) for KRLS to update its model, given a new training
example. Note, that Ñ refers to the number of entries in the dictionary,D, and w is the
wordlength (in bytes) of the datatype used for memory storage. In terms of arithmetic
operations, we can see that the worst-case scalability for KRLS is O(Ñ2 + MÑ)
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where Ñ2 will dominate if Ñ > M , or MÑ will dominate if Ñ < M . Using the
worst-case scalability, for standard KRLS we can estimate the total time taken to be
t = Nτ(Ñ2 +MÑ), where τ is a positive constant. From this simple model, we can
estimate the computational time for DistKRLS to be:

tK =
N

K
τ(Ñ2 +MÑ) +KÑτ(Ñ2 +MÑ) , (6.17)

where the first term is the time taken for each submodel to train (in parallel) on it’s
subset of training data and the second term is the time taken for the reducer KRLS
algorithm to combine the submodels. Here, we assume that each submodel has a
model size that is the same size as the resultant model size, Ñ . In reality, the actual
submodel size is likely to be smaller than this. Defining τ̂ = τ(Ñ2 + MÑ) we can
rewrite Equation (6.17) as:

tK = τ̂(
N

K
+KÑ) . (6.18)

So with this model, there is a balance between the time taken for the submodels to
train and the time taken for the combination model to train. This is complicated by
the complexity of the model, parameterised by the dictionary size, Ñ . If K is very
high, then the first term takes very little amount of time, while the second term may
take a vast amount of time. Conversely ifK is small, the submodel training will take a
significant amount of time, while the model combining time will be very small. Taking
this performance model, we can do performance simulations, by simply specifying
N , K and Ñ . Figure 6.2 shows the normalised execution time estimate of DistKRLS
using Equation (6.18) with N = 106 and varying K and Ñ . In Figure 6.2 when K = 1,
this refers to regular KRLS. We can see that as K increases from K = 1, at first there
is a significant drop in estimated execution time, as the first term in Equation (6.18)
rapidly decreases. After this initial performance improvement, continuing to increase
K increases the execution time until it approaches the execution time of KRLS. This
is from the second term of Equation (6.18) increasing as K increases further. In an
ideal case for improving performance, it is clear that if N and Ñ are known, we can
find an optimal K to minimise Equation (6.18) as follows:

KO = argmin
K

(
τ̂(
N

K
+KÑ)

)
, (6.19)

where KO is the optimal value for K. This can be solved directly by finding the
derivative of tK with respect to K:

dtK
dK

= τ̂

(
−N
K2

+ Ñ

)
, (6.20)

and find KO for when dtK
dK = 0:

0 = τ̂

(
−N
K2
O

+ Ñ

)
(6.21)

KO =

√
N

Ñ
. (6.22)

For N = 106 and varying Ñ as 10, 100, 1000 and 10000, this gives us the values of
KO as 316, 100, 32 and 10 respectively. This correlates perfectly with what is shown
in Figure 6.2. Figure 6.2 also shows that the performance improvement is largely
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FIGURE 6.2: Normalised execution time estimate of DistKRLS while
varying K and Ñ

dependent on Ñ with speedups between 10-100× being achievable. However, this
model does not take into account communication overheads, as such, caution should
be taken before drawing any conclusions from this analysis. Furthermore, when
training on a real dataset, Ñ won’t be known a-priori. To estimate it, we suggest
training on a random subset of training data until Ñ saturates.

6.4 Results

In this section, the accuracy and performance of the DistKRLS learning algorithm is
shown. Synthetic benchmarks for regression and classification are used for training
and test data. For comparison, results for the non-parallel KRLS (henceforth referred
to as batch KRLS) algorithm is provided along with SVM and cascade support vector
machine (CSVM) (Graf et al., 2004), the latter of which is a technique to implement
SVM on a distributed computing platform. CSVM was implemented in a standard
binary tree configuration and was only allowed a single pass of the data. Readers
should note that if multiple passes were allowed, CSVM would converge to the batch
SVM solution but would suffer a performance penalty, which would likely be a linear
increase in execution time.

6.4.1 Accuracy

In order to demonstrate the modelling accuracy of DistKRLS, the algorithm is tested
on both a regression and a classification benchmark. DistKRLS and CSVM were
tested while varying the number of splits in the training data. If splits = 1, then this
refers to either batch KRLS or SVM. Otherwise, splits refers either to the number of
submodels created by DistKRLS, or to the number of submodels created at the first
layer of CSVM.

For the regression test, the Mackey-Glass Chaotic Time Series (Mackey, Glass,
et al., 1977) (MG) was used with the chaotic parameter set to 30. The data was
configured for a single step prediction problem with a time embedding of 7. In this
test, 20 datasets were generated. Each dataset size was 2 × 105, 20% of the data in
each set was used as a test set. For all learning algorithms, the Gaussian kernel was
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FIGURE 6.3: Mean squared error (MSE) on the test set and model size
for each algorithm.
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FIGURE 6.4: Classification accuracy on the test set and model size.

used, κ(xi,xj) = exp(−γ‖xi − xj‖2), with γ = 0.5. The configuration for batch and
DistKRLS was ν = 10−4. SVM and CSVM used ε-SVR (Vapnik, 2000), provided by
LIBSVM (Chang and Lin, 2011), with ε = 0.01. The same parameters were used for
DistKRLS and CSVM as their batch counterparts. Figure 6.3 shows the average mean
squared error (MSE) and model size for each algorithm across the 20 sets. The error
bars denote one standard deviation above and below the average. Note that “model
size” refers to the number of support vectors or dictionary vectors found by the
algorithm. Clearly, DistKRLS and batch KRLS perform almost identically, while the
accuracy of CSVM degrades slightly with increasing numbers of splits. Specifically,
the maximum increase in average MSE between all configurations of DistKRLS and
KRLS was 9.09%, while for CSVM it was 160% when compared to SVM. Also, the
average model size of KRLS and DistKRLS is more than 150× smaller. This also
means the computational cost of subsequent predictions is over 150× smaller.

For the classification test, the Madelon Classification Data (Guyon et al., 2004)
(MAD) was used. In this test, 40 datasets were generated. Each set contained 2× 105

examples and was generated with 4 informative features and 4 redundant features,
and 20% of the data in each set was used as the test set. The Madelon input data
was normalised prior to training/prediction, and each output label was either -1 or 1.
The exponential kernel was used again with γ = 0.5. KRLS and DistKRLS was used
with ν = 0.7. SVM and CSVM used C-SVC (Cortes and Vapnik, 1995), also provided
by LIBSVM (Chang and Lin, 2011), with C = 50. Figure 6.4 shows the classification
accuracy and model size between DistKRLS and CSVM over the 40 sets. The error bars
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FIGURE 6.5: Worst case error bounds on the Mackey-Glass and Made-
lon datasets.

denote one standard deviation above and below the average. Using the classification
data, the difference between our approach and CSVM is much more pronounced.
While SVM works very well, the accuracy of CSVM deteriorates significantly while
requiring over 40×more support vectors than the KRLS approaches. Specifically, the
greatest difference in average classification accuracy between DistKRLS and KRLS
was 0.30%, compared with 15.1% between CSVM and SVM.

Error Bounds

In this subsection the worst case error bounds are considered, which are calculated
using Equation (6.16). Comparisons with actual error measured in the previous
section are also provided. Figure 6.5 shows the calculated worst case error bounds on
several real datasets.

In order to understand how the change in MSE, ∆MSE, impacts on the accuracy of
the model the relative error should be considered. Figure 6.6 shows the relative theo-
retical and measured ∆MSE using the models created by the Madelon dataset. The rel-
ative measured ∆MSE is calculated as follows: ∆MSEm = (MSEc−MSEb)/MSEb,
where MSEc is the calculated MSE of the proposed method and MSEb is the cal-
culated MSE of the batch model. The relative theoretical error is calculated using:
∆MSEt = (νm +

√
Ψ(Ā2)νc + νb −MSEb)/MSEb, where Ψ(Ā2) is calculated using

Equation (6.16). Note that when tested using 512 nodes, the measured error rises
above the theoretical error bound. We suspect that this is due to floating point round-
ing errors. As such, floating point errors in KRLS based algorithms will be studied
in future work. Other than this single point, where the number of nodes is 512, the
measured change in MSE validates the theoretical error bound.

6.4.2 Performance

In this section, the execution time of the algorithms is considered. The Madelon
dataset experiments were run on a Ubuntu Linux system with 2x Intel(R) Xeon(R)
E5506 CPUs at 2.13GHz and 48GB of RAM. The Mackey-Glass experiments were
run on a 16 node cluster running Centos Linux. MATLAB was used to run all
tests, however, LIBSVM was used to implement all SVM algorithms and a C library
was created to implement all KRLS algorithms.2 All linear algebra routines used
in the KRLS C code linked back to MATLAB’s BLAS library, which provided the
highest performance when compared with ATLAS (Whaley and Petitet, 2005) and

2Software available at: https://bitbucket.org/nick_fraser/libkaf/

https://bitbucket.org/nick_fraser/libkaf/
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OpenBLAS (Wang et al., 2013). MATLAB’s parallel computing toolbox was used to
provide parallelism for the DistKRLS and CSVM.

Figure 6.7 shows the training time for each of the different algorithms. CSVM
achieves a significant performance increase over SVM which continues to steadily
improve with an increasing number of splits. DistKRLS performs best for either 8 or
32 splits, but approaches batch KRLS as the number of splits increases. This is due to
an increase in computation time for combining the KRLS submodels. Compared to
batch KRLS, the best average speedup achieved by DistKRLS is 22.7×. In all but 3
configurations, DistKRLS has lower average execution time than CSVM. Based on the
results, it is likely that a continued increase in splits would cause CSVM to execute
faster than DistKRLS.

It should also be noted that the DistKRLS training time curves shown in Figure 6.7
correlate very well with the curves shown in Figure 6.2. Furthermore, given the
model sizes shown in Figure 6.6, we can estimate the expected optimal number of
splits, KO, using Equation (6.22). For the Mackey-Glass times series, KO ≈ 30, which
is slightly higher than the optimal point shown in Figure 6.7, but still corresponds to
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a near-optimal point on the performance curve. For the Madelon dataset, KO ≈ 20,
which lies right in-between the two most optimal points which were tested. This
shows that while the model in Section 6.3.3 is simple, it can be effective for estimating
good values for K for a given dataset and hyperparameter settings for DistKRLS.

6.5 Extensions

In this section, we look at some extensions to enhance the DistKRLS algorithm.
Specifically, we look at extending the model to a generalised, multi-layered tree
structure. Afterwards, we look at making some modifications to KRLS itself which
aim to improve the error bound, given in Equation (6.15).

6.5.1 Generalised Tree Structure

In this subsection, the error bound related to a generalised tree structure is considered.
Starting with Equation (6.15) and the error bound of the KRLS algorithm. Figure 6.8
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FIGURE 6.8: A generalised version of DistKRLS which uses a k-nary
tree.

shows a general DistKRLS tree withL layers, constructed using a k-nary tree of sizeK.
Clearly, the result of a standard two layer DistKRLS implementation is another KRLS
model which increases error bounds on the representation of K. As such, there’s no
reason that two or more separate parallel DistKRLS could be computed and combined
using the same method described in Section 6.3. Applying such logic recursively
results in a general version of DistKRLS which can have some arbitrary tree structure
at the cost of some possible further increases in error bounds. In this section, we’ll use
the same notation as Section 6.2.2, with the inclusion of superscripts and subscripts
denoting the layer number and split number respectively. For example, D(l)

k denotes
the dictionary found by the kth KRLS module in the lth layer of the DistKRLS tree.
Recalling Equation (6.13), the relation between the original kernel matrix and the
approximated kernel matrix, becomes:

K = Ā(1)K̄(1)Ā(1)T + R̄(1) = Ā(1)(Ā(2)K̄(2)Ā(2)T + R̄(2))Ā(1)T + R̄(1)T , (6.23)
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Similarly, Equation (6.15), showing the total residual error, becomes:

‖R‖2 =
∥∥∥R̄(1) + Ā(1)R̄(2)Ā(1)T

∥∥∥
2

≤ N (1)ν(1) + ψ(1)N (2)ν(2) , (6.24)

whereR is the total residual error in the representation of K using a 2-layer DistKRLS
tree and ψ(1) is the largest singular value of Ā(1)T Ā(1). Generalising Equation (6.24)
to a tree with L layers becomes:

‖R‖2 ≤ N
(1)ν(1) + ψ(1)N (2)ν(2) + · · ·+N (L)ν(L)

(L−1)∏
n=1

ψ(n)

≤
L∑
l=1

N (l)ν(l)

(l−1)∏
n=1

ψ(n) . (6.25)

This shows that for the cost of potentially further increasing the maximum error,
DistKRLS can be extended to a generalised tree structure which allows one to exploit
further parallelism that may be available in certain systems. This structure may be
particularly useful when the time taken for the combiner is significantly longer than
the time taken for each of the nodes, as we can further parallelise the combiner into
sub-DistKRLS steps. Alternatively, in scenarios with sparsely connected network
topologies this generalised tree structure would help to reduce the burden on network
bandwidth.

6.5.2 The Kernel Recursive Least Squares Submodel

In this subsection, we look at modifying the KRLS algorithm itself to improve the
error bound, as stated in Equation (6.25). Firstly, let us assume that we would like
the worst case error bound in DistKRLS to be less than or equal to the error bound of
KRLS. The first obvious thing to notice, is that if ν(2) → ν(L) = 0, then the residual
error in the representation of K is equivalent to KRLS. Clearly, this would provide
a similar worst case error bound to KRLS, but, would likely produce a much larger
model than one found simply by KRLS. We assume a large model (i.e. one with
many dictionary entries) is undesirable due to the increased cost (linear with the
number of dictionary entries) of making predictions. As such, we assume that a
kernel regression model produced this way would be non-ideal.

Modify the Approximate Linear Dependency Condition

As stated in Section 6.2.2, the KRLS algorithm tries to approximate Φ using a compact
subset. The result is stated in Equation (6.4). The KRLS algorithm calculates each row
in A by seeing if each example satisfies the ALD condition: δt ≤ ν, where

δt = min
a

∥∥∥∥∥∥
Ñt∑
j=1

ajφ(x̃j)− φ(xt)

∥∥∥∥∥∥
2

, (6.26)

where a = [a1, ..., aÑt ], a becomes the tth row in A and Ñt refers to the number of
entires in D at time t. Clearly, using this minimisation function does not place any
constraint on ‖a‖2. This means that prior to training, one cannot place a bound on
ψ and therefore, one cannot calculate a worst case bound on Equation (6.26). An
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obvious improvement to this bound then, is to somehow place a bound on ‖a‖2 < ε,
where ε ∈ R>0. Then to add this condition to the ALD condition, meaning a new
example is not added to the dictionary if δt < ν && ‖a‖2 < ε. This will in turn
introduce a bound on ψmax(AT

kAk), which can further simplify Equation (6.16). With
the introduction of this extra condition on ALD, ψmax(AT

kAk) must fall within the
following bound:

ψmax(AT
kAk) ≤

N

K
ε , (6.27)

Meaning that Equation (6.15) can be updated as follows:

‖RT ‖2 =
∥∥∥R̄ + ĀR̆ĀT

∥∥∥
2

≤ Nν + ψN̄ν

≤ Nν +
N

K
εN̄ν , (6.28)

This means the maximum error bounds can be determined a-priori, at hyperparameter
setting time, rather than calculated during training as Equation (6.16) suggests. We
can also now use this formulation to update Equation (6.25) as follows:

‖R‖2 ≤ N
(1)ν(1) + ψ(1)N (2)ν(2) + · · ·+N (L)ν(L)

(L−1)∏
n=1

ψ(n)

≤
L∑
l=1

N (l)ν(l)

(l−1)∏
n=1

ψ(n)

≤
L∑
l=1

N (l)ν(l)

(l−1)∏
n=1

N (n+1)

K(n)
ε(n) . (6.29)

6.6 Conclusion

This chapter has presented a new method of combining multiple models of kernel
based regression algorithms. This technique removes the dependency between
models for the bulk of the data at training time which allows it to be distributed
among many machines. In this work, the KRLS algorithm is used for training as
it provides a compact, near optimal least squares model of the training data. The
KRLS algorithm also provides a parameter which trades off model accuracy with
computational time. Utilising only the KRLS algorithm for model training and
combining, we show that the residual MSE is bounded in the final model based on
the properties of the data and the ALD threshold. To the best of our knowledge, the
algorithm proposed provides the only distributed/parallel kernel based regression
algorithm capable of providing a bounded approximation error while only requiring
a single pass through the data. In terms of performance, even on a single machine
with 8 cores, a speedup of 22× was achieved when compared to a batch execution of
the KRLS algorithm. Compared to another method of parallelising kernel algorithms,
CSVM, DistKRLS achieves higher performance (for smaller dataset splits), but most
importantly maintains high accuracy for single passes through the dataset. The
method described, thanks to the KRLS algorithm, also returns a far more compact
model than the other distributed techniques. This has the two-pronged effect of
greatly reducing the I/O between the mappers and the combiner, and also providing
a model with much smaller computation complexity for future predictions.
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We have shown that with a modification to the ALD criterion, a-priori error
bounds can be placed on the reconstruction error at hyperparameter setting time. Fi-
nally, we have also shown that DistKRLS can be applied to generalised tree structures,
while still maintaining bounds on the worst-case reconstruction error.

In future work, the approximation error bound will be explored on real data
sets. The processing and I/O time achieved on real clusters, and massively paral-
lel processors (GPUs/FPGAs) will be tested. The accuracy of the algorithm using
several distribution and sorting schemes will be considered. Also, the accuracy
of the technique using other types of KAFs as mapping functions will be tested,
such as stochastic gradient descent algorithms which offer an extra reduction in
computational cost.
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Chapter 7

Conclusion

In this thesis, we have demonstrated that algorithmic (Chapter 5 and Chapter 6)
modifications and custom compute architectures (Chapter 4 and Chapter 6) can
significantly improve the performance of implementations of KAFs. In particular,
we show that large scale models of traditional KAFs are entirely memory bound
(Chapter 3), while small models, which can fit in device on-chip memory, are compute
bound. We show that the precision requirements associated with KAFs vary quite
significantly depending on whether a particular KAF calculates an optimal, least
squares model at each update or whether it tends towards the global minima using
a SGD. In particular, we show that SGD based models are much more amenable to
quantisation.

Extending this, we show that if we want to train many small scale models, such
as when performing hyperparameter optimisation, we can achieve very high perfor-
mance using custom architectures on FPGAs. Furthermore, for application require-
ment with extremely high data-rate requirements, in the order of 100s of MHz, that
these can be attained through delayed model adaptation and custom architectures
capable of fine-grained parallelism.

Finally, in order to extend these benefits to large scale models, we show that large
models can be decomposed into several smaller scale models and later combined to
form a more complex model. Unlike prior works, this is achievable without either:

• causing significant accuracy degradation; or

• requiring multiple iterations through the dataset.

Putting this together, we’ve shown:

• that many independent small scale KAF models can be accelerated;

• that large models can be created by combining several smaller independent
KAF models; and

• that high data rate applications can be addressed with a simple dependency
management technique.

As such, we’ve shown that for a range of application requirements, through the use
of custom compute architectures and algorithmic modifications, that KAFs can be
applied to broad range of vastly different applications.

Our hope is that hardware engineers or machine learning engineers are able to
realise these possibilities and that this opens up KAFs to a much broader array of
applications that weren’t previously considered, like those discussed in Section 2.2.4.
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7.1 Future Work

In this work, we targeted a broad set of applications with varying requirements. As
such, the evidence that we gathered for any particular application domain is limited.
Clearly, future work is to show that the results demonstrated in this work generalise
to more KAF algorithms. For example, QKLMS is a promising SGD based KAF which
behaves a little differently to KNLMS. Exploring whether delayed model adaptation
works on QKLMS and other SGD based KAFs would be very valuable work, as
it would demonstrate these techniques are more broadly applicable than what is
demonstrated in this thesis.

Furthermore, implementing pipelined, parallel, independent versions of RLS
based KAFs using deeply pipelined architectures, such as those suggested in Chap-
ter 4 would be very valuable work. As the storage requirements, and the computa-
tional patterns of RLS based KAFs are significantly different to SGD based KAFs, this
may be non-trivial and would also provide valuable insights.

Similarly, it would be interesting to see if the dependency issues which are over-
come for SGD based KAFs can be applied to RLS based KAFs. Again, the different
computational patterns would make this task non-trivial.

Given that many machine learning algorithms use SGD as their core optimisation
method, such as logistic regression and deep neural networks, it would be interesting
to see if the techniques described in Chapters 4 and 5 would also apply to those fami-
lies of algorithms. The application of SGD in such algorithms means that similar data
dependencies would appear to ones described in these chapters, as many algorithms
based on SGD have similar compute patterns to KAFs like KNLMS.

Finally, a system which utilises the arbitrary tree structure available in DistKRLS,
but each node executes multiple, smaller scale KRLS submodels, i.e., using the tech-
niques of Chapter 4 before combining models locally on the device and then globally,
would require significant technical competence spanning multiple application do-
mains and be a significant contribution.
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Appendix A

Scaling Binarised Neural Networks
on Reconfigurable Logic

A.1 Introduction

Convolutional neural networks (CNNs) provide impressive classification accuracy in
a number of application domains, but at the expense of large compute and memory
requirements (LeCun et al., 1998). A significant body of research is investigating com-
pression techniques combining numerous approaches such as: weight and synapse
pruning; data compression techniques such as quantisation, weight sharing and
Huffman coding; and reduced precision with fixed point arithmetic (Han, Mao, and
Dally, 2015; Iandola et al., 2016; Iandola et al., 2015). Recently, an extreme form
of reduced precision networks, known as BNNs (Courbariaux and Bengio, 2016),
have gained significant interest as they can be implemented for inference at a much
reduced hardware cost. This is due to the fact that multipliers and accumulators
become XNORs and popcounts respectively, and both are significantly lighter in
regards to resource and power footprint. For example, a KU115 offers 483 billion
floating point operations per second (GFLOPS) compared to 46 trillion operations
per second (TOPS) for binary synaptic operations. This is visualised in the roofline
models in Figure A.5 which illustrates theoretical peak performance for numerous
reduced precision compute operations.1 Furthermore, the model size is greatly re-
duced and typically small enough to fit in on-chip memory (OCM), again reducing
power, simplifying the implementation and providing much greater bandwidth.

FINN (Umuroglu et al., 2017) describes a framework for mapping BNNs to recon-
figurable logic. However, it focuses on BNNs for embedded applications and as such,
the results reported are for smaller network sizes running on an embedded platform.
In this work, we briefly summarise FINN and analyse it from the perspective of
scaling to larger networks and devices, such as those targeted for data centers. Firstly,
we focus on several technical issues that arise when scaling networks on FINN includ-
ing: BRAM usage, throughput limitations and resource overheads. We also identify
several properties of CNN layers which make them map to FINN more efficiently. Our
results, measured on an ADM-PCIE-8K5 platform (ADM-PCIE-8K5 Datasheet 2016),
show that indeed very high image classification rates, minimal latency with very
high power efficiency can be achieved by mapping BNNs to FPGAs, even though
improvements may be made. Secondly, we highlight an issue of padding, a common
feature of large CNNs, which may cause significant hardware overheads. We propose
an alternative form of padding, which maps more efficiently to reconfigurable logic.
Specifically, the contributions of this work are: 1) measured performance results

1Assuming 70% device utilisation, 250 MHz clock frequency and 178 LUTs and 2 DSPs per average
floating point operation, and 2.5 LUTs per binary XNOR-popcount operation.
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for large-scale networks on an ADM-PCIE-8K5 board; 2) an analysis of FINN for
large-scale problems, highlighting some bottlenecks as well as proposing solutions;
and 3) a form of padding, which achieves high accuracy while also maintaining a
binary datapath.

A.2 Background

A great deal of prior work on mapping neural networks to hardware exist for FPGAs,
GPUs and ASICs to help increase inference rate or improve energy efficiency. We
refer the reader to the work by Misra and Saha (2010) for a comprehensive survey of
prior works. In general we distinguish four basic architectures:

1. a single processing engine, usually in the form of a systolic array, which processes
each layer sequentially (Ovtcharov et al., 2015; Zhang et al., 2015; Chen, Emer,
and Sze, 2016; Andri et al., 2016);

2. a streaming architecture (Venieris and Bouganis, 2016; Alemdar et al., 2017),
consisting of one processing engine per network layer;

3. a vector processor (Farabet et al., 2009) with instructions specific to accelerating
the primitives operations of convolutions; and

4. a neurosynaptic processor (Esser et al., 2016), which implements many digital
neurons and their interconnecting weights.

Significant research investigates binarisation of neural networks whereby either in-
put activations, synapse weights or output activations or a combination thereof are
binarised. If all three components are binary, we refer to this as full binarisation (Kim
and Smaragdis, 2016). If not all three components are binary, we refer to this as
partial binarisation. The seminal XNOR-Net work by Rastegari et al. (2016) applies
convolutional BNNs on the ImageNet dataset with topologies inspired by AlexNet,
ResNet and GoogLeNet, reporting top-1 accuracies of up to 51.2% for full binarisa-
tion and 65.5% for partial binarisation. DoReFa-Net by Zhou et al. (2016) explores
reduced precision with partial and full binarisation on the SVHN and ImageNet
datasets, including best-case ImageNet top-1 accuracies of 43% for full and 53% for
partial binarisation. Finally, the work by Courbariaux and Bengio (2016) describes
how to train fully-connected and convolutional networks with full binarisation and
batch normalisation layers, reporting competitive accuracy on the MNIST, SVHN
and CIFAR-10 datasets. All BNNs used in this work are trained by a methodology
based on the one described by Courbariaux and Bengio (2016), and unset bits rep-
resent a numerical -1 value while set bits represent a +1. The downside to the high
performance characteristics of BNNs is a small drop in accuracy, in comparison to
floating point networks. Improving the accuracy for reduced precision CNNs is an
active research area in the machine learning community and first evidence shows
that accuracy can be improved by increasing network sizes (Sung, Shin, and Hwang,
2015).

A.3 BNNs on Reconfigurable Logic

This work builds on top of FINN (Umuroglu et al., 2017), a framework for build-
ing scalable and fast BNN inference accelerators on FPGAs. FINN is motivated
by observations on how FPGAs can achieve performance in the TOPS range using
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FIGURE A.1: FINN workflow and architecture, reproduced from
Umuroglu et al. (2017).

XNOR–popcount–threshold datapaths to implement the BNNs described by Cour-
bariaux and Bengio (2016). Given a trained BNN and target frame rates, FINN follows
the workflow in Figure A.1a to compose a BNN accelerator from hardware build-
ing blocks. In more detail, a given network topology and model retrieved through
Theano (Theano Development Team, 2016), together with design targets in form of
resource availability and classifcation rate, is processed by the synthesiser which
determines the scaling settings and produces a synthesisable C++ description of
a heterogeneous streaming architecture.2 The top-level architecture is exemplified
in Figure A.1b and has two key differentiators compared to prior work on FPGA
CNN accelerators. First, all BNN parameters are kept in OCM, which greatly in-
creases arithmetic intensity, reduces power and simplifies the design. Furthermore,
one streaming compute engine is instantiated per layer, with resources tailored to
fit each layer’s compute requirements and the user-defined frame rate. Compute
engines communicate via on-chip data streams and each produces and consumes
data in the same order with the aim of minimising buffer requirements in between
layers. Thereby each engine starts to compute as soon as the previous engine starts
to produce output. In essence, we build a custom architecture for a given topology
rather than scheduling operations on top of a fixed architecture, as would be the
case for typical systolic array based architectures, and avoid the “one-size-fits-all”
inefficiencies and reap more of the benefits of reconfigurable computing.

2To achieve portability, we chose a commercial high level synthesis tool, Vivado HLS (Xilinx, 2016),
for the implementation. The tool enables faster development cycles via high-level abstractions, and
provides automated pipelining to meet the clock frequency target.
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A.3.1 The Matrix–Vector–Threshold Unit

In more detail, the key processing engine in FINN is the Matrix–Vector–Threshold
Unit (MVTU) as illustrated in Figure A.1c, which computes binarised matrix-vector
products and compares against a threshold to generate a binarised activation. Convo-
lutions are lowered (Chellapilla, Puri, and Simard, 2006) to matrix–matrix multipli-
cations, using a Sliding Window Unit (SWU) (described further in Appendix A.4.2)
to generate the image matrix and the MVTU to carry out the actual arithmetic. The
SWU generates the same vectors as those described by Chellapilla, Puri, and Simard
(2006), but with the elements of the vector interleaved to reduce and simplify memory
accesses and to avoid the need for data transposition between layers. Internally,
the MVTU consists of an input and output buffer, and an array of P PEs, shown in
Figure A.1d, each with a number of SIMD lanes, S. The synapse weight matrix to be
used is kept in OCM distributed between PEs, and the input images stream through
the MVTU as each one is multiplied with the matrix. Each PE receives exactly the
same control signals and input vector data, but multiply-accumulates the input with
a different part of the matrix. A PE can be thought of as a hardware neuron capable of
processing S synapses per clock cycle. Finally, the MVTU architectural template can
also support partial binarisation for non-binarised outputs and inputs. Removing the
thresholding stage provides non-binarised outputs, while using regular multiply-add
instead of XNOR-popcount can handle non-binarised inputs. These features are used
in the first and last layers of networks that process non-binary input images or do not
output a one-hot classification vector.

A.3.2 Folding

Depending on the use case, a neural network inference accelerator may have different
throughput requirements in terms of the images classified per second (FPS). In FINN,
FPS is controlled by the per-layer parameters P (number of PEs in an MVTU) and
S (number of SIMD lanes in each PE). If the number of synapses, Y , connected to
a neuron is greater than S, then the computation is folded across the PE, with the
resulting PE producing an activation every F s = Y/S clock cycles. Similarly, if the
number of neurons,X , in a layer exceeds P , then each PE is responsible for calculating
activations for Fn = X/P neurons. In total, it would take the MVTU F s · Fn clock
cycles to compute all its neuron activations. The MVTUs are then rate balanced
by adjusting their P and S values to match the number of clock cycles it takes to
calculate all required activations for each layer. As this is a balanced streaming system,
the classification throughput FPS will be approximately Fclk/II , where Fclk is the
clock frequency, and the II (Initiation Interval) is equal to the total folding factor
F tot = F s · Fn cycles for a fully-connected layer. Note that convolutional layers have
an extra folding factor, Fm, which is the number of matrix–vector products which
need to be computed, i.e., the number of pixels in a single output feature map (OFM).
Therefore, for convolutional layers the total folding factor is: F tot = F s · Fn · Fm.

A.3.3 BNN-specific Operator Optimisations

The methodology described by Courbariaux and Bengio (2016) forms the basis for
training all BNNs in this work. Firstly, in regards to arithmetic, we are using 1-bit val-
ues for all input activations, weights and output activations (full binarisation), where
an unset bit represents -1 and a set bit represents +1. Binary dot products result in
XNORs with popcounts (which count the number of set bits instead of accumulation
with signed arithmetic). Secondly, all BNN layers use batch normalisation (Ioffe and
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FIGURE A.2: Convolution without (top) and with (bottom) padding.

Szegedy, 2015) on convolutional or fully connected layer outputs, then apply the sign
function to determine the output activation. In the work by Umuroglu et al. (2017), it
is shown how the same output can be computed via thresholding, which combines
the bias term, batch normalisation and activation into a single function. Finally,
the networks described by Courbariaux and Bengio (2016) perform pooling prior to
activations, i.e. pooling is performed on non-binarised numbers, which are then batch
normalised and fed into the activation function. However, as shown by Umuroglu
et al. (2017), pooling can be equally performed after activation, once binarised, in
which case it can be effectively implemented with the Boolean OR-operator.

A.4 Padding for BNN Convolutions

This section describes the improvements made to FINN in this work.

A.4.1 Padding using nonzero values

Zero-padding is commonly applied for convolutional layers in deep neural networks,
in order to prevent the pixel information on the image borders from being ”washed
away” too quickly (CS231n: Convolutional Neural Networks for Visual Recognition).
Figure A.2 illustrates the sliding window outputs on the same image with and
without padding. Observe that the pixels on the border (such as A and F) occur more
frequently in the sliding window outputs when padding is used, thus preventing
them from being ”washed away” too quickly in the next layer.

A challenge arises for zero-padding in the context of BNNs with only {−1,+1}
arithmetic: there is no zero value defined. In fact, the original BinaryNet (Courbariaux
and Bengio, 2016) paper uses ternary values {−1, 0,+1} for the forward pass, with
zeros used for padding. However, ternary values require two bits of storage, essen-
tially doubling the OCM required to store values and the bitwidth of the datapath.
Since FINN focuses on BNNs that fit entirely into on-chip memory of a single FPGA,
minimising the resource footprint is essential. Thus, a padding solution that avoids
ternary values is preferable. A straightforward solution would be to use e.g. -1 as
the padding value, and expect that the BNN learns weights which compensate for
these values. Surprisingly, -1-padding works just as well as 0-padding according to
our results, which are presented in Appendix A.5.4.

A.4.2 Streaming padding for FINN

FINN lowers (Chellapilla, Puri, and Simard, 2006) convolutions to matrix-matrix
multiplication of the filter weight matrix with the image matrix. The image matrix
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FIGURE A.3: FINN SWU enhanced with streaming padding.

is generated on-the-fly by the SWU. Figure A.3 illustrates how the FINN SWU is
enhanced to support streaming padding for convolution layers. The key operational
principle is the same as in FINN. Namely, a single, wide input feature map (IFM)
memory is used to store the feature maps into OCM in the order they arrive, and
the addresses that correspond to the sliding window pixels are read out. Padding
is achieved by a multiplexer that chooses the data source for writing into the IFM
memory. If the current write address falls into the padding region, the padding value
(e.g. -1) is written into the memory; otherwise, an element from the output stream of
the previous layer is written instead.

A.5 Evaluation

A.5.1 Experimental Setup

BNN Topologies

The network topologies used for our experiments are all based on the CNN topology
described in BinaryNet (Courbariaux and Bengio, 2016), which we denote as cnn. This
topology is inspired by the VGG16 network (Simonyan and Zisserman, 2014), which
consists of three groups of (3x3 convolution – 3x3 convolution – 2x2 maxpooling)
layers, and two fully-connected layers at the end. To explore how FINN performs on
a range of network sizes, we introduce a scaling factor, σ, to scale the width of each
layer, and denote the resulting topology as cnn(σ). Note that σ does not influence
the number of layers in a network, it merely affects: 1) the number of neurons in
each fully connected layer; and 2) the number of filters in each convolutional layer.
Specifically, cnn(0.5) has half as many filters in each convolutional layer and half
as many neurons in each fully connected layer, compared to the CNN described
in BinaryNet (Courbariaux and Bengio, 2016). In terms of convolutional networks,
FINN (Umuroglu et al., 2017) only evaluated a single non-padded BNN topology
(cnnNoPad(1/2)). In this work, we consider cnn(1/2) as well as smaller (cnn(1/4)) and
bigger (cnn(1)) padded convolutional topologies to investigate how FINN scales.

In order to simulate a realistic use case, we consider an application with a fixed FPS
requirement, i.e., real-time object recognition of a video stream. If one considers an 800
× 600 video stream at 25 FPS, which partitioned into tiles of 32 × 32 for classification.
In order to classify the tiles in real-time, a classification rate of approximately 12 kFPS
would be required. We use this image rate as our target for all experiments and adjust
the number of PEs and SIMD accordingly in each layer of each design.
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TABLE A.1: The expected cost per operation for each precision type.

Datatype LUTs LUTs LUTs DSPs DSPs DSPs Cavg Crel
min max avg min max avg ×10−6

Binary 2.16 4.25 2.90 0 0 0 6.25 1
Int2 5.57 9.95 7.03 0 0 0 15.14 2.42
Int4 13.81 18.89 15.60 0 0 0 33.60 5.38
Int8 42.29 44.78 48.83 0 0 0 105.2 16.84
Int16 10.99 20.38 15.03 0.5 0.5 0.5 90.58 14.50
Float32 178 - - 2 - - 383.3 61.38

KU115 - 663,360 - - 5,520 - - -

The Platform

The target board is an Alpha Data ADM-PCIE-8K5 which features a Xilinx Kintex
UltraScale XCKU115-2-FLVA1517E FPGA (KU115). The KU115 offers 663k LUTs, 2160
BRAMs (36k) and 5520 DSPs and is running at 125 MHz for our experiments. The host
machine is a IBM Power8 8247-21L with 80 cores at 3.69 GHz and 64 GB of RAM and
it is running Ubuntu 15.04. In all experiments, all parameters are stored in OCM while
the test images and the predicted labels are read from and written to the host memory
directly. The provided resource counts include the PCI Express infrastructure used
for moving data streams as well as the BNN accelerator. Although we are not able to
provide per-experiment power measurements, the maximum power consumption
observed for this board was 41 W on a board power dissipation benchmark test,
and we expect that the real power dissipation values for BNN accelerators will be
significantly lower than this.

A.5.2 Cost of Operational Primitives

In this section, the cost of the fundamental mathematical operations which underpin
CNNs are compared. Table A.1 shows the estimated cost per operation for each
precision type. Note that for binary networks a operations refer to XNORs & pop-
counts. For binary operations, the resource cost was estimated by generating multiple
versions of the MVTU, as described in Appendix A.3.1. In order to estimate the
hardware cost for integer types, a modified version of the MVTU, was created with
XNOR replaced with × and popcount replaced with adder trees. Note that each layer
within each adder tree grows in bitwidth to avoid overflow. For both binary and
integer types, a number of different MVTUs were created while scaling the input and
output vector sizes and the folding factors, Fn and F s. The numbers in Table A.1
refer to the average area cost/operation across the all of the experiments. In general,
MVTUs created with higher F s incurred a larger hardware overhead. For floating
point, the area cost of the individual multiply and addition units were used without
constructing MVTUs. The average cost per operation, Cavg is calculated as follows:

Cavg = max(
LUTs/MAC

LUTusage ∗ LUTsTOTAL
,

DSPs/MAC

DSPusage ∗DSPsTOTAL
) , (A.1)

where LUTsTOTAL/DSPsTOTAL are the total available LUTs/DSPs on the target
device and LUTusage/DSPusage are estimates of the proportion of LUTs/DSPs that
can be used for arithmetic on the target device. We’ve estimated LUTusage = 0.7 and
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TABLE A.2: The accuracy of different sized CNNs on the CIFAR-10
dataset while varying the precision.

Binary Int2 Int4 Int8 Int16 Float
Scale Factor Err. (%) Err. (%) Err. (%) Err. (%) Err. (%) Err. (%) # Params Ops/frame

0.25 20.94 16.05 14.81 14.29 14.15 15.44 879,914 78,494,720
0.5 14.84 12.39 11.56 11.52 11.62 12.14 3,510,858 310,343,680
1.0 11.67 10.41 9.67 9.69 9.65 10.76 14,025,866 1,234,104,320

DSPusage = 1.0 in this work. Cavg then becomes the fraction of the target device
resources that are used on average by operation for each type. Relative cost, Crel, is
used to compare the arithmetic cost of binarised networks against other precision
types directly. For example, if a binarised and an Int4 network have been trained to
achieve the same level of accuracy, the Int4 network must have 5.38 less operations to
have the same accuracy / computation trade-off as the binarised one.3 Interestingly,
modelling computational cost this way means that Int16 has a lower hardware cost
than Int8, because it uses less LUTs/Op than Int8 and the proportion of DSPs that it
uses per Op with respect to the total on the target device, a Xilinx Kintex UltraScale
KU115, is less than the proportion of LUTs/Op used by Int8.

A.5.3 Network Size and Accuracy

In this section, we look at the relationship between accuracy, network size and overall
hardware cost of a number of different networks and precisions. Specifically, we look
at the network topology used by Courbariaux and Bengio (2016) for the CIFAR-10
dataset. We use the same basic network topology, but introduce a scaling factor,
which scales the number of OFMs in each convolution layer and the number of
neurons in each fully connected layer. The error rates of each network, for each
precision type are shown in Table A.2. Note that the accuracy results for the binarised
networks utilise padding with a value of -1, rather than 0 and as such, differ from the
results reported by Courbariaux and Bengio (2016). For the integer networks, a fixed
point representation with a fractional length of bitwidth − 2 was used throughout.
For activations, the binarised and integer networks utilised the hard tanh function,
tanhHARD(x) = clip(x,−1, 1), while the floating point networks used the rectified
linear function, relu(x) = max(0, x), for their activation functions.

Given the data is Tables A.1 and A.2 the error rates of each networks can now be
be plotted against the computational cost per image for each precision type. This is
achieved by multiplying the Operations / frame of each network configuration by
the Cavg associated with each precision type. The results are shown in Figure A.4.
Also in Figure A.4, is the overall memory size of each network for each precision
type. This plot also shows the size of the available BRAMs on the target device. If
a particular network configuration requires access to off-chip memory in order to
load model parameters, this will likely create a bottleneck and cause the resultant
hardware configuration to incur a significant throughput penalty. Both plots can
be analysed in two ways: 1) consider points of equal error rate, i.e., a horizontal
line through each plot, and find the network configuration and datatype associated
with the smallest computational cost or memory size and therefore, the configuration
that uses the least resources or can be implemented at the highest framerate on the
target device; or 2) consider points of equal computational cost of memory size, i.e., a
vertical line through each plot, then find the network type and configuration which

3This assumes that both networks have the same memory footprint for their parameters.
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FIGURE A.4: Accuracy versus hardware cost of CNNs with various
precision types.

TABLE A.3: Accuracy with different padding modes for CIFAR-10.

Padding Mode
no-padding 0-padding -1-padding

Sc
al

e σ = 1/4 75.6% 78.2% 79.1%
σ = 1/2 80.1% 85.2% 85.2%
σ = 1 84.2% 88.6% 88.3%

corresponds the lowest error rate, the resultant network is the best configuration that
can be implemented at given area and throughput constraints. By analysing each
plot using these methods, it is clear to see that floating point, Int16 and Int8 networks
incur significant resources costs, which are not compensated by a significant enough
increase in accuracy to make them worthwhile to implement on the target device.
Surprisingly, Binarised, Int2 and Int4 networks have almost equivalent error rate /
cost curves (in regions of overlapping error) that is difficult draw conclusions on the
best datatype to use for the target device, particularly for such a small sample size.
However, given the results that were attained, Int2 appears have slightly better error
rate / hardware trade-offs than the other datatypes. Note that the computational
cost in Figure A.4 is calculated from the scarcity of the resources available on a Xilinx
UltraScale KU115. Therefore, the computation cost is equal to the number of clocks
cycles required to infer a single image, given a network configuration and precision
type, if all of the available resources (70% LUTs, 100% DSPs) on the device were
allocated to arithmetic operations and assuming a 100% scheduling efficiency.

A.5.4 Effects of Padding

To investigate how different padding modes affect accuracy, we trained a set of
convolutional BNNs on the CIFAR-10 dataset with different scaling factors (σ). The
convolutions used are 3×3, so one pixel of padding is added on each border. The
results are summarised in Table A.3. As expected, using 0-padding improves accu-
racy by 4-5% compared to no-padding, indicating that the conventional wisdom on
padding increasing accuracy also applies to BNNs. Furthermore, we can see that the
accuracy of -1-padded networks are on par with the 0-padded ones of same scale.
This suggests that BNNs are able to learn to compensate for the -1 values used for
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TABLE A.4: Operations per image with different padding modes for
CIFAR-10.

Padding Mode
no-padding 0-padding -1-padding

Sc
al

e σ = 1/4 30.4 M 78.5 M 78.5 M
σ = 1/2 118.9 M 310.3 M 310.3 M
σ = 1 530.1 M 1234.1 M 1234.1 M
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FIGURE A.5: KU115 roofline with different datatypes.

padding by adjusting the weight values and thresholds, and the accuracy benefits
can be still obtained with a binary (as opposed to ternary) datapath.

It should also be noted that no-padding results in a significant reduction in
the amount of operations per frame and the number of parameters. Thus, it is
worthwhile to examine the computation versus accuracy tradeoffs in the context of
padding. Table A.4 lists the total number of XNOR-popcount operations necessary to
classify one image using different padding modes and scaling factors. We can observe
that the no-padding topology variant for the same scale factor requires 2− 3× less
computation. However, this comes at a cost of higher error rate, and a smaller-but-
padded network may be advantageous over a larger-but-not-padded network. For
instance, cnn(1/4) classifies at 79% accuracy using 78.5 M operations, whereas the
cnnNoPad(1/2) classifies at 80.1% accuracy using 118.9 M operations. Thus, cnn(1/4)
may be preferable due to its lower computational cost if a 1% drop in accuracy is
acceptable for the use case at hand.

A.5.5 Scaling to Larger Networks

A results summary is shown in Table A.5 which also shows the accuracy achieved by
the implemented networks on a number of benchmark datasets. The new padded
CNN results are provided in the top portion of Table A.5, while key results from
FINN (Umuroglu et al., 2017) are shown in the lower portion. Note that for com-
parison, scaled versions of the multilayer perceptrons (MLPs) consisting only of
fully-connected layers described in BinaryNet(Courbariaux and Bengio, 2016) are
also shown and denoted as mlp(σ).

We can see that larger networks scale well to larger FPGAs, with our best designs
achieving 14.8 TOPS and 671 µs image classification latency. Furthermore, even with
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TABLE A.5: Key performance and resource utilisation results achieved
by this work (top) and FINN (bottom) on a number of BNN topologies.

Network Device LUT BRAM kFPS GOps/s
Pa

dd
ed cnn(1/4) KU115 35818 144 12.0 938

cnn(1/2) KU115 93755 386 12.0 3,711
cnn(1) KU115 392947 1814 12.0 14,814

FI
N

N

cnnNoPad(1/2) Z7045 54538 192 21.9 2,466
mlp(1/16) Z7045 86110 130.5 12,361 8,265
mlp(1/8) Z7045 104807 516.5 6,238 11,613
mlp(1/4) Z7045 79097 398 1,561 9,086

the largest network tested, all model parameters fit within OCM of the KU115 and
thus avoids potential bottlenecks on external memory access. However, if we were
to attempt a larger network (such as cnn(2)) the design would no longer fit in OCM
without also reducing the frame rate. This is discussed further in Appendix A.5.5.

While the results described in Table A.5 represent state-of-the-art in terms of
image classification rates and energy efficiency, it is still work in progress. Our best
raw performance number (14.8 TOPS) outperforms that of the smaller FPGA device
used in FINN (Umuroglu et al., 2017) (11.6 TOPS), which is no surprise. However,
the MLPs shown in FINN (Umuroglu et al., 2017) do achieve performance figures
closer to the theoretical peak of the device. This is mostly due to the simplicity
of MLPs versus CNNs. Figure A.5 shows the estimated peak performance of the
KU115 with vertical lines indicating the arithmetic intensity of the 3 CNN networks
and coloured markers indicating actual performance of FINN. We can see that our
implementations still fall below the KU115’s theoretical peak. We expect that with
planned improvements, including those in Appendix A.5.5, significant performance
gains can still be achieved. However it should be noted, that the largest design cnn(1)
shown in Table A.5 requires 1.2 GOps per frame, which is similar in computational
requirements to the popular AlexNet (Krizhevsky, Sutskever, and Hinton, 2012)
which requires 1.45 GOps per frame. In comparison the GPUs, the NVidia Titan X
can achieve 3.2 kFPS at 227 W for AlexNet inference, compared to 12 kFPS at less
than 41 W on the KU115 FPGA.4 It should be noted that these figures are in terms of
32-bit floating point operations, as opposed to the binarised ones discussed in this
work. However, high accuracy has been achieved by fully binarised (Hubara et al.,
2016) and partially binarised (Zhou et al., 2016) versions of AlexNet and we expect to
be able to achieve high performance on such networks.

BRAM Efficiency

Since FINN currently focuses on BNNs that fit entirely onto the on-chip memory of
a single FPGA, making the most out of the available on-chip memory is essential.
Figure A.6 illustrates how much of the allocated BRAM space (as reported by Vivado)
is actually utilised by the accelerator. The two largest contributors to BRAM usage in
FINN are the network parameters (BNN weights and thresholds), and stream buffers
(such as FIFOs and input-output buffers), which are shown with different colors in
the bar chart. As can be expected, the majority of the utilised storage is for weights,

4https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_
whitepaper.pdf

https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
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although the streaming buffers occupy roughly equal storage for cnn(1/4) since there
are not as many parameters.

A bigger concern is that on average only ∼22% of the storage space in the allocated
BRAMs is actually used. For scaling to even larger networks, this under–utilisation
could constitute a problem as synthesis will fail trying to allocate more BRAMs
than is available in the FPGA. Further analysis into this issue revealed that this is
a consequence of how convolutions are currently handled in FINN. Recall that the
total folding factor is F tot = F s · Fn · Fm for a convolution layer. The Fm folding
factor here arises due to implementing matrix–matrix products as a sequence of
matrix–vector products Unlike F s and Fn, Fm is currently not controllable, since
only one matrix–vector product is computed at a time in each MVTU. When high
FPS is desired, the initiation interval must be minimised, which can only be achieved
by small values Fn and F s since Fm is constant. This requires creating many PEs and
SIMD lanes operating in parallel, each of which have their own weight and threshold
memories operating independently. However, this causes the weight matrix to be
split and distributed into many small pieces, thus causing the observed storage
under–utilisation.

One way of addressing this problem would be enabling control over the Fm

parameter by enhancing the MVTU to enable multiplying the same matrix by multiple
vectors in parallel. In this manner, fewer PEs and SIMD lanes could be instantiated,
each working on a larger portion of the weight matrix and utilising BRAM storage
better. Figure A.7 shows how the MVTU datapath could be enhanced to support
multiple vectors, broadcasting the same data from the weight memory to multiple
XNOR-popcount-accumulate datapaths. Note that only the datapath is duplicated;
the weight and threshold memories have a single copy. We leave further investigation
of the matrix–multiple vectors for future work.
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A.6 Conclusion

In this work, we explored the scaling of BNNs on large FPGAs using the FINN

framework. We highlight an issue with padding in convolutional layers in BNNs
described in BinaryNet (Courbariaux and Bengio, 2016) which would cause them
to require a 2-bit datapath. We show that a small modification to padding (padding
with -1 values) improves accuracy over no-padding and is comparable to 0-padding,
while still allowing networks to maintain a binary datapath. We found that high
performance for large networks can be attained, with our highest demonstrated
performance achieving 12 kFPS at less than 41 W of board power and 14.8 TOPS
of raw computational performance. When scaling to large networks, we also show
that the efficiency of BRAM usage in FINN is low, and propose an architectural
modification which would allow for better BRAM utilisation. Alternatively, if a
higher number of smaller BRAMs were available on FPGAs devices, this would allow
FINN to better exploit the available resources.

For future work, we will further enhance the FINN framework to support par-
tial binarisation, and different kinds of convolutional layers, such as inception lay-
ers (Szegedy et al., 2015) and fire-modules (Iandola et al., 2016). The architectural
improvements, described in Appendix A.5.5 will be implemented to further improve
the BRAM usage efficiency of architectures produced by FINN. Further networks
which have been trained on larger datasets, i.e., ImageNet, will also be implemented.
Finally, better power measurements will be attained rather than using “worst-case”
power dissipation values.
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Bottou, Léon (2008). Stochastic gradient SVMs. URL: http://leon.bottou.org/
projects/sgd.

Boughorbel, Sabri, J-P Tarel, and Nozha Boujemaa (2005). “Conditionally positive
definite kernels for SVM based image recognition”. In: 2005 IEEE International
Conference on Multimedia and Expo. IEEE, pp. 113–116.

Boyd, Stephen et al. (2011). “Distributed optimization and statistical learning via the
alternating direction method of multipliers”. In: Foundations and Trends in Machine
Learning 3.1, pp. 1–122.

Cadambi, Srihari et al. (2009). “A massively parallel FPGA-based coprocessor for
support vector machines”. In: Field Programmable Custom Computing Machines,
2009. FCCM’09. 17th IEEE Symposium on. IEEE, pp. 115–122.

Caruana, Godwin, Maozhen Li, and Yang Liu (2013). “An ontology enhanced parallel
SVM for scalable spam filter training”. In: Neurocomputing 108, pp. 45–57. ISSN:
09252312. DOI: 10.1016/j.neucom.2012.12.001.

http://www.zedboard.org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
http://www.zedboard.org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
http://www.zedboard.org/sites/default/files/documentations/Ultra96-HW-User-Guide-rev-1-0-V0_9_preliminary.pdf
https://people.eecs.berkeley.edu/~bartlett/courses/281b-sp08/
https://people.eecs.berkeley.edu/~bartlett/courses/281b-sp08/
http://leon.bottou.org/projects/sgd
http://leon.bottou.org/projects/sgd
http://dx.doi.org/10.1016/j.neucom.2012.12.001


BIBLIOGRAPHY 145

Caruana, Godwin, Maozhen Li, and Man Qi (2011). “A MapReduce based parallel
SVM for large scale spam filtering”. In: 2011 Eighth International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD) 4, pp. 2659–2662. DOI: 10.1109/
FSKD.2011.6020074.

Castaldo, A.M. (2007). Error analysis of various forms of floating point dot products.
ProQuest.
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