Quantisation

Efficient implementation of convolutional neural networks

Philip Leong

Computer Engineering Lab The University of Sydney

July 2018 / PAPAA Workshop

Australia

Australia and Europe Area size comparison Darwin to Perth 4396km + Perth to Adelaide 2707km + Adelaide to Melbourne 726km Melbourne to Sydney 887km + Sydney to Brisbane 972km + Brisbane to Cairns 1748km

HOBART

Population: 24M (2016) Europe: 741M (2016) Hong Kong: 7M (2016) Area 1/25th Tasmania

Outline

1 Introduction

Number Systems Convolutional Neural Networks Integer Quantisation SYQ: Low Precision DNN Training FINN: A Binarised Neural Network

Outline

Introduction Number Systems

Convolutional Neural Networks Integer Quantisation SYQ: Low Precision DNN Training FINN: A Binarised Neural Network

Introduction

- There are several degrees of freedom to explore when optimising DNNs
 - NN architecture (SqueezeNet, MobileNet)
 - Compression (SVD, Deep Compression, Circulant)
 - Quantization (FP16, TF-Lite, FINN, DoReFa-Net)
- This talk: quantisation

Unsigned Numbers

$$U = (u_{W-1}u_{W-2}...u_0), u_i \in \{0, 1\}$$

= $\sum_{i=0}^{W-1} u_i 2^i$

- U is a W-bit unsigned integer
- Range [0, 2^W)

Two's Complement Numbers

$$X = (x_{W-1}x_{W-2}\dots x_0), x_i \in \{0, 1\}$$

= $-x_{W-1}2^{W-1} + \sum_{i=0}^{W-2} x_i 2^i$

- X is a W-bit signed integer
- Range $[-2^{W-1}, 2^{W-1})$

Two's Complement Fractions

$$Y = (\overbrace{y_{W-1} \dots y_F}^{\text{I-bit integer}} \overbrace{y_{F-1} \dots x_0}^{\text{F-bit fraction}}), y_i \in \{0, 1\}$$
$$= 2^{-F} \times (-x_{W-1}2^{W-1} + \sum_{i=0}^{W-2} x_i 2^i)$$

- Y is a W-bit signed fraction with F-bit fraction
- Are two's complement numbers scaled by 2^{-F}
- Notation used: (I,F) (with I + F = W)
 - (W,0) same as two's complement integers
 - (1,W-1) has range [-1,1) and multiplication never overflows

Dynamic Fixed Point [CBD14]

$$D = (-1)^{S} \cdot 2^{-F} \sum_{i=0}^{W-2} x_i 2^i$$

- *D* is dynamic fixed point number with sign bit *S*, fractional length *F*, *W* is word length
- Sign-magnitude fraction with F being shared within a group
- Allows number format to be adapted to different network segments e.g. layer inputs, weights and outputs can have different F

Operations on Two's Complement Fractions

- Addition and subtraction same as two's complement
- Multiplication
 - An (I,F) multiplication gives a (2I,2F) result, need to discard F bits
 - For (1,3)

 $0.75 \times 0.75 = 0.110 \times 0.110$ = 00.100100 in (2I,2F) format ≈ 0.100 in (I,F) format (truncated)

- Integer part controls range
- Fractional part controls spacing between numbers

Floating Point 1

$$Z = (\overbrace{a_0}^{\mathsf{A}} \overbrace{b_{J-1} \dots b_0}^{\mathsf{B}} \overbrace{c_{F-1} \dots c_0}^{\mathsf{C}}), (a_i, b_i c_i) \in \{0, 1\}$$

- Treating A, B and C as unsigned integers
 - The sign bit is $S = \begin{cases} +1 & \text{if } a_0 = 0 \\ -1, & \text{otherwise} \end{cases}$
 - The exponent is stored in a biased representation with $E = B (2^{J-1} 1)$
 - For normalised numbers, $B \neq 0$, and M is a positive (1,F) two's complement fraction $M = 1 + C2^{-F}$
 - For denormalised numbers B = 0 and there is no implicit 1 in the positive (0,F) two's complement fraction $M = C2^{-F}$

Floating Point 2

$$Z = \begin{cases} S \times 2^E \times M & \text{if } (0 < B < 2^J - 1) \\ S \times 2^E \times (M - 1) & \text{if } (B = 0) \\ S \times \infty & \text{if } (B = 2^J - 1 \text{ and } C = 0) \\ \text{NaN} & \text{if } (B = 2^J - 1 \text{ and } C \neq 0) \end{cases}$$

Operations on Floating Point Numbers

- Much larger resource utilisation
- Longer latency
- · We will focus on fixed point

Outline

1 Introduction

Number Systems Convolutional Neural Networks Integer Quantisation SYQ: Low Precision DNN Training FINN: A Binarised Neural Network

Convolution Layer as MM

- · Convolution layers converted to GEMM [CPS06]
- · Efficient BLAS libraries can be exploited

DNN Computation

Computational problem in DNNs is to compute a number of dot products

$$h = g(\boldsymbol{w}^T \boldsymbol{x}) \tag{1}$$

where

- g is an element-wise nonlinear activation function
- $\mathbf{X} \in \mathbb{R}^{i.w.h}$ is the input vector
- $\boldsymbol{w} \in \mathbb{R}^{i.w.h}$ is the weight vector

Arithmetic Intensity

- · Computation of a DNN layer is MV multiplication
- For MV multiply is *O*(1), for MM is *O*(*b*) where b is block size
- Efficient CPU/GPU implementations use batch size >> 1 (process a number of inputs together)
- For latency-critical applications (e.g. object detection for self-driving car), we want a batch size of 1
- Make sure comparisons are at the same batch size!

Outline

1 Introduction

Number Systems Convolutional Neural Networks Integer Quantisation SYQ: Low Precision DNN Training FINN: A Binarised Neural Network

Role of Wordlength on Performance

- CPU/GPU
 - · Floating point performance comparable to fixed
 - Integer data types usually vectorisable hence faster
 - Nvidia offers FP64, FP32 and FP16 (> Tegra X1 and Pascal)
- FPGA
 - · Datapath is flexible
 - · No floating point unit so fixed point normally preferred

Role of Wordlength on Resources

- X axis is bitwidth (weight-activation) and Y axis Number of LUTs/DSPs for MAC
- For k-bits, area is $\mathcal{O}(k^2)$

Roofline Model

Roofline model for Xilinx ZU19EG

- X axis is computational intensity (ops to perform / byte fetch), Y axis is performance
- · Diagonal parts show memory-bandwith limited space
- · Horizontal parts show computation limited space
- Actually this is a better metric to optimise than say GOPs/s
- · Low precision extremely advantageous for performance

Integer Quantization [Jac+18]

A way to map numbers $r \in \mathbb{R}$ to unsigned integers $q \in \mathbb{U}+$ is via an affine transformation

$$r = S(q - Z) \tag{2}$$

- $\mathbb{U}+$ is the set of unsigned W-bit integers
- *S*, *Z* are the quantisation parameters
 - $S \in \mathbb{R}+$ represents a scaling constant
 - $Z \in \mathbb{U}+$ represents a zero-point

Integer MM [Jac+18]

N × N MM defined as

$$r_3^{(i,k)} = \sum_{j=1}^N r_1^{(i,j)} r_2^{(j,k)},$$
(3)

substituting r = S(q - Z) (2) and rewriting we get

$$q_{3}^{(i,k)} = Z_{3} + M \left(N Z_{1} Z_{2} - Z_{1} a_{2}^{(k)} - Z_{2} \overline{a}_{1}^{(i)} + \sum_{j=1}^{N} q_{1}^{(i,j)} q_{2}^{(j,k)} \right)$$
(4)

- Multiplication with $M = \frac{S_1 S_2}{S_3}$ is implemented in (high-precision) two's complement fixed point
- $a_2^{(k)}$ and $\overline{a}_1^{(i)}$ together only take 2 N^2 additions
- Sum in (4) takes 2N³ and is a standard integer MAC
- CPU implementation uses uint8, accumulated as int32

Quantisation Range [Jac+18]

For each layer, quantisation parameterised by (a,b,n):

$$clamp(r; a, b) = min(max(x, a), b)$$
$$s(a, b, n) = \frac{b-a}{n-1}$$

$$q(r; a, b, n) = rnd(\frac{clamp(r; a, b) - a}{s(a, b, n)})s(a, b, n) + a$$
 (5)

where $r \in \mathbb{R}$ is number to be quantised, [a,b] is quantisation range, *n* is number of quantisation levels and *rnd*() rounds to nearest integer

Figure from [Jac+18] (with permission)

Training Algorithm [Jac+18]

- 1 Create training graph of the floating-point model
- Insert quantisation operations for integer computation in inference path using (5)
- Train with quantised inference but floating-point backpropagation until convergence
- **4** Use weights thus obtained for low-precision inference

Figure from [Jac+18] (with permission)

Accuracy vs Precision [Jac+18]

ResNet50 on ImageNet, comparison with other approaches

Scheme	BWN	TWN	INQ	FGQ	Ours
Weight bits	1	2	5	2	8
Activation bits	float32	float32	float32	8	8
Accuracy	68.7%	72.5%	74.8%	70.8%	74.9%

Table 4.2: ResNet on ImageNet: Accuracy under various quantization schemes, including binary weight networks (BWN [21, 15]), ternary weight networks (TWN [21, 22]), incremental network quantization (INQ [33]) and fine-grained quantization (FGQ [26])

Figure from [Jac+18] (with permission)

Accuracy vs Latency [Jac+18]

ImageNet classifier on Google Pixel 2 (Qualcomm Snapdragon 835 big cores)

Outline

1 Introduction

Number Systems Convolutional Neural Networks Integer Quantisation SYQ: Low Precision DNN Training FINN: A Binarised Neural Network

Symmetric Quantisation (SYQ) [Far+18]

· To compute quantised weights from FP weights

$$\boldsymbol{Q}_{l} = sign(\boldsymbol{W}_{l}) \odot \boldsymbol{M}_{l} \tag{6}$$

with,

$$M_{l_{i,j}} = \begin{cases} 1 & \text{if} \quad \left| W_{l_{i,j}} \right| \ge \eta_l \\ 0 & \text{if} \quad -\eta_l < W_{l_{i,j}} < \eta_l \end{cases}$$
(7)

$$sign(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{otherwise} \end{cases}$$
 (8)

where **M** represents a masking matrix, η is the quantization threshold hyperparameter (0 for binarised)

Symmetric Quantisation (SYQ) [Far+18]

- Make approximation $W_l \approx \alpha_l Q_l, Q_l \in C$
- C is the codebook, $C \in \{C_1, C_2, \ldots\}$ e.g. $C = \{-1, +1\}$ for binary, $C = \{-1, 0, +1\}$ for ternary
- A diagonal matrix α_I is defined by the vector $\alpha_I = [\alpha_I^1, ..., \alpha_I^m]$:

$$\alpha = diag(\alpha) := \begin{bmatrix} \alpha^1 & 0 & \dots & 0 & 0 \\ 0 & \alpha^2 & \dots & \vdots & 0 \\ \vdots & \vdots & \dots & \alpha^{m-1} & \vdots \\ 0 & 0 & \dots & 0 & \alpha^m \end{bmatrix}$$

Train by solving

$$\alpha_l^* = \operatorname{argmin}_{\alpha} E(\alpha, \mathbf{Q}) \quad s.t. \quad \alpha \ge \mathbf{0}, \ \mathbf{Q}_{l_{i,j}} \in \mathcal{C}$$

Subgroups

- · Finer-grained quantisation improves weight approximation
- · Pixel-wise shown, layer-wise has similar accuracy

Dealing with Non-differentiable Functions

- Recall (6) $\boldsymbol{Q}_{l} = sign(\boldsymbol{W}_{l}) \odot \boldsymbol{M}_{l}$
- This step function has a derivative which is zero everywhere: *vanishing gradients* problem
- Address via a straight through estimator (STE)
- Consider q = sign(r) and $g_r \approx \frac{\partial C}{\partial q}$ then $\frac{\partial C}{\partial r} \approx g_q \mathbf{1}_{|r| \leq 1}$

Results for 8-bit activations

Model		Bin	Tern	FP32	Reference
	Top-1	56.6	58.1	56.6	57.1
Alexinet	Top-5	79.4	80.8	80.2	80.2
VGG	Top-1	66.2	68.7	69.4	-
VGG	Top-5	87.0	88.5	89.1	-
ResNet-18	Top-1	62.9	67.7	69.1	69.6
	Top-5	84.6	87.8	89.0	89.2
PacNat 24	Top-1	67.0	70.8	71.3	73.3
nesnel-34	Top-5	87.6	89.8	89.1	91.3
PacNat 50	Top-1	70.6	72.3	76.0	76.0
nesivel-30	Top-5	89.6	90.9	93.0	93.0

 Our ResNet and AlexNet reference results are obtained from https://github.com/facebook/fb.resnet.torch and https://github.com/BVLC/caffe

Alexnet Comparison

Model	Weights	Act.	Top-1	Top-5
DoReFa-Net [Zho+16]	1	2	49.8	-
QNN [Hub+16]	1	2	51.0	73.7
HWGQ [Cai+17]	1	2	52.7	76.3
SYQ	1	2	55.2	78.4
DoReFa-Net [Zho+16]	1	4	53.0	-
SYQ	1	4	56.2	79.4
BWN [Ras+16]	1	32	56.8	79.4
SYQ	1	8	56.6	79.4
SYQ	2	2	55.7	79.1
FGQ [Mel+17]	2	8	49.04	-
TTQ [Zhu+16]	2	32	57.5	79.7
SYQ	2	8	58.1	80.8

Outline

1 Introduction

Number Systems Convolutional Neural Networks Integer Quantisation SYQ: Low Precision DNN Training FINN: A Binarised Neural Network

Inference with Convolutional Neural Networks

Slides from Yaman Umuroglu et. al., "FINN: A framework for fast, scalable binarized neural network inference," FPGA'17

Binarized Neural Networks

- > The extreme case of quantization
 - Permit only two values: +1 and -1
 - Binary weights, binary activations
 - Trained from scratch, not truncated FP
- Courbariaux and Hubara et al. (NIPS 2016)
 - Competitive results on three smaller benchmarks
 - Open source training flow
 - Standard "deep learning" layers
 - Convolutions, max pooling, batch norm, fully connected...

	cat	deer	deg	frog	horse	shi
2 🐒 🖉 🔠 🛐		1	R		30.	4
4: 11 41 12 0	12	SK.			他	
	×	1	B.	4	2	-
	14	a.S.	ŶŔ	8	PT	
	S.	E		Â.	27	-
7 5 4 8 15	-	-ar	×.	1	of	~
11 1 4 2 2	68		à.	1	1	-
	1 2 3 5 1 0 1 10 1 1 0 3 10 1 1 0 3 10 1 1 0 3 10 1 1 0 3 10 1 1 0 3 10 1 1 0 3 10 1 1 0 3 10 1 1 0 3 10 1 1 0 3 10 1 1 0 3 10 1 1 1 5 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

	MNIST	SVHN	CIFAR- 10
Binary weights & activations	0.96%	2.53%	10.15%
FP weights & activations	0.94%	1.69%	7.62%
BNN accuracy loss	-0.2%	-0.84%	-2.53%

% classification error (lower is better)

Advantages of BNNs

Vivado HLS estimates on Xilinx UltraScale+ MPSoC ZU19EG

- > Much smaller datapaths
 - Multiply becomes XNOR, addition becomes popcount
 - No DSPs needed, everything in LUTs
 - Lower cost per op = more ops every cycle
- > Much smaller weights
 - Large networks can fit entirely into onchip memory (OCM)
 - More bandwidth, less energy compared to off-chip

> fast inference with large BNNs

- One size does not fit all Generate tailored hardware for network and use-case
- · Stay on-chip Higher energy efficiency and bandwidth
- Support portability and rapid exploration Vivado HLS (High-Level Synthesis)
- Simplify with BNN-specific optimizations Exploit compile time optimizations to simplify hardware, e.g. batchnorm and activation => thresholding

Design Flow

Heterogeneous Streaming Architecture

1x FPS 10x FPS

- > One hardware layer per BNN layer, parameters built into bitstream
 - Both inter- and intra-layer parallelism
- > Heterogeneous: Avoid "one-size-fits-all" penalties
 - Allocate compute resources according to FPS and network requirements
- > Streaming: Maximize throughput, minimize latency
 - Overlapping computation and communication, batch size = 1

Matrix-Vector Threshold Unit (MVTU)

> Core computational element of FINN, tiled matrix-vector multiply

> Computes a (P) row x (S) column chunk of matrix every cycle, per-layer configurable tile size

Convolutional Layers

> Lower convolutions to matrix-matrix multiplication, $W \cdot I$

- W : filter matrix (generated offline)
- I: image matrix (generated on-the-fly)

> Two components:

Performance

		Accuracy	FPS	Power (chip)	Power (wall)	kFPS / Watt (chip)	kFPS / Watt (wall)	Precision
z	MNIST, SFC-max	95.8%	12.3 M	7.3 W	21.2 W	1693	583	1
	MNIST, LFC-max	98.4%	1.5 M	8.8 W	22.6 W	177	269	1
Ē.	CIFAR-10, CNV-max	80.1%	21.9 k	3.6 W	11.7 W	6	2	1
	SVHN, CNV-max	94.9%	21.9 k	3.6 W	11.7 W	6	2	1
¥	MNIST, Alemdar et al.	97.8%	255.1 k	0.3 W	-	806	-	2
Š	CIFAR-10, TrueNorth	83.4%	1.2 k	0.2 W	-	6	-	1
i.	SVHN, TrueNorth	96.7%	2.5 k	0.3 W	-	10	-	1
•	Max accuracy 10 – loss: ~3% pe					CIFAR-10/S\ comparable	/HN energy e e to TrueNortl	officiency n ASIC

Summary

- Reducing precision
 - · Significantly reduce computational costs in DNNs
 - Data may now fit entirely on chip, avoiding external memory accesses
 - Computations greatly simplified
 - Key dimension for optimisation in CPU/GPU/FPGA implementations
- Convolutional layer can be computed as a MM
- Still an active research topic

Tutorial Question 1

- 1 Download VM (quantisation_usyd.ova) from https://bluemountain.eee.hku.hk/papaa2018/
- 2 Import to Virtualbox, and inside VM do

git clone https://gitlab.com/phwl/syq-cifar10.git

3 Derive Equation (4) from (3) and (2)

Tutorial Question 2

1 Cifar10 is a very small neural network benchmark¹. Test precision with SYQ using:

```
cd syq-cifar10/src
python cifar10_eval.py
```

(this can run during training)

2 The code provided performs binary quantisation. Modify the code to determine precision for binary, ternary and floating-point (use the checkpoint files provided to initialise your training).

python cifar10_train.py

https://www.tensorflow.org/tutorials/images/deep_cnn

References I

[CBD14] Matthieu Courbariaux et al. "Low precision arithmetic for deep learning". In: CoRR abs/1412.7024 (2014). arXiv: 1412.7024. URL: http://arxiv.org/abs/1412.7024.

[CPS06] Kumar Chellapilla et al. "High Performance Convolutional Neural Networks for Document Processing". In: Tenth International Workshop on Frontiers in Handwriting Recognition. Ed. by Guy Lorette. http://www.suvisoft.com. Université de Rennes 1. La Baule (France): Suvisoft, Oct. 2006. URL:

https://hal.inria.fr/inria-00112631.

References II

- [Jac+18] Benoit Jacob et al. "Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference". In: *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*. June 2018.
- [Far+18] Julian Faraone et al. "SYQ: Learning Symmetric Quantization For Efficient Deep Neural Networks". In: *Proc. Computer Vision and Pattern Recognition* (*CVPR*). Utah, US, June 2018.

[Zho+16] Shuchang Zhou et al. "DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients". In: CoRR abs/1606.06160 (2016). URL: http://arxiv.org/abs/1606.06160.

References III

- [Hub+16] Itay Hubara et al. "Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations". In: CoRR abs/1609.07061 (2016). arXiv: 1609.07061. URL: http://arxiv.org/abs/1609.07061.
- [Cai+17] Zhaowei Cai et al. "Deep Learning with Low Precision by Half-wave Gaussian Quantization". In: CoRR abs/1702.00953 (2017). arXiv: 1702.00953. URL: http://arxiv.org/abs/1702.00953.
- [Ras+16] Mohammad Rastegari et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks". In: CoRR abs/1603.05279 (2016). URL: http://arxiv.org/abs/1603.05279.

References IV

[Mel+17] Naveen Mellempudi et al. "Ternary Neural Networks with Fine-Grained Quantization". In: CoRR abs/1705.01462 (2017). URL: http://arxiv.org/abs/1705.01462.

[Zhu+16] Chenzhuo Zhu et al. "Trained Ternary Quantization". In: CoRR abs/1612.01064 (2016). URL: http://arxiv.org/abs/1612.01064.

