
Large-Scale FPGA implementations of
Machine Learning Algorithms

Philip Leong (���) | Computer Engineering Laboratory
School of Electrical and Information Engineering,

The University of Sydney

Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems
- Novel architectures, applications and design techniques using VLSI, FPGA and

parallel computing technology

› Research
- Reconfigurable computing

- Machine learning

- Nanoscale interfaces

2

Initially expectation : Heralded single photon rate should enhance significantly without degrading
coincidence to accidental ratio (CAR)

Enhancement : 33%~59%

Time domain multiplexing of single photons

Nature Comms 7(10853), 2016

Time Multiplexing of Single Photons

Cool Transistors (0.35u CMOS C35B4C3)

5

Layout of QNL2_CMOS

Purposes:
• To characterize CMOS transistors
• Evaluate matching property of

CMOS transistors
• Test analog circuits: ADC, Level

Shifter, Ring Oscillator, Beta
Multiplier, Passive LC circuit, Metal
tracks, …

IEEE Electron Device Letters, 38:847–850, 2017

Wide-range Threshold Voltage Model

6

Two-Speed Multiplier

7

Modified Booth Radix-4 datapath is split into 2 sections, each with its own critical path

Non-zero encodings take !"# and zero take #

TVLSI (to appear)

Motivation for FPGAs

› FPGAs offer an opportunity to provide ML algorithms with higher
throughput and lower latency through
- Exploration– easily try different ideas to arrive at a good solution

- Parallelism – so we can arrive at an answer faster

- Integration – so interfaces are not a bottleneck

- Customisation – problem-specific designs to improve efficiency

› Describe our work on implementations of ML that use these ideas

8

› Exploration (Online kernel methods)
› Parallelisation
› Integration
› Customisation

EPIC

Throughput and Latency

› Significant improvements in ML
algorithms but cannot keep up with
sources e.g. hyperspectral imager or
wireless transceiver

› Need extremely high throughput

› In control applications we need low
latency e.g. triggering data collection in
Large Hadron Collider

› Need very low latency

10

Challenges in measurement and control are becoming feasible

Improvements in throughput and
latency enable new applications!

Kernel Methods

› Choose high dimensional feature space (so easily separable)
› Use kernel trick to avoid computing the mapping (fast)
› Do regression/classification using

11

Kernel Trick

› Kernel is a similarity function
- defined by an implicit mapping f, (original space to feature space)

- e.g. Linear kernel κ(x,x’)=<x,x’>

- e.g. Polynomial kernel κ(x,x’)=(1+<x,x’>)d for d=2: f(x) = (x1
2, x2

2, √2x1x2)

- e.g. Gaussian kernel (universal approximator)
- F(x) infinite in dimension!

› Modify linear ML techniques to kernel ones by replacing dot products
with the kernel function (kernel trick)
- e.g. linear discriminant analysis, logistic regression, perceptron, SOM, K-means,

PCA, ICA, LMS, RLS, …

- While we only describe prediction here, also applied to training equations

12

κ (x, x ') =φ(x)Tφ(x ') = φ(x),φ(x ')

Online Kernel Methods

! " =$
%&'

(
)% * ", ,%

f(x)

∑Update
Unknowns

prediction

yi

xi

d, α +

-

* ", "′ ∶ ℝ0 → ℝ2, 3ℎ565 7 ≫ ,› “Kernel Method” →

› Dictionary → subset of the input data of length N

› Computation and Memory scale O(Nd)

› BUT… N scales linearly with the dataset size

Dictionary
Entry

Exact Kernel Methods

Random Kernel Expansion

! " =$
%&'

(
)% * ", ,%

! " =$
%&'

-
)% . "

. " = 1
0 123 4"

** Only for k(x,x’) = k(x-x’,0)

Define z(x):

1 x d 1 x n

z(x) α

OutputInput

* ", "′› Approximates
› MV + Non-Linear Activation
(i.e. like Multilayer Perceptron)
› W is fixed and random

Random Approximation
(Rahimi and Recht, ‘07)

B, G, S P

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

H

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

Fast Hadamard
Transform (dxd)

Memory = O(3n) Time = O(n log d)

** Each Qjx is an independent dxd transform

! " = 1
% cos)" , where /x = 12", 13",⋯ ,15"

16" = 789:8;"

› Computes z(x) efficiently by replacing Wx with combinations
of random diagonal matrices and Hadamard transforms

Fastfood
(Le et al. ‘13)

Systolic Array Architecture

HBh

HB2

HB1

HBh-1

HB3 HB4

Top

PE2

PEb

PE1

SW
IT

C
H

SU
M

 &

U
PD

AT
E

inBuff

+
x
-

RAM

CTRL

RAM

LFSR

HB PE

› !x = $%&, $(&,⋯ ,$*&

Systolic Array Architecture

HBh

HB2

HB1

HBh-1

HB3 HB4

Top

PE2

PEb

PE1

SW
IT

C
H

SU
M

 &

U
PD

AT
E

inBuff

+
x
-

RAM

CTRL

RAM

LFSR

HB PE

›

› Block of b PEs (i.e. !"#)

$x = !'#, !)#,⋯ ,!+#

Systolic Array Architecture

HBh

HB2

HB1

HBh-1

HB3 HB4

Top

PE2

PEb

PE1

S
W

IT
C

H

S
U

M
 &

U

P
D

AT
E

inBuff

+
x
-

RAM

CTRL

RAM

LFSR

HB PE

›

› Block of b PEs (i.e. !"#)

› General PE: 18-bit ALU, RAMs, Control Unit, LFSR

$x = !'#, !)#,⋯ ,!+#

Results and Conclusion

19

Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s)

NORMA (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77
FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57

Results and Conclusion

20

› Supports much larger problems

Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s)

NORMA (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77
FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57

Results and Conclusion

21

› Supports much larger problems

› High speed design

Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s)

Braiding (V7, ‘15) 8 200 18 10 127 7.87 18.3
KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4
CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06
FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77
FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57

Results and Conclusion

22

› Supports much larger problems

› High speed design

› 245x speed-up over a CPU

Impl. dim. n bw Lat.
(cyc)

Fmax
(MHz)

Exec
(ns)

Th.put
(Gb/s)

Braiding (V7, ‘15) 8 200 18 10 127 7.87 18.3

KNLMS (V7, ‘15) 8 16 32 207 314 3.18 80.4

CPU (Le et. ‘13) 1024 16.4k 32 58e4 0.06

FASTFOOD (V7) 1024 16.4k 18 1893 432 23.7e3 7.77

FASTFOOD (KU035) 8192 90.1k 18 16930 508 17.2e3 8.57

› Exploration
› Parallelisation (Low Precision Neural Network)
› Integration
› Customisation

EPIC

Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., “FINN: A framework for fast, scalable binarized neural
network inference,” FPGA’17

Binarized Neural Networks

› The extreme case of quantization

- Permit only two values: +1 and -1

- Binary weights, binary activations

- Trained from scratch, not truncated FP

› Courbariaux and Hubara et al. (NIPS 2016)

- Competitive results on three smaller
benchmarks

- Open source training flow

- Standard “deep learning” layers

- Convolutions, max pooling, batch norm, fully
connected…

25

MNIST SVHN CIFAR-
10

Binary weights &
activations

0.96% 2.53% 10.15%

FP weights &
activations

0.94% 1.69% 7.62%

BNN accuracy
loss

-0.2% -0.84% -2.53%

% classification error (lower is better)

Advantages of BNNs

› Much smaller datapaths
- Multiply becomes XNOR, addition

becomes popcount

- No DSPs needed, everything in LUTs

- Lower cost per op = more ops every
cycle

› Much smaller weights
- Large networks can fit entirely into on-

chip memory (OCM)

- More bandwidth, less energy
compared to off-chip

› fast inference with large BNNs

26

Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG

On-chip
weights

~70 M

~10 M

~5 M

~2 M

Precision

1b

8b

16b

32b

30x

Peak TOPS

~66

~4

~1

~0.3

200x

Comparison

27

› Who would be willing to incur a loss in accuracy?
› Can we get better accuracy with a little more hardware?

Issues with Low-Precision

28

SYQ Quantisation

29

SYQ Quantisation

30

Subgrouping

› More fine-grained quantisation can improve approximation of weights

31

Pixel-wise scaling Row-wise scaling (layer-wise also option)

Resource Utilisation

› For K filters, I Input feature maps of dimension FxF, N output feature maps
› P=K2INF2

32

Results

33

› Full precision for 1st and last layers, CONV layers pixel-wise, FC layer-
wise

Baseline is floating-point, reference https://github.com/facebook/fb.resnet.torch (ResNet)
and https://github.com/BVLC/caffe (AlexNet)

https://github.com/facebook/fb.resnet.torch
https://github.com/BVLC/caffe

Results (Alexnet)

34

Results (ResNet)

35

ResNet-18 ResNet-50

› Exploration
› Parallelisation
› Integration (radio frequency machine learning)
› Customisation

EPIC

Radio Frequency Machine Learning

› Processing radio frequency
signals remains a challenge
- high bandwidth and low latency

difficult to achieve

› Autoencoder to do anomaly
detection

37

Autoencoder

38

Train so x x (done in an unsupervised manner)

X1
0

X1
1

X1
2

X2

0

X2

1

X5

0

X5

1

X5

2

X4

0

X4

1

X3

0

w100
w001

w110
w111

w120

w121

w200
w201

w300
w301

w400
w401

w402

w410
w411
w42

b1 b2 b3 b4

X0

X1

X2

X0

X1

X2

~

~

~

~

Autoencoder learns “normal” representation

› Anomaly if distance between autoencoder output and input large

› FPGA has sufficiently high performance to process each sample of
waveform at 200 MHz!
- This minimises latency and maximises throughput

- Weights trained on uP and updated on FPGA without affecting inference

39

Software Defined Radio Architecture

40

Implemented on Ettus X310 platform

Radio Core
Autoencoder

(Optional FFT)

Crossbar

Ingress/Egress Interface

Hardware Driver

H
os

t
P

C
F

P
G

A

Autoencoder
training

I/Q samples

Autoencoder
Parameters (W, b)

Anomaly/Normal (can
be used by FPGA or PC)

Example

41

Performance (XC7K410T)

42

Typical SDR latency >> 1 ms

› Exploration
› Parallelisation
› Integration
› Customisation (Matrix Multiplication on Intel Harp v2)

EPIC

Problem

› Xeon+FPGA
› Simple, software-based

interface
› Extensions to efficiently support

Machine Learning

Framework

Framework

Framework

Framework

Hardware Template

FP32, INT16, INT8, INT4, Ternary, Binary

Feeder Blocks

Memory Interleaving

Inefficient with
Static
Partitioning

Fewer Computations
Increase Bandwidth

Memory Sharing between Feeder A and Feeder B

Inefficient with
Static Partitioning

Minimising Bandwidth
Increase Maximum block
size restriction

Training a Binarised Neural Network

STE=straight through estimator

Optimisation: Dynamic Dot Product

Supports two different precisions to
avoid reconfiguration at runtime

Optimisation: Fused Operations

Measured Peak Performance

GEMM Memory Interleaving Results

Heterogeneous Load Balancing

Neural Network Memory Interleaving Results

BNN Inference Performance

60

› Exploration (Online kernel methods)
› Parallelisation
› Integration
› Customisation

EPIC

Conclusion

› Exploration
› Kernel methods optimised using different

algorithms, mathematical techniques,
computer architectures, arithmetic

› Parallelism
› Increase parallelism by reducing precision
› Keep weights on-chip to devote more

hardware to arithmetic
› Integration

› In radio frequency, this allows latency to be
reduced by 4 orders of magnitude

› Customisation
› Supplement conventional matrix

multiplication to support DNN
implementation

› FPGAs can greatly assist with the
implementation of intelligent sensing

› Learning & inference at 70 Gbps

› Learning & inference with 100 ns
latency

› Image processing @ 12.3 Mfps

› Multimodal measurements

› Radio frequency anomaly detector

› We are using this to predict physical and
media access layer protocols

› Could also be used as a novel
diagnostic instrument - monitor RF
output of electronic equipment, detect
anomalies

62

Thank you!

Philip Leong (philip.leong@sydney.edu.au)
http://phwl.org

http://phwl.org/

