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Abstract

In recent years, there has been an exponential rise in the quantity of data being

acquired and generated. Machine learning provides a way to use and analyze this

data to provide a range of insights and services. In this thesis, two popular machine

learning algorithms are explored in detail and implemented in hardware to achieve high

throughput and low latency.

The first algorithm discussed is the Näıve Online regularised Risk Minimization

Algorithm. This is a Kernel Adaptive Filter capable of high throughput online learning.

In this work, a hardware architecture known as braiding is proposed and implemented

on a Field-Programmable Gate Array. The application of this braiding technique to the

Näıve Online regularised Risk Minimization Algorithm results in a very high throughput

and low latency design.

Neural networks have seen explosive growth in research in the recent decade. A

portion of this research has been dedicated to lowering the computational cost of neural

networks by using lower precision representations. The second method explored and

implemented in this work is the unrolling of ternary neural networks. Ternary neural

networks can have the same structure as any floating point neural network with the

key difference being the weights of the network are restricted to -1,0 and 1. Under

certain assumptions, this work demonstrates that these networks can be implemented

very efficiently for inference by exploiting sparsity and common subexpressions. To

demonstrate the effectiveness of this technique, it is applied to two different systems

and two different datasets. The first is on the common benchmarking dataset CIFAR10

and the Amazon Web Services F1 platform, and the second is for real-time automatic

modulation classification of radio frequency signals using the radio frequency system on

chip ZCU111 development board. These implementations both demonstrate very high

throughput and low latency compared with other published literature while maintaining
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very high accuracy. Together this work provides techniques for real-time inference and

training on parallel hardware which can be used to implement a wide range of new

applications.
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Chapter 1

Introduction

Machine learning is a broad area with a large variety of applications. It typically requires

large amounts of computational resources to be used. This thesis explores methods to

improve the performance of machine learning through the use of Field-Programmable

Gate Arrays (FPGAs).

The goal of machine learning is to solve tasks that would be difficult to contain as

a list of rules within traditional programming techniques. A notable example would

be extracting information from images. Taking two identical photos of anything is

nearly impossible. There is always a slight variation in lighting or movement that

subtly changes the image beyond what a human eye can detect. If a set of rules and

transformations is manually created, there is almost always a case that is not considered

in enough depth that causes a failure of the system. Additionally, the development of

this system by hand would be very time consuming and frustrating for complex tasks

such as identifying the presence of a dog in an image.

The ability of machine learning to generate these set of rules and transformations has

led to its application in a wide number of fields. The problems for which machine

learning have been successfully applied are as diverse as translation [5], fraud detection

[11] and object tracking [87]. The world has changed significantly due to the ability to

solve these problems and enabled the implementation of services that were previously

infeasible.

Machine learning attempts to generate what could be thought of as a detailed and

generalized set of rules and transformations to perform a specified task called a model.

1
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In some cases, these rules are directly interpretable such as in decision trees where

there is a choice based on some feature. Alternatively, the transformations can be much

more abstract, represented as a matrix of values in a neural network. In order to create

this model with machine learning, a large number of examples are typically needed to

capture the variety of the input. For simpler tasks, such as differentiating between red

or green apples, fewer examples are needed as it is easier to find a model that capture

this information. More examples are required for complex tasks to subtly differentiate

between inputs.

The appearance of cats and dogs is diverse and can have similar features such that

even humans can mistake one for the other. Simple rules such as recognizing pointy or

floppy ears may capture a majority of cases but still fail on quite a number. Images of

cats and dogs that have other characteristics enable the development of more subtle

rules and edge cases for distinguishing between them, improving the performance.

The generation of the model in machine learning is also referred to as training. After

the model has been generated to a satisfactory level, they can be used for the desired

application. Using the model in this way is known as inference. One significant

limitation of machine learning is the computational cost required for both training and

inference. In addition to the purchase and replacement of expensive components, the

power cost to run the computational platforms and cooling can be quite substantial [27,

77].

Finding the right balance between the cost of creating the model and the accuracy

of the prediction is a trade-off to be considered. Different applications will require

varying degrees of accuracy or speed in both training and inference. In cases where

very high accuracy is required, larger models are used which need more computation.

Where speed is needed, smaller models can be used as well as other simplifications and

sacrifices to reduce the complexity of the model.

There are two aspects of the speed of computation that need to be considered. The

first aspect is throughput or how many examples can be processed in a given time. The
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other is latency or how long before the result for a particular set of inputs is available.

These terms are can be easily interpreted with an analogy of a post office. How many

letters the post office can deliver in a day is the throughput. The latency is the time to

deliver a single letter after is it posted. There is typically a trade-off between these two

measures of speed. Continuing with this analogy, there could be postman waiting for

each letter ready to rush it to its destination. The latency in this case would be very low.

However assuming the same number of postmen are employed, the number of letters

they could deliver in a day is much lower. This means a significant drop in throughput

for the improvement in latency. Alternatively, the post office could hold letters and

wait until everyone on the street has mail before sending someone out to deliver it.

This system would be able to cope with a very large volume of letters, meaning a high

throughput. However, in some cases, people would have to wait a long time for the

delivery if there is insufficient mail for their street. This would create unacceptable

latency. The latency and throughput requirements can vary greatly depending on the

application and are almost always related.

In machine learning, the performance requirements for training and inference can be

different: for example, in a massive system such as the Google search. Google search

has to deal with a high throughput of websites changing all the time during its training

phase. The latency in this phase is relatively unimportant in comparison. However,

during the inference phase when somebody wishes to query Google, how long it takes

to produce results is critical. Users do not wish to wait for the result so low latency is

essential. In this case, the number of active users is also significant requiring a high

throughput for the inference phase.

In other applications, training time is not critical compared with inference: for example,

the computation of a speech processing model deployed on a wide scale. In this case, it

is important for the model to be able to understand and respond to the speech in a

short enough time frame. The amount of time spent to train that model initially is not

as important. Optimizing the inference of the model will give the desired results.
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One interesting domain of problems where minimal training and inference time is

required is known as Online Learning. Online learning is where the model can be

updated in real-time, adapting to new unseen inputs. This is also useful in cases where

the behaviour of what you are trying to predict changes frequently and looking at the

past is only minimally useful. An example could be the stock market where the behavior

changes frequently. Online learning approaches typically have low cost training and

inference components where these steps can frequently be combined. This makes them

useful for very large datasets where other techniques are infeasible.

The number of applications to which machine learning is applied is expanding rapidly.

However, the types of problems can be broadly grouped into three categories. These

are:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

Supervised learning requires a labelled dataset which means, given some example,

the label is known. For example, an image of a cat is labelled ‘cat’. This simplifies

the training of the model as it can easily be corrected with the labelled data. The

disadvantage of this approach is that collecting labelled data can be expensive and time

consuming. For example, to be used to recognize hand written numbers, supervised

learning requires each image of the numbers and have a label. This is label might be

created by a human recording what number they think it is.

Where there is no label, the domain is known as unsupervised learning. This domain

offers broad generality but is very difficult to train effectively. For the hand-written

numbers example, unsupervised learning might try to group the numbers together.

However as numbers like 1 and 7 can appear similar, these are likely to be grouped

together. Reinforcement learning is a relatively new area. It trains by performing

actions with feedback from the environment. For example, it may attempt to draw a

number on a piece of paper with a robotic arm. Another system would be used to score
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how well it drew the desired number providing feedback. Each of these domains have

different applications. The domains can overlap as applications can have features of

many domains. Machine learning models can normally be used in any of these domains

with a different wrapper around how they are trained. The majority of this thesis

will explore supervised learning as the purpose is to experiment with acceleration of

machine learning methods rather than exploring the theory.

Training a model consumes a significant amount of resources [76]. There are a four

main computational resources that are used for the evaluation of models. These are:

• Central Processing Units (CPUs)

• Graphical Processing Units (GPUs)

• Field Programmable Gate Arrays (FPGAs)

• Application-Specific Intergrated Circuits (ASICs)

Each of these resources available have different advantages and disadvantages.

CPUs are the most versatile. They function by partitioning the problem into a series

of simple sequential tasks. These tasks are known as instructions which modify the

state of the CPU. For applications that must be executed in sequential order, CPUs

are typically the best choice. Most machine learning tasks however, have a reasonable

degree of independence between tasks also known as parallelism. Despite this, nearly all

real-world systems have some form of CPU to manage the resources and Input/Output

(I/O).

GPUs were originally designed to accelerate transformations needed to display images,

typically in gaming. These transformations can be expressed as linear algebra transfor-

mations, which while costly, do not have many dependencies inside the calculation. The

approach to the initial design of GPUs was an array of simple and slower CPUs that

could all be used at once. Currently, they are very widely used for machine learning

applications due to the large amount of parallel computation they offer.
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FPGAs are more unusual computational devices. They do not have the concept of

instructions in contrast to CPUs and GPUs and instead offer programmable hardware

that can represent the problem or task. Due to greater flexibility, it is typically more

time consuming to create an application. However, FPGAs do have a few advantages

from a computational perspective over CPUs and GPUs. They typically have lower

clock frequencies than GPUs and CPUs which leads to lower power consumption. They

also are not restricted to working within the fixed set of instructions of GPUs and

CPUs that creates overhead in some applications. Interfacing to sensors or external

devices with a FPGA typically has much lower latency than CPUs or GPUs.

ASICs offer the most flexibility and potential computation as they can implement any

desired hardware. In theory, they can implement any of the other systems discussed

and can surpass them by being more specialized for the application. In practice,

implementing any of the other systems is exceedingly expensive and time consuming.

This thesis will explore machine learning on FPGAs and the potential offered with

a hardware approach. The lower power consumption and ability to interface with

sensors means it is well suited for peripheral devices for applications such as edge AI.

Additionally, the reprogramability means it is more flexible to design changes than an

ASIC and requires less development time.

Each machine learning method has advantages and disadvantages to be considered.

Some of the most commonly used methods are:

• Kernel methods

• Neural networks

• Decision trees

• Probabilistic methods

• Genetic algorithms

Kernel methods are an approach to machine learning from a statistical perspective.

They refer to a suite of algorithms that create a predictive model by choosing a set of
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examples to represent the dataset. This is achieved using a mathematical tool called a

kernel to measure the similarity between examples. With this, they attempt to choose

a minimal set of examples that adequately represents the problem and use them to

determine the predicted value for the new example.

Research into neural networks has been ongoing for many decades. Neural networks

originated in trying to model the activity of neurons in the brain. They have evolved

over time to a diverse suite of models and have been successfully applied to many

different applications. In the past decade, the pace of research into neural networks has

increased dramatically as computation became faster and cheaper through the use of

GPUs.

Decision tree methods attempt to create a series of rules from the dataset. These rules

are generated from the given examples by finding boundaries which split the examples.

In addition to just using a single decision tree, there is a variety of ways to combine

them to dramatically improve the effectiveness. One of the most popular decision tree

methods is random forests [8]. Instead of using a single decision tree to create the

model, a ‘forest’ of trees is created. Each of the trees in this forest is trained on a

random portion of the dataset to give each tree a different perspective on the problem.

Combining these trees dramatically improves the accuracy of the model.

Probabilistic methods, such as Bayesian networks, try to create a model based on the

relationships between different variables or events. These can generate an effective

representation of a system to accurately predict outcomes.

Genetic algorithms use the concept of evolution to gradually improve a model. By

randomly changing something and determining if it improves the performance, the

model slowly converges on the solution. Typically many models are altered in parallel

and then combined to keep desirable traits.

These methods can also be combined taking aspects of two or more methods such

as Kontschieder et. al. [42]. This thesis will explore two main areas within machine
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learning which are kernel methods and neural networks. Decision trees, probabilistic

methods and genetic algorithms will not be explored in this work.

1.1 Contributions and Aims

This thesis explores different machine learning methods and examines or proposes

techniques for implementing them effectively in hardware. The work strives to improve

the throughput and lower the latency of two machine learning methods in particular.

These are the Näıve Online regularised Risk Minimization Algorithm (NORMA) and

convolutional neural networks with ternary weights or Ternary Neural Networks (TNNs).

For these two algorithms this thesis describes the following contributions:

• A novel technique for implementing NORMA on an FPGA called braiding

• The highest throughput and lowest latency implementation of a Kernel Adaptive

Filter on an FPGA

• An unrolling technique to apply to TNNs that enables the efficient exploitation

of sparsity for convolution operations

• The application of Common Subexpression Elimination (CSE) to this unrolling

technique to significantly reduce the hardware cost for implementation

• An open source pip3 package twn generator for easy Verilog generation of

these techniques

• A high accuracy implementation on a AWS-F1 instance for the CIFAR10

dataset, achieving high throughput and low latency

• Consideration of the activations precision to design high accuracy and compact

networks in hardware

• The application of this unrolling technique to radio modulation classification

on the RFSoC board
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1.2 Structure of the Thesis

An overview of relevant machine learning theory is provided in Chapter 2. This includes

the machine learning formations of kernel methods and deep neural networks.

Chapter 3 explores the applications of hardware acceleration techniques to kernel

methods. In particular this thesis proposes a hardware acceleration technique referred

to as braiding to implement the kernel adaptive filter (KAF) algorithm known as

NORMA on an FPGA with high throughput and low latency.

Chapter 4 explores hardware acceleration of neural networks. The main contribution of

this chapter is a methodology to implement convolutional neural networks on an FPGA

with ternary weights. It describes how to implement various hardware blocks on an

FPGA for unrolled ternary neural networks.

Chapter 5 investigates the effectiveness of the methodology discussed in Chapter 4

with two different case studies. The first case study is the common benchmarking

dataset, CIFAR10, which contains various images from each of 10 classes. An AWS F1

instance is used to accelerate the neural network to achieve high throughput and low

latency inference. The second case study explores the domain of Automatic Modulation

Classifcation (AMC) which involves classifying various radio frequency modulations.

This is implemented on the RFSoC board or the ZCU111 chip which has up to 4 GHz

sample rate Analog to Digital Converters (ADCs) and Digital to Analog Converters

(DACs).

Chapter 6 summarizes the contributions of this thesis and discusses possible areas for

future research.
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Background

In recent years, there has been an exponential rise in the quantity of data being acquired

and generated. Attempting to extract useful information from the complex relationships

present in such data has led to an increasing interest in machine learning. The motivation

for using machine learning is to provide generalization to unseen examples. This is

particularly useful in areas which capture complex information from the environment

such as images or audio where every example will be slightly different. There have

been many approaches over the years to try and achieve this generalized knowledge of a

problem. Two categories of machine learning algorithms that are explored in this thesis

are kernel methods and Deep Neural Networks. In this chapter, Section 2.1 explores the

theory behind the large variety of kernel methods. Deep Neural Networks are discussed

in Section 2.2.

In this thesis, it will be assumed that the dataset can be represented as a set of pairs,

{xi, yi}. xi is the input vector and yi is the output, target or label. In general, the goal

of machine learning is to create a model which can accurately predict y, given x. The

dataset is often partitioned into a training portion and a test portion. This is to obtain

an effective measurement of the performance of a model on the unseen data.

It is relatively easy to generate a model that perfectly predicts all the examples in the

training set. In most cases however, this model performs poorly on the unseen test data.

This phenomenon is known as overfitting, where the model has failed to grasp the big

picture and instead has focused on the tiny differences. Figure 2.1 demonstrates the

concept of overfitting. A curve is fitted to a collection of points to model the relationship

between two variables. This curve perfectly predicts every example given. This is not

10
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Figure 2.1: Demonstration of Overfitting

that informative however. In reality, a simpler curve provides a much clearer picture of

the relationship. Occam’s razor states Entities should not be multiplied without necessity.

In this context, the green curve that fits all the examples is far more complex than

the blue line in Figure 2.1. The green curve has been ‘multiplied without necessity’ to

create a prediction that is likely to not generalize very well. Trying to find the simplest

model that correctly classifies the training set is the main goal of machine learning

methods.
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2.1 Kernel Methods

Kernel methods are a popular class of machine learning algorithms which are capable

of modelling any continuous function with arbitrary accuracy [28]. The power of kernel

methods comes from the mapping of examples to a higher dimensional feature space,

F. This higher dimensional feature space allows the clearer separation or grouping of

examples. Each example is mapped using the function φ : Rm → F. In this feature

space two examples, xi and xj, can then be compared using the inner product. This is

defined as the kernel function, κ(xi, xj) = φ(xi)
Tφ(xj).

Some common kernel functions include:

• the linear kernel, κ(xi, xj) = xTi xj;

• the Gaussian kernel, κ(xi, xj) = e−γ‖xi−xj‖
2
2 ; and

• the polynomial kernel, κ(xi, xj) = (xTi xj + c)b.

where γ, b and c are parameters chosen to suit the given problem.

If the feature space is carefully chosen such as the ones above, the kernel can be

computed more efficiently in a lower dimensional space while maintaining the advantages

of a higher dimensional feature space. This is often referred to as the kernel trick

[74]. To demonstrate the benefit of the kernel trick, consider the polynomial kernel

κ(q, r) = (qT r)2 where q, r ∈ R3 or q and r are three dimensional vectors.

φ(x) = (x21,
√

2x1x2, x
2
2,
√

2x1x3,
√

2x2x3, x
2
3) (2.1)

φ(q)Tφ(r) = q21r
2
1 + 2q1r1q2r2 + q22r

2
2 + 2q1r1q3r3 + 2q2r2q3r3 + q23r

2
3 (2.2)

= (q1r1 + q2r2 + q3r3)
2 = (qT r)2 = κ(q, r) (2.3)

The feature space mapping for this kernel is given in Equation 2.1. Equation 2.2 expands

the inner product between q and r in feature space. This gives the same expression for

the expanded kernel in Equation 2.3.
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From these methods, there are two ways to compute the kernel function κ(q, r) =

φ(q)Tφ(r). The first method would be to take q and r separately and compute their

feature space representation using Equation 2.1. In this case, this would be 1 + 2 + 1 +

2 + 2 + 1 = 9 multiplications to compute each of φ(q) and φ(r) or 18 multiplications

total. After that, the next step would be to compute the dot product between these

two vectors in feature space resulting in another 6 multiplications and 5 additions.

Computing the result in feature space for this polynomial kernel would then need a

total of 24 multiplications and 5 additions.

If instead, the kernel trick is used to compute the result, Equation 2.3 shows taking

the dot product between q and r only needs 3 multiplications and 2 additions. This

result is then squared meaning another multiplication is needed, taking the total to 4

multiplications and 2 additions. This is significantly less than computing the result in

feature space. This saving in computation, while still computing in feature space, is

known as the kernel trick.

Different problems can be separated more effectively with different feature mappings

and hence have different kernel functions. This thesis assumes the use of the Gaussian

kernel due it being a universal approximator [28].

More intuitively, a kernel function can be thought of as measuring the similarity

between two examples. Considering the Gaussian kernel, the first component ‖xi − xj‖22
is measuring the distance between two vectors xi and xj. Figure 2.2 illustrates the

Gaussian kernel function of e−x
2
. If the distance between xi and xj is 0 (x2 = 0), the

similarity of these vectors is given a value of 1 as shown in the figure. As the distance

between these vectors grows, the similarity decreases until it eventually will reach 0.

Kernel methods create a decision function, yi = f(xi) using a kernel function and

learned parameters. The kernel function takes two input feature vectors of length m

and outputs a single real number. More formally the kernel function is defined as

κ : Rm × Rm → R. The learned parameters to generate the decision function include:

• a dictionary, D, a subset of input vectors; and
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Figure 2.2: A Gaussian Function

• a vector of weights, α, with a scalar for each entry in the dictionary.

Using the dictionary and weights, f(x), is defined as follows:

f(x) =
D∑
i=1

αiκ(x, di) , (2.4)

where D is the number of entries in the dictionary, αi is the ith element of α and di

is the ith entry of D. With the interpretation of the kernel function as a measure of

similarity, Equation 2.4 then shows the measurement of similarity between the new

example x and each example in the dictionary di. After these similarities are measured,

they are weighted with αi and added together. This weight ranks the importance of the

examples in addition to using the sign to indicate the class (1 or -1). Based on the value

of the result, the example can be classified. All kernel methods have a decision function
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similar to Equation 2.4. They vary significantly in how they select the dictionary and

the weights αi.

2.1.1 Support Vector Machines

Support Vector Machines (SVMs) were derived through the application of advanced

statistical techniques [74]. The main idea behind the derivation of SVMs is that,

given a dataset with two classes, where is the best boundary to minimize the risk of a

misclassification on unseen data. The SVM creates this boundary by selecting a subset

of the training examples. Within this subset, the examples are weighted with their

importance using the αi from Equation 2.4.

There are many variations of the SVM which explore various trade-offs. They all still

result in the evaluation function described in Equation 2.4 but vary in how they select

the dictionary and weights. In the original derivations of the SVM, it searched for a

boundary that would separate all examples from both classes known as a hard-margin

SVM. In the real world, some of the examples might be mislabeled or have noise that

causes them to appear within the cloud of examples from the other class. Rather than

try to complicate the boundary by adding more complexity, a soft-margin recognizes

noise in examples and allows for misclassifications. This is the most common variation

of the SVM.

Figure 2.3 is a visualization of the soft-margin for the SVM. In this figure, the SVM

boundary is trying to distinguish between red and blue examples. The dashed line

indicates the boundary between classes, the green lines indicate the margins. In the

figure there are examples on the wrong side of the margin meaning it is not possible to

have a linear boundary separating all red and all blue points. A non-linear boundary

could be created such as the black line but unseen examples such as the black cross

and circle would probably be misclassified. A soft-margin creates a simple boundary

that is more likely to generalize well to unseen examples.
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Figure 2.3: A Visualization of the soft-margin

Hinge loss is typically included with a soft-margin. The penalty term for a soft-margin

with hinge loss is:

max(0, 1− yif(xi)) (2.5)

Equation 2.5 can be intuitively explained as a hinge swinging between two cases. In

the first case, if the example is correctly classified the penalty is 0. If this case was

not considered, the soft-margin would set examples that are correctly classified and far

away from the margin to large negative values. In an optimization function, this would

mean misclassifications might be ignored in favour of moving the margin further away

from correctly classified examples. In the other case of hinge loss the soft-margin is

implemented. As the decision moves inside the margin and away from being completely
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correctly classified the penalty grows. As this term is minimized in the SVM algorithm,

it pushes the model towards a lower error rate.

Only optimizing the loss term in Equation 2.5, the boundary created would still be very

complex and computationally intensive. Additionally, it would likely overfit meaning

the ability of the model to generalize to unseen data would be limited. Considering this

in relation to the decision function in Equation 2.4, the boundary includes the weights

α which are non-zero for each support vector. If these weights are pushed towards zero,

fewer support vectors are included leading to a simpler boundary. This is the purpose

of the regularization term. For the SVM formulation the regularization term given in

Equation 2.6.
1

2
‖w‖2 (2.6)

Collectively minimizing the regularization term and loss function leads the SVM

formulation which is a compromise between a simple boundary while maintaining the

correct classifications.

2.1.2 Kernel Adaptive Filters

If the dataset accurately represents the unseen data, SVMs work well to generate a

boundary to use as a predictive model. In online and streaming applications, this is not

always the case. As such, the model deduced by a machine learning algorithm must

be updated as new data becomes available. Kernel Adaptive Filters (KAFs) [53] are a

class of online, non-linear learning algorithms with substantially reduced computational

requirements for an online setting. The reduction is achieved by finding a model update

step based on the previous model and a new data example. There are many variations

of KAFs but they all involve updating the dictionary, D, and the weights for those

examples, α.

Figure 2.4 shows a high level perspective of KAFs. A new example arrives for the

KAF which is passed to the decision function. This uses the dictionary and weights to

generate a prediction. The new example, a label and often some components of the
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Figure 2.4: High level view of Online Learning
New Example Decision Function New Prediction

LabelDictionary And Weights

decision function are used to determine how the dictionary and weights are updated.

After they are updated, the KAF is ready to accept a new example for prediction.

One method of updating the weights involves the adaptation of the Recursive Least

Squares algorithm to a kernel space, known as Kernel Recursive Least Squares (KRLS)

[17]. Another example is the Kernel Least Mean Squares (KLMS) algorithm [52]. Both

of these methods involve slowly adding more terms to the dictionary and updating

existing ones to converge on a good boundary. The most computationally difficult part

of these algorithms is a matrix inversion update each iteration. This computation is

O(n2) each step.

KAFs typically choose to add more examples as time goes on. In practice, this could

grow indefinitely leading to high memory and computation requirements. To avoid this

issue, the least significant examples are discarded from the dictionary after there are

more than D entries. The simplest way to implement this is with a sliding window

where the oldest examples are discarded if a new example is to be added.

2.1.2.1 Kernel Recursive Least Squares

The KRLS algorithm [17] functions in the same way as Figure 2.4. After receiving

a new example, each entry in the current dictionary is used to compute the kernel

function against it. This will be referred to as κt−1(xt). By multiplying this result with

the weights αt−1, the new prediction can be produced.

The new example, the label and κt−1(xt) are then passed to the update algorithm

for consideration. The next step in the KRLS algorithm is to determine if the new
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example should be added into the dictionary or not. KRLS leverages the approximate

linear dependence (ALD) condition to check if the label of the new example can be

approximated within ν2 error. If it cannot be approximated within this error bound,

the example must be added to the dictionary. Either way the weights are still updated.

The most computationally complex part of this algorithm is the recursive update of

the inverse kernel matrix needed for the ALD condition. This step has computational

complexity of O(D2) where D is the size of the dictionary.

The dictionary and corresponding weights are built up by the algorithm one example at

a time. These form the decision function that can be used online or offline. The KRLS

algorithm is not considered further in this thesis, so for further details and derivation

see Engel et. al. [17].

2.1.2.2 O(n) Stochastic SVM approximations

The computational complexity of SVM (O(n3)) [74] and KRLS (O(n2)) [17] are not

scalable for use in high frequency, real-time applications that also require online learning.

Some example applications include channel equalisation and machine prognostics [16,

34, 66].

There are numerous proposed O(n) stochastic SVM approximations. Some of the most

well known ones include NORMA [39], Online Learning with Kernels (OLK) [49] and

Primal Estimated sub-GrAdient SOlver for SVM (PEGASOS) [75]. All of these methods

implement the Dictionary and Weights section of figure 2.4 through a simple constant

multiple decay of the existing weights and conditionally adding a new dictionary entry

with some predetermined weighting.

As these algorithms are very similar, this thesis will just explore the very widely known

and original implementation of NORMA in more detail. The methodologies discussed

later could also be applied to these other similar algorithms with minor modification.
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2.1.2.3 Näıve Online regularised Risk Minimization Algorithm

NORMA is derived as a O(n) stochastic approximation of the SVM [39]. It is an

online algorithm which can be applied to classification, regression or novelty detection.

NORMA is based on the concept of minimizing the instantaneous risk of predictive

error by taking a step in that direction given by:

ft+1 = ft − ηt∂fRinst,λ[f, xt+1, yt+1]
∣∣∣
f=ft

(2.7)

where ft is the function, f , at time t, η is the step size, ∂ is the partial derivative

operator and Rinst,λ is the instantaneous risk function. Equation 2.7 is then expressed

in terms of a loss function, l(ft(xt), yt), to penalize misclassifications or predictions of

the function given by:

ft+1 = (1− ηλ)ft − ηtl′(ft(xt+1), yt)κ(xt+1, ·) . (2.8)

Depending on the application, a suitable loss function can be provided to achieve a

specific goal. For example:

l(f(x) + b, y) = max(0, ρ− y(f(x) + b))− νρ (2.9)

l(f(x)) = max(0, ρ− f(x))− νρ (2.10)

l(f(x), y) = max(0, |y − f(x)| − ε) + νε (2.11)

where η, λ, ν ∈ R are parameters, are used for classification (2.9), novelty detec-

tion (2.10), and regression (2.11). It would be trivial to extend this work to other loss

functions.

Reference [39] provides a complete derivation of Equations 2.7 and 2.8. In this thesis, the

factor decaying the weights of ft or (1− ηλ) in Equation 2.8 is defined as the forgetting

factor Ω. Differentiating the loss functions then substituting them into Equation 2.8
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leads to the following update expressions:

(αi, αt, b, ρ) =

(Ωαi, 0, b, ρ+ ην) if y(f(x) + b) ≥ ρ

(Ωαi, ηy, b+ ηy, ρ− η(1− ν)) otherwise
(2.12)

(αi, αt, ρ) =

(Ωαi, 0, ρ+ ην) if f(x) ≥ ρ

(Ωαi, η, ρ− η(1− ν)) otherwise
(2.13)

(αi, αt, ε) =

(Ωαi, 0, ε− ην) if |y − f(x)| ≤ ε

(Ωαi, δη, ε+ η(1− ν)) otherwise
(2.14)

where δ = sign(y−f(x)), Ω ≤ 1 and f(x) =
∑
αiκ(x, di). Equations 2.12, 2.13 and 2.14

are the update expressions for classification (NORMAc), novelty detection (NORMAn)

and regression (NORMAr) respectively. The expression determining the constant value

Ω with respect to other parameters varies for the application. For the classification

and novelty detection loss functions in this work Ω = 1 − η whereas Ω = 1 − λη for
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regression. In this thesis, Ω is used for simplicity to be consistent for all applications to

refer to the value that decays the weights.

Algorithm 1: Pseudocode for online training of NORMAc

α = D ∗ [0];

d = D ∗ [F ∗ [0]];

b = 0;

ρ = 0;

for x, y in Examples do

ypred =
∑
α[i]κ(x, d[i]);

α = Ωα;

if y ∗ (ypred + b) ≥ ρ then

Ignore x;

ρ = ρ+ ην;

else

Add x to the dictionary;

α[1 to D] = α[0 to D − 1];

d[1 to D] = d[0 to D − 1];

b = b+ ηy;

ρ = ρ− η(1− ν);

α[0] = ηy;

d[0] = x;

end

end

As discussed in Section 2.1.2, the dictionary would grow indefinitely meaning high mem-

ory and computation requirements. To manage this NORMA is used with truncation,

commonly known as a sliding window, in which D is updated according to

[d1, · · · dD]→ [xt, d1, · · · dD−1] (2.15)
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The examples retained by the function f(x) are called Support Vectors for machine

learning techniques such as SVMs but are more commonly referred to as the dictionary

in the KAF literature. The example i in the dictionary is referred to di in this work. The

corresponding weights are referred to as αi as defined in equations 2.12, 2.13 and 2.14.

One significant observation that is exploited in Chapter 3 is that after the computation

of f(x), the update of the weights is a scalar multiplied by a vector while rest of the

update expression consists of trivial scalar expressions easily implemented in hardware.

To clarify this observation the pseudocode for the NORMA algorithm is provided in

figure 1. In this code, D is the size of the dictionary D and F is the number of features

in each example.

In Chapter 3, a hardware architecture is proposed for the implementation of the

well-known algorithm NORMA [39], a KAF capable of regression, classification and

novelty detection. The architecture features a fully pipelined datapath, with parallel

execution and conditional forwarding to overcome all data hazards whilst incurring

minimal increase in the number of arithmetic operations. A technique called braiding,

is introduced in Chapter 3 in which: (1) all partial results are computed in parallel; (2)

when the information regarding which results should be included becomes available,

an appropriate select signal is generated; and (3) a multiplexer selects the appropriate

partial sum to add to the full sum.

2.2 Deep Neural Networks

Deep Neural Networks (DNNs) [46] are a class of machine learning algorithms that

are described as a connected graph of basic compute nodes called neurons. Each layer

l performs a mapping RM → RN , where xl is the input vector, al is the output or

activation vector and bli is the bias term. The computation for each neuron is the inner

product between the input and its weight vector, wl
i ∈ RN , followed by an activation

function f which is typically tanh, ReLU, sigmoid, etc. The operation performed to
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: Convolution layer : Pooling layer : Dense layer

Figure 2.5: Example CNN

compute the i’th output in layer l is computed as

ali = f(wl
ix

l + bli) (2.16)

DNNs are arranged such that the output from one layer is passed to the input of neurons

in a subsequent layer. These are named dense layers. By stacking multiple dense layers

together, complex nonlinear interactions can be modeled. These network topologies

are named multilayer perceptrons (MLP). If inference is performed with a single input

vector at a time, the computation for each layer can be described as a matrix-vector

multiplication. Consequently, the main bulk of the computation in an MLP requires

successively performing matrix-vector multiplications with the layers’ weights wl and

the previous layer’s activations al−1.

Convolutional Neural Networks (CNNs) provide a way of reducing the number of

parameters in the network while also exploiting the spatial property in images where

pixels located close together are more related. Figure 2.5 illustrates an example of the

structure of a CNN.
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Let x be a square input image with height and width W and a depth of D. For example,

an input image might have 32 × 32 pixels where each pixel has a Red, Green, Blue

(RGB) component hence having D = 3. The convolution operation partitions the image

into small overlapping sections of N ×N pixels where typically N � W . On each of

these sections, F different filters are applied and the results stacked together giving an

output image of depth F . This can be formalised as given an input image x ∈ RW×W×D,

the convolutional weights w ∈ RN×N×D×F apply a transformation to give an output

image y ∈ RW×W×F . The calculation of the convolution operation is given as

yi,j,f =
N∑
q=0

N∑
r=0

D∑
s=0

xa,b,swq,r,s,f (2.17)

where a = i+ q−bN/2c and b = j + r−bN/2c and assuming the image is padded with

zeros around the borders. Expanding the sums in Equation 2.17 the input x can be

transformed into a vector of length N ×N ×D for a chosen i and j denoted Xi,j . The

weights are independent of i and j and are rearranged as a matrix of constants with

N ×N ×D columns and F rows to produce the output vector yi,j of length F . This

can be written as

yi,j = Xi,jw (2.18)

which is a matrix-vector operation for each pixel of the image. An important property

of the convolution that is exploited in this thesis is that the result for the convolution

only depends on a small area around the coordinates i, j and that the weights, w, are

constant in regard to the chosen coordinates.

The art of how to arrange these layers and training them together is a rapidly developing

area of research.

2.2.1 Low Precision Networks

CNNs come in a variety of flavours and can be highly customized to suit each application

domain. While CNNs are typically trained with single/double floating-point precision,

inference can be done with reduced precision and/or pruning without a significant loss
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in accuracy, which opens up opportunities for building accelerators for deployment.

Ternarization of weights [2, 48] is a popular quantization choice, as it delivers a significant

reduction in the memory footprint of the CNN model, while also preserving the model

accuracy to a large degree. In Ternary Weights Networks (TWNs) [48], parameters are

quantized during training as follows:

W l
i =


+s, if W l

i > ∆

0, if |W l
i | ≤ ∆

−s, if W l
i < −∆

(2.19)

where W l
i are the parameters in each layer of the network, s is some scaling value and

∆ is a positive threshold parameter used for quantization.

Interest in low precision CNNs has dramatically increased in recent years due to research

which has shown that a similar accuracy to floating-point can be achieved [7, 15, 18,

57, 71, 92]. Due to the high computational requirements of CNNs, reduced precision

implementations offer opportunities to reduce hardware costs and training times. Since

FPGAs can implement arbitrary precision datapaths, they have some advantages over

the byte addressable GPUs and CPUs for these applications. Moreover, the highest

throughput implementations on all platforms utilise reduced precision for a more efficient

implementation. In ternary neural networks (TNNs), implemented similarly to Li et

al. [48], the value of the weights is restricted to be −s, 0 or s, where s is a scaling factor.

This transforms Equation 2.16 to

ai = f(slwl
ix

l + bli) (2.20)

where wlij ∈ {−1, 0, 1} are the elements of wi, b
l
i is the bias term and sl ∈ R.

Applying it to the convolution operation in Equation 2.18, it can be rewritten with

ternary weights t and scaling factor s as

yi,j = sXi,jt (2.21)
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The matrix of values for the ternary weights, t, are constant, restricted to −1, 0, 1 and

known after training. The input Xi,j is an unknown dense vector and s is a constant

scalar as defined above. Therefore a hardware block can be designed to take Xi,j as

input and output yi,j. With these assumptions, Chapter 4 will demonstrate that a

hardware block can be implemented with parallel adder trees to skip a large portion

of the computation. The consideration of the ternary convolutional operation in this

manner is a core contribution of this thesis and the benefits of this approach particularly

in regard to unstructured sparsity are demonstrated in Chapter 4. These methods are

applied in two case studies in Chapter 5.

2.3 Problem Domains

2.3.1 Datasets for Benchmarking KAFs

The datasets chosen to benchmark for classification and novelty detection were an

artificial dataset generated using sklearn.make classification [65] and the mlbench

dataset Satellite [47]. The regression datasets were an artificial dataset generated using

sklearn.make regression and the UCI Combined Cycle Power Plant dataset from [82].

These datasets were chosen as they are readily available for anyone to reproduce

the results. As this thesis is more focused on the hardware implementation rather

than measuring the performance on NORMA itself, these are sufficient to monitor

quantization effects.

2.3.2 CIFAR10

The CIFAR10 dataset contains 50000 training and 10000 test images from 10 different

categories. These categories are: airplane, automobile, bird, cat, deer, dog, frog, horse,

ship and truck. The square images are in RGB colour and are reasonably small, 32× 32

pixels. This dataset is widely used to benchmark image classification techniques.
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2.3.3 Automatic Modulation Classification

Automatic Modulation Classification (AMC) is a common requirement in Cognitive

Radio Networks (CRN) for both military and civilian applications. For example, AMC

plays a pivotal role in dynamic spectrum management in CRNs, where cognitive radios

are able to detect idle frequency bands and transmit data in these bands such that

the primary users of these channels are not affected [70]. AMC, however, can be a

challenging task for two reasons: (1) often, there is no a priori information known

about the transmission signal/channel (e.g. signal-to-noise ratio, carrier frequency, etc),

especially in military contexts, and (2) latency/throughput requirements to achieve

real-time processing often limit the complexity of the implementation and its runtime

effectiveness.

The classical approach to AMC is built on statistical/stochastic methods that require

high domain expertise and frequent manual tuning to achieve reliable performance

in each specific environment. Popular methods include maximum likelihood hypoth-

esis testing [63], and feature-based classification using high-order cumulants [1], or

cyclo-stationary features [70]. Notable recent efforts have been made into using deep

learning techniques to push this field further [62, 73, 93], but while these studies have

demonstrated an improvement to classification accuracy and reliability, the practicality

of realizing a real-time machine-learning based AMC implementation is left unexplored.

Section 5.2 adopts a more holistic approach, where expertise in both machine-learning

and hardware design is used in tandem to set a benchmark for real-time automatic

modulation classification.

2.4 Summary

This chapter introduced the theory for several machine learning techniques. Some

key concepts used for kernel methods were defined such as the kernel function, the

dictionary and the weights. It examined the formulation of NORMA, an online KAF,

in detail. Chapter 3 will propose a method to implement NORMA on an FPGA.
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Neural Networks were also described in this chapter. Through a redefinition of the

convolution, Equation 2.17 was transformed into a matrix vector operation in Equa-

tion 2.18. Section 2.2.1 explored low precision networks, in particular the use of ternary

weights. Chapter 4 and 5 will consider TNNs in more detail and propose techniques to

implement them on FPGAs.



Chapter 3

Online Kernel Methods in Hardware

This chapter will examine computation dependencies and propose a low latency hardware

implementation of an online kernel method. The work in this chapter was published in

FPT-15 as Braiding: A scheme for resolving hazards in kernel adaptive filters [80].

As introduced in Chapter 2, kernel methods create a decision boundary using the

function:

f(x) =
D∑
i=1

αiκ(x, di) , (3.1)

This is the main component of the computation for inference in kernel methods. In

algorithms such as SVM the training and inference portions are distinctly separate. The

SVM may train for several hours and, after this is completed, this trained model will be

used for inference without considering any new information. In online learning methods

such as KAFs, the inference and training computations are typically combined. As a

new example arrives, a KAF makes a prediction or inference based on previous examples.

This prediction can be used in the application. The KAF then considers this new

example and determines how to update itself so that it will improve its predictions for

future examples. When considering hardware acceleration, the application determines

many factors in the implementation.

There are a few different goals when considering hardware acceleration of machine

learning. In some cases, the purpose is designing a general accelerator for training.

These applications address the long training times that is typical in machine learning,

especially on large datasets. In others, the training time is relatively insignificant

when a simple model has to be deployed on a wide scale. In this case, the inference

30
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time matters a lot more to provide fast response times and provide high throughput

[36]. This chapter considers online kernel methods so latency and throughput for both

training and inference is critical.

Due to the nature of online kernel methods, the previous training iteration must be

completed before the inference can begin. Dependencies such as this can cause significant

difficulties in high performance applications. A task is said to be dependent on another

task if it must wait for it to be completed before another one can begin. If dependencies

are not managed properly, they can cripple the performance of highly parallel systems.

Of particular note is the presence of dependencies in algorithms. Dependencies can

require portions of the system to stall while waiting for a previous task to finish to

use that result. Careful scheduling of tasks attempts to minimize the amount of time

stalled to efficiently use all the computation available.

In single threaded systems, managing dependencies is not as much of an issue as there

is always useful work to be done. However, using only a single thread for an application

can seriously limit the speed at which it can be computed. Moving to a system with

multiple computational cores available offers the potential to significantly improve the

performance. Unfortunately this introduces a range of issues into the system in an

effort to keep all the available resources doing useful work. Resolving these algorithmic

dependencies to achieve high performance has a long history in computation. It is still

a very active research area in CPU design and good solutions can improve performance

significantly.

The NORMA algorithm, discussed in Chapter 2 has a strong dependency inside its

update step. As an online learning algorithm it considers each example as it arrives

before choosing to update the model. The model has to finish updating before the next

example can be computed.

For an FPGA implementation, this dependency is an issue for high performance

applications. In addition, the original algorithm has components that normally require
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floating point operations, such as the exponential. This chapter demonstrates a technique

to mitigate these issues.

When implementing an algorithm in hardware, the amount of resources used for each

component of an algorithm can easily be varied. Assuming the goal is only minimizing

latency, the entire algorithm could be implemented as complex combinational logic with

memory for state transitions. In the case of NORMA, the entire system of equations

could be computed in a single, very slow clock cycle. The time taken for each example

to pass through this long combinational logic path would be small but result in a very

low throughput. This is because each example has to wait for the entire hardware

path to be available before beginning the next one. Including pipelining stages into

this path may increase the latency slightly but can provide significant improvements

in throughput. The goal of this chapter is to achieve a low latency implementation of

NORMA with a reasonable throughput. This is achieved with careful pipelining of the

algorithm accounting for algorithmic dependencies.

FPGA-based implementations of KAFs have previously been proposed to achieve higher

throughput, lower latency or decreased power usage. Matsubara et al. [56] described an

implementation of the least mean square (LMS) algorithm which computed a solution

ignoring data hazards, and then applied correction terms. A soft vector processor

optimised for implementation of the KRLS algorithm was reported by Pang et al. [64],

this having the advantage that different KAFs can be implemented with only software

changes. Ren et al. [72] implemented a simpler algorithm, quantized kernel least

mean squares (QKLMS) [12], which has many similarities to NORMA. Their approach

computed the update sequentially, leading to small area, however the design described

in this work has 50× higher throughput.

The highest throughput KAF architecture reported to date is an implementation of

kernel normalized least mean squares (KNLMS)[23]. The design presented in this chapter

achieves a lower throughput however does not require multiple parallel problems. This

allows application beyond parameter search or parallel problem domains.
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3.1 Hardware Architecture of NORMA

This section aims to create a high throughput and low latency implementation of

NORMA. The formulation of NORMA was discussed in Chapter 2 was given as:

(αi, αt, b, ρ) =

(Ωαi, 0, b, ρ+ ην) if y(f(x) + b) ≥ ρ

(Ωαi, ηy, b+ ηy, ρ− η(1− ν)) otherwise
(3.2)

(αi, αt, ρ) =

(Ωαi, 0, ρ+ ην) if f(x) ≥ ρ

(Ωαi, η, ρ− η(1− ν)) otherwise
(3.3)

(αi, αt, ε) =

(Ωαi, 0, ε− ην) if |y − f(x)| ≤ ε

(Ωαi, δη, ε+ η(1− ν)) otherwise
(3.4)

where δ = sign(y − f(x)), Ω ≤ 1 and f(x) =
∑
αiκ(x, di).

Examining equations 3.2, 3.3 and 3.4 three properties of NORMAs formulation can

be extracted:

(1) NORMA is a sliding window algorithm

(2) each iteration, the weights decrease by a multiplicative factor (αi → Ωαi); and

(3) the computational cost of the update is small compared to the evaluation of

the decision function ft(xt+1).

The first property is determined by considering examples gradually added to the

dictionary with the same initial weight magnitude. This slowly builds up the dictionary

one new example at a time. To stop this growing indefinitely, some maximum number of

dictionary entries are needed meaning, once its full, some examples need to be removed.

Choosing the oldest as the least relevant examples leads to a sliding window. This first

property allows the decision function to be expressed as a combination of the examples

currently in the pipeline, xi, and a previous dictionary, D̂.
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Figure 3.1: Carry Select Adder Example

As shown in equations 3.2, 3.3 and 3.4, they all multiply the weights, αi, by a factor

of Ω ≤ 1. This second property provides a simple relationship to update the weights

for the final dictionary reducing the computation to be completed each clock cycle.

The final property is necessary as it determines the critical path and hence the effec-

tiveness of pipelining as one update is computed each clock cycle for a fully pipelined

design. This is evident from the update expressions above. The decision function, f(x),

has to compute the kernel function with every example in the dictionary. The update

expressions however are just simple scalar operations.

By using braiding, a technique proposed in this section, ft(xt+1) =
D∑
i=1

αiκ(xt+1, di) can

be rewritten to include a single pipeline stage as a function of the dictionary in the

previous clock cycle (D̂). This concept is similar to a the hardware structure of a carry

select adder. Figure 3.1 demonstrates the idea behind a carry select adder. In this case,

adders are used to compute the results of A+B with a carry in of 0 or 1. When the

carry is known, the correct result can be selected and sent as output.

In the case of braiding, ft(xt+1) can be separated in a similar way. Consider the case

where it is unknown if the previous example was added to the dictionary or not. If it

was added, then the dictionary should shift out the oldest example. Otherwise, the
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κ(xt+1, xt)
D−1∑
i=1

αiκ(xt+1, d̂i) αDκ(xt+1, dD)

ft(xt+1)

αxt Ω Ω

+ +

Mux

Figure 3.2: Hardware representation of equation 3.5

oldest example should still be a component of ft. More formally, this can be expressed

as the equation:

ft(xt+1) =
D−1∑
i=1

Ωαiκ(xt+1, d̂i) (3.5)

q

 +

0 if xt is not added

αxtκ(xt+1, xt) otherwise

+

D−q∑
i=D

Ωαiκ(xt+1, d̂i)

where q is 1 if xt is added to the dictionary and 0 otherwise, Ω is the forgetting factor,

D is the size of the dictionary and xt is the example ahead in the pipeline. When the

example xt is added, the sliding window shifts to include this new example and discards

the oldest example in the dictionary. In this case q = 1 meaning the third term in

equation 3.5 is 0. If xt is not added, the dictionary remains unchanged and the third

term includes the oldest dictionary entry.

Figure 3.2 shows a hardware datapath which implements equation 3.5. In a similar way

to the carry select adder, two results are computed but only one is used. In this case, a

single pipelining stage has been added in the computation compared with the original
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equation, ft(xt+1) =
D∑
i=1

αiκ(xt+1, di). Computing the terms at the top of Figure 3.2

can be done on a previous clock cycle which improves the throughput marginally. In

this figure, the multiplexer chooses whether to add xt to the dictionary, or discard

it so that the oldest dictionary entry can now be merged into the sum. This design

is analogous to braiding as the core of the sliding window has either κ(xt+1, xt) or

αiκ(xt+1, d̂i) braided into it each clock cycle. The amount of computation required

for the inputs of Figure 3.2 is significantly higher than the computation shown in the

figure. Fortunately, the braiding technique can be expanded to an arbitrarily pipelined

implementation as expressed in equation 3.6.

ft(xt+1) =

D−p∑
i=1

Ωpαiκ(xt+1, d̂i) (3.6)

q



+

0 if xt+1−p is not added

Ωp−1αxt+1−pκ(xt+1, xt+1−p) otherwise

+

0 if xt+2−p is not added

Ωp−2αxt+2−pκ(xt+1, xt+2−p) otherwise

...

+

0 if xt is not added

αxtκ(xt+1, xt) otherwise

+

D−q∑
i=D−p+1

Ωpαiκ(xt+1, d̂i)

In this case, q is the number of examples in the pipeline added to the dictionary, p is

the number of pipeline stages and d̂i are examples in the dictionary at time t− p. The

first term is the portion of the decision function that depends on recent examples in

the sliding window such that in p cycles time they are guaranteed to still be in the

dictionary and hence must be used in the computation of ft(xt+1). The dependence of

the decision function on the examples currently in the pipeline is expressed in the second
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component. Using the shift of q, the final term in equation 3.6 sums the contributions

from the uncertain and oldest portion of the dictionary.

For a practical hardware implementation, the computation of ft(xt+1) is separated into

two phases. The first is the computation of the kernel function, κ(xt+1, d̂i) needed for all

parts of Equation 3.6. This involves D + p parallel kernel evaluation blocks to compute

this function for each of the examples in the dictionary and pipeline. Following this

is a multiplication and sum of αiκi again needed for all parts of the equation. This

completes the computation of ft(xt+1) which is then passed to the update section to

determine if the example is to be added.

3.1.1 Pipelining

Figure 3.3 shows a high level view of the proposed pipeline for the online training

of the NORMA algorithm implementing equation 3.6. This pipeline assumes that

D > p = k+ s+ 1 using the notation for p, k, s defined in Figure 3.3. This is reasonable

because the number of cycles for a single kernel evaluation, k, depends only on the

number of features and, using a method such as an adder tree, s, scales as O(log2(D)).

The three stages of the pipeline vary greatly in terms of the hardware requirements

for their implementation. The kernel evaluation scales as O(F (D + p)) where F is the

number of features or dimensionality of the input, followed by the summation stage

which is O(D) additions and multiplications. The final stage that computes the update

is O(1) in hardware and time. However, as the update must take place in a single cycle

to avoid data hazards, this final stage is the critical path restricting the clock frequency.

The kernel evaluation must begin by calculating κ(xt+1, ·) with the dictionary entries and

all the examples in the pipeline as any of them could be needed in the computation of

ft(xt+1). As xt+1 progresses along the pipeline, the possible combinations of dictionary

entries are constrained. At each clock cycle, either the example at the final stage of the

pipeline is discarded or the oldest example in the dictionary. Hence, each stage of the

pipeline in the kernel evaluation contains one less example than the previous. After k
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Figure 3.3: The pipelined calculation

cycles, this will result in D + p− k = D + s+ 1 values to propagate to the summation

stage. These scalar values that are the result of the kernel evaluation are given the label

of zi for the pipelined examples and vi for the dictionary examples. With reference to

Equation 3.6, vi represents the terms in the top and bottom summations where as zi

are the results needed for the examples that might yet be added.

The kernel evaluation stage outputs D + s + 1 scalar values which are the results of

evaluating the kernel function of an example with the current dictionary and the s+ 1

examples ahead in the pipeline. As shown in Figure 3.3, this is followed by the summation

stage of
∑
αizi +

∑
αivi where zi is defined as the result of the kernel evaluation for

pipelined examples and vi for the dictionary entries. In terms of Equation 3.6, zi are

the evaluations of the kernel function for terms within the q bracket and vi are all other

kernel evaluations. The summation stage does not use all values of zi and vi, discarding

one each cycle as in equation 3.6. Additionally, for the examples ahead in the pipeline,

the values of αi have yet to be calculated. This requires the summation to be split into

sum left (SumL =
∑
αizi) and sum right (SumR =

∑
αivi).

SumL is the summation of terms ahead in the pipeline shown in Figure 3.4 or the

q terms in equation 3.6. This diagram shows the cumulative sum spread over s − 1

cycles to first multiply the kernel evaluation with freshly computed α values and then

added it to a running total of SumL which is initialized to 0 for the first cycle. Ω is

the forgetting factor which is multiplied into the sum each clock cycle. The ‘Mux’ in
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Figure 3.4: The pipeline for SumL

Figure 3.4 and in all other figures in this chapter refer to a multiplexor with two inputs

and the control line connected to the decision of whether or not to add an example

to the dictionary. SumL finishes with two remaining z values and the sum giving a

total of three output values into the final stage of the sum. The forgetting factor is

multiplied into SumL each clock cycle.

SumR differs from SumL as all the α values are readily available from the current

dictionary. In the first stage the value wi = αivi is calculated for all examples followed by

a pipelined adder tree to sum wi. However, all wi values cannot be summed immediately

as some may be evicted from the dictionary and hence give the incorrect result for

SumR. Under the assumption that the oldest example is removed, the examples in the

dictionary that have an index less than D−s−1 or the examples that are ‘young enough’

are guaranteed to be in the final sum and therefore can be added in parallel. The other

wi values above this threshold index are questionable as they are in range of being

shifted out of the dictionary by the sliding window. As they cannot be immediately

added into SumR they are braided into the sum each clock cycle when it is determined

that it is impossible for that dictionary entry to be shifted out before the calculation

ft(xt+1) completes.
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Figure 3.5: An example 3 stage pipelined braiding sum

The term braiding is used to describe this structure as each clock cycle another term is

combined into the sum analogous to a hair or rope braid. Figure 3.5 shows an example

of SumR for a dictionary size of 9 with 3 pipeline stages. Section 3 of the appendix goes

through a numerical example for this figure. v1 to v5 are the ‘young enough’ examples

as within the next 4 clock cycles they are a component in the computation of ft(xt+1).

These examples are also referred to as the core of the sliding window in this chapter. v6

to v9 are uncertain as in 4 clock cycles they could all be removed if all the pipelined

examples are added. In the first stage in the figure if an example at the end of the

pipeline is added v9 is discarded from the dictionary leaving three uncertain examples.

Conversely, if it is not added then example v6 is braided into the sum also leaving three

uncertain examples. These are passed along to the next stage while the others are

summed in an adder tree with braiding until only two unbraided examples remain.

The final stage of the summation combines SumL (=
∑
αizi) and SumR (=

∑
αivi)

and the computation of α is shown in Figure 3.6. In Figure 3.5 the forgetting factor

was temporarily ignored. Instead it is computed separately over s − 1 clock cycles

so when SumL and SumR are combined, this value of Ωs−1 is used to compensate as∑
Ωs−1αi · vi = Ωs−1∑αi · vi. Furthermore, to account for an additional cycle, Ω is
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Figure 3.6: Data path of the last stage of sum and the update computation

applied once more so the factor becomes Ωs. SumR and SumL are then combined

and the remaining task is to incorporate a single dictionary entry (wD) and pipeline

example (zp) in the sum. In the final cycle, the value of ft(xt+1) can be computed.

This is passed into the block α(ft(xt+1)) which computes the weight α based on the

application. α is then forwarded to the stages in Figure 3.6 and to the calculation of

SumL. During the calculation of α, whether to add an example to the dictionary or

not must be determined. The result of this decision is passed to the select lines of all

the multiplexers on the next clock cycle.

3.1.2 Fixed Point

To reduce hardware usage and latency on the critical path involving computing the

update, the implementation uses fixed point arithmetic. Fixed point allows the repre-

sentation of decimal numbers by a ‘hidden’ multiplication with 2−(#offractionalbits). In
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hardware, all the operations are done as though the bits represent an integer other

than the occasional bit shifting. However, they are interpreted as decimal numbers

generating higher precision with minimal overhead. Fixed point is used in this design to

dramatically reduce the hardware cost compared to floating point arithmetic. Compared

to floating point, fixed point requires careful consideration of the precision and range

to avoid issues such as overflow and underflow. Consideration of NORMA is needed to

determine the precision and range required.

As the weights and output of the kernel evaluation are tightly bounded to be scalar

values less than a magnitude of 1, the impact of fixed point on the accuracy of the

algorithm should not be severe if sufficient precision is used. The update step of

NORMA is examined to assess the impact of a fixed point implementation with 12

fractional bits. It is characterized by an initial value η multiplied by the forgetting

factor Ω each clock cycle. Under the assumption that all examples are added leads to

the maximum value of the oldest dictionary weight being ηΩD−1. Replacing Ω with 1−η

for classification and novelty detection [39] leads to the calculation of η = 1
D

to obtain

the maximum value for the last dictionary entry. This results in 1
D

(1− 1
D

)D−1 which for

12 fractional bits and D = 200 is 0.00184 = 7.55
212

. The more realistic assumption that

half the examples are added further reduces this to 2.77
212

. Using fixed point multiplication

with truncation erodes this further demonstrating that the use of fixed point can restrict

the effective dictionary size of NORMA when insufficient precision is used. A brute

force search for the maximum dictionary for each possible fractional width (fw) was

performed under the assumption that every example is added. From these results the

expression D ≤ 3 ∗ 2
fw−3

2 approximates the maximum size of the dictionary when using

fixed point. There is little point in having a larger dictionary than this as all older

dictionary entries will have a weight of zero. In reality, the size of the dictionary should

be much smaller than this bound as η likely will not be optimal for the dictionary

size and the assumption that all examples are added is strong. To achieve reasonable

utilization from the dictionary it should be quite a bit smaller than this bound.
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Figure 3.7: Linear interpolation with two lines for 2x

Without loss of generality, the Gaussian kernel, κ(xi, xj) = e−γ‖xi−xj‖
2
2 , was implemented

in this design since it is a commonly used kernel. The fixed point implementation uses

the property that ebx = 2ax for a given b [88]. The value of ax is split into an integer and

fractional component, giving 2ax = 2int(ax)2frac(ax) where −1 ≤ frac(ax) ≤ 0. Using

the restriction that ax ≤ 0 for the Gaussian kernel allows the value of 2frac(ax) to be

calculated using a lookup table with linear interpolation between −1 and 0. This is

demonstrated in Figure 3.7 with two lines approximating the curve. The values for

these lines, m and b, in the equation y = mx+ b are stored in the lookup table. Based

on the value of x, the correct line is selected and used to approximate the value of

2frac(ax).

2ax is then obtained by bit shifting this result with the integer component, int(ax).

This allows the exponentiation to be computed in 5 operations or a couple of clock

cycles while the calculation of ‖x−y‖22 depends on the size of the adder tree constrained
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Figure 3.8: Approximation error of a 16 value lookup table

by the number of features used. Figure 3.8 shows the error associated with using this

method. The two traces represent linear interpolation computed in floating-point and

fixed point with fractional width of 12. For a 16 value lookup table and 12 fractional

bits, the error only affects the least significant one or two bits.

3.2 Results and Discussion

The proposed architecture was implemented using CHISEL [4] with an open source

implementation available at github.com/da-steve101/chisel-pipelined-olk.git.

A modified Kernlab implementation of NORMA for use with the Classification And

REgression Training (CARET) package is used to obtain the baseline floating-point

learning performance of NORMA on various datasets. A C implementation of NORMA

was created to measure the speed of a CPU implementation for comparison. This

github.com/da-steve101/chisel-pipelined-olk.git
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is also available in the repository. All other datasets and scripts used to obtain the

results in this chapter are available in the repository with instructions in the README.

The code was synthesised for a Xilinx Virtex-7 XC7VX485T-2FFG1761C on a VC707

development board with speed grade 2. No interface was implemented, and the following

analysis assumes that a streaming interface can provide enough throughput to keep the

system full.

The resource usage and clock frequency was obtained for a varying dictionary size with

F = 8 features for the NORMAn application are summarised in Table 3.1. This table

shows the growth in resource usage with dictionary size and fixed point precision. From

this table it is clear that the number of DSP’s is the bottleneck for this architecture.

This is because approximately D ∗ (F + 1) multiplications are required for the kernel

evaluation. The number of DSP’s used also grows with the bitwidth as the full result

can no longer be computed in a single DSP for more than 18 bits. An increasing fixed

point bitwidth also results in a longer delay in the multiplication stage, reducing the

maximum clock frequency also shown in the table.

Tables 3.2, 3.3 and 3.4 compare fixed point implementations with the Kernlab R

implementation [37] as a floating-point reference. The caret package [43] facilitated this

comparison, and parameters for the floating-point implementation were chosen using

a parameter search with 10 fold cross validation [41]. Training was conducted using

the H and Area Under the Receiver Operating Characteristic Curve (AUC) measures

for classification and novelty detection, and the L1 and L2 error for regression. The

AUC and H measures were chosen as they provide a better overview of the classifier or

novelty detector than accuracy [30]. Both AUC and H measures are used as there is

a lack of consensus on which should be used [20]. An optimal classifier has AUC = 1

and H = 1 whereas a classifier that randomly guesses should have an AUC = 0.5 and

H = 0. The fixed point implementation was then tested using the same parameters

found with the floating-point cross validation to assess its impact. A lookup table with

16 points as shown in Figure 3.8 was also used unless otherwise stated. In Tables 3.2,
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Table 3.1: Performance of NORMAn for F = 8 and Lookup Table =
16 points on a Virtex 7

D = 16 32 64 128 200
Fixed 8.10

DSPs (/2800) 309 514 911 1679 2556
Freq (MHz) 133.0 137.8 137.4 131.0 127.3

Latency (clocks) 10 11 12 12 13
Slices (/75900) 4615 8194 14663 29113 46443

Fixed 8.16
DSPs (/2800) 595 988 1749 2800 *

Freq (MHz) 115.2 114.1 93.2 98.2 *
Latency (clocks) 10 11 12 12 *

Slices (/75900) 6188 11622 20512 58889 *
Fixed 8.22

DSPs (/2800) 1236 2056 * * *
Freq (MHz) 101.2 97.29 * * *

Latency (clocks) 10 11 * * *
Slices (/75900) 10971 18976 * * *

Fixed 8.28
DSPs (/2800) 1236 2056 * * *

Freq (MHz) 97.2 89.8 * * *
Latency (clocks) 10 11 * * *

Slices (/75900) 13819 23931 * * *

3.3 and 3.4, iw denotes the integer width that was used. This was determined by finding

the minimum value before overflow occurs.

The datasets chosen to benchmark for classification and novelty detection were an

artificial dataset generated using sklearn.make classification [65] and the mlbench

dataset Satellite [47]. The parameters chosen for the artificial dataset were n samples

= 1000, n features = 8, n informative = 4, n redundant = 2 and random state = 101.

For the Satellite dataset, the multiclass problem was simplified to a two class problem

by taking the largest class out and combining the others. The novelty detector for

this dataset trains on one of the classes in the artificial dataset and for the satellite

dataset it trains on the combined classes to detect the ‘anomalous’ red soil class. The

regression datasets were an artificial dataset generated using sklearn.make regression

and the UCI Combined Cycle Power Plant dataset from [82]. The parameters chosen

for the artificial dataset were n samples = 1000, n features = 8, n informative = 6 and
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Table 3.2: Results for NORMAc in Fixed vs Floating point
Dataset Artificial (iw = 7) Satellite (iw = 8)
Measure AUC H AUC H

Floating NORMAc 0.893 0.550 0.995 0.947
Fixed 18 bits 0.618 0.108 0.673 0.145
Fixed 24 bits 0.745 0.255 0.996 0.922
Fixed 30 bits 0.899 0.579 0.998 0.954
Fixed 36 bits 0.903 0.586 0.997 0.959

Table 3.3: Results for NORMAn in Fixed vs Floating point
Dataset Artificial (iw = 8) Satellite (iw = 8)
Measure AUC H AUC H

Floating NORMAn 0.641 0.140 0.836 0.358
Fixed 18 bits 0.664 0.174 0.5 0
Fixed 24 bits 0.658 0.162 0.503 0.130
Fixed 30 bits 0.658 0.162 0.800 0.295
Fixed 36 bits 0.658 0.162 0.825 0.348

Table 3.4: Results for NORMAr in Fixed vs Floating point
Dataset Artificial (iw = 6) Combined Cycle Power

Plant Dataset (iw = 6)
Measure L1 L2 L1 L2

Floating NORMAr 0.773 0.934 0.700 0.697
Fixed 18 bits 0.760 0.899 0.637 0.621
Fixed 24 bits 0.776 0.939 0.666 0.643
Fixed 30 bits 0.777 0.943 0.653 0.628
Fixed 36 bits 0.777 0.943 0.653 0.628

Table 3.5: Single core CPU learning performance with F=8 compared
with NORMAn using 8.10 fixed point

D = 16 32 64 128 200
Freq (MHz) 2.83 1.51 0.77 0.38 0.25

Latency/example (ns) 353.2 660.9 1293.2 2625.2 4025.8
FPGA Speedup (×) 47.0 91.3 178.44 344.7 509.2

Latency Reduction (×) 4.69 8.296 14.87 28.7 39.2

random state = 101. All the datasets were then partitioned into a test and training set

using the createDataPartition function in caret with an 80% split. The preprocessing

functionality in caret was then used to center and scale the datasets using the training

set with the exception of the artificial classification dataset. These four datasets are

available from the github repository, together with four parameters files which enable

the results to be reproduced.
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Table 3.6: Impact of Gaussian Kernel Approximation (7.29 on artificial
two class)

Table Size 1 2 4 8 16
AUC 0.907 0.906 0.904 0.903 0.903

H 0.588 0.590 0.586 0.586 0.586

The results in Tables 3.3 and 3.4 show that the use of fixed point does not have an

impact on the learning performance of the algorithm for bitwidths greater than 18

bits. The cases in which fixed point actually improves the learning performance of

the algorithm are attributed to noise in the results. For classification Table 3.2 shows

that using fixed point with insufficient precision does have a detrimental impact on

the results which is the expected case for general datasets. For implementations with

similar fractional width precision to IEEE 754 (24 bits) there is no noticeable difference

between fixed and floating-point implementations.

As the fixed point increases in precision, the learning performance is expected to improve.

This is a trade off with the amount of hardware used hence affecting the maximum

dictionary size as shown in Table 3.1. Due to fixed point changing the nature of the

algorithm, performing the cross validation in fixed point may achieve better results

than a cross validation in floating-point.

Table 3.1 shows the resource usage and clock frequency for NORMA with novelty

detection in fixed point. Novelty detection has a shorter critical path in the update step

compared with classification and regression resulting in a reduction in clock frequency of

around 10-15 MHz compared to the other applications. The resource usage is however

very similar as the majority of the calculation is the same.

Table 3.5 shows the results for a single core C implementation of NORMAn compiled

using GCC 4.9.2 with ‘-O3’ and run on an Intel i7-4510U @ 2.00GHz compared with

the results in Table 3.1 for the 18 bit fixed point implementation. As this algorithm is

very easily parallelized on a CPU, it can be reasonably assumed that N cores would

achieve a speed up of N times. A GPU implementation is beyond the scope of this work.

It is noted that, by increasing the number of features used (F), the speedup of the

FPGA implementation improves dramatically as all additional features are calculated
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in parallel with minimal impact on the clock frequency. However, this increases the

amount of hardware needed for the implementation hence restricting the dictionary

size.

Table 3.6 shows the effectiveness of the Gaussian kernel approximation. There is no

noticeable difference in learning performance on the artificial two class dataset even

when there is a single line from 0 to −1 that is shifted for integer powers. It is suggested

that, due to the fixed initial value of the weights and the weight decay by Ω, NORMA is

insensitive to the accuracy of the kernel function. The impact on other kernel methods

could be investigated in future work.

The NORMA implementation in this chapter can be compared to the implementation of

a KRLS vector processor designed for low latency machine learning [64]. While KRLS

based algorithms have been shown to have superior learning performance to NORMA

[84] the latency in the online learning is about two orders of magnitude lower with three

orders of magnitude increase in throughput for the implementation described in this

chapter. Compared with the approach in [72], which reports a sample rate of 2.4 MHz,

braiding provides a 50× increase in throughput. The algorithms are similar enough

that a direct comparison is meaningful as the braiding technique could be applied

to QKLMS. A high throughput pipelined implementation of KNLMS is described in

[23] achieved by time multiplexing multiple problems. For a single problem or dataset

the throughput of this architecture is much higher. Another approach to implement

KNLMS algorithm is allowing for delayed updates to manage the dependency achieving

a high throughput [22]. Braiding relies on properties of NORMA that are present in

other algorithms such as [49] and hence could be applied there as well.

3.3 Summary

This chapter proposed a hardware architecture technique known as braiding. In this

technique, partial results are computed at each stage of a pipeline and combined when

possible. This technique was applied to NORMA. In addition the precision required for
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NORMA to function effectively was also examined. Using these results, a very high

throughput and low latency FPGA implementation was created.



Chapter 4

Neural Networks in Hardware

The computational complexity of CNNs imposes limits on certain applications in practice

[36]. There are many approaches to this problem with a common strategy for the

inference problem being to reduce the precision of arithmetic operations or to increase

sparsity [7, 15, 18, 57, 71, 92]. It has been shown that low precision networks can

achieve comparable performance to their full precision counterparts [15, 48, 92].

This chapter explores accelerating CNN inference with FPGA implementations of

neural networks in fixed point arithmetic with ternary weight values. As the weights

are restricted to {−1, 0, 1}, the multiplications between the inputs and the weights

are reduced in complexity to subtractions, additions or no operation. Compared with

previous work, the datapath is customised based on known weight values of a trained

network at design time.

The computationally intensive parts of a CNN are matrix-vector multiplications. Given

prior knowledge of the ternary weight matrix, this chapter shows matrix vector mul-

tiplications can be implemented as the evaluation of an unrolled and pruned adder

tree, effectively storing the weights in the routing. This technique is only recently

feasible due to increasing sizes of FPGAs, improvements in the tools and advances in

low precision machine learning. The main contributions of this chapter are as follows:

• A novel architecture for inference of ternary neural networks on an FPGA

by employing complexity reduction to the evaluation of pruned adder trees.

In particular optimisations are: (1) streaming inputs and full pipelining of

the computation; (2) ternary weights with 16-bit sums and activations to

51
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preserve accuracy; (3) bit-serial summation for compactness; (4) weight-specific

circuit generation with removal of multiplies by 0 and merging of common

subexpressions to minimise computation; (5) throughput matching of CNN

layers to minimise resource usage.

• An extension of a technique to train ternary neural networks described by Li

et al. [48] allowing simple control of the sparsity of the network.

The work in this chapter was published in TRETS as Unrolling Ternary Neural Networks

[79].

4.1 Previous Work On Hardware Acceleration Of

Neural Networks

Previous work [6, 13, 24, 29, 36, 38, 50, 51, 58, 60, 67, 68, 83, 85, 90] has mainly focused

on general accelerators, implemented either as a sequence of instructions on fixed

hardware, or accelerator platforms designed for linear algebra intensive computation.

Systolic array based architectures implement a grid of local-connected processing units

to perform a matrix-to-matrix multiplication. Most notably, Jouppi et al. [36] describe

the Tensor Processing Unit (TPU), an Application Specific Integrated Circuit (ASIC)

that utilises a systolic array to compute operations necessary with 8 or 16 bit weights

and activations. It provides a very high throughput on a variety of applications with

a latency on the scale of 10ms, claiming a peak throughput of 92 TOps/sec and a

sustained throughput of 86 TOps/sec. Similarly, Moss et al. [60] implemented a systolic

array that utilised the Intel QuickAssist heterogeneous system with a CPU and FPGA,

accelerating CNNs with binary activations and weights on ImageNet and achieving

40.96 TOps/sec. Venkatesh et al. [85] use a method described in [48] to implement a

VGG style network with ternary weights and half-precision floating-point activations.

They create an ASIC accelerator for training networks in addition to inference with a

systolic array like structure. Due to the use of floating-point activations, they achieve

high accuracy on CIFAR10 of around 91%.
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Differing from the systolic array approach, vector processors contain several independent

processing lanes, with the capability of each determined by the lanes’ architecture.

Chen et al. [13] created a custom ASIC utilising 16 bit fixed point achieving a peak

throughput of up to 42 GMAC/s. Their architecture contains an array of independent

processing elements, each receiving operation instructions. In the programmable logic

domain, Wang et al. [29], Qiu et al. [68] and Meloni et al. [58] presented neural

network accelerators for the Zynq CPU+FPGA. Each implemented a vector processor

and utilised low precision to improve computational performance for object detection

and image recognition. Wang et al. [29], Qiu et al. [68] and Meloni et al. [58] achieved

2 TOps/sec, 187 GOps/sec and 169 GOps/sec respectively.

Finally, Zhang and Prasanna [90] implemented an accelerator using the frequency

domain representation of the convolution. Their datapath converts the activations into

the frequency domain and uses a point-wise multiplication to perform the convolution;

this is followed by an inverse FFT. The computation is performed in floating-point and

implemented on the Intel QuickAssist platform containing a CPU and Stratix V FPGA,

achieving 123.5 GFLOPs.

The following sections of this chapter will explore the computation required in convolu-

tional neural networks, with a focus on optimizations for the case of ternary weights.

Following the theory and proposed FPGA architecture, Chapter 5 will present two

case studies for CIFAR10 image classification on the AWS F1 instance and automatic

modulation classification on the RFSoC board from Xilinx.

4.2 Convolutional Neural Networks

Chapter 2 introduced the structure of Convolutional Neural Networks (CNNs). Of

particular interest is equation 2.18 reiterated here as

yi,j = Xi,jw (4.1)
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This equation expressed the dependencies required for the computation of yi,j. When

a network is trained and just being used for inference, w is known. The dependency

for yi,j arises from Xi,j which is a portion of the entire input. The critical point for

convolutions in regards to latency is that only a portion of the entire input is required to

produce an output. This operation is still a vector-matrix multiplication which requires

multiplications followed by an accumulation of n results. The depth of the tree and

hence the latency depends on the number of operations.

Introducing sparsity into w can decrease the number of operations further. Exploiting

this sparsity, however, can still be very difficult in traditional computer architectures.

The reason for this is the inefficiencies involved in moving data around to reach the

processor. With sparse operations, the data required is typically stored in various

different locations meaning alot of different blocks are loaded. There have been many

attempts to deal with this, but it still presents issues.

In this work, the aim is to provide a very low latency implementation, while pipelining

it to a reasonable degree to achieve a high throughput as well. In addition, a lower

precision implementation is chosen which does have some accuracy cost. Lower accuracy

may make this methodology unappealing for certain applications. However, some

applications may be infeasible or impractical unless low enough latency or high enough

throughput can be achieved.

4.2.1 CNN Components

This section describes the different components of a CNN with regard to a low latency

and high throughput hardware implementation. The input and output of a hardware

block can significantly constrain the possibilities. Creating a hardware block under the

assumption that the whole input is available in memory can simplify the design. However,

there is a latency associated with loading it into memory in the first place. Waiting for

all inputs to be available before starting the computation adds an unnecessary latency
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Figure 4.1: A small example image

overhead. To obtain data on a hardware device typically requires the serialization of

the input as a very wide bus is typically not practical.

Hence, the scheme is adopted where the input arrives sequentially and is immediately

available for computation. To obtain Xi,j from equation 4.1 requires a transformation.

In the case of image inputs, this transformation is known as im2col or im2row. This

transformation copies a single window of the input matrix into a much larger matrix

where each input row is used to compute a single output pixel. For example, Figure 4.1

shows a small 6 × 6 image. The transformation of im2row for a 3 × 3 convolution

without padding would give the inputs as shown in Table 4.1. The values are copied

across so that each row represents all the inputs to a single convolution. The hardware

block to implement this transformation will be known as the Buffering block.

Table 4.1: An example of the im2row transformation
0 1 2 6 7 8 12 13 14
1 2 3 7 8 9 13 14 15
2 3 4 8 9 10 14 15 16
3 4 5 9 10 11 15 16 17
6 7 8 12 13 14 18 19 20
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
21 22 23 27 28 29 33 34 35

Max Pool is a logical operation that is widely used in CNNs to reduce the computation

needed. In terms of computational requirements, max pool is very simple. It only
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requires determining the maximum value in a very small set of inputs. With reference

to Figure 4.1, and assuming a 2×2 kernel the first output of the max pool is to compute

max(0, 1, 6, 7). Similar to an accumulation, this would require n− 1 comparisons for n

inputs and can be performed as a tree to reduce the latency.

To improve training times and reduce overfitting, batch normalization [33] is frequently

used. During training there are four vectors that batch normalization uses to perform the

update step on the inputs. These are the mean, variance and two learnable parameters

γ and β sometimes called the scale and shift respectively. The mean and variance

are just computed over a single batch during training. The population mean (µ) and

variance (σ2) are also collected during training and these values are used instead for

inference. In inference, however, batch normalization simplifies to the transformation

of y(x) = ax+ b where a and b are defined in Equation 4.2. ε is a small number to stop

division by zero.

a = γ√
σ2+ε

b = β − aµ
(4.2)

Implementing y(x) = ax+ b in hardware is straightforward, requiring a multiplication

with the input x followed by an addition. This operation requires few resources and

only adds minimal latency.

The largest cost in terms of latency in CNNs is fully connected or dense layers. Unlike

the convolution operation, a dense layer requires all the inputs to be used in the

computation of each output. This means all previous layers in the network have to be

complete before the dense layer can output a single result. Fortunately, useful work can

still be done to compute partial results in the dense layer without the full set of inputs.

The hardware implementation of logical blocks in the CNN are described in the following

sections

• Buffering - (im2col/im2row)

• Max Pool

• Convolution
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Figure 4.2: Streaming the Image and the Window to Buffer

• Scale and Shift - (Batch Normalization Inference)

• Dense Layers

4.2.2 Buffering

There are two main approaches in the literature to compute the convolution in hardware:

passing in inputs over multiple cycles and storing intermediate results when computing

the convolution; or buffering the pixels so that the entire set of inputs needed for the

convolution is available simultaneously such as the approach in Baskin et al. [6] and

Prost-Boucle et al. [67]. This work explores the scheme used by these authors to buffer

the pixels, so the entire set of inputs is available simultaneously. It buffers previous

inputs in such a way that each cycle it can output the current vector Xi,j from Equation

4.1. The inputs necessary to compute an output pixel of the convolution are only a

small segment of the image. As the image is streamed into a layer of the CNN, it

is buffered in order to transform the pixels into a patch of the image from which a

convolution or Max Pool operation can be computed. This is referred to as a buffering

block in this thesis but is also known as the im2row or im2col transformation. The

purpose of the buffering hardware block is to stream the image through a fully pipelined

design with p pixels provided each cycle as input from a FIFO. To compute an output

pixel of the convolution requires using inputs from various pixels of the image.
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FIFOBuffer ABuffer B

RegRegRegRegRegRegRegRegReg

a b c d e f g h i

Figure 4.3: Diagram illustrating buffering for a 3× 3 convolution

Figure 4.2 demonstrates the input configuration used in this work with the assumptions

that the convolutional kernel is 3 × 3, the image is 6 × 6 × 1 and a single pixel is

streamed in each cycle. The image is streamed in left to right, top to bottom with a

pixel arriving in the cycle indicated by the number in each box. The input FIFO in

Figure 4.3 outputs the pixel each cycle to both Buffer A and the first stage of a shift

register. The value is then shifted across each cycle by the registers as the window

moves across the image. Buffer A and Buffer B delay the output by the image width

( 6 cycles in Figure 4.2) in order to output the previous two rows of the image with

matching columns. For example, when the FIFO outputs pixel 27 in Figure 4.2, Buffer

A outputs pixel 21 and Buffer B outputs pixel 15. After the outputs a-i are obtained at

the bottom of Figure 4.3, there is additional logic necessary to implement zero padding

by switching between these values and zero. This produces the correct vector Xi,j from

Equation 2.21 for the convolution. This can also be adapted for Max Pool layers where

the structure of Figure 4.3 changes depending on the kernel size, image size and pixel

rate p.

4.2.3 Max Pool

Max pool layers are widely used in CNNs to downsample the image. The max pool

operation takes a k × k window of the image as input similar to that shown in Figure

4.2. For these pixels, it compares them and outputs the maximum value resulting in

a single pixel. Reduction in the image size is achieved by using a stride greater than

n = 1. Consider an example based on the image in Figure 4.2 with a kernel size of k = 2:
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if the stride is only n = 1, the window of pixels 0, 1, 6, 7 would be followed by pixels

1, 2, 7, 8 meaning the output image is about the same size. To downsample the image,

it is common to use a stride of n = 2 or more in max pool layers. With a stride of

n = 2, the window of pixels 0, 1, 6, 7 is followed by pixels 2, 3, 8, 9 which would produce

a 3× 3 image from the input in Figure 4.2. The presence of max pool layers has the

effect of reducing the amount of computation required for subsequent layers of the CNN.

The downsampling property of max pool is exploited in the proposed architecture to

reduce hardware area. Given a throughput of p pixels/cycle as input into a max pool

layer with a stride of n results in the output throughput reduced to p
n2 pixels/cycle.

This property is later used to dramatically reduce the size of the convolutional layers in

hardware through the use of word and bit serial adders discussed in Section 4.2.4.

As a hardware block, the max pool is implemented in a pipelined way comparing the

k2 inputs over multiple cycles to determine the output for each component of the pixel.

When using the input configuration from Figure 4.2, the output of the max pool is

bursty, either producing results frequently on particular image rows or otherwise not

generating any output. This requires the use of a FIFO at the output of a max pool

layer. When using a stride of 2, this bursty nature is caused by the output occurring

every 2nd row for a 2D convolution. In the case of a 1D convolution, the output is not

bursty and hence does not require a FIFO on the output.

4.2.4 Convolution

Convolutional layers are where the bulk of the computation is performed in the network

and hence require a large portion of the total hardware. Reducing the size of this

hardware is essential to the viability of computing a CNN with low latency. Most

machine learning implementations utilize floating-point numbers to represent a large

dynamic range. Unfortunately, floating-point is expensive in hardware [31].

As discussed in Chapter 2, significant recent research has focused on low precision neural

networks. Lower precision can dramatically decrease the size of hardware required to
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compute the operations. This comes at the cost of accuracy of the CNN. Finding the

right balance between precision of the calculation and the resultant accuracy depends

on the application.

For this work, ternary weights are chosen for the convolution operation. Restricting

the weights to −1, 0, 1 has several advantages in hardware. The most significant of

these is that multiplications between the activations and weights no longer need to

be performed. Rather, it is now a choice between adding, ignoring or subtracting an

activation. The other benefit of using this precision is the inclusion of 0 in the set of

available weights. This introduces sparsity into the calculation, reducing the number of

operations. If exploited properly, this can significantly reduce the computation required.

To fully exploit this, it is assumed that the convolution uses ternary weights known and

fixed at design time. The im2col transformation described in Section 4.2.2 produces a

dense vector to multiply into the convolutional weights matrix. To multiply this into the

convolutional weights, consider the example convolutional weights shown in Table 4.2.

This shows a single trinarised 3× 3 convolutional filter on a grayscale image centered

on an input pixel with value ’e’. With reference to equation 4.1, Xi,j is represented by

the variables a, b, c, d, e, f, g, h, i. These are the inputs to the convolution and depend

on the input image used and hence are unknown at design time. It is assumed that

the weights w in equation 4.1 are known ahead of time. These known weights are

multiplied with the inputs as shown in table 4.2. The results of these multiplications

need to be accumulated. The output of this convolution operation is then given as

z0 = −a+ c+ e+ f −h. It is important to note that this equation calculating z0 can be

implemented without multiplications hardware and allows the removal of zero weights.

It is also interesting to note that, if implemented as an adder tree multiplying in the

weights and using all 9 inputs would initially require a depth of 4. In this reduced

form, the adder tree only needs to have a depth of 3 meaning a lower latency for the

computation.

More generally, the convolution computes Equation 2.21 which is a sparse matrix vector

operation where the matrix is ternary and known at design time. The sparse matrix
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Table 4.2: An example 3× 3 Convolutional Filter
a × (−1) b × 0 c × 1

d × 0 e × 1 f × 1
g × 0 h × (−1) i × 0

a b c d e f g h i

Reg(c-a) Reg(e+f)Reg(c+d) Reg(h)

Reg(c-a) Reg(e+f-h)Reg(c+d-e-f)

z0z1

Figure 4.4: Computing z0 = c+ e+ f − (a+ h) and z1 = c+ d− e− f

vector multiplication can be implemented as a row of multiplications followed by a

different summation for each output. The implementation of the convolution in this

thesis aims to exploit sparsity by removing any multiplications with zero, reducing the

size or pruning the adder tree required to compute the summation. The remaining

values are multiplied by either −1 or 1. Hence the multiplications can be removed

entirely from the design with the 1 or −1 weight just indicating whether to add or

subtract from the sum.

As there are typically numerous filters in the convolution, many summations are

performed in parallel. Using knowledge of the weights ahead of time, it is possible to

merge subexpressions within the summations to reduce hardware usage. An example

of how knowledge of the weights ahead of time can reduce the amount of hardware

through subexpression elimination is shown in Figure 4.4. Here, an additional equation

z1 = c + d − e − f is computed in parallel to z0 simultaneously and sharing the

subexpression e+ f .

4.2.5 Scale and Shift

Batch Normalization (BN) is included in nearly every network due to its ability to

improve training times and reduce overfitting. In feed-forward mode, it is reduced to a



62 4 Neural Networks in Hardware

simple equation

y = a� x + b (4.3)

where x represents activations, a and b are constants to scale and shift from the

batch normalization operation known at design time and � is the elementwise product.

Equation 4.3 is referred to in this thesis as a scale and shift operation. As BN typically

directly follows the convolutional layer, the scaling coefficient of the weights s from

Equation 2.21 can be combined into a single equation

y = c� x + b (4.4)

where c = s · a as a and s are constants known at design time. The bias from the

convolutional layer above can also be integrated into these variables.

The Scale and Shift hardware block can be implemented with a multiplier and adder

using the constant values of c, b for each output followed by an activation function. This

requires a fixed point multiplication with a constant after each layer, for each output

filter. This is achieved by having a multiplication operation at all outputs followed by

an adder for the bias and finally having the activation function applied on y. As the

multiplications are with constants, depending on their value the multipliers might be

implemented with or without DSPs at the discretion of the tools.

4.2.6 Dense Layers

CNNs can include dense layers at the end of the network for the final classification.

The output of the convolutional layers is flattened, then passed into the dense layer.

Unlike the convolutional layers, the dense layer requires the entire image to be available

before any of the outputs can be computed.

While the dense layer is also a matrix vector operation, it typically has a significantly

larger number of weights, meaning it is expensive to expand it into a tree as with the

convolutional layers. Additionally, as a dense layer is operated on the vector of the

entire image, it would be inefficient to use the technique described for convolutional
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a wa b wb c wc d wd

Reg(a*wa) Reg(b*wb) Reg(c*wc) Reg(d*wd)

Reg(a*wa + b*wb) Reg(c*wc + d*wd)

Reg(a*wa + b*wb + c*wc + d*wd)

Reg(a*wa + b*wb + c*wc + d*wd + sum)
sum

Figure 4.5: Multiplying and Accumulating Weights for the Dense Layer

layers. The main reason for this is the pruned adder tree approach would require the

entire image to be buffered before beginning the computation. This means the hardware

to compute the dense layer is only utilised once per image. This would be inefficient and

would have an unreasonable hardware requirements. For this reason, taking advantage

of sparsity and Common Subexpression Elimination (CSE) such as in Figure 4.4 is

not efficient for dense layers. Hence, the most common approach in the literature is

adopted which streams the weights from memory, multiplies them into the activations

and accumulates the result as shown in Figure 4.5. As the weights are known ahead of

time, they can be stored in read only memory blocks on chip. The number of Multiply

Accumulate (MAC) units as shown in Figure 4.5, depends on the size of the dense layer.

Each output of the dense layer has its own accumulation block.

4.3 Reducing Hardware Area

The hardware cost of implementing a fully pipelined CNN is high. Minimizing this is

an essential element of a low latency CNN. Two main approaches are considered to

reduce the hardware area. The first is a higher level approach trying to share partial

results of the network to find and remove redundant computations. This is also referred

to as subexpression elimination. Making use of idle time in an unrolled implementation

to save on hardware is the second approach.
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The CSE techniques discussed in this section are implemented in the pip3 package

twn generator developed in the course of this work. The package includes implemen-

tations of the CSE methods introduced in sections 4.3.3 and 4.3.4. Additionally, it

includes the methods for generating Verilog with adders of varying precision to reduce

hardware area.

4.3.1 Subexpression Elimination

This section discusses techniques that can be applied to merge common subexpressions

in the implementation of the pruned adder trees to reduce the hardware required for

implementation. The subexpression elimination problem has a long history in computer

science and its solvers are widely used in many applications such as the GCC compiler.

It has been determined to be NP-hard and hence can only be solved approximately for

large problem sizes [9]. The subexpression elimination discussed in this dissertation is a

specialized case of the problem. It is an unknown dense vector multiplied by a sparse

matrix of constant values, restricted to −1, 0, 1. Figure 4.4 shows the desired solution

to the problem given the input equations z0 = c+ e+ f − (a+h) and z1 = c+ d− e− f .

The solution should be a pipelined adder tree aiming for the smallest implementation

on an FPGA. As an FPGA has registers after adder blocks, the cost for Add+Reg

is considered the same as just Reg and should optimize this for minimal cost. The

particular implementation of the Add+Reg block is considered irrelevant. There are

three related approaches to this problem in the literature. RPAG by Kumm et al. [44]

use constant integer values in the matrix. Hsiao et al. [32] use Common Subexpression

Elimination (CSE) on a binary matrix for implementation of AES in hardware which

will be modified for ternary values and referred to as top-down CSE (TD-CSE) in this

work. Wu et al. [89] expand this to gate level delay computing CSE (GLDC-CSE) for

binary values which will be modified for ternary values and referred to as bottom-up

CSE (BU-CSE) in this work.

The constant matrix optimization RPAG of Kumm et al. uses the graph-based algorithm

[45] to solve the generalized constant multiplication problem where the weights can
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be arbitrary integer numbers instead of restricted to −1, 0, 1. Conversely, Hsiao et al.

requires values of either 0 or 1 to use TD-CSE and is hence a specialization of the

problem required to be solved in this work.

4.3.2 RPAG Algorithm

Kumm et al. [44] propose a method to perform subexpression elimination with integer

values. The algorithm looks at all the outputs of a matrix-vector multiplication and

calculates the minimal tree depth, d, required to get the results. At this depth, it then

tries to determine the minimum number of terms needed at depth d− 1 to compute the

terms at depth d. This is then performed iteratively until the depth is 1 resulting in the

whole tree being generated. These steps perform a broad search of the space and hence

find very good solutions. However, this method searches for common subexpressions

allowing for more general integer coefficients. In this case, it is not necessary. This

method and the broad search make the approach computationally intensive and only

suitable for relatively small matrices.

4.3.3 Top-Down CSE Approach

The TD-CSE algorithm proposed by Hsiao et al. [32] iteratively eliminates subexpres-

sions of size two. To explain the TD-CSE approach, consider the following example of

a maxtrix-vector product:

y =



0 0 1 1 0 0

1 0 1 1 1 0

0 1 0 0 1 1

0 1 0 0 0 1

1 0 1 1 0 0

1 0 0 1 0 0

0 1 0 0 1 1





x0

x1

x2

x3

x4

x5


=



x2 + x3

x0 + x2 + x3 + x4

x1 + x4 + x5

x1 + x5

x0 + x2 + x3

x0 + x3

x1 + x4 + x5


. (4.5)
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The TD-CSE algorithm counts the frequency of all subexpressions of size two, selecting

the most frequent. In this case, the most common pair is x2 + x3, occurring three times.

This expression is removed by defining x6 = x2 +x3 and replacing all previous equations

with x6 resulting in

y =



x6

x0 + x4 + x6

x1 + x4 + x5

x1 + x5

x0 + x6

x0 + x3

x1 + x4 + x5


. (4.6)

This process continues until subexpressions do not occur more than once.

This approach can be thought of as building multiple adder trees from the inputs to the

outputs by creating an adder each iteration. In this case, the adder x2 +x3 = x6 was put

into the tree. There are some tricks to implement this approach that can dramatically

improve the runtime. When calculating the most common pairs, the results can be

stored and reused as, after removing a subexpression, most of these values do not need

to be recalculated. In the example in equation 4.5, the number of times each pair occurs

has to be computed to recognize that x2 + x3 is the most frequent. After this has been

determined, the frequency of pairs such as x4 + x5 can just be stored. Some expressions

do need to be checked and updated such as x0 + x3. As the expression x2 + x3 was

removed from x0 +x2 +x3 and x0 +x2 +x3 +x4, the frequency of the expression x0 +x3

needs to be reduced by two. However, most of the time, the frequencies of the pairs do

not need to be recalculated such as x4 + x5.

Expressing this more formally, the first iteration requires the number of expressions

containing each pair of variables to be computed where n is the number of expressions,

v is the number of variables and p is the number of pairs of variables in the expressions.
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For example, in Equation 4.5, n = 7, v = 6 and p =
(
v
2

)
= v(v−1)

2
. The complexity of the

first iteration to find the frequency of all pairs is then O(nv2). These results are then

stored. When a pair of variables are chosen to be removed as a common subexpression,

the computation of the update is only O(nv). For the example in Equation 4.5, after

the subexpression is removed, only combinations containing x2, x3 and x6 would need

to be computed. The count of previous pairings between say, x0 and x1, do not need

to be updated. Another minor optimization to further skip computations is to look at

combinations with x2 and x3. If there were no expressions in common in the initial

equations, say between x2 and x5, then the initial calculations would have a value of zero

here. As the number of subexpressions can only decrease after removing a subexpression,

this value of zero does not need to be recomputed and the pair between x2 and x5 can

be skipped. As the problem grows in size, the amount this saves increases but the

update is still O(nv). It should also be noted that v grows by 1 each new subexpression

that is removed as a new variable is created for it. This method is generalized to −1, 0, 1

reasonably easily by creating another table for subexpressions with different signs.

4.3.4 Bottom-Up CSE Approach

Wu et al. [89] propose a method they term Gate-Level Delay Computing CSE (GLDC-

CSE) for AES S-Box implementation. We expand this method to −1, 0, 1 instead of

0, 1 and refer to it as bottom-up CSE (BU-CSE).

GLDC-CSE considers building the tree from the opposite direction to TD-CSE similar

to RPAG. Instead of starting at the inputs, it starts at the outputs and works back to the

inputs. Compared with TD-CSE, finding common expressions is more computationally

intensive but can find better results as larger common subexpressions are preferred.

When building the tree from the bottom up, the size of the largest common subexpression

needs to be determined for every pair of vectors. The largest common subexpression is

then selected to be removed. For the example in Equation 4.5, x0 + x2 + x3 appears

twice. The subexpression, x6 = x0 + x2 + x3 is added to the table of updated equations
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leading to

y =



x2 + x3

x4 + x6

x1 + x4 + x5

x1 + x5

x6

x0 + x3

x1 + x4 + x5

x0 + x2 + x3



. (4.7)

It is important to note that there is a new row of x0 + x2 + x3 at the bottom added to

the equations. This is because inside of x6, there are still other subexpressions that

can be combined. For example, the matrix still contains a common subexpression of

x2 + x3 or x0 + x3 that can be removed.

The algorithm for removing common terms is described as follows:

(1) Compute the number of common terms for each pair of vectors and store this

as the pattern matrix

(2) Find the largest value in the pattern matrix and the vectors to which it

corresponds

(3) Remove that subexpression from all matching vectors following the process

described for the example in Equation 4.7

(4) Update the pattern matrix

(5) Go to step 2 until the largest value in the pattern matrix is 1

To expand this to weights of −1, 0, 1 the computation of the pattern matrix becomes

slightly more complicated. However, the methodology remains the same.
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4.3.5 Opportunities for further improvement

Due to the scale of the problem, an exhaustive search of the space for CSE is not

feasible. RPAG does a much broader search than the greedy bottom up or top down

CSE approaches. One possible path for further work could be to find a way to reduce

the search space of RPAG and find a way to make it massively parallel. The top down

and bottom up CSE methods are already searching a minimal portion of the space.

These CSE algorithms could be adapted to randomly choose a slightly less optimal

path occasionally. Perhaps with many runs, a better solution could then be found.

4.3.6 Exploiting Idle Hardware

The computation required to compute each layer in a CNN can vary significantly. This

property of the network leads to an unequal distribution of computational load amongst

the network. This is caused by reduction operations, such as max pooling.

When a fully pipelined adder tree is used to implement the convolutions as discussed

in section 4.2.4, these reduction operations can lead to the tree being idle for multiple

cycles. When the number of inputs each cycle is ≥ 1, it is straightforward to construct

an efficient hardware block by implementing multiple versions of the adder trees in

parallel. This hardware will be utilized every cycle. After reduction operations, the

number of inputs each cycle can decrease resulting in idle cycles and an inefficient

design. Time multiplexing the computation for different sets of weights destroys a

lot of the advantages of the adder tree approach as it becomes much more difficult to

eliminate subexpressions and exploit sparsity.

There are two approaches that can take advantage of this idle time and remove this

inefficiency in the implementation. The first is to compute the additions over multiple

cycles. This is desirable when the inputs into the convolution have a sufficiently high

bitwidth. The second approach is to increase the precision in the adder tree so that

a higher accuracy can be obtained. This is useful when very low precision inputs are

being used.
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Reset

a b

+Carry

Carry Out Out

Figure 4.6: Word or Bit Serial Adders/Subtractors

4.3.6.1 Computing over multiple cycles

When computing over multiple cycles the bitwidth used is important. In this case, 16

bit inputs are assumed. A 16 bit adder requires 2 slices on a Xilinx Ultrascale FPGA to

be implemented. If this computation is performed over 4 cycles with a 4 bit word size,

the area required to implement the adder is only half a slice. With a bit serial adder,

the result is calculated over 16 cycles and only requires a single LUT or 1
8

of a slice.

Figure 4.6 shows a diagram of how addition or subtraction can be computed over

multiple cycles. The reset discards carry information to begin computation of the

next set of numbers. For addition, the carry is reset to 0. For subtraction with 2s

complement, the carry is reset to 1. The inputs a and b are added with the carry to

output the result for that word or bit. In the case of subtraction, b will need to be

inverted bitwise which is implemented inside the same LUT. The carry out is stored for

the next word or bit to be computed. The output is passed directly into the next adder

of the tree.

4.3.6.2 Increasing Precision

Another way to exploit idle cycles in the adder trees is to use higher precision. In a

similar way to the bit or word serial adder, extra cycles can be utilized if the precision

is increased. Consider, for example, if binary inputs were used in the adder tree. The

adder tree is now implementing a pop-count on these binary inputs. If the adder tree is

only needed every two cycles, increasing the precision of the inputs to 2 bits exploits

idle time. The adder tree is used twice over two cycles to compute the result.
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Increasing the precision in this way does not impact the hardware used significantly

but can provide a simple way to improve the accuracy of the model.

4.4 Summary

This chapter explored the implementation of TNNs for inference under the assumption

that the weights are known. It described how to implement different components of a

TNN in hardware for an FPGA. Of particular note is the implementation of convolutional

layers. Examining the convolution operation, it was determined that convolutional

layers can be implemented without multipliers if the weights are constrained to -s,0

and s. If an irregular adder tree is used to compute the convolution operation, sparsity

is very effectively exploited. Additionally, CSE can be applied to this adder tree to

further reduce computational requirements. The next chapter will explore two case

studies for the application of this technique.



Chapter 5

Unrolling Case Studies

Chapter 4 proposed methods to implement components of CNNs in hardware. It

particularly focused on the case where the weights of the network are restricted to

−1, 0, 1 and known at design time. This led to the proposal of a technique of unrolling

the network and using CSE to reduce hardware utilization. This chapter focuses on the

application of this to two different problems using different systems. The first is the

well known dataset, CIFAR10. The task in this dataset is to classify relatively small

images (32× 32) into ten classes. This is implemented on an AWS F1 instance and was

published in TRETS as Unrolling Ternary Neural Networks [79].

The second is for the problem domain of Automatic Modulation Classification (AMC)

where the type of modulation in Radio Frequency (RF) transmissions needs to be

determined. Detecting what modulation is used can give insights into the device used

to transmit it and the capabilities of the RF channel. Recently O’Shea et. al. [62]

published a dataset with 24 different modulation classes. Section 5.2 implements a

CNN in hardware to classify these signals on the Radio Frequency System on Chip

(RFSoC) board also known as the ZCU111. A full system implementation is created,

reading inputs from the ADC and classifying them. Section 5.2 was accepted to FPT-19

as Real-time Automatic Modulation Classification [78]. Section 5.2 also includes some

extensions beyond this paper to lower precision activations.

Both implementations achieve very low latency and high throughput compared with

published literature. The CIFAR10 dataset and O’Shea datasets were chosen to explore

the unrolling technique. This allows an exploration of both 1D and 2D convolutions.

The more complex dataset, imagenet, was not chosen as it requires very large networks

72
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and would have required multiple FPGAs. As this work is a demonstration of the

technique rather than a solution for a particular application, CIFAR10 is sufficient. As

the networks contain a variety of layer sizes, they effectively evaluate the methodology

for implementing convolutional layers.

5.1 CIFAR10 Case Study

This section considers applying the techniques discussed in Chapter 4 to the network

described in Li et al. [48], on the CIFAR10 dataset which provides 10 different image

types: airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. A CNN

similar to VGG-7 was trained using a scheme adopted from Li et al. The following

parameters were used:

• A batch size of 128

• An initial learning rate of 0.1

• Learning rate decays by a factor of 0.1 every 100 epochs.

• Run for 120k steps or 307.2 epochs

• Adam optimizer was used

The models were also trained with data augmentation as described by Li et al. [48]

where the image is padded with 4 pixels to each side and randomly cropped back to

the 32× 32 image size during training. Li et al.’s method of training a low precision

CNN utilises a threshold

∆∗ ≈ ε · E(|W |) (5.1)

where Li recommend a value of ε = 0.7. If the magnitude of the floating-point weight

is less than this threshold, ∆∗, it is set to 0. Otherwise the sign of the floating-point

weight is used multiplied with a scaling factor s. The parameter ε thus directly controls

the sparsity of a layer in this method.

This technique of adjusting ε to trade off accuracy and sparsity of the network simply

and quickly is not explored in Li et al. [48] but is a strong feature of their method and
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Table 5.1: Effect of ε on sparsity and accuracy for CIFAR10

TNN Type ε Sparsity ( % ) Accuracy (Top 1)

Graham [26] (Floating Point) - - 96.53%
Li et al. [48], full-size 0.7 ≈ 48 93.1%
Half-size 0.7 ≈ 47 91.4%
Half-size 0.8 ≈ 52 91.9%
Half-size 1.0 ≈ 61 91.7%
Half-size 1.2 ≈ 69 91.9%
Half-size 1.4 ≈ 76 90.9%
Half-size 1.6 ≈ 82 90.3%
Half-size 1.8 ≈ 87 90.6%

important to this approach as sparsity directly effects the size of the hardware. The

network architecture proposed by Li et al. was modified by reducing the number of

filters by half in all convolutional layers of the network and reducing the size of the

dense layer eight fold before training. This was done as the impact on accuracy is minor

but the size of the network for a hardware implementation is dramatically reduced.

The results obtained for different values of ε are summarised in Table 5.1. Note that

the result of the implementation in the second row of the table is higher than the 92.6%

reported by Li et al. [48] which is likely due to longer training time. As Table 5.1 shows,

the choice of ε = 0.7 produces a network with high accuracy but is relatively dense, with

a sparsity of around 47%. The remaining results were obtained by maintaining ε = 0.7

in the first layer, ε = 1.0 for the dense layers and adjusting all the other convolutional

layers to use a larger value of ε. As ε increases, a slight drop in accuracy is observed

with an increase in sparsity dependent on the value shown in Table 5.1.

With the value of ε = 1.4 chosen from Table 5.1, the computation required for the

network is reduced by almost half compared to a value of ε = 0.7. This is extremely

advantageous as, for this works implementation of Equation 2.21, increased sparsity

reduces the area allowing a larger design to fit on a FPGA. The final network architecture

chosen is given in Table 5.2. Batch normalization and ReLU activations are used after

each convolutional and dense layer.



5.1 CIFAR10 Case Study 75

Table 5.2: Architecture of the CNN used for CIFAR10

Layer Type Input Image Size Num Filters ε Sparsity

Conv2D 32 x 32 x 3 64 0.7 54.7%
Conv2D 32 x 32 x 64 64 1.4 76.9%
Max Pool 32 x 32 x 64 64 - -
Conv2D 16 x 16 x 64 128 1.4 76.1%
Conv2D 16 x 16 x 128 128 1.4 75.3%
Max Pool 16 x 16 x 128 128 - -
Conv2D 8 x 8 x 128 256 1.4 75.8%
Conv2D 8 x 8 x 256 256 1.4 75.4%
Max Pool 8 x 8 x 256 256 - -
Dense 4096 128 1.0 76.2%
Softmax 128 10 1.0 58.4%

Table 5.3: Comparison of CSE techniques on ternary weights with
2-input adders (top) and 3-input adders (bottom) for the first layer

Technique Avg Adders Avg Reg Avg Add/Reg Avg Time (s)

Baseline (2-input) 755.2 146.5 901.7 -
RPAG (2-input) 460.6 26.7 487.3 52.3
TD-CSE (2-input) 300.4 309.8 610.2 0.317
BU-CSE (2-input) 296.3 345.7 642 0.459

Baseline (3-input) 406.2 54.1 460.3 -
RPAG (3-input) 324.5 7.5 332 28460.8
TD-CSE (3-input) 246.7 294.5 541.2 0.297
BU-CSE (3-input) 258.8 321.7 580.5 0.474

5.1.1 The Impact of Subexpression Elimination Techniques

To compare the effectiveness of the three CSE techniques described in Section 4.3.1

ten models with the above network, each with a random initialisation, were trained

with a chosen ε = 1.4. The accuracy obtained from these models with floating-point

activations is 91.7%± 0.1% and using 16 bit fixed point activations is 90.9%± 0.1%.

The first layer was selected from all ten trained models with a matrix size of 27 inputs

and 64 outputs where all values are −1, 0, 1. The average results of the subexpression

elimination techniques are compared in Table 5.3 for 2-input as well as 3-input adders.

It can be seen RPAG has the lowest register and adder combined cost. This is likely

the smallest hardware cost for an FPGA due to the structure of adders having optional
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Table 5.4: Comparison of CSE techniques on ternary weights with
2-input adders (top) and 3-input adders (bottom) for the second layer

Technique Avg Adders Avg Reg Avg Add/Reg Avg Time (s)

Baseline (2-input) 8936.4 254.3 9190.7 -
TD-CSE (2-input) 3970.6 1521.5 5492.1 20.68
BU-CSE (2-input) 3890.3 902.0 4792.3 55.94

Baseline (3-input) 4536.7 91.6 4628.3 -
TD-CSE (3-input) 2826.8 1447.9 4274.7 20.78
BU-CSE (3-input) 2425.6 439 2864.6 58.59

registers at the outputs. The cost on the FPGA of an adder and a register compared

with a register alone is similar, hence the rightmost column provides the most meaningful

comparison [45]. These results suggest that RPAG is the best technique, followed by

TD-CSE, then BU-CSE.

However, experiments showed that RPAG does not scale well to the larger layers as

shown by the significant running time for the smallest layer in Table 5.3. The scalability

of these techniques to larger matrices is significant for this application, as the matrix

size grows significantly in the subsequent layers. For those, the TD-CSE method is

the most scalable as it can skip large portions of the computation each cycle. These

results only reflect the first layer of a network with more outputs than inputs. In all

subsequent layers there are more inputs than outputs in the rest of a CNN.

Table 5.4 shows a comparison between the TD-CSE and BU-CSE techniques for the

larger matrices in layer 2. These matrices had 576 inputs and 64 outputs with a sparsity

of around 75%. These results show that the BU-CSE technique finds better solutions

for this configuration. It was not possible to run RPAG on these matrices as the large

size makes it infeasible. This suggests that BU-CSE is better for larger matrices. The

results, however, are similar enough that both should be run to find a better solution.

In the following, one out of the ten models trained for ε = 1.4 was selected and applied

CSE to its weights in all convolutional layers to reduce the amount of computation

required for the FPGA implementation. Table 5.5 shows the results of running subex-

pression elimination on the convolutional layers of the trained network described in
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Table 5.5: Common Subexpression Elimination on the Convolutional
Layers; Only 2-input adds are compared in this table for consistency

Layer Method Adds Regs Adds+Regs Time(s) Mem(GB)

1

Baseline 731 137 868 - -
RPAG 451 31 482 64 0.008

TD-CSE 295 304 599 0.4 0.029
BU-CSE 295 321 616 0.5 0.03

2
Baseline 8432 249 8681 - -
TD-CSE 3782 1517 5299 24 0.1
BU-CSE 3686 858 4544 64 0.17

3
Baseline 17481 491 17972 - -
TD-CSE 8466 2299 10765 89 0.18
BU-CSE 8492 1878 10370 545 1.1

4
Baseline 36155 586 36741 - -
TD-CSE 17143 4214 21357 873 0.63
BU-CSE 17309 3056 20365 2937 6.6

5
Baseline 71050 1198 72248 - -
TD-CSE 32829 6830 39659 3088 1.2
BU-CSE 33026 6109 39135 25634 44

6
Baseline 144813 1270 146083 - -
TD-CSE 62653 13852 76505 26720 4.8
BU-CSE 63832 10103 73935 147390 191.0

Table 5.2, comparing different techniques. The table does not show RPAG for layers

2-6 as it becomes computationally prohibitive. The reason that only the first two layers

use 3-input adders in Table 5.2 is that the remaining layers compute the result over

multiple cycles as discussed in Section 5.1.2. Here, 3-input adders can not be efficiently

utilized.

The results from Table 5.3 show that RPAG is the most successful on the first layer

of the network. Table 5.5 shows that, except for the first layer, BU-CSE finds the

superior solution on the chosen network. One possible reason is the relative numbers of

inputs and outputs as shown by the contrasting results in Tables 5.3 and 5.4. Layer 1

matrices used for the comparison in Table 5.3 have a smaller number of inputs than

outputs. Conversely, layers 2-6 have a much larger number of inputs than outputs.

The scalability of BU-CSE and TD-CSE should be mentioned as the time taken to
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Table 5.6: Hardware Usage of the Convolutional Layers

Layer Method CLB/148K FF/2.4M LUTS/1.2M P&R(hrs)

1

Baseline 1400 8723 8272 0.5
BU-CSE 820 4499 5230 0.45

2
Baseline 15231 119848 116345 1.08
BU-CSE 10258 71908 66131 0.93

3
Baseline 15171 102657 77743 1.9
BU-CSE 8772 61965 36611 1.13

4
Baseline 30536 206940 164458 4.25
BU-CSE 16909 118476 73581 2.68

5
Baseline 18414 165794 85743 3.86
BU-CSE 7579 89820 39805 1.72

6
Baseline 35117 335134 180402 11.15
BU-CSE 13764 160634 74696 3.08

Table 5.7: Improvement in resource usage when applying BU-CSE vs Baseline

Layer % in Adds+Regs % in CLBs %in FFs % in LUTs

1 -29.0 -41.4 -48.4 -36.8
2 -47.7 -32.6 -40.0 -43.2
3 -42.3 -42.1 -39.6 -52.9
4 -44.6 -44.6 -42.3 -55.3
5 -45.8 -58.8 -45.8 -53.6
6 -49.4 -60.8 -52.1 -58.6

run BU-CSE on the 6th (largest) convolutional layer is over a day, where as TD-CSE

only needs a couple of hours and significantly less memory. This time is relatively

insignificant for a model updated reasonably infrequently and can be considered an

extension of the training time.

The effectiveness of the CSE results can be compared by running Vivado with aggressive

area optimizations in synthesis and implementation in out of context mode. The Verilog

generated without CSE (‘Baseline’ in Table 5.6) is compared to the Verilog generated

after optimization with the BU-CSE algorithm. The effectiveness of CSE is compared

with the difference in the originally generated Verilog in columns ‘Adds’, ‘Regs’ and

‘Adds+Regs’. The runtime and peak memory used to run the CSE algorithm is shown

columns ‘Time’ and ‘Mem’. The last four columns show the logic resources after Place
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and Route (P&R) as well as its runtime. Table 5.7 compares the rows for Baseline

and BU-CSE from Table 5.6 by calculating the decrease when using CSE. The results

demonstrate that the solution to the CSE problem of an entire network layer is difficult

for Vivado to manage. The reason for the difference in results may be the abstracted

view of the problem that the CSE methods have. This allows them to explore the

problem in more detail and find a better solution than Vivado. Due to the use of

word and bit serial adders, the amount of area that is used for layers 3-6 is reduced

significantly compared to the amount of adders required. As discussed previously in

Section 4.2.6, it is ineffective to use the pruned adder tree for the dense layers and thus

CSE is not used for these.

5.1.2 FPGA Implementation

The network described by Li et al. [48] contains floating-point activations which limit

FPGA performance as it is hardware intensive to implement add and multiply blocks.

After the network was trained, the batch normalization variables and scaling coefficients

for the convolutional layers were extracted from the model. A python script then

computed the network performance using these weights on the CIFAR10 test set in

fixed point. By outputting the maximum absolute values obtained at various stages

of the calculation, a decision was made to use a total of 16 bits to maintain accuracy,

ensure no overflow and to simplify the implementation of the word and bit serial adders

discussed in Section 4.2.4. The weights of the network are all ternary values, however for

the activations of the network, 4 fractional bits were used leaving 12 integer bits. Each

layer is followed by batch normalization, containing vectors of constants, and also has a

scaling factor which are all floating-point values. These constant values were combined

in floating-point, as discussed in Section 4.2.5 and Equation 4.4, then quantized with

6 fractional bits leaving 10 integer bits. The number of fractional bits was obtained

experimentally to achieve maximum precision without the risk of overflow. This was

relatively simple to apply to the network and its impact on the performance achieves

the same result as the floating-point scaling reported in Table 5.1. The design was then
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Table 5.8: FPGA CNN Architecture blocks

Operation Image Size In Channel In Channel Out

Buffer 32x32 3 3
Conv 32x32 3 64
Scale and Shift 32x32 64 64
Buffer 32x32 64 64
Conv 32x32 64 64
Scale and Shift 32x32 64 64
Buffer 32x32 64 64
Max Pool 32x32 64 64
Buffer 16x16 64 64
Conv 16x16 64 128
Scale and Shift 16x16 128 128
Buffer 16x16 128 128
Conv 16x16 128 128
Scale and Shift 16x16 128 128
Buffer 16x16 128 128
Max Pool 16x16 128 128
Buffer 8x8 128 128
Conv 8x8 128 256
Scale and Shift 8x8 256 256
Buffer 8x8 256 256
Conv 8x8 256 256
Scale and Shift 8x8 256 256
Buffer 8x8 256 256
Max Pool 8x8 256 256
FIFO 4x4 256 256
MuxLayer 4x4 256 4096
Dense 1x1 4096 128
Scale and Shift 1x1 128 128
MuxLayer 1x1 128 128
Dense 1x1 128 10

implemented using Chisel3 [4] which facilitated the generation of irregular adder trees.

The CNN was partitioned into hardware blocks discussed in previous sections to stream

the images through the network as shown in Table 5.8.

As discussed in Section 4.2.4, convolutional layers can be implemented with word or

bit serial adders if the throughput is low enough. The max pool layer after the 2nd

convolutional layer shrinks the image from 32× 32 to 16× 16, dropping the throughput

by 75%. The 3rd and 4th convolutional layers therefore have 4 cycles to compute each
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Input Image

Conv1/2 (16-bit adders)

Max Pool 1

Conv3/4 (4-bit adders)

Max Pool 2

Conv5/6 (1-bit adders)

Max Pool 3

MUX Layer

Output

32x32x3 3 values every cycle

32x32x64 64 values every cycle

16x16x64 64 values every 4 cycles

16x16x128 128 values every 4 cycles

8x8x128 128 values every 16 cycles

8x8x256 256 values every 16 cycles

4x4x256 256 values every 64 cycles

4096 4 values every cycle

Figure 5.1: Impact of Max Pool Layers

addition. As 16 bit fixed point representation is used for the activations, the 3rd and

4th convolutional layers can use 4 bit word serial adders requiring a quarter of the

area. Similarly for the fifth and sixth convolutional layers, the throughput required is

only one output every sixteenth cycle. Hence, bit serial adders are used to compact

the design to 1
16

of the area of a full adder while maintaining sufficient throughput to

ensure a fully pipelined design. This avoids the adders idling by creating hardware to

compute the result over numerous cycles.

Figure 5.1 demonstrates how this impacts the design at a high level. The left side shows

the image size, while the right side shows the throughput required. This structure allows

the pruned adder tree to be implemented efficiently while still exploiting unstructured

sparsity and common subexpressions in the design to reduce the area required. It is

ineffective to implement the dense layer using CSE as discussed in Section 4.2.6.
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Table 5.9: Ops needed to compute

Layer Num Mults Num Mults With Sparsity With CSE

Conv1 32*32*3*3*3*64 1769472 716800 630784
Conv2 32*32*3*3*64*64 37748736 8637440 4653056
Conv3 16*16*3*3*64*128 18874368 4559616 2654720
Conv4 16*16*3*3*128*128 37748736 9396480 5213440
Conv5 8*8*3*3*128*256 18874368 4656768 2504640
Conv6 8*8*3*3*256*256 37748736 9356736 4731840
Dense 4096*128 524228 524228 10484561

SM 128*10 1280 1280 25601

Total 153289924 153 MMACs/Image 38 MMACs/Image 21 MOps/Image

Table 5.9: 1 Obtained by converting one MACs to two Ops

5.1.3 The Aggregated Network

The VGG-7 network blocks for the FPGA design are described in Table 5.8. This

architecture is designed to accept a single pixel each cycle. Given an image size of

W ×W , W 2 cycles are therefore required to stream each image in. Hence, classifying a

new image every W 2 cycles and assuming a clock frequency of fclk gives a throughput

of fclk
W 2 classifications/second. The ternary MACs required to compute the VGG-7 style

network described in Table 5.2 for a single image is given in Table 5.9. Operations in

Max Pool and batch normalization are orders of magnitude lower than the convolution

and not included in this total.

Hence for a fully floating-point implementation with the equivalent throughput to

this FPGA implementation, this network requires a total of 153 MMAC/Image ×
fclk
W 2 Images/sec × 2 Ops/MAC. In the case of a network with ternary weights, the

multiplication is with -1,0 and 1. Table 5.9 then shows the MMACs after accounting

for sparsity, reducing the cost per image to 38 MMACs. As discussed in Section 4.2.4,

this can be implemented with only adds and subtracts with the CSE structure. The

multiplication is performed in the dense layers but no longer in the convolutional layers

and hence the final column in Table 5.9 shows the MOps needed on the FPGA for a

single image, counting 1 MAC as 2 Ops. The actual computation performed on the

FPGA with CSE is therefore 21 MOps/Image× fclk
W 2 Images/sec. With these parameters

and the implementation of the dense layers described in section 4.2.6, the largest dense
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layer needs 4096× 128× 2b = 1Mb of storage for the weights as each weight is only 2

bits. As this is computed at a rate of 4 per cycle, the bandwidth for this memory is

required to be 4× 128× 2b = 1Kb each cycle. Given that a BRAM on a Xilinx device

typically has a output bandwidth of 64 bits each cycle, this implies just 16 BRAMs are

needed to store the weights, each storing 64kb of data.

5.1.4 Hardware Results

The entire system is implemented on an AWS F1 instance and achieves a frequency

of 125 MHz. It is a loopback application which passes the CIFAR10 images in from

the C application using DPDK libraries [21], onto the FPGA via PCIe, though the

network and back to the C program. The relatively low clock frequency of 125 MHz

was necessary due to routing congestion that was observed when using tighter clock

constraints. The bottleneck is due to routing between the convolutional layers which

remained despite constraining the critical path onto the same Super Logic Region (SLR).

Due to the windowing for the convolution in the buffer layer, a large amount of routing

to different CLBs for the input of the matrix multiplication is required. Due to the

limits in routing resources, it is difficult to fanout the wide bus to all adders that require

that input. The critical path is in the layers that have high numbers of inputs that are

going to a variety of locations. Conv2 has 9*64 inputs with 16 bit bus width. This is

a wide bus width, but requires a smaller number of unique locations and hence the

granularity of the routing can be coarse. Conv4 has 9*128 inputs with 4 bit bus width

and Conv6 has 9*256 inputs with 1 bit bus width. With a larger convolutional layer,

more fanout is required at these points. The critical path in this design is between the

two modules in bold in Table 5.8.

The synthesisable Verilog register transfer level (RTL) code was generated in Chisel3,

with custom modules being used to invoke components from the Vivado IP Core, such

as the FIFOs. The design was developed using Vivado 2018.2. The hardware was

verified with an input image passed into the design and obtaining identical output as
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Table 5.10: Vivado size hierarchy

Block LUTs/1182240 FFs/2364480

Conv1 3764 (0.3%) 10047 (0.4%)
Conv2 40608 (3.4%) 71827 (3%)
Conv3 55341 (4.7%) 56040 (2.4%)
Conv4 111675 (9.4%) 110021 (4.6%)
Conv5 73337 (6.2%) 79233 (3.4%)
Conv6 127932 (10.8%) 139433 (5.9%)
All Conv 535023 (45.2%) 631672 (26.7%)
Dense 12433 (1.1%) 19295 (0.8%)
SM 500 (0.04%) 442 (0.01%)
Whole CNN 549358 (46.5%) 659252 (27.8%)
Whole design 787545 (66.6%) 984443 (41.6%)

verified against a Python script used to compute the fixed point performance of the

network in Table 5.1. The code for the implementation is publicly available on github1.

Table 5.10 shows the resources used by various layers of the network in the implemented

design. In total, 66.6% and 41.6% of the LUT and FF resources were utilized.

For fclk = 125 MHz, the total theoretical Ops required for an equivalent dense floating-

point implementation is 153 MMAC/Image× 125MHz
322

Images/sec×2 Ops/MAC = 37.3

TOps/sec. For this implementation, multiplications in the convolutional layers are

not required and a significant portion of the operations can be removed. Hence, in

practice only approximately 2.5×1012 Adds/sec are necessary. The implemented system

achieves the throughput of classifying 122k images/sec and a latency of 29 µs as only

a fraction of the PCIe bandwidth is needed. This is including a DPDK [21] virtual

ethernet interface to send and receive packets from the FPGA. Table 5.11 gives a

comparison of this work with previously reported results for CIFAR10. This shows the

properties of different implementations. There are TOps column in this table to show

the actual ops computed on the FPGA, the logical ops and the equivalent floating-point

ops for the same sized network. As these operations require very few bits, multiplying

and accumulating with 1 or 2 bit numbers are typically integrated in a single logical

statement. For this reason the actual logical operations are also shown. The values in

1github.com/da-steve101/aws-fpga.git and github.com/da-steve101/binary connect cifar.git
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order for the TOps column are Actual/Logical/Equivalent (A/L/E). Table 5.11 shows

that this method significantly improves both latency and throughput compared with

the previous best reported results for FPGAs. The latency reported is for the entire

system.

Remarkably, this is achieved with better accuracy compared with previous work as

much higher precision activations are used. Despite the low frequency, the current

design already meets the performance of all existing comparable implementations even

after normalizing for the large FPGA used in this work.

It should be noted that for a fully floating-point network, 37.3 TOps/sec would be

required to achieve the same number of classifications. Only a fraction of these need

to be executed in practice due to this methods compile-time optimisations as shown

in the right two columns of Table 5.9. This shows the reduction is mostly due to

the implementation taking advantage of unstructured sparsity of 75%. This is further

reduced by the application of CSE to the adder tree to reduce the remaining operations

by removing the multiplications and merging computations. Not reflected in the TOps

but critical for the design is the 4 bit word serial adders and the bit serial adders which

reduce area by factors of approximately 4 for layers 3 and 4 and 16 for layers 5 and 6,

making this method feasible for the AWS F1 platform.

5.1.5 Comparison with Previous Work

The method proposed by Prost-Boucle et al. [67] achieves the previously best reported

low precision throughput on an FPGA for CIFAR10. This work implements a VGG-7

style network with ternary weights and activations. The approach is similar to Baskin

et al. [6] and Li et al. [50] at a higher frequency of 250 MHz and using hand written

Register Transfer Language (RTL) as opposed to C-based High-Level Synthesis (HLS)

tools. Their work is also the most similar to this method both in architecture and

network choice, but they used an FPGA approximately 4× smaller. Compared with

their work, this design achieves significantly higher FPS (122 k FPS vs 27 k FPS).



86 5 Unrolling Case Studies

Accounting for the much larger FPGA used in this work, this improvement in throughput

disappears as the frequency is 2× higher than achieved with this design. The reason

for the comparable throughput despite the advantage of exploiting sparsity is the use

of 16-bit activations in this work in contrast to ternary activations in Prost-Boucle et

al. [67] and binary activations in Fraser et al. [24]. This design choice results in higher

accuracy 90.9% on CIFAR10 compared to Prost-Boucle et al. with 86.7% or Fraser et

al. with 88.7%.

The custom ASIC accelerator by Jouppi et al. [36], was designed with datacenter

requirements in mind. Their work uses higher precision weights, meaning higher

accuracy can probably be achieved. Due to the much higher frequency of 700 MHz

compared to 125 MHz and the difficulty of comparing the amount of hardware used it

is hard to make a meaningful comparison on throughput. Given the reported die area

of 331mm2 and the Ultrascale of 2256mm2, the ASIC is significantly smaller. Hence,

in terms of throughput alone, the TPU is superior to this work. However, the latency

achieved by this design is very low. While the TPU does not have a benchmark for

CIFAR10, they quote a latency of around 10ms to achieve the peak throughput with

a batch size of 250 images. This is nearly three orders of magnitude more than the

implementation in this work. For latency sensitive applications, this is a significant

difference. Additionally, the TPU is not commercially available for purchase and is

accessible only through Google Cloud.

YodaNN [3] create a very small ASIC with an area of 1.9mm2. They use binary weights

and 12 bit activations and hence achieve a very high throughput for the area they used.

This achieves lower precision than the TPU and hence would likely lose some accuracy.

However, their throughput for the area is nearly 3× that of the TPU and, using 65 nm

technology, more than double the TPUs 28nm.

Venkatesh et. al. [85] use 14nm technology to claim a peak speed of 2.5 TOps/sec with

a size of 1.09mm2. This uses ternary activations and a half precision floating-point,

meaning it will likely have higher accuracy than YodaNN.
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Table 5.11: Comparison of CNN inference implementations for CI-
FAR10 where reported for ASICs (top) and FPGAs (bottom).

Reference Hardware Precision Freq.
(mm2,nm,LE3/LC3 ×106) (wghts, actv) [MHz]

[85] ASIC(1.09,14,–) (2,162) 500
[3] ASIC(1.9,65,–) (1,12) 480
[36] ASIC(331,28,–) (8,8) 700

[6] 5SGSD8(1600,28,0.7) (1,2) 105
[50] XC7VX690(1806.25,28,0.7) (11, 1) 90
[51] 5SGSD8(1600,28,0.7) (1,1) 150
[67] VC709(1806.25,28,0.7) (2,2) 250
[83] ZC706(961,28,0.35) (1,1) 200
[24] KU115(1600,20,1.45) (1,1) 125
[86] KU115(1600,20,1.45) (1, 1) 200
This work VU9P(2256.25,20,2.6) (2,16) 125

1 First layer is fixed point, 2floating-point, 3 LE and LC are from Xilinx or Altera
documentation of the FPGAs

Wang et. al. [86] propose a method of training binary neural networks that is favourable

for FPGAs. By designing a network that efficiently uses FPGA architecture, they

are able to achieve a high density. However, in their approach only certain sections

of the network is unrolled due to area constraints. It is unclear from their paper the

throughput that this implementation achieves.

To summarise, the method proposed in this work achieves the highest throughput and

the lowest latency reported on an FPGA platform so far, significantly reducing the gap

between the highly customized ASIC architectures.

Figure 5.2 shows a comparison of accuracy and throughput normalized for Logic Elements

(LE) and Logic Cells (LC). This figure compares the available FPGA implementations

on the CIFAR10 dataset. Due to the higher precision activations chosen in this work,

the accuracy achieved by this design is significantly higher. Despite the higher precision

used, this design keeps up in throughput per LE or LC with other much lower precision

implementations.

For figure 5.2, all the implementations do not exploit sparsity of CSE as this work does.

These implementations typically rely on storing the weights in memory and loading
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Table 5.12: Comparison of CNN inference implementations for CI-
FAR10 where reported for ASICs (top) and FPGAs (bottom).

Reference Latency TOps/sec FPS Accuracy
A/E1

[85] 2.5/2.5 – 91.6%2

[3] – 1.5/1.5 434 –
[36] ≈10 ms 86/863 – –

[6] – – 1.2 k2 84.2%
[50] – 7.7/7.7 6.2 k 87.8%
[51] – 9.4/9.4 7.6 k2 86.31%
[67] – 8.4/8.4 27 k 86.7%
[83] 283 µs 2.4/2.4 21.9 k 80.1%
[24] 671 µs 14.8/14.8 12 k 88.7%
[86] – – – 85%
This work 29 µs 2.5/37.3 122k 90.9%

1 Actual/Equivalent, 2estimated, 3 92 TOps/sec peak
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Figure 5.2: Comparison of FPGAs on CIFAR10

them when needed. Additionally they all use lower precision than this work. This is

necessary to fit a reasonable sized network with high throughput on an FPGA. By
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removing a large number of operations, this work is able to use higher precision and

still fit a reasonably sized network.
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5.2 RFSoC Case Study

In Automatic Modulation Classification (AMC), the goal is to accurately identify the

modulation type used by a transmitting source based on RF samples taken from the

environment [94]. AMC algorithms typically rely on mathematical techniques, where

low-dimensional classifiers (e.g. support vector machines, K-nearest neighbours, linear

models, etc) are trained on features that are carefully hand-crafted by domain experts [1,

10, 70]. Deep neural networks, on the other hand, allow these features to be learned

during training, and have been shown to outperform the state-of-the-art, especially

when there is a low signal-to-noise (SNR) ratio in the transmission channel [62, 93].

While research into deep learning methods for AMC has gained significant traction,

there is far less research on realizing these machine-learning based systems as real-time

hardware implementations. CNNs are typically compute-bound [35], and while domain-

specific accelerators can offer markedly better performance over commodity general-

purpose hardware, they are usually targeted towards computer vision applications where

a classification throughput of tens to hundreds of classifications per second is sufficient.

Figure 5.3 shows this effect on a modern NVIDIA RTX 2080 Ti GPU, which tops out
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at a peak throughput of ≈ 30k classifications per second on the smaller models. In

addition, a large batch-size plays a vital role in sustaining this throughput, which may

not be feasible for a real-time implementation due to latency constraints. For Radio

Frequency (RF) applications, the data-rate can be much higher on the order of hundreds

of millions of samples per second, and hence, both latency and throughput of the AMC

design are critical for sensing and responding to changes in the RF channel. FPGAs

can play a vital role in realising these high-speed real-time systems, as they have been

a popular choice in digital signal processing (DSP) applications for several decades

now [81]. In addition, the programmable logic offered by FPGAs tie well into the world

of machine learning [14, 25, 55], where models and algorithms are continuously evolving

and pushing the research frontiers.

The Xilinx ZCU111 RFSoC [19] is a new FPGA-based radio platform targeted for

research and development on Software-Defined Radio (SDR) applications. The platform

is built on the Zynq Ultrascale+ SoC family, and offers runtime-programmable multi-

gigasample RF transceivers and soft-decision forward-error-correction hardware blocks

for building high-speed radio systems. In this section, the power of this new RFSoC

platform is leveraged to build an end-to-end system for doing real-time automatic

modulation classification using state-of-the-art machine learning methods. As seen

from Figure 5.3, this method improves the classification throughput by several orders

of magnitude on the RFSoC platform (batch size 1), while achieving competitive

classification accuracy on a large number of modulation classes.

All network designs discussed in this section are trained and evaluated on an open-source

dataset created by O’Shea et. al. [62]. The RadioML 2018.01A dataset2 is a collection of

raw I/Q samples that have been captured over-the-air using USRP devices as described

in [62]. Each training sample is a time-series of 1024 I/Q sample pairs, accompanied by

a label that identifies its modulation class. There are a total of 24 modulation classes

recorded at 26 SNR levels, ranging from -20dB to +30dB in increments of 2dB. Each

{modulation class,SNR} pair has 4096 training examples, and hence, there are a total

2https://www.deepsig.io/datasets, Accessed: July 2019

https://www.deepsig.io/datasets
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of 2.56M labeled I/Q time-series examples in the entire dataset. The 24 modulation

classes of the signals are: OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK, 32PSK,

16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM,

AM-SSB-WC, AM-SSB-SC, AM-DSB-WC, AM-DSB-SC, FM, GMSK and OQPSK.

This dataset was divided into training (90%) and test sets (10%).

5.2.1 Related Work

Deep learning for RF applications is a relatively new field, and in particular, existing work

on AMC has been restricted to model design and evaluation purely in software. Mendis

et. al [59] compute the spectral correlation function (i.e. a cyclo-stationary feature

extraction step) and implement a deep-belief network for classifying five modulation

classes. In [54, 69], the authors report the effectiveness of various deep neural networks

on ten modulation classes, and demonstrate several strategies that help reduce training

time. Zhang et. al [91] propose a heterogeneous CNN / LSTM (long short-term

memory) model that delivers high classification accuracy on eleven modulation classes.

While inference runtime is reported for CNN networks (the order of a few seconds), the

authors do not report runtime of the proposed heterogeneous models, which is likely to

be longer due to the increased complexity in the models. O’Shea et al. [61, 62] design

and evaluate two CNN models (VGG10 and ResNet33) and demonstrate competitive

accuracy performance on 24 modulation classes. In all of these studies, runtime

boundaries for real-time implementation are either not reported or are incomplete. This

work aims to fill this research gap.

The models proposed in [62] – VGG10 and ResNet33 – were used as the baseline.

Design strategies were explored to achieve a high-speed and resource-efficient FPGA

implementation. In order to achieve this, experiments were performed with low precision

variations of the VGG10 network and the tradeoff of computation with accuracy was

explored. Due to the size of the ResNet33 model, implementing it on an FPGA with high

throughput is difficult for two reasons: (1) the model size is too large to be spatially

mapped to the FPGA fabric, which limits the achievable classification throughput
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significantly, and (2) the residual connections create an unbalanced design which can

result in bottlenecks if large amounts of on-chip memory are not available to store

intermediate activations. Hence, the smaller and simpler VGG10 model was chosen

instead for a real-time FPGA-based AMC implementation.

The VGG10 model has seven 1D convolutional layers followed by three dense layers.

All of the convolutional layers have a kernel size of three and a stride of one. The

convolutions are followed by maxpool, batch normalization [33] and the ReLU activation

layers. In [62], the first two dense layers use alpha dropout [40] followed by the SELU

activation function. This training method was used for networks with floating-point

precision, but swapped alpha dropout layers with batch normalization layers when

training low-precision networks for improved training stability.

5.2.2 Training Method

All models are trained on the RadioML 2018.01A dataset. The batch size was set to

128, the initial learning rate to 10−3, and to train for 250k steps. The learning rate was

set to smoothly decay exponentially at a rate of 0.5 every 100k steps. The dataset was

partitioned into a 90% – 10% split to create the train and test sets respectively, such

that each {SNR, modulation class} pair had 3686 train and 410 test examples. For

training, samples captured at ≥ +6dB SNR were used which is typically the minimum

signal strength observed in most wireless communication systems. This improves the

convergence and ensures that the CNN is able to achieve the best classification accuracy

for typical real-time use cases. In addition, the teacher-student [2] training methodology

was used to further improve accuracy. In this case, for all VGG10 networks, including

floating-point implementations, a trained ResNet33 model was used as the teacher.

Ternary weight networks were quantized using the method described in Section 5.1,

which results in a network with ternary weights and floating-point activations. For

networks with quantized activations, the floating-point activation values were first
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clipped between 0 and 1, and then computed

x′ =
round(x(2k − 1))

2k − 1

where x is an activation, and k is the number of bits to use for the quantization. This

activation quantization is done after the ReLU of each layer.

5.2.3 Model Design

Using model design techniques described in this chapter, low precision CNNs are

implemented and evaluated. Several different model sizes are explored where the goal is

to maximize classification accuracy as much as possible while fully utilizing the available

FPGA resources. Table 5.13 details all the models and their properties explored in this

section.

The first four networks in Table 5.13 are trained and tested with floating-point weights

and activations. All the networks with the prefix TW- are trained with ternary weights

(i.e. {-1, 0, 1}). For all networks, ν = 0.7 was used for the first layer, ν = 1.2 for

the remaining convolutional layers, and ν = 0.7 for the two dense layers with ternary

weights. Networks with -BA- in the model name refers to binary activations, where

all activations from the layers are binary including the first two dense layers. Finally,

-INCRA- refers to a network that was trained with incrementally increasing precision of

activations, starting with 1b activations after the first layer. The incremental precision

network, TW-INRCA-128, was trained with quantized activations for the first four layers

to the following number of bits: 1, 2, 4, and 8. The next two convolutional layers do

not have quantized activations and the final convolutional layer was quantized back to

binary acitvations along with the first two dense layers. All networks have floating-point

batch normalization variables. Neither the weights and activations of the final dense

layer, nor the input data in all networks is ever trained with quantization.



5.2 RFSoC Case Study 95

Table 5.13: Properties of various models designed and explored in this paper.

Model Name Architecture Precision1

(Wts/Acts)
# params # MACs Accr2

ResNet33 [62]
{ResBlock}×6,
(FC, 128)×2,
(FC/Softmax, 24)

32b/32b
(FP)

507k (2.03Mb) 111m 95.5

VGG10 [62]

{(Conv, K3, 64),
(MaxPool, S2)}×7,
(FC, 128)×2,
(FC/Softmax, 24)

32b/32b
(FP)

102k (407Kb) 12.8m 88.0

VGG10-64

{(Conv, K3, 64),
(MaxPool, S2)}×7,
(FC, 512)×2,
(FC/Softmax, 24)

32b/32b
(FP)

381k (1.5Mb) 13.3m 89.6

VGG10-128

{(Conv, K3, 128),
(MaxPool, S2)}×7,
(FC, 512)×2,
(FC/Softmax, 24)

32b/32b
(FP)

636k (2.5Mb) 51.1m 90.9

TW-64

{(Conv, K3, 64),
(MaxPool, S2)}×7,
(FC, 512)×2,
(FC/Softmax, 24)

2b/32b
(FP)

381k (95kb) 13.3m 78.8

TW-96

{(Conv, K3, 96),
(MaxPool, S2)}×7,
(FC, 512)×2,
(FC/Softmax, 24)

2b/32b
(FP)

490k (123kb) 29.1m 82.4

TW-128

{(Conv, K3, 128),
(MaxPool, S2)}×7,
(FC, 512)×2,
(FC/Softmax, 24)

2b/32b
(FP)

636k (159kb) 51.1m 82.1

TW-BA-64

{(Conv, K3, 64),
(MaxPool, S2)}×7,
(FC, 128)×2,
(FC/Softmax, 24)

2b/1b 102k (25kb) 12.8m 62.8

TW-BA-64-512

{(Conv, K3, 64),
(MaxPool, S2)}×7,
(FC, 512)×2,
(FC/Softmax, 24)

2b/1b 381k (95kb) 13.3m 67.7

TW-BA-128

{(Conv, K3, 128),
(MaxPool, S2)}×7,
(FC, 512)×2,
(FC/Softmax, 24)

2b/1b 636k (159kb) 51.1m 75.9

TW-INCRA-128

{(Conv, K3, 128),
(MaxPool, S2)}×7,
(FC, 512)×2,
(FC/Softmax, 24)

2b/(variable) 636k (159kb) 51.1m 80.6

1FP = 32b floating-point; 2Best accuracy at +30dB SNR
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(b) TW-INCRA-128
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Figure 5.5: Confusion matrix that demonstrates the effectiveness of
signal modulation classification with ResNet33 and TW-INCRA-128 models
at +6dB SNR.

5.2.4 Model vs Accuracy Tradeoff

Higher complexity models offer improved performance in terms of accuracy but come

at the cost of increased computation. Figure 5.4 shows the performance of different

models at different SNR levels. As ResNet33 has the largest number of parameters and
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operations, it clearly outperforms the rest of the less expressive models. Unfortunately,

as mentioned earlier, it is not feasible to implement a high-throughput ResNet33

model on the target RFSoC ZCU111 platform. Similarly, the VGG10 models with

floating-point precision are also infeasible due to the large area/performance overheads

of floating-point hardware on FPGAs. Hence, the focus was on evaluating models that

have ternary weights and fixed-point activations with varying number of filters.

The confusion matrices in Figure 5.5 show the distribution of incorrect classifications

when tested with signals at +6dB SNR. The distribution illustrates that, intuitively, the

difficultly in classification lies in similar higher-order modulation schemes. For example,

a valid 256-QAM signal could appear identical to a 16-QAM signal given the right

encoding, especially over varying SNR, which results in significant classication errors.

This is apparent when comparing Figures 5.5a (ResNet33) and 5.5b (TW-INCRA-128),

where most of the misclassifications in the hardware-friendly model are due to the

high-order modulation schemes. If a radio application does not require fine-grained

classification between modulation classes, much better overall classification performance

can be achieved. In Figure 5.5c, “super classes” of different modulation schemes were

created, which show that the classification accuracy across these “super classes” is

almost 100% with a hardware-friendly model like TW-INCRA-128. The misclassification

between M-ASK and M-PSK is due to OOK and BPSK modulation classes, which are

very similar binary modulation schemes.

5.2.5 Quantization Error

The networks trained in Table 5.13 use 32b floating-point for the batch normalization

variables and the final dense layer. During inference, the batch normalization variables

can be multiplied into the scaling factors for the convolution to give an equation

bn(x) = ax + b, where a and b are known constants that can be pre-loaded into

the hardware design. Note that some networks (e.g. TW-64) also use floating-point

activations. In order to avoid implementing floating-point blocks for portions of the

computation, the calculations are done in fixed-point instead. It was empirically
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Figure 5.6: High-level view of the final system implementation on the
ZCU111 RFSoC platform.

determined that these models deliver the best accuracy when 6 fractional bits in the

activation layers, and 8 fractional bits for the batch normalization variables are used.

Minimal numerical difference at the output was observed, typically around 2% for

the class with the largest output activation value. Table 5.14 demonstrates that this

proposed precision design strategy provides enough bits for stable implementations,

such that any difference in accuracy is essentially training noise.

Table 5.14: Model accuracies on test set before/after quantization
measured at +30dB SNR.

Model
Accuracy

(%)

Quantized
Accuracy

(%)

TW-64 78.8 78.7

TW-96 82.4 81.1

TW-128 82.1 81.7

TW-BA-64 62.8 63.1

TW-BA-64-512 67.7 67.4

TW-BA-128 75.9 75.9

TW-INCRA-128 80.6 80.2
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5.2.6 Scheduler

Figure 5.6 shows a high-level block diagram of the final implementation on the RFSoC

ZCU111 platform, which is detailed in this and the following sections.

The scheduler orchestrates any data movement between the ADC, the CNN-based AMC

core, and the Zynq Ultrascale host CPU. Data is communicated using the lightweight

AXI4 stream protocol, where I/Q samples and prediction outcomes are sent as packets.

The scheduler was designed as a configurable Xilinx IP core, allowing a user to easily

reconfigure data-widths of signals if needed.

5.2.7 Auto-generator

In the course of this work, a Python3 package was developed, which has since been

published as an open-source package in the pip3 packages repository called twn generator.

It is a Python implementation of the work previously implemented in Chisel3 for

Section 5.1 with additional features that improve the hardware-design productivity

significantly.

The Python package provides a general-purpose API that accepts matrix inputs ex-

pressed as comma-separated values (CSVs). Since convolutions can be represented as

matrix-vector multiplications, the Python package can be easily generalized to evaluate

any CNN model configuration, so long as the input matrix is conditioned appropriately.

The package then auto-generates the desired Verilog implementations of the CNN layers,

which can then be synthesized with the FPGA toolchains to create the final hardware

implementation.

Before generating the Verilog, the package also performs Common Subexpression

Elimination (CSE) on the input matrix in order to encourage result-sharing and to

alleviate computational redundancy in the network. In experiments for this thesis, it

was observed that this CSE step can reduce the computational requirements by as

much as 55% of the original network, which is crucial for deriving a highly pipelined
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architecture proposed in this work. The CSE outputs an irregular adder/subtractor

tree that computes a single output pixel of the convolution. The CSE is independent of

the activation precision or the throughput. The output tree from the CSE, along with

the specified precision and method of adding the inputs, is then used to generate the

RTL implementation of the computation.

Once the trained weights from a network are conditioned into a CSV file, generating

the Verilog to compute the convolutions is less than 40 lines of Python code. The

tree can also be fed into a C generator for quick verification of the test set results,

which offered a substantial runtime boost to the evaluation phase. As of now, the

package only supports the auto-generation of convolution layers, but an open-source

GitHub repository 3 is provided that contains Verilog source of other neural network

components (e.g.maxpooling). The maxpool and the dense layers of the VGG10

network are implemented in Verilog in a way similar to that described in Section 5.1.

As the activations are quantized for these networks too, the implementation of batch

normalization and ReLU is slightly different.

5.2.8 Implementation of Quantization, Batch Normalization

and ReLU

During inference, the batch normalization layer computes Y = ax+ b, which requires

a fixed-point multiplication for each output channel of the convolutional layer and is

frequently mapped to a DSP block on the FPGA. The batch normalization layer was

merged with the ReLU function, where relu(x) = x × (x > 0) was computed. For

quantized activations with k bits, the batch normalization and ReLU are implemented

as:

3github.com/da-steve101/radio modulation
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Yi =


1, if aixi + bi > 1

round((aixi+bi)(2
k−1))

2k−1 , if 0 ≤ aixi + bi ≤ 1

0, if aixi + bi < 0

(5.2)

On the FPGA, to compute the results with integers requires multiplying with 2k − 1

where necessary. The factor of 2k − 1 was incorporated into the batch normalization

variables, a and b, prior to transforming them to fixed-point numbers.

5.2.9 Throughput Matching

As discussed in Section 4.3.6, the throughput of a pipelined CNN implementation is

affected drastically by each maxpool layer. In a VGG10 model with 1D convolutions,

the throughput drops by a factor of two after each maxpool layer, since each subsequent

layer expects a smaller signal length at the input due to the maxpool operation. This

drop in throughput would result in idle cycles for fully pipelined designs, where the

hardware is simply waiting for new data to arrive before it is able to compute the

next outputs. The number of idle cycles is exacerbated deeper down the network, and

without throughput matching, the last convolution layer in VGG10 will be sitting idle

for ≈97% of the time, which is a significant underutilization of the available hardware

resources.

This property of the network can be exploited by doing careful throughput matching.

Since the architecture of the CNN model is known from the beginning, a priori infor-

mation is also available on the throughputs produced by each layer in the network.

Additional precision can be allocated to the activations between layers in such a way

that the number of idle cycles is minimized, or completely eliminated. For example, if

a {convolution + maxpool} layer produces 2b activations, instead of using 2b adders

in the subsequent layer, bit-serial adders can be used that compute each new output

over 2 cycles. Precision can keep increasing in this fashion after each maxpool layer,

which gives two positive outcomes: (1) the increased precision improves the accuracy of



102 5 Unrolling Case Studies

the network, giving higher-quality classifications at the same throughput, and (2) the

implementation can continue to use the bit-serial arithmetic units, which lowers the

hardware utilization cost to the equivalent of binary activation networks. This technique

essentially delivers an accuracy boost without any significant hardware overheads on the

RFSoC platform, as observed in Table 5.15 and Table 5.14 when comparing TW-BA-128

and TW-INCRA-128 (≈5% accuracy boost with <1% hardware overheads). Incrementally

increasing precision in this way is a core contribution of the work submitted to FPT-19

[78].

Throughput matching in the dense layers was also done. However, instead of increasing

precision, the datapath was unrolled in the dense layers such that its throughput

matched the arriving data rate at its input. On the RFSoC platform, the size of the

dense layers was increased from 128 in the baseline VGG10 model to 512 in these

proposed models without suffering from over-utilization. When mapped näıvely, the

last two dense layers in the baseline implementation sat idle for 75% of the time, which

is reduced to zero in the proposed models. In addition, the final resource utilization is

overall more balanced, as more DSPs and BRAMs are utilized to compute activations

and store weights of dense layers respectively.

5.2.10 Functional Implementation on the ZCU111

While accuracies for the proposed models are trained and reported on the RadioML

dataset for benchmarking purposes, a fully-functional implementation on the ZCU111

would require an end-to-end design where data captured from the on-chip ADCs is used

for training. This is because subtle circuit-level discrepancies can destroy classification

accuracy of models trained on a dataset that is not platform-specific.

In order to work towards this goal, a signal generator IP core that is capable of sending

modulated signals over the ZCU111’s DACs has also been created. On the receiver end,

an I/Q sample collector IP block designed to help capture the data was implemented.

Both IP cores are runtime configurable using the a lightweight AXI4-Lite interface (e.g.
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modulation class to transmit, number of consecutive I/Q samples to collect, etc). As

of now, the modulator IP core is capable of transmitting four different modulation

classes: BPSK, QPSK, 8PSK, and QAM16. In the future, the aim is to extend this

to cover other popular modulation classes, and also create a comprehensive dataset

like RadioML, but platform-specific to the ZCU111 board. The goal is to motivate

research and development of radio applications on the RFSoC platform by lowering the

engineering cost associated with data collection on the board.

5.2.11 Methodology

Vivado 2018.3 was used to synthesize designs, the AXI4 communication framework was

used to interface with the design through AXI4-Lite and AXI4-stream protocols and

the PYNQ framework to manage, visualize, and verify functional correctness on Jupyter

notebooks. For training, the Tensorflow framework was used to train and test various

models, using the Ternary Weight Networks [48] approach for quantizing the weights.

In order to support the claim for real-time modulation classification, an I/Q sample

rate of 500MHz was chosen and the CNN was designed to accept 2×I/Q samples each

cycle with a 250MHz clock.

5.2.12 Resource Utilization

Table 5.15 shows the resource utilization for the various models compared in this

work. The DSP usage is relatively constant as the convolutions do not use any DSPs.

TW-BA-64 shows significantly lower DSP usage as the dense layers have 128 outputs

instead of 512 like in all the other models. For binary-activation networks, the DSPs

are utilized by the batch normalization layer, which is fused at the output of the dense

layers. For both dense layers with 512 outputs, this is 1024 multiplications, whereas for

128 outputs only 256 multiplications need to be performed. It should be noted that

this is typically multiplying a 16 bit number with a 2 bit weight so mapping it to a

DSP is optional for Vivado as this could be computed with CLBs. The largest network,
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Figure 5.7: Completely automated toolflow for implementing a high-
speed unrolled convolutional neural network for doing automatic modula-
tion classification on the ZCU111 platform.

TW-128, fails to complete routing. All other designs met timing constraints with a 250

MHz clock.

The most interesting result in Table 5.15 is comparing TW-BA-128 and TW-INCRA-128.

The model TW-BA-128 has binary activations throughout the network. This leads to

lower hardware usage than TW-128 but comes at the cost of a 5.8% accuracy drop to

75.9% as seen in Table 5.14. The model TW-INCRA-128 differs from TW-BA-128 as it

has activations with increasing precision after each convolution layer (increasing from

1b to 16b, in powers of 2, and capped at 16b). This restores most of the accuracy, and

is only 1.5% less accurate on the test set than TW-128 (80.2%). However, looking at

the hardware utilization, both TW-BA-128 and TW-INCRA-128 have essentially the same

resource usage. This is because of the careful throughput matching carried out during
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Table 5.15: FPGA implementation resource utilizations. All mod-
els were compiled out of context at 250MHz. Target device:
xczu28dr-ffvg1517-2-e. 1 Failed to Route

Model CLBs LUTs FFs BRAMs DSPs

TW-64
28k

(53.5%)
124k

(29.1%)
217k

(25.5%)
524

(48.5%)
1496
(35%)

TW-96
47k

(89.3%)
232k

(54.7%)
369k

(43.4%)
524

(48.5%)
1207
(28.3%)

TW-1281 51k
(96.7%)

320k
(75.3%)

506k
(59.5%)

524
(48.5%)

1431
(33.5%)

TW-BA-64
11k

(21.2%)
58k

(13.7%)
92k

(10.8%)
76

(7.0%)
704
(16.5%)

TW-BA-64-512
15k

(27.6%)
80k

(18.8%)
108k

(12.7%)
521

(48.2%)
1471
(34.4%)

TW-BA-128
43k

(80.7%)
234k

(55.1%)
333k

(39.2%)
523

(48.4%)
1408
(33.0%)

TW-INCRA-128
42k

(80.2%)
211k

(49.6%)
324k

(38.1%)
512.2

(48.3%)
1407
(32.9%)

implementation, as described in Section 5.2.9. By designing the precision to increase

with decreasing throughput requirements, the accuracy is restored by using hardware

that would have otherwise been idle.

5.2.13 System Performance

To demonstrate the effectiveness of the method in practice, a simple dataset with four

modulations on the RFSoC board was generated. A DAC and ADC on the RFSoC

board were used in loopback fashion to generate BPSK, 8PSK, QAM16 and QPSK

signals. A dataset was generated with 500k signals for each modulation type, each 1024

I/Q samples in length as recommended by O’Shea et. al. [62]. No noise was added to

the signals. The dataset was then randomly partitioned into 90% train and 10% test

resulting in 180K train examples and 20k test examples. As the dataset was small and

simple, the baseline VGG10 network with ternary weights and fixed point activations

was chosen. The network achieved zero test set error rate in less than an epoch. This
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model was then put onto the board with the entire system as: Modulator → DAC →

Coaxial Wiring → ADC → CNN → DMA → CPU.

This design accepted 2×I/Q samples from the ADC in each clock cycle and computed

the prediction until 1024 I/Q samples had been provided before immediately starting

the next one. A sample rate of 500MHz generated 488K signals of length 1024, each

capturing 2.048 µs of data. This design was fully pipelined and matched this throughput.

According to Xilinx documentation, the ADC has zero latency. With minor delays for

some management logic, the entire network computed a classification in less than 2000

clock cycles from the first sample input or, with a 250MHz clock, 8µs. At a throughput

of 488K classifications/second and a latency of 8µs, real-time modulation classification

with high accuracy was achieved. The CPU has additional latency through the DMA,

which is larger than the latency for the classification but still on the order of µs. With

the 12.8 MMACs required to compute a single classification on the GPU, this network

computed the equivalent of 6.28 TMACs on the FPGA.

Table 5.16 shows the utilization of different components of the system design. This

shows there were significant portions of the FPGA unused in this design. Table 5.16

shows that at the top level, only 121k (30%) of the LUTs available were used by the

entire design. The overhead of the rest of the modulator, RF-core and DMA engine

was very small. Most of the resources were used by the CNN model implementation

TW-VGG. Table 5.16 shows the resources required by each of the components in the

CNN. TW-VGG-Cx show the resources needed to compute the convolutional adder trees

generated by this Python package where x refers to the layer number. The table shows

that layer 2 using 16 bit adders has the highest resource utilization. Layer 3 uses 8

bit adders, and only requires half the resources of layer 2 but has the same number of

output channels. Subsequent layers use lower bitwidth adders, hence use fewer resources

each time, until layer 6 and 7 which both use bit-serial adders. The first layer is the

exception as it has far fewer inputs – only 2× 3 = 6 – compared to the 64× 3 = 192

for layer 2-7. TW-VGG-Dx show the usage needed by the dense layers. D1 and D2 use

ternary weights and do not need DSPs to perform the multiplication, whereas D3 uses
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16b fixed-point weights to compute, which is mapped using DSPs. The resources used

by the batch normalization layers are all the same after each of the 7 convolutions and

the first two dense layers. They compute a 16b fixed-point multiplication, and hence

require 1 DSP block for each channel.

Table 5.16: FPGA implementation resource utilizations for RFSoC
Design. Target device: xczu28dr-ffvg1517-2-e.

Element LUTs FFs BRAMs DSPs

Top 121k 198k 162 710

TW-VGG 109k 194k 152 708

TW-VGG-C1 3k 4k 0 0

TWVGG-C2 31k 45k 0 0

TW-VGG-C3 17k 26k 0 0

TW-VGG-C4 7k 14k 0 0

TW-VGG-C5 5k 8k 0 0

TW-VGG-C6 4k 5k 0 0

TW-VGG-C7 4k 5k 0 0

TW-VGG-D1 2k 4k 0 0

TW-VGG-D2 2k 4k 0 0

TW-VGG-D3 0k 0k 0 4

BN-CLYR ×7 0k 2k 0 64

BN-DLYR ×2 0k 4k 0 128

AXI-DMA 7k 5k 0 0

MODULATION-
GEN

2k 2k 7 2

RF-CORE 3k 2k 0 0

5.3 Summary

In this chapter, two case studies were examined for the application of the architecture

described in Chapter 4. Section 5.1 used the AWS F1 platform to create a high

throughput and low latency image classifier for the CIFAR10 dataset. This section
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demonstrated the effectiveness of CSE in reducing the computation required for the

convolutional layers. Section 5.2 considered the AMC problem on the RFSoC ZCU111

development board. In addition to 16 bit activations, lower precision activations were

explored and their effect on hardware area examined. Throughput matching was

considered and hence an incremental precision scheme was proposed to exploit idle

hardware in exchange for higher accuracy. Both sections demonstrated very high

throughput and low latency implementations of TNNs.



Chapter 6

Conclusion

This thesis explored techniques to implement two machine learning methods on FPGAs.

Hardware architectures were proposed to implement these methods with high throughput

and low latency. The first method, NORMA, was discussed in Chapter 3. Chapter 4

proposed a methodology for implementing ternary neural networks on FPGAs. Chapter 5

applied the methodology to two different case studies demonstrating high throughput

and low latency. The following two sections summarise the contributions presented in

this thesis.

6.1 NORMA

In this thesis, a novel braiding technique for KAF sliding window algorithms was

presented. Chapter 3 showed that when applied to a fixed-point implementation of

NORMA, extremely low latency and high throughput can be achieved with similar

learning ability to a floating-point implementation.

This was achieved through the application of a proposed technique called braiding. The

formulation of NORMA was described in such a way so that the partial results could be

computed and combined in a pipelined way. This mitigated the issue of the dependency

in the NORMA update equations allowing high throughput to be achieved.

Compared to other approaches to implement KAFs, this method has significantly better

throughput and latency for any other architecture on an FPGA.

109
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6.2 Ternary Neural Networks

Chapter 4 described the unrolling of a convolution with ternary weights for very efficient

inference due to its ability to exploit unstructured sparsity. Combined with the use of

word or bit serial adders, this allows a very high throughput and low latency. While it

is difficult to take advantage of sparsity on traditional computational platforms such

as CPUs and GPUs, the method proposed has no overhead for exploiting sparsity as

redundancies are removed at compile time.

Chapter 4 also demonstrated that the technique of Li et. al. [48] can directly tradeoff

sparsity and accuracy by adjusting a single parameter. Exploiting this tradeoff reduces

the area needed for the implementation due to increasing sparsity for a slight decrease

in the accuracy.

As the proposed architecture does not require the image to be buffered, larger images

such as in ImageNet could still be used. The main constraint in the implementation

of this technique is the CNN size that will fit in a given hardware area. This method

has the disadvantage that, compared with other approaches that can support larger

networks, this method is restricted by the amount of hardware available. However,

it very efficiently exploits unstructured sparsity and common subexpressions. This

allows the design to remove a large portion of the computational task meaning, for

a given hardware area, it achieves very high throughput. As the architecture is not

dependent on buffering a batch of images to achieve high throughput a very low latency

is achieved.

In Chapter 5, varying the precision of the activations to match the throughput was

shown to dramatically improve accuracy while maintaining the same equivalent hardware

usage as binary activations. This incremental precision approach to exploit the change

in throughput after max pool layers improves efficiency usage of the hardware which is

converted into higher accuracy.
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6.3 Summary of Contributions

This thesis proposed the novel technique known as braiding for the implementation

of NORMA onto an FPGA. Through the application of this technique, the highest

throughput and lowest latency of a KAF on an FPGA was achieved.

The thesis also explored TNNs and how they might be implemented on a FPGA. By

unrolling the weights, efficient exploitation of the sparsity allows the generation of

compact high performance designs. It was also demonstrated that the application of

CSE can further decrease the hardware required to implement convolutional operations.

In the course of this work, a pip3 package twn generator was developed to allow

reproduction of results and the development of future techniques.

To demonstrate the effectiveness of the technique, two different datasets and platforms

were used. The AWS-F1 platform is designed for datacenter applications and was used

to classify images from the CIFAR-10 dataset. The RFSoC board which is designed

for high performance radio applications was used to solve the automatic modulation

classification problem.

6.4 Future Work

6.4.1 Kernel Methods

NORMA was chosen as an example application for braiding as it allows the flexibility

to implement classification, regression and novelty detection algorithms. The braiding

scheme described in Chapter 3 relies on properties of NORMA which are present in

other algorithms. Generalisation to these problems would be promising candidates for

further research.

The research in Chapter 3 used the same fixed point word length throughout each

design. A more efficient scheme could vary the precision along the datapath to achieve

similar accuracy with smaller word lengths. Further exploration of the precision required
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for different components of the algorithm could lead to decreasing the hardware area

needed to implement it.

One restriction that is notable from Table 3.1 is the restriction of the size of the

dictionary. Implementations of NORMA with multiple FPGAs could enable larger

dictionary sizes possibly improving the accuracy. This work has been made open source

and the results reproducible, with a desire that others make improvements and utilise

it in real-world machine learning problems.

6.4.2 Neural Networks

The approach of unrolling the entire inference computation has only recently become

feasible due to the increased size of FPGAs, improved quality of tools and research into

low precision networks. As FPGA capacity continues to increase, the unrolling of TNNs

may become more favourable, particularly for small to medium neural networks. Future

work could explore an implementation of ImageNet which utilises multiple FPGAs, in

particular using Amazon f1.16xlarge instances which contain 8 FPGAs. Research into

improving the merging of subexpressions for favourable routing in the convolutional

layers should also be explored. Increasing the precision beyond ternary weights is

possible if the CSE algorithm can cope with increased complexity.

One interesting avenue to explore would be developing hardware capable of exploiting

this tree structure without needing to be reprogrammed. If hardware could be designed

to directly execute the adder tree representing the convolution, a very high throughput

and low latency could be achieved.

Finally, adding another layer of complexity with an architecture search guided by the

hardware availability would mean a very complete package for automatic generation.

Finding the largest model that fits on an FPGA with this technique would be very

useful in the application of this technique.
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As low precision training techniques improve and FPGA sizes increase, the unrolling

methodology could become more effective for high throughput and low latency imple-

mentations as it allows larger networks to be used.
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A

1 NORMA

All code for the reproduction of results for NORMA is available in the github repo at

https://github.com/da-steve101/chisel-pipelined-olk.

2 TNNs

The github repo at https://github.com/da-steve101/binary_connect_cifar is

written in chisel3 that generates the VGG network in Verilog and python scripts

are used to verify the results and perform the CSE. This generated code is used in

https://github.com/da-steve101/aws-fpga and has an interface modified from the

AWS cl sde example in branch sde if test.

Subsequent to this work a python3 package was developed, twn generator. This

separates out the CSE and generation from chisel to make it more accessible for

developers.

3 Numerical example for Figure 3.5

To clarify figure 3.5, a numerical example is provided. Assume that νi = i or ν1 = 1,

ν2 = 2 etc. These values are multiplied with the weights α. For simplicity, it will be

assumed that αi = 1. The first 5 values are examples that are in beginning section of

the existing dictionary. They are young enough so that they cannot be evicted. These

results are just computed so sum1 = 3 and sum2 = 7. The 6th entry can only be

125

https://github.com/da-steve101/chisel-pipelined-olk
https://github.com/da-steve101/binary_connect_cifar
https://github.com/da-steve101/aws-fpga


126 A

evicted if every new example is added. If the very first one is added, it is still possible

for it to be evicted, otherwise it is not. We shall follow the case of where the first

example is added and hence it is still possible to be evicted. In this case sum3 = 5,

w6or7 = 6, w7or8 = 7 and w8or9 = 8. On the next cycle, assume the example is not added

to the dictionary. Therefore SumR = 3 + 7 + 5 + 6 = 21, WD−1 = 7 and WD = 8.
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