Effiicient FPGA implementations of Machine Learning Algorithms

Philip Leong (梁恆惠) | Computer Engineering Laboratory School of Electrical and Information Engineering, The University of Sydney

- > Focuses on how to use parallelism to solve demanding problems
 - Novel architectures, applications and design techniques using VLSI, FPGA and parallel computing technology
- > Research
 - Reconfigurable computing
 - Machine learning
 - Nanoscale interfaces

Initially expectation : Heralded single photon rate should enhance significantly without degrading coincidence to accidental ratio (CAR)

Time Multiplexing of Single Photons

Cool Transistors (0.35u CMOS C35B4C3)

Purposes:

- To characterize CMOS transistors
- Evaluate matching property of CMOS transistors
- Test analog circuits: ADC, Level Shifter, Ring Oscillator, Beta Multiplier, Passive LC circuit, Metal tracks, …

Layout of QNL2_CMOS

IEEE Electron Device Letters, 38:847-850, 2017

Wide-range Threshold Voltage Model

Modified Booth Radix-4 datapath is split into 2 sections, each with its own critical path

Non-zero encodings take $\overline{K}\tau$ and zero take τ

TVLSI, v. 27, no. 4, 2019

- FPGAs can implement ML algorithms with better performance and energy through
 - Exploration- easily try different ideas to arrive at a good solution
 - Parallelism so we can arrive at an answer faster
 - Integration so interfaces are not a bottleneck
 - Customisation problem-specific designs to improve efficiency
- Describe our work on efficient implementations of ML that use these ideas

EPIC

- > Exploration (Online kernel methods)
- > Parallelisation
- > Integration
- > Customisation

Throughput and Latency

Challenges in measurement and control are becoming feasible

- Significant improvements in ML algorithms but cannot keep up with sources e.g. hyperspectral imager or wireless transceiver
- > Need extremely high throughput

Improvements in throughput and latency enable new applications!

- In control applications we need low latency e.g. triggering data collection in Large Hadron Collider
- Need very low latency

Kernel Methods

- > Choose high dimensional feature space (so easily separable)
- > Use kernel trick to avoid computing the mapping (fast)
- > Do regression/classification using

$$f(x_i) = \sum_{j=1}^N \alpha_j \kappa(x_i, v_j)$$

Kernel Trick

- > Kernel is a similarity function
 - defined by an implicit mapping $\phi,$ (original space to feature space)

$$\kappa(x,x') = \phi(x)^T \phi(x') = \left\langle \phi(x), \phi(x') \right\rangle$$

- e.g. Linear kernel $\kappa(x,x') = \langle x,x' \rangle$
- e.g. Polynomial kernel $\kappa(x,x')=(1+\langle x,x'\rangle)^d$ for d=2: $\phi(x) = (x_1^2, x_2^2, \sqrt{2x_1x_2})$
- e.g. Gaussian kernel (universal approximator) $k(x, x') = \exp\left(-\frac{\|x x'\|^2}{2\sigma^2}\right)$
 - $\Phi(x)$ infinite in dimension!

Modify linear ML techniques to kernel ones by replacing dot products with the kernel function (kernel trick)

- e.g. linear discriminant analysis, logistic regression, perceptron, SOM, K-means, PCA, ICA, LMS, RLS, …
- While we only describe prediction here, also applied to training equations

Online Kernel Methods

> "Kernel Method" $\rightarrow \kappa(x, x') : \mathbb{R}^d \rightarrow \mathbb{R}^D$, where $D \gg d$

> Dictionary \rightarrow subset of the input data of length N

- Computation and Memory scale O(Nd)
- > BUT... N scales linearly with the dataset size

Random Approximation (Rahimi and Recht, '07)

Exact Kernel Methods

$$f(x) = \sum_{i=1}^{N} \alpha_i \kappa(x, d_i)$$

Random Kernel Expansion

$$f(x) = \sum_{i=1}^{n} \alpha_i z(x)$$
$$z(x) = \frac{1}{\sqrt{n}} \cos(\mathbf{W}x)$$

** Only for k(x,x') = k(x-x',0)

Define z(x):

Approximates κ(x, x')
MV + Non-Linear Activation
(i.e. like Multilayer Perceptron)
W is **fixed** and **random**

 Computes z(x) efficiently by replacing Wx with combinations of random diagonal matrices and Hadamard transforms

$$z(x) = \frac{1}{\sqrt{n}} \cos(\mathbf{V}x), \quad \text{where } \mathbf{V}x = [\mathbf{Q}_1 x, \mathbf{Q}_2 x, \cdots, \mathbf{Q}_h x]$$
$$\mathbf{Q}_j x = \mathbf{SHGPHB}x$$

** Each Q_ix is an independent dxd transform

Systolic Array Architecture

> $\mathbf{V}\mathbf{x} = [\mathbf{Q}_1 x, \mathbf{Q}_2 x, \cdots, \mathbf{Q}_h x]$

Systolic Array Architecture

- > $\mathbf{V}\mathbf{x} = [\mathbf{Q}_1 x, \mathbf{Q}_2 x, \cdots, \mathbf{Q}_h x]$
- > Block of **b** PEs (i.e. $Q_q x$)

Systolic Array Architecture

- > $\mathbf{V}\mathbf{x} = [\mathbf{Q}_1 x, \mathbf{Q}_2 x, \cdots, \mathbf{Q}_h x]$
- > Block of **b** PEs (i.e. $Q_q x$)
- > General PE: 18-bit ALU, RAMs, Control Unit, LFSR

Results and Conclusion

Impl.	dim.	n	bw	Lat. (cyc)	Fmax (MHz)	Exec (ns)	Th.put (Gb/s)
NORMA (V7, '15)	8	200	18	10	127	7.87	18.3
KNLMS (V7, '15)	8	16	32	207	314	3.18	80.4
CPU (Le et. '13)	1024	16.4k	32			58e4	0.06
FASTFOOD (V7)	1024	16.4k	18	1893	432	23.7e3	7.77
FASTFOOD (KU035)	8192	90.1k	18	16930	508	17.2e3	8.57

Results and Conclusion

Impl.	dim.	n	bw	Lat. (cyc)	Fmax (MHz)	Exec (ns)	Th.put (Gb/s)
NORMA (V7, '15)	8	200	18	10	127	7.87	18.3
KNLMS (V7, '15)	8	16	32	207	314	3.18	80.4
CPU (Le et. '13)	1024	16.4k	32			58e4	0.06
FASTFOOD (V7)	1024	16.4k	18	1893	432	23.7e3	7.77
FASTFOOD (KU035)	8192	90.1k	18	16930	508	17.2e3	8.57

> Supports much larger problems

Results and Conclusion

Impl.	dim.	n	bw	Lat. (cyc)	Fmax (MHz)	Exec (ns)	Th.put (Gb/s)
Braiding (V7, '15)	8	200	18	10	127	7.87	18.3
KNLMS (V7, '15)	8	16	32	207	314	3.18	80.4
CPU (Le et. '13)	1024	16.4k	32			58e4	0.06
FASTFOOD (V7)	1024	16.4k	18	1893	432	23.7e3	7.77
FASTFOOD (KU035)	8192	90.1k	18	16930	508	17.2e3	8.57

- > Supports much larger problems
- > High speed design

Impl.	dim.	n	bw	Lat. (cyc)	Fmax (MHz)	Exec (ns)	Th.put (Gb/s)
Braiding (V7, '15)	8	200	18	10	127	7.87	18.3
KNLMS (V7, '15)	8	16	32	207	314	3.18	80.4
CPU (Le et. '13)	1024	16.4k	32			58e4	0.06
FASTFOOD (V7)	1024	16.4k	18	1893	432	23.7e3	7.77
FASTFOOD (KU035)	8192	90.1k	18	16930	508	17.2e3	8.57

- > Supports much larger problems
- > High speed design
- > 245x speed-up over a CPU

> Exploration

> Parallelisation (Low Precision Neural Network)

- > Integration
- > Customisation

Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., "FINN: A framework for fast, scalable binarized neural network inference," FPGA'17

Binarized Neural Networks

- > The extreme case of quantization
 - Permit only two values: +1 and -1
 - Binary weights, binary activations
 - Trained from scratch, not truncated FP
- > Courbariaux and Hubara et al. (NIPS 2016)
 - Competitive results on three smaller benchmarks
 - Open source training flow
 - Standard "deep learning" layers
 - Convolutions, max pooling, batch norm, fully connected...

	cat	deer	dog	frog	horse	shi
56789 2 12 18 18		Y.	Y	C.C	-	_
56789 114 10	1	Se		(F	恒	
56989 10 5 14	*	1	B.	4	T	-
56789	2		We	E.	FT	
56789		2	0	-	20	-
5 6 7 8 9 5 4 8 8	-	Se	X.	T	of	
56789 1 2 4 2	68		-		A	
	1000	Distanting .	1.0	Taria.	100	

	MNIST	SVHN	CIFAR- 10
Binary weights & activations	0.96%	2.53%	10.15%
FP weights & activations	0.94%	1.69%	7.62%
BNN accuracy loss	-0.2%	-0.84%	-2.53%

% classification error (lower is better)

Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG

> Much smaller datapaths

ONEY

- Multiply becomes XNOR, addition becomes popcount
- No DSPs needed, everything in LUTs
- Lower cost per op = more ops every cycle
- > Much smaller weights
 - Large networks can fit entirely into onchip memory (OCM)
 - More bandwidth, less energy compared to off-chip

Precision	Peak T	OPS	On-chip weights		
1b	~66	\wedge	~70 M	\wedge	
8b	~4		~10 M Z		
16b	~1	00	~5 M	30x	
32b	~0.3		~2 M		

> fast inference with large BNNs

Comparison

		Accuracy	FPS	Power (chip)	Power (wall)	kFPS / Watt (chip)	kFPS / Watt (wall)	Precision
1	MNIST, SFC-max	95.8%	12.3 M	7.3 W	21.2 W	1693	583	1
1	MNIST, LFC-max	98.4%	1.5 M	8.8 W	22.6 W	177	269	1
(CIFAR-10, CNV-max	80.1%	21.9 k	3.6 W	11.7 W	6	2	1
5	SVHN, CNV-max	94.9%	21.9 k	3.6 W	11.7 W	6	2	1
ſ	MNIST, <u>Alemdar</u> et al.	97.8%	255.1 k	0.3 W	ц.	806	-	2
(CIFAR-10, TrueNorth	83.4%	1.2 k	0.2 W	-	6	-	1
	SVHN, <u>TrueNorth</u>	96.7%	2.5 k	0.3 W		10	-	1
3	Max	k accuracy	10 – 100	Ox better		CIFAR-10/S	/HN energy e	

- > Who would be willing to incur a loss in accuracy?
- > Can we get better accuracy with a little more hardware?

SYQ Quantisation

• To compute quantised weights from FP weights

$$\boldsymbol{Q}_l = sign(\boldsymbol{W}_l) \odot \boldsymbol{M}_l$$

with,

$$M_{l_{i,j}} = \begin{cases} 1 & \text{if } |W_{l_{i,j}}| \ge \eta_l \\ 0 & \text{if } -\eta_l < W_{l_{i,j}} < \eta_l \end{cases}$$

$$sign(x) = \left\{ egin{array}{cc} 1 & ext{if } x \geq 0 \ -1 & ext{otherwise} \end{array}
ight.$$

where **M** represents a masking matrix, η is the quantization threshold hyperparameter (0 for binarised)

SYQ Quantisation

- Make approximation $W_l \approx \alpha_l Q_l, Q_l \in C$
- C is the codebook, $C \in \{C_1, C_2, \ldots\}$ e.g. $C = \{-1, +1\}$ for binary, $C = \{-1, 0, +1\}$ for ternary
- A diagonal matrix α_I is defined by the vector $\alpha_I = [\alpha_I^1, ..., \alpha_I^m]$:

$$\alpha = diag(\alpha) := \begin{bmatrix} \alpha^{1} & 0 & \dots & 0 & 0 \\ 0 & \alpha^{2} & \dots & \vdots & 0 \\ \vdots & \vdots & \dots & \alpha^{m-1} & \vdots \\ 0 & 0 & \dots & 0 & \alpha^{m} \end{bmatrix}$$

• Train by solving $\alpha_l^- = \operatorname*{argmin}_{\alpha} E(\alpha, \mathbf{Q}) \quad s.t. \quad \alpha \ge 0, \ \mathbf{Q}_{l_{i,j}} \in \mathbb{C}$

> More fine-grained quantisation can improve approximation of weights

For K filters, I Input feature maps of dimension FxF, N output feature maps
 P=K²INF²

Method	Scalars	Ops	MAC Tree	
Layer (DoReFa)	1	P	Sc	aling Coefficient Multiply
Row (SYQ)	K	P	$\langle \rangle$	Activation
Pixel (SYQ)	K^2	P		
Asymmetric (TTQ)	2	P + Z		$ \longrightarrow G $
Grouping (FGQ)	$K^2N/4$	P		
Channel (HWGQ/BWN)	N	P	Inde	
	•			
			and the second	Accumulator

Full precision for 1st and last layers, CONV layers pixel-wise, FC layerwise

Model		1-8	2-8	Baseline	Reference
AlexNet	Top-1	56.6	58.1	56.6	57.1
Alexinet	Top-5	79.4	80.8	80.2	80.2
VGG	Top-1	66.2	68.7	69.4	-
VUU	Top-5	87.0	88.5	89.1	-
PasNet 18	Top-1	62.9	67.7	69.1	69.6
Keshet-10	Top-5	84.6	87.8	89.0	89.2
ResNet 3/	Top-1	67.0	70.8	71.3	73.3
Keshel-34	Top-5	87.6	89.8	89.1	91.3
ResNet 50	Top-1	70.6	72.3	76.0	76.0
ICSINCI-JU	Top-5	89.6	90.9	93.0	93.0

Baseline is floating-point, reference <u>https://github.com/facebook/fb.resnet.torch</u> (ResNet) and <u>https://github.com/BVLC/caffe</u> (AlexNet)

Results (Alexnet)

Model	Weights	Act.	Top-1	Top-5
DoReFa-Net [33]	1	2	49.8	-
QNN [15]	1	2	51.0	73.7
HWGQ [2]	1	2	52.7	76.3
SYQ	1	2	55.4	78.6
DoReFa-Net [33]	1	4	53.0	-
SYQ	1	4	56.2	79.4
BWN [24]	1	32	56.8	79.4
SYQ	1	8	56.6	79.4
SYQ	2	2	55.8	79.2
FGQ [21]	2	8	49.04	
TTQ [34]	2	32	57.5	79.7
SYQ	2	8	58.1	80.8

Model	Weights	Act.	Top-1	Top-5
BWN [24]	1	32	60.8	83.0
SYQ	1	8	62.9	84.6
TWN [19]	2	32	65.3	86.2
INQ [32]	2	32	66.0	87.1
TTQ [34]	2	32	66.6	87.2
SYQ	2	8	67.7	87.8

ResNet-18

Model	Weights	Act.	Top-1	Top-5
HWGQ [2]	1	2	64.6	85.9
SYQ	1	4	68.8	88.7
SYQ	1	8	70.6	89.6
FGQ [21]	2	4	68.4	-
SYQ	2	4	70.9	90.2
FGQ [21]	2	8	70.8	-
SYQ	2	8	72.3	90.9

ResNet-50

- > Exploration
- > Parallelisation
- > Integration (radio frequency machine learning)
- > Customisation

Radio Frequency Machine Learning

- Processing radio frequency signals remains a challenge
 - high bandwidth and low latency difficult to achieve
- Autoencoder to do anomaly detection

Autoencoder

Train so $\tilde{x} \times (\text{done in an unsupervised manner})$

- > Anomaly if distance between autoencoder output and input large
- > FPGA has sufficiently high performance to process each sample of waveform at 200 MHz!
 - This minimises latency and maximises throughput
 - Weights trained on uP and updated on FPGA without affecting inference

Software Defined Radio Architecture

Implemented on Ettus X310 platform

Example

Performance (XC7K410T)

Typical SDR latency >> 1 ms

Module	п	Latency (cycles)	BRAM	DSP	FF	LUT
Windower	1	0	0	0	1511	996
FFT	1	8	0	48	4698	2796
NN	1	17	4	1280	213436	13044
L_2 -Norm	1	4	0	32	1482	873
Thres	1	0	0	0	3	21
Weight Update	258	257	0	0	21955	4528
Inference (FFT+NN)	1	37	1068	1360	241522	45448
Inference (NN)	1	29	1068	1312	236824	42652
Total	N/A	N/A	1068	1360	263477	49976
Total Util.	N/A	N/A	67%	88%	51%	19%

Operation	Throughput	Latency
Inference(FFT+NN)	5ns	185ns
Inference(NN)	5ns	105ns
Weight Update	1290ns	1285ns

- > Exploration
- > Parallelisation
- > Integration
- > Customisation (PIR-DSP)

- DNNs for embedded applications share two features to reduce computation and storage requirements
 - Low precision (from 1-16 bits)
 - Depthwise separable convolutions

Motivation (1)

Computation and Storage for Embedded DNNs

> Optimise FPGA DSP architecture to better support

- Efficient implementation of embedded DNNs
- Wordlengths down to ternary and binary
- > Talk will focus on convolutions

PIR-DSP

- > Based on two approaches:
 - 1. Chopping

THE UNIVERSITY OF

2. Recursive decomposition

Precision (2)

Parameterised Decomposable MAC unit

- > Notation: M×NC*ij*Dk
- > PIR-DSP multiplier: 27×18C32D2
 - Chopping factors 3 and 2 respectively for 27 and 18
 - (27=9+9+9)×(18=9+9)
 - Six 9×9 multiplier
 - Decomposing factor is 2
 - Each 9×9 multiplier decomposes to Two 4×4 or Four 2×2 multipliers

> PIR-DSP Modes:

- One 27×18 → 1 MAC
- Two $9 \times 9 + 9 \times 9 + 9 \times 9 \rightarrow 6$ MACs
- Four $4 \times 4 + 4 \times 4 + 4 \times 4 \rightarrow 12$ MACs
- Eight $2 \times 2 + 2 \times 2 + 2 \times 2 \rightarrow 24$ MACs

- > Three types of convolutions
 - 1- **Depth-wise**: using three PIR-DSPs
 - 2- **Standard**: based on depth-wise convolution implementation and adding the partial results

2D systolic array (Eyeriss)

ours

Reuse

Depthwise Convolution (DW)

Pointwise Convolution (PW)

Area and Frequency

- > SMIC 65-nm standard cell technology
 - Synopsis Design Compiler 2013.12

Version	Area Ratio	Fmax
DSP48E2	1.0	463
+ M27×18C32D2 MAC-IP	1.14	358
+ interconnect	1.18	362
+ reuse	1.28	357

THE UNIVERSITY OF SYDNEY

Data movement energy ratios in 65 nm Technology ($1 \times = 90$ FJ).

> Sits between Sharma (low-precision) and Boutros (high-precision)

	Bitfusion [56] ISCA'18	Ours	Boutros [44] FPL'18	Ours		
Area	0.24	1	0.77	1		
Performance Per Area						
2x2	1	0.4				
4x4	1	0.7	1	1.2		
8x8	1	1.4	1	1.2		
16x16			1	0.4		
27x18			1	0.8		

EPIC

- > Exploration (Online kernel methods)
- > Parallelisation
- > Integration
- > Customisation

- Described some of our efforts to develop efficient ML implementations within the EPIC framework
 - > Exploration
 - > Kernel methods optimised using different algorithms, mathematical techniques, computer architectures, arithmetic

> Parallelism

- > Increase parallelism by reducing precision
- > Keep weights on-chip to devote more hardware to arithmetic

Integration

> In radio frequency, this allows latency to be reduced by 4 orders of magnitude

Customisation

Supplement conventional FPGA with different DSP to support DNN implementation

Thank you!

Philip Leong (philip.leong@sydney.edu.au) http://phwl.org

- Sean Fox, David Boland, and Philip Leong. <u>FPGA Fastfood a high speed</u> <u>systolic implementation of a large scale online kernel method</u>. In *Proceedings* of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA '18, pages 279–284, New York, NY, USA, 2018. ACM. (doi:10.1145/3174243.3174271)
- Julian Faraone, Nicholas Fraser, Michaela Blott, and Philip H.W. Leong. <u>SYQ:</u> <u>Learning symmetric quantization for efficient deep neural networks</u>. In *Proc. Computer Vision and Pattern Recognition (CVPR)*, June 2018. (doi:10.1109/CVPR.2018.00452)
- Siddhartha, Yee Hui Lee, Duncan J.M. Moss, Julian Faraone, Perry Blackmore, Daniel Salmond, David Boland, and Philip H.W. Leong. Long short-term memory for radio frequency spectral prediction and its real-time FPGA implementation. In Proc. MILCOM, October 2018.
- Lingli Wang SeyedRamin Rasoulinezhad, Hao Zhou and Philip H.W. Leong. <u>PIR-DSP: An FPGA DSP block architecture for multi-precision deep</u> <u>neural networks</u>. In *Proc. IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM)*, pages 1–8, 2019.