Large-Scale FPGA implementations of Machine Learning Algorithms

Philip Leong (梁恆惠) | Computer Engineering Laboratory School of Electrical and Information Engineering, The University of Sydney

Computer Engineering Laboratory

- > Focuses on how to use parallelism to solve demanding problems
 - Novel architectures, applications and design techniques using VLSI, FPGA and parallel computing technology
- > Research
 - Reconfigurable computing
 - Machine learning
 - Nanoscale interfaces

Initially expectation : Heralded single photon rate should enhance significantly without degrading coincidence to accidental ratio (CAR)

Time Multiplexing of Single Photons

Cool Transistors (0.35u CMOS C35B4C3)

Purposes:

- To characterize CMOS transistors
- Evaluate matching property of CMOS transistors
- Test analog circuits: ADC, Level Shifter, Ring Oscillator, Beta Multiplier, Passive LC circuit, Metal tracks, ...

Layout of QNL2_CMOS

IEEE Electron Device Letters, 38:847-850, 2017

Wide-range Threshold Voltage Model

Modified Booth Radix-4 datapath is split into 2 sections, each with its own critical path

Non-zero encodings take $\overline{K}\tau$ and zero take τ

- FPGAs offer an opportunity to provide ML algorithms with higher throughput and lower latency through
 - Exploration easily try different ideas to arrive at a good solution
 - Parallelism so we can arrive at an answer faster
 - Integration so interfaces are not a bottleneck
 - Customisation problem-specific designs to improve efficiency
- > Describe our work on implementations of ML that use these ideas

- > Exploration (Online kernel methods)
- > Parallelisation
- Integration
- > Customisation

Throughput and Latency

Challenges in measurement and control are becoming feasible

- Significant improvements in ML algorithms but cannot keep up with sources e.g. hyperspectral imager or wireless transceiver
- Need extremely high throughput

Improvements in throughput and latency enable new applications!

- In control applications we need low latency e.g. triggering data collection in Large Hadron Collider
- > Need very low latency

Kernel Methods

- Choose high dimensional feature space (so easily separable)
- Use kernel trick to avoid computing the mapping (fast)
- Do regression/classification using

$$f(x_i) = \sum_{j=1}^N \alpha_j \kappa(x_i, v_j)$$

Kernel Trick

- > Kernel is a similarity function
 - defined by an implicit mapping ϕ , (original space to feature space)

$$\kappa(x,x') = \phi(x)^T \phi(x') = \left\langle \phi(x), \phi(x') \right\rangle$$

- e.g. Linear kernel $\kappa(x,x') = \langle x,x' \rangle$
- e.g. Polynomial kernel $\kappa(x,x')=(1+\langle x,x'\rangle)^d$ for d=2: $\phi(x) = (x_1^2, x_2^2, \sqrt{2x_1x_2})$
- e.g. Gaussian kernel (universal approximator) $k(x, x') = \exp\left(-\frac{\|x x'\|^2}{2\sigma^2}\right)$
 - $\Phi(\mathbf{x})$ infinite in dimension!
- Modify linear ML techniques to kernel ones by replacing dot products with the kernel function (kernel trick)
 - e.g. linear discriminant analysis, logistic regression, perceptron, SOM, K-means, PCA, ICA, LMS, RLS, …
 - While we only describe prediction here, also applied to training equations

Online Kernel Methods

> "Kernel Method" $\rightarrow \kappa(x, x') : \mathbb{R}^d \rightarrow \mathbb{R}^D$, where $D \gg d$

- > Dictionary \rightarrow subset of the input data of length N
- Computation and Memory scale O(Nd)
- > BUT... N scales linearly with the dataset size

Random Approximation (Rahimi and Recht, '07)

Exact Kernel Methods

$$f(x) = \sum_{i=1}^{N} \alpha_i \kappa(x, d_i)$$

Random Kernel Expansion

$$f(x) = \sum_{i=1}^{n} \alpha_i z(x)$$
$$z(x) = \frac{1}{\sqrt{n}} \cos(\mathbf{W}x)$$

** Only for k(x,x') = k(x-x',0)

Define z(x):

Approximates κ(x, x')
MV + Non-Linear Activation
(i.e. like Multilayer Perceptron)
W is **fixed** and **random**

 Computes z(x) efficiently by replacing Wx with combinations of random diagonal matrices and Hadamard transforms

$$z(x) = \frac{1}{\sqrt{n}} \cos(Vx), \quad \text{where } Vx = [Q_1 x, Q_2 x, \cdots, Q_h x]$$
$$Q_j x = SHGPHBx$$
** Each Q_jx is an independent dxd transform

Systolic Array Architecture

> $\mathbf{V}\mathbf{x} = [\mathbf{Q}_1 x, \mathbf{Q}_2 x, \cdots, \mathbf{Q}_h x]$

Systolic Array Architecture

- $\mathbf{V}\mathbf{X} = [\boldsymbol{Q}_1 \boldsymbol{x}, \boldsymbol{Q}_2 \boldsymbol{x}, \cdots, \boldsymbol{Q}_h \boldsymbol{x}]$
- > Block of **b** PEs (i.e. $Q_q x$)

Systolic Array Architecture

- $\mathbf{V}\mathbf{X} = [\boldsymbol{Q}_1 x, \boldsymbol{Q}_2 x, \cdots, \boldsymbol{Q}_h x]$
- > Block of **b** PEs (i.e. $Q_q x$)
- > General PE: 18-bit ALU, RAMs, Control Unit, LFSR

Impl.	dim.	n	bw	Lat. (cyc)	Fmax (MHz)	Exec (ns)	Th.put (Gb/s)
NORMA (V7, '15)	8	200	18	10	127	7.87	18.3
KNLMS (V7, '15)	8	16	32	207	314	3.18	80.4
CPU (Le et. '13)	1024	16.4k	32			58e4	0.06
FASTFOOD (V7)	1024	16.4k	18	1893	432	23.7e3	7.77
FASTFOOD (KU035)	8192	90.1k	18	16930	508	17.2e3	8.57

Impl.	dim.	n	bw	Lat. (cyc)	Fmax (MHz)	Exec (ns)	Th.put (Gb/s)
NORMA (V7, '15)	8	200	18	10	127	7.87	18.3
KNLMS (V7, '15)	8	16	32	207	314	3.18	80.4
CPU (Le et. '13)	1024	16.4k	32			58e4	0.06
FASTFOOD (V7)	1024	16.4k	18	1893	432	23.7e3	7.77
FASTFOOD (KU035)	8192	90.1k	18	16930	508	17.2e3	8.57

> Supports much larger problems

Impl.	dim.	n	bw	Lat. (cyc)	Fmax (MHz)	Exec (ns)	Th.put (Gb/s)
Braiding (V7, '15)	8	200	18	10	127	7.87	18.3
KNLMS (V7, '15)	8	16	32	207	314	3.18	80.4
CPU (Le et. '13)	1024	16.4k	32			58e4	0.06
FASTFOOD (V7)	1024	16.4k	18	1893	432	23.7e3	7.77
FASTFOOD (KU035)	8192	90.1k	18	16930	508	17.2e3	8.57

- > Supports much larger problems
- > High speed design

Impl.	dim.	n	bw	Lat. (cyc)	Fmax (MHz)	Exec (ns)	Th.put (Gb/s)
Braiding (V7, '15)	8	200	18	10	127	7.87	18.3
KNLMS (V7, '15)	8	16	32	207	314	3.18	80.4
CPU (Le et. '13)	1024	16.4k	32			58e4	0.06
FASTFOOD (V7)	1024	16.4k	18	1893	432	23.7e3	7.77
FASTFOOD (KU035)	8192	90.1k	18	16930	508	17.2e3	8.57

- > Supports much larger problems
- > High speed design
- > 245x speed-up over a CPU

> Exploration

> Parallelisation (Low Precision Neural Network)

- Integration
- > Customisation

Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., "FINN: A framework for fast, scalable binarized neural network inference," FPGA'17

Binarized Neural Networks

- > The extreme case of quantization
 - Permit only two values: +1 and -1
 - Binary weights, binary activations
 - Trained from scratch, not truncated FP
- > Courbariaux and Hubara et al. (NIPS 2016)
 - Competitive results on three smaller benchmarks
 - Open source training flow
 - Standard "deep learning" layers
 - Convolutions, max pooling, batch norm, fully connected...

		cat	deer	dog	frog	horse	shi
56789	2 11/2 11 15		1	R		- Marc	2
56789	1. 11 41 160	5	SX		(5	恒	-
56989		×	1	B.	4	PH.	-
56789	5 6 0 0 40	24		×	The second	H	
56789	9 14 5 6 11	E.		,Q	×.	7%	-
56789	7 15 4 8 騷	1	Ť	Å.		af.	-
56709	1/12 4 2 1	Sel.	*	A.	-	A	-

	MNIST	SVHN	CIFAR- 10
Binary weights & activations	0.96%	2.53%	10.15%
FP weights & activations	0.94%	1.69%	7.62%
BNN accuracy loss	-0.2%	-0.84%	-2.53%

% classification error (lower is better)

Advantages of BNNs

Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG

- > Much smaller datapaths
 - Multiply becomes XNOR, addition becomes popcount
 - No DSPs needed, everything in LUTs
 - Lower cost per op = more ops every cycle
- > Much smaller weights
 - Large networks can fit entirely into onchip memory (OCM)
 - More bandwidth, less energy compared to off-chip

Precision	Peak T	OPS	On-chip weights			
1b	~66	\wedge	~70 M	\wedge		
8b	~4 2		~10 M 🖊		\mathbf{r}	
16b	~1	00 V	~5 M	80x		
32b	~0.3		~2 M			

> fast inference with large BNNs

Comparison

		Accuracy	FPS	Power (chip)	Power (wall)	kFPS / Watt (chip)	kFPS / Watt (wall)	Precision
	MNIST, SFC-max	95.8%	12.3 M	7.3 W	21.2 W	1693	583	1
Ş	MNIST, LFC-max	98.4%	1.5 M	8.8 W	22.6 W	177	269	1
Ē	CIFAR-10, CNV-max	80.1%	21.9 k	3.6 W	11.7 W	6	2	1
	SVHN, CNV-max	94.9%	21.9 k	3.6 W	11.7 W	6	2	1
Б	MNIST, Alemdar et al.	97.8%	255.1 k	0.3 W	-	806	-	2
Σ	CIFAR-10, TrueNorth	83.4%	1.2 k	0.2 W	-	6	-	1
r:	SVHN, TrueNorth	96.7%	2.5 k	0.3 W	-	10	-	1
•	Max los	accuracy s: ~3%	10 – 100 perfor) 0x better mance		CIFAR-10/S\ comparable	/HN energy e e to TrueNortl	efficiency h ASIC

Issues with Low-Precision

- > Who would be willing to incur a loss in accuracy?
- > Can we get better accuracy with a little more hardware?

SYQ Quantisation

To compute quantised weights from FP weights

$$\boldsymbol{Q}_l = sign(\boldsymbol{W}_l) \odot \boldsymbol{M}_l$$

with,

$$M_{l_{i,j}} = \begin{cases} 1 & \text{if} \quad \left| W_{l_{i,j}} \right| \ge \eta_l \\ 0 & \text{if} \quad -\eta_l < W_{l_{i,j}} < \eta_l \end{cases}$$

$$sign(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

where *M* represents a masking matrix, η is the quantization threshold hyperparameter (0 for binarised)

- Make approximation $W_l \approx \alpha_l Q_l, Q_l \in C$
- C is the codebook, $C \in \{C_1, C_2, \ldots\}$ e.g. $C = \{-1, +1\}$ for binary, $C = \{-1, 0, +1\}$ for ternary
- A diagonal matrix α_I is defined by the vector $\alpha_I = [\alpha_I^1, ..., \alpha_I^m]$:

$$\alpha = diag(\alpha) := \begin{bmatrix} \alpha^{1} & 0 & \dots & 0 & 0 \\ 0 & \alpha^{2} & \dots & \vdots & 0 \\ \vdots & \vdots & \dots & \alpha^{m-1} & \vdots \\ 0 & 0 & \dots & 0 & \alpha^{m} \end{bmatrix}$$

• Train by solving $\alpha_{l} = \operatorname*{argmin}_{\alpha} E(\alpha, \mathbf{Q}) \quad s.t. \quad \alpha \ge 0, \ \mathbf{Q}_{l_{i,j}} \in \mathbb{C}$

> More fine-grained quantisation can improve approximation of weights

For K filters, I Input feature maps of dimension FxF, N output feature maps
 P=K²INF²

Method	Scalars	Ops	MAC Tree	
Layer (DoReFa)	1	P		Scaling Coefficient Multiply
Row (SYQ)	K	P	$\langle \rangle$	Activation
Pixel (SYQ)	K^2	P		
Asymmetric (TTQ)	2	P+Z		— • • G
Grouping (FGQ)	$K^{2}N/4$	P		
Channel (HWGQ/BWN)	N	P	t t	
)O	
				Accumulator

 Full precision for 1st and last layers, CONV layers pixel-wise, FC layerwise

Model		1-8	2-8	Baseline	Reference
AlaxNat	Top-1	56.6	58.1	56.6	57.1
Alexinet	Top-5	79.4	80.8	80.2	80.2
VGG	Top-1	66.2	68.7	69.4	-
100	Top-5	87.0	88.5	89.1	-
DecNet 18	Top-1	62.9	67.7	69.1	69.6
Keshel-10	Top-5	84.6	87.8	89.0	89.2
PacNat 34	Top-1	67.0	70.8	71.3	73.3
Keshel-54	Top-5	87.6	89.8	89.1	91.3
PesNet 50	Top-1	70.6	72.3	76.0	76.0
Residel-30	Top-5	89.6	90.9	93.0	93.0

Baseline is floating-point, reference <u>https://github.com/facebook/fb.resnet.torch</u> (ResNet) and <u>https://github.com/BVLC/caffe</u> (AlexNet)

	the university of SYDNEY
--	--------------------------

Model	Weights	Act.	Top-1	Top-5
DoReFa-Net [33]	1	2	49.8	-
QNN [15]	1	2	51.0	73.7
HWGQ [2]	1	2	52.7	76.3
SYQ	1	2	55.4	78.6
DoReFa-Net [33]	1	4	53.0	-
SYQ	1	4	56.2	79.4
BWN [24]	1	32	56.8	79.4
SYQ	1	8	56.6	79.4
SYQ	2	2	55.8	79.2
FGQ [21]	2	8	49.04	-
TTQ [34]	2	32	57.5	79.7
SYQ	2	8	58.1	80.8

Results (ResNet)

Model	Weights	Act.	Top-1	Top-5
BWN [24]	1	32	60.8	83.0
SYQ	1	8	62.9	84.6
TWN [19]	2	32	65.3	86.2
INQ [32]	2	32	66.0	87.1
TTQ [34]	2	32	66.6	87.2
SYQ	2	8	67.7	87.8

Model	Weights	Act.	Top-1	Top-5
HWGQ 2	1	2	64.6	85.9
SYQ	1	4	68.8	88.7
SYQ	1	8	70.6	89.6
FGQ [21]	2	4	68.4	-
SYQ	2	4	70.9	90.2
FGQ [21]	2	8	70.8	-
SYQ	2	8	72.3	90.9

ResNet-18

ResNet-50

- > Exploration
- > Parallelisation
- Integration (radio frequency machine learning)
- > Customisation

Radio Frequency Machine Learning

- Processing radio frequency signals remains a challenge
 - high bandwidth and low latency difficult to achieve
- Autoencoder to do anomaly detection

Autoencoder

Train so $\tilde{x} \times x$ (done in an unsupervised manner)

- > Anomaly if distance between autoencoder output and input large
- > FPGA has sufficiently high performance to process each sample of waveform at 200 MHz!
 - This minimises latency and maximises throughput
 - Weights trained on uP and updated on FPGA without affecting inference

Software Defined Radio Architecture

Implemented on Ettus X310 platform

Example

Performance (XC7K410T)

Typical SDR latency >> 1 ms

Module	п	Latency (cycles)	BRAM	DSP	FF	LUT
Windower	1	0	0	0	1511	996
FFT	1	8	0	48	4698	2796
NN	1	17	4	1280	213436	13044
L_2 -Norm	1	4	0	32	1482	873
Thres	1	0	0	0	3	21
Weight Update	258	257	0	0	21955	4528
Inference (FFT+NN)	1	37	1068	1360	241522	45448
Inference (NN)	1	29	1068	1312	236824	42652
Total	N/A	N/A	1068	1360	263477	49976
Total Util.	N/A	N/A	67%	88%	51%	19%

Operation	Throughp	ut Latency
Inference(FFT+NN)	5ns	185ns
Inference(NN)	5ns	105ns
Weight Update	1290ns	1285ns

- > Exploration
- > Parallelisation
- Integration
- > Customisation (Matrix Multiplication on Intel Harp v2)

Problem

- $C = alpha \ast op(A) \ast op(B) + beta \ast C$
- > Xeon+FPGA
- Simple, software-based interface
- Extensions to efficiently support Machine Learning

FP32, INT16, INT8, INT4, Ternary, Binary

Feeder Blocks

Memory Interleaving

a_{00}	a_{01}	a_{02}	a_{03}	0	0	b_{00}	b_{01}	b_{02}	b_{03}	0	0
a_{10}	a_{11}	a_{12}	a_{13}	0	0	b_{10}	b_{11}	b_{12}	b_{13}	0	0
a_{20}	a_{21}	a_{22}	a_{23}	0	$\frac{0}{2}$	b_{20}	b_{21}	b_{22}	b_{23}	0	0
a_{30}	a_{31}	a_{32}	a_{33}	0	$\overline{0}$	b_{30}	b_{31}	b_{32}	b_{33}	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	u ₀₀	$a_{01} \begin{vmatrix} \mathbf{I} \\ \mathbf{I} \end{vmatrix} a_{01}$	u_{02}	a_{03}		b_{00}	b_{01}	b_0	b_2 b_0	03	
C	u_{10}	a_{11}	u_{12}	a_{13}	\checkmark	b_{10}	b_{11}	b_1	2 b	13	Fe
0	u_{20} (a_{21}	u_{22}	a_{23}	\wedge	\overline{b}_{20}	b_{21}	b_2	$b_2 \overline{b_2}$	23	Inc
(a_{30} .	$a_{31} \stackrel{\cdot}{\underline{!}} a_{31}$	ι_{32}	a_{33}		b_{30}	b_{31}	b_3	b_2 b_3	33	

Inefficient with Static Partitioning

Fewer Computations Increase Bandwidth

Memory Sharing between Feeder A and Feeder B

a_{00}	a_{01}	a_{02}	2	a_{03}	3	0	0		
a_{10}	a_{11}	a_{12}	2	a_{13}	}	0	0		
a_{20}	a_{21}	a_{22}	2	a_{23}	}	0	0	· ·	
$\overline{a_{30}}$	a_{31}	a_{32}	2	a_{33}	3	0	0	Х	
a_{40}	a_{41}	a_{42}	2	a_{43}	3	0	0		
0	0	0		0		0	0		
	a_{00}	a_{01}	0	l_{02}	a_0)3			
	a_{10}	a_{11}	0	l_{12}	a_1	$\lfloor 3 \rfloor$			
	a_{20}	a_{21}	0	l_{22}	a_2	23		Х	
	a_{30}	a_{31}	0	l_{32}	a_3	33			
	a_{40}	a_{41}	0	l_{42}	a_4	13			

b_{00}	0	0							
b_{10}	0	0							
b_{20}	0	0							
b_{30}	0	0							
0	0	0							
l	b_{00}								
b_{10}									
\overline{b}_{20}									
l	b_{30}								

Inefficient with Static Partitioning

Minimising Bandwidth Increase Maximum block size restriction

Training a Binarised Neural Network

Larran	Type						
Layer	Forward	Backward					
conv	BINxBIN	FPxBIN					
c&r	INT	STE					
relu	INT	FP					
norm	FP	FP					
pool	FP	FP					
fc	FPxFP	FPxFP					
prob	FP	FP					

STE=straight through estimator

Optimisation: Dynamic Dot Product

Supports two different precisions to avoid reconfiguration at runtime

Optimisation: Fused Operations

Measured Peak Performance

GEMM Memory Interleaving Results

Heterogeneous Load Balancing

Neural Network Memory Interleaving Results

BNN Inference Performance

Derrice		FPG.	FPGA				GPU				
TOPs		GOPS/W	IPS	IPS/W	T(OPS	GOPs/W	IPS	IPS/W		
AlexNet	31.54	657.27	161	0 33.54	37	.60	568.09	1626	25.02		
VGGNet	31.18	649.67	114	2.39	35	.85	522.59	121	1.78		
<u>.</u>											
[26] [11] [21] Our Work							/ork				
Platform		Zynq z704	45 H	Cintex US K	J115	Arri	a 10 GX1150	Arria	10 GX1150		
Logic Elements (LEs)) 350K	350K 1,451		K 1,150K		0K	1,150K			
Power (W)		11.3	11.3 4		41		iπ.				
TOPs (Peak)		11.612	1	4.8		25		40.77			
MOPs / LE		33.17	1	0.19		-		35.45			
GOPs / Wa	att	1027.68	3	60.97		-		849.38			

- > Exploration (Online kernel methods)
- > Parallelisation
- Integration
- > Customisation

Conclusion

THE UNIVERSITY OF

 Kernel methods optimised using different algorithms, mathematical techniques, computer architectures, arithmetic

> Parallelism

- Increase parallelism by reducing precision
- Keep weights on-chip to devote more hardware to arithmetic

Integration

 In radio frequency, this allows latency to be reduced by 4 orders of magnitude

Customisation

 Supplement conventional matrix multiplication to support DNN implementation

- FPGAs can greatly assist with the implementation of intelligent sensing
 - > Learning & inference at 70 Gbps
 - Learning & inference with 100 ns latency
 - > Image processing @ 12.3 Mfps
 - > Multimodal measurements
- > Radio frequency anomaly detector
 - We are using this to predict physical and media access layer protocols
 - Could also be used as a novel diagnostic instrument - monitor RF output of electronic equipment, detect anomalies

Thank you!

