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Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems  
- Novel architectures, applications and design techniques using VLSI, FPGA and 

parallel computing technology 

› Research
- Reconfigurable computing

- Machine learning

- Nanoscale interfaces
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Initially expectation :  Heralded single photon rate should enhance significantly without degrading 
coincidence to accidental ratio (CAR)

Enhancement : 33%~59%

Time domain multiplexing of single photons

Nature Comms 7(10853), 2016



Time Multiplexing of Single Photons



Cool Transistors (0.35u CMOS C35B4C3)
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Layout of QNL2_CMOS

Purposes: 
• To characterize CMOS transistors 
• Evaluate matching property of 

CMOS transistors
• Test analog circuits: ADC, Level 

Shifter, Ring Oscillator, Beta 
Multiplier, Passive LC circuit, Metal 
tracks, …

IEEE Electron Device Letters, 38:847–850, 2017



Wide-range Threshold Voltage Model
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Two-Speed Multiplier
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Modified Booth Radix-4 datapath is split into 2 sections, each with its own critical path

Non-zero encodings take !"# and zero take #

TVLSI (to appear)



Motivation for FPGAs

› FPGAs offer an opportunity to provide ML algorithms with higher 
throughput and lower latency through
- Exploration– easily try different ideas to arrive at a good solution

- Parallelism – so we can arrive at an answer faster

- Integration – so interfaces are not a bottleneck

- Customisation – problem-specific designs to improve efficiency

› Describe our work on implementations of ML that use these ideas
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› Exploration (Online kernel methods)
› Parallelisation
› Integration
› Customisation

EPIC



Throughput and Latency

› Significant improvements in ML 
algorithms but cannot keep up with 
sources e.g. hyperspectral imager or 
wireless transceiver

› Need extremely high throughput

› In control applications we need low 
latency e.g. triggering data collection in 
Large Hadron Collider

› Need very low latency
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Challenges in measurement and control are becoming feasible

Improvements in throughput and 
latency enable new applications!



Kernel Methods

› Choose high dimensional feature space (so easily separable)
› Use kernel trick to avoid computing the mapping (fast)
› Do regression/classification using
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Kernel Trick

› Kernel is a similarity function 
- defined by an implicit mapping f, (original space to feature space)

- e.g. Linear kernel κ(x,x’)=<x,x’> 

- e.g. Polynomial kernel κ(x,x’)=(1+<x,x’>)d for d=2: f(x) = (x1
2, x2

2, √2x1x2)

- e.g. Gaussian kernel (universal approximator)
- F(x) infinite in dimension! 

› Modify linear ML techniques to kernel ones by replacing dot products 
with the kernel function (kernel trick)
- e.g. linear discriminant analysis, logistic regression, perceptron, SOM, K-means, 

PCA, ICA, LMS, RLS, …

- While we only describe prediction here, also applied to training equations
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κ (x, x ') =φ(x)Tφ(x ') = φ(x),φ(x ')



Online Kernel Methods
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› Dictionary → subset of the input data of length N

› Computation and Memory scale O(Nd)

› BUT…  N scales linearly with the dataset size               
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Exact Kernel Methods

Random Kernel Expansion
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** Only for k(x,x’) = k(x-x’,0)

Define z(x):

1 x d 1 x n

z(x) α

OutputInput

* ", "′› Approximates
› MV + Non-Linear Activation
(i.e. like Multilayer Perceptron)
› W is fixed and random

Random Approximation
(Rahimi and Recht, ‘07)
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Fast Hadamard 
Transform (dxd)

Memory = O( 3n ) Time = O( n log d )

** Each Qjx is an independent dxd transform

! " = 1
% cos )" , where /x = 12", 13",⋯ ,15"

16" = 789:8;"

› Computes z(x) efficiently by replacing Wx with combinations 
of random diagonal matrices and Hadamard transforms

Fastfood
(Le et al. ‘13)



Systolic Array Architecture
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Systolic Array Architecture
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› Block of b PEs (i.e. !"#)

› General PE: 18-bit ALU, RAMs, Control Unit, LFSR
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Results and Conclusion
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Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s) 

NORMA (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77
FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57



Results and Conclusion
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› Supports much larger problems

Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s) 

NORMA (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77
FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57



Results and Conclusion
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› Supports much larger problems

› High speed design

Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s) 

Braiding (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77
FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57



Results and Conclusion
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› Supports much larger problems

› High speed design

› 245x speed-up over a CPU 

Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s) 

Braiding (V7, ‘15) 8 200 18 10 127 7.87 18.3

KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4

CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06

FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77

FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57



› Exploration
› Parallelisation (Low Precision Neural Network) 
› Integration
› Customisation

EPIC



Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., “FINN: A framework for fast, scalable binarized neural 
network inference,” FPGA’17



Binarized Neural Networks

› The extreme case of quantization

- Permit only two values: +1 and -1

- Binary weights, binary activations

- Trained from scratch, not truncated FP

› Courbariaux and Hubara et al. (NIPS 2016)

- Competitive results on three smaller 
benchmarks

- Open source training flow

- Standard “deep learning” layers

- Convolutions, max pooling, batch norm, fully 
connected…
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MNIST SVHN CIFAR-
10

Binary weights & 
activations

0.96% 2.53% 10.15%

FP weights &
activations

0.94% 1.69% 7.62%

BNN accuracy 
loss 

-0.2% -0.84% -2.53%

% classification error (lower is better)



Advantages of BNNs

› Much smaller datapaths
- Multiply becomes XNOR, addition 

becomes popcount

- No DSPs needed, everything in LUTs

- Lower cost per op = more ops every 
cycle

› Much smaller weights
- Large networks can fit entirely into on-

chip memory (OCM)

- More bandwidth, less energy 
compared to off-chip

› fast inference with large BNNs 
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Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG

On-chip
weights

~70 M

~10 M

~5 M

~2 M

Precision

1b

8b

16b

32b

30x

Peak TOPS 

~66

~4

~1

~0.3

200x



Comparison
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› Who would be willing to incur a loss in accuracy?
› Can we get better accuracy with a little more hardware?

Issues with Low-Precision
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SYQ Quantisation
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SYQ Quantisation
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Subgrouping

› More fine-grained quantisation can improve approximation of weights
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Pixel-wise scaling Row-wise scaling  (layer-wise also option)



Resource Utilisation

› For K filters, I Input feature maps of dimension FxF, N output feature maps
› P=K2INF2
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Results
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› Full precision for 1st and last layers, CONV layers pixel-wise, FC layer-
wise

Baseline is floating-point, reference https://github.com/facebook/fb.resnet.torch (ResNet) 
and https://github.com/BVLC/caffe (AlexNet)

https://github.com/facebook/fb.resnet.torch
https://github.com/BVLC/caffe


Results (Alexnet)
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Results (ResNet)
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ResNet-18 ResNet-50



› Exploration
› Parallelisation
› Integration (radio frequency machine learning)
› Customisation

EPIC



Radio Frequency Machine Learning

› Processing radio frequency 
signals remains a challenge 
- high bandwidth and low latency 

difficult to achieve 

› Autoencoder to do anomaly 
detection
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Autoencoder
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Train so  x  x  (done in an unsupervised manner)
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Autoencoder learns “normal” representation

› Anomaly if distance between autoencoder output and input large

› FPGA has sufficiently high performance to process each sample of 
waveform at 200 MHz!
- This minimises latency and maximises throughput

- Weights trained on uP and updated on FPGA without affecting inference
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Software Defined Radio Architecture
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Implemented on Ettus X310 platform

Radio Core
Autoencoder

(Optional FFT)

Crossbar

Ingress/Egress Interface

Hardware Driver

H
os

t 
P

C
F

P
G

A

Autoencoder
training

I/Q samples

Autoencoder
Parameters (W, b)

Anomaly/Normal (can 
be used by FPGA or PC)



Example
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Performance (XC7K410T)
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Typical SDR latency >> 1 ms



› Exploration
› Parallelisation
› Integration
› Customisation (Matrix Multiplication on Intel Harp v2)

EPIC



Problem

› Xeon+FPGA
› Simple, software-based 

interface
› Extensions to efficiently support 

Machine Learning



Framework



Framework



Framework



Framework



Hardware Template

FP32, INT16, INT8, INT4, Ternary, Binary



Feeder Blocks



Memory Interleaving

Inefficient with 
Static 
Partitioning

Fewer Computations
Increase Bandwidth



Memory Sharing between Feeder A and Feeder B

Inefficient with 
Static Partitioning

Minimising Bandwidth
Increase Maximum block 
size restriction



Training a Binarised Neural Network

STE=straight through estimator



Optimisation: Dynamic Dot Product

Supports two different precisions to 
avoid reconfiguration at runtime



Optimisation: Fused Operations



Measured Peak Performance 



GEMM Memory Interleaving Results



Heterogeneous Load Balancing



Neural Network Memory Interleaving Results



BNN Inference Performance
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› Exploration (Online kernel methods)
› Parallelisation
› Integration
› Customisation

EPIC



Conclusion

› Exploration
› Kernel methods optimised using different 

algorithms, mathematical techniques, 
computer architectures, arithmetic

› Parallelism
› Increase parallelism by reducing precision 
› Keep weights on-chip to devote more 

hardware to arithmetic
› Integration

› In radio frequency, this allows latency to be 
reduced by 4 orders of magnitude

› Customisation
› Supplement conventional matrix 

multiplication to support DNN 
implementation 

› FPGAs can greatly assist with the 
implementation of intelligent sensing

› Learning & inference at 70 Gbps

› Learning & inference with 100 ns 
latency

› Image processing @ 12.3 Mfps

› Multimodal measurements

› Radio frequency anomaly detector

› We are using this to predict physical and 
media access layer protocols

› Could also be used as a novel 
diagnostic instrument - monitor RF 
output of electronic equipment, detect 
anomalies
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Thank you!

Philip Leong (philip.leong@sydney.edu.au)
http://phwl.org

http://phwl.org/

