
1/51

Quantisation
Efficient implementation of convolutional neural networks

Philip Leong

Computer Engineering Lab
The University of Sydney

July 2018 / PAPAA Workshop

2/51

Australia

3/51

Outline

1 Introduction
Number Systems
Convolutional Neural Networks
Integer Quantisation
SYQ: Low Precision DNN Training
FINN: A Binarised Neural Network

2 Tutorial

4/51

Outline

1 Introduction
Number Systems
Convolutional Neural Networks
Integer Quantisation
SYQ: Low Precision DNN Training
FINN: A Binarised Neural Network

2 Tutorial

5/51

Introduction

• There are several degrees of freedom to explore when
optimising DNNs

• NN architecture (SqueezeNet, MobileNet)
• Compression (SVD, Deep Compression, Circulant)
• Quantization (FP16, TF-Lite, FINN, DoReFa-Net)

• This talk: quantisation

6/51

Unsigned Numbers

U = (uW−1uW−2 . . . u0),ui ∈ {0,1}

=
W−1∑
i=0

ui2i

• U is a W-bit unsigned integer
• Range [0,2W)

7/51

Two’s Complement Numbers

X = (xW−1xW−2 . . . x0), xi ∈ {0,1}

= −xW−12W−1 +
W−2∑
i=0

xi2i

• X is a W-bit signed integer
• Range [−2W−1,2W−1)

8/51

Two’s Complement Fractions

Y = (

I-bit integer︷ ︸︸ ︷
yW−1 . . . yF

F-bit fraction︷ ︸︸ ︷
yF−1 . . . x0), yi ∈ {0,1}

= 2−F × (−xW−12W−1 +
W−2∑
i=0

xi2i)

• Y is a W-bit signed fraction with F-bit fraction
• Are two’s complement numbers scaled by 2−F

• Notation used: (I,F) (with I + F = W)
• (W,0) same as two’s complement integers
• (1,W-1) has range [-1,1) and multiplication never overflows

9/51

Dynamic Fixed Point [CBD14]

D = (−1)S.2−F
W−2∑
i=0

xi2i

• D is dynamic fixed point number with sign bit S, fractional
length F , W is word length

• Sign-magnitude fraction with F being shared within a group
• Allows number format to be adapted to different network

segments e.g. layer inputs, weights and outputs can have
different F

10/51

Operations on Two’s Complement
Fractions

• Addition and subtraction same as two’s complement
• Multiplication

• An (I,F) multiplication gives a (2I,2F) result, need to discard
F bits

• For (1,3)

0.75× 0.75 = 0.110× 0.110
= 00.100100 in (2I,2F) format
≈ 0.100 in (I,F) format (truncated)

• Integer part controls range
• Fractional part controls spacing between numbers

11/51

Floating Point 1

Z = (

A︷︸︸︷
a0

B︷ ︸︸ ︷
bJ−1 . . . b0

C︷ ︸︸ ︷
cF−1 . . . c0), (ai ,bici) ∈ {0,1}

• Treating A, B and C as unsigned integers

• The sign bit is S =

{
+1 if a0 = 0
−1, otherwise

• The exponent is stored in a biased representation with
E = B − (2J−1 − 1)

• For normalised numbers, B 6= 0, and M is a positive (1,F)
two’s complement fraction M = 1 + C2−F

• For denormalised numbers B = 0 and there is no implicit 1
in the positive (0,F) two’s complement fraction M = C2−F

12/51

Floating Point 2

Z =

S × 2E ×M if (0 < B < 2J − 1)
S × 2E × (M − 1) if (B = 0)
S ×∞ if (B = 2J − 1 and C = 0)
NaN if (B = 2J − 1 and C 6= 0)

13/51

Operations on Floating Point Numbers

• Much larger resource utilisation
• Longer latency
• We will focus on fixed point

14/51

Outline

1 Introduction
Number Systems
Convolutional Neural Networks
Integer Quantisation
SYQ: Low Precision DNN Training
FINN: A Binarised Neural Network

2 Tutorial

15/51

Convolution Layer as MM

• Convolution layers converted to GEMM [CPS06]
• Efficient BLAS libraries can be exploited

16/51

DNN Computation
Computational problem in DNNs is to compute a number of dot
products

h = g(wT x) (1)

where
• g is an element-wise nonlinear activation function
• x ∈ Ri.w .h is the input vector
• w ∈ Ri.w .h is the weight vector

17/51

Arithmetic Intensity

• Computation of a DNN layer is MV multiplication
• For MV multiply is O(1), for MM is O(b) where b is block

size
• Efficient CPU/GPU implementations use batch size� 1

(process a number of inputs together)
• For latency-critical applications (e.g. object detection for

self-driving car), we want a batch size of 1
• Make sure comparisons are at the same batch size!

18/51

Outline

1 Introduction
Number Systems
Convolutional Neural Networks
Integer Quantisation
SYQ: Low Precision DNN Training
FINN: A Binarised Neural Network

2 Tutorial

19/51

Role of Wordlength on Performance

• CPU/GPU
• Floating point performance comparable to fixed
• Integer data types usually vectorisable hence faster
• Nvidia offers FP64, FP32 and FP16 (> Tegra X1 and

Pascal)
• FPGA

• Datapath is flexible
• No floating point unit so fixed point normally preferred

20/51

Role of Wordlength on Resources
• X axis is bitwidth (weight-activation) and Y axis Number of

LUTs/DSPs for MAC
• For k -bits, area is O(k2)

Figure from [Jac+18] (with permission)

21/51

Roofline Model
Roofline model for Xilinx ZU19EG

• X axis is computational intensity (ops to perform / byte
fetch), Y axis is performance

• Diagonal parts show memory-bandwith limited space
• Horizontal parts show computation limited space
• Actually this is a better metric to optimise than say GOPs/s
• Low precision extremely advantageous for performance

Slide © Copyright 2016 Xilinx

22/51

Integer Quantization [Jac+18]
A way to map numbers r ∈ R to unsigned integers q ∈ U+ is
via an affine transformation

r = S(q − Z) (2)

• U+ is the set of unsigned W-bit integers
• S,Z are the quantisation parameters

• S ∈ R+ represents a scaling constant
• Z ∈ U+ represents a zero-point

23/51

Integer MM [Jac+18]

• N × N MM defined as

r (i,k)3 =
N∑

j=1

r (i,j)1 r (j,k)2 , (3)

substituting r = S(q − Z) (2) and rewriting we get

q(i,k)
3 = Z3+M

(
NZ1Z2−Z1a(k)

2 −Z2a(i)
1 +

N∑
j=1

q(i,j)
1 q(j,k)

2

)
(4)

• Multiplication with M = S1S2
S3

is implemented in
(high-precision) two’s complement fixed point

• a(k)
2 and a(i)

1 together only take 2N2 additions
• Sum in (4) takes 2N3 and is a standard integer MAC
• CPU implementation uses uint8, accumulated as int32

24/51

Quantisation Range [Jac+18]
For each layer, quantisation parameterised by (a,b,n):

clamp(r ;a,b) = min(max(x ,a),b)

s(a,b,n) =
b − a
n − 1

q(r ;a,b,n) = rnd(
clamp(r ;a,b)− a

s(a,b,n)
)s(a,b,n) + a (5)

where r ∈ R is number to be quantised, [a,b] is quantisation
range, n is number of quantisation levels and rnd() rounds to
nearest integer

Figure from [Jac+18] (with permission)

25/51

Training Algorithm [Jac+18]

1 Create training graph of the floating-point model
2 Insert quantisation operations for integer computation in

inference path using (5)
3 Train with quantised inference but floating-point

backpropagation until convergence
4 Use weights thus obtained for low-precision inference

Figure from [Jac+18] (with permission)

26/51

Accuracy vs Precision [Jac+18]
ResNet50 on ImageNet, comparison with other approaches

Figure from [Jac+18] (with permission)

27/51

Accuracy vs Latency [Jac+18]
ImageNet classifier on Google Pixel 2 (Qualcomm Snapdragon
835 big cores)

Figure from [Jac+18] (with permission)

28/51

Outline

1 Introduction
Number Systems
Convolutional Neural Networks
Integer Quantisation
SYQ: Low Precision DNN Training
FINN: A Binarised Neural Network

2 Tutorial

29/51

Symmetric Quantisation
(SYQ) [Far+18]

• To compute quantised weights from FP weights

Ql = sign(W l)�M l (6)

with,

Mli,j =

{
1 if

∣∣∣Wli,j

∣∣∣ ≥ ηl

0 if − ηl < Wli,j < ηl
(7)

sign(x) =

{
1 if x ≥ 0
-1 otherwise

(8)

where M represents a masking matrix, η is the
quantization threshold hyperparameter (0 for binarised)

30/51

Symmetric Quantisation
(SYQ) [Far+18]

• Make approximation Wl ≈ αlQl , Ql ∈ C
• C is the codebook, C ∈ {C1,C2, . . .} e.g. C = {−1,+1} for

binary, C = {−1,0,+1} for ternary
• A diagonal matrix αl is defined by the vector
αl =

[
α1

l , ..., α
m
l
]
:

α = diag(α) :=

α1 0 .. 0 0
0 α2 .. : 0
: : .. αm−1 :
0 0 .. 0 αm

• Train by solving

α∗l = argminαE(α,Q) s.t . α ≥ 0, Qli,j ∈ C

31/51

Subgroups

• Finer-grained quantisation improves weight approximation
• Pixel-wise shown, layer-wise has similar accuracy

32/51

Dealing with Non-differentiable
Functions

• Recall (6) Ql = sign(W l)�M l

• This step function has a derivative which is zero
everywhere: vanishing gradients problem

• Address via a straight through estimator (STE)
• Consider q = sign(r) and gr ≈ ∂C

∂q then ∂C
∂r ≈ gq1|r |≤1

33/51

Results for 8-bit activations

Model Bin Tern FP32 Reference

AlexNet
Top-1 56.6 58.1 56.6 57.1
Top-5 79.4 80.8 80.2 80.2

VGG
Top-1 66.2 68.7 69.4 -
Top-5 87.0 88.5 89.1 -

ResNet-18
Top-1 62.9 67.7 69.1 69.6
Top-5 84.6 87.8 89.0 89.2

ResNet-34
Top-1 67.0 70.8 71.3 73.3
Top-5 87.6 89.8 89.1 91.3

ResNet-50
Top-1 70.6 72.3 76.0 76.0
Top-5 89.6 90.9 93.0 93.0

• Our ResNet and AlexNet reference results are obtained
from https://github.com/facebook/fb.resnet.torch and
https://github.com/BVLC/caffe

34/51

Alexnet Comparison
Model Weights Act. Top-1 Top-5

DoReFa-Net [Zho+16] 1 2 49.8 -
QNN [Hub+16] 1 2 51.0 73.7
HWGQ [Cai+17] 1 2 52.7 76.3
SYQ 1 2 55.2 78.4
DoReFa-Net [Zho+16] 1 4 53.0 -
SYQ 1 4 56.2 79.4
BWN [Ras+16] 1 32 56.8 79.4
SYQ 1 8 56.6 79.4
SYQ 2 2 55.7 79.1
FGQ [Mel+17] 2 8 49.04 -
TTQ [Zhu+16] 2 32 57.5 79.7
SYQ 2 8 58.1 80.8

35/51

Outline

1 Introduction
Number Systems
Convolutional Neural Networks
Integer Quantisation
SYQ: Low Precision DNN Training
FINN: A Binarised Neural Network

2 Tutorial

36/51

Inference with Convolutional Neural
Networks

Slide © Copyright 2016 Xilinx

37/51

Binarized Neural Networks

Slide © Copyright 2016 Xilinx

38/51

Advantages of BNNs

Slide © Copyright 2016 Xilinx

39/51

Design Flow

• One size does not fit all - Generate tailored hardware for
network and use-case

• Stay on-chip - Higher energy efficiency and bandwidth
• Support portability and rapid exploration - Vivado HLS

(High-Level Synthesis)
• Simplify with BNN-specific optimizations - Exploit compile

time optimizations to simplify hardware, e.g. batchnorm
and activation => thresholding

Slide © Copyright 2016 Xilinx

40/51

Design Flow

Slide © Copyright 2016 Xilinx

41/51

Heterogeneous Streaming Architecture

Slide © Copyright 2016 Xilinx

42/51

Matrix-Vector Threshold Unit (MVTU)

Slide © Copyright 2016 Xilinx

43/51

Convolutional Layers

Slide © Copyright 2016 Xilinx

44/51

Performance

Slide © Copyright 2016 Xilinx

45/51

Summary

• Reducing precision
• Significantly reduce computational costs in DNNs
• Data may now fit entirely on chip, avoiding external memory

accesses
• Computations greatly simplified
• Key dimension for optimisation in CPU/GPU/FPGA

implementations

• Convolutional layer can be computed as a MM
• Still an active research topic

46/51

Tutorial Question 1

1 Download VM (quantisation_usyd.ova) from
https://bluemountain.eee.hku.hk/papaa2018/

2 Import to Virtualbox, and inside VM do

git clone https://gitlab.com/phwl/syq-cifar10.git

3 Derive Equation (4) from (3) and (2)

47/51

Tutorial Question 2

1 Cifar10 is a very small neural network benchmark1. Test
precision with SYQ using:

cd syq-cifar10/src
python cifar10_eval.py

(this can run during training)
2 The code provided performs binary quantisation. Modify

the code to determine precision for binary, ternary and
floating-point (use the checkpoint files provided to initialise
your training).

python cifar10_train.py

1
https://www.tensorflow.org/tutorials/images/deep_cnn

https://www.tensorflow.org/tutorials/images/deep_cnn

48/51

References I

[CBD14] Matthieu Courbariaux et al. “Low precision
arithmetic for deep learning”. In: CoRR
abs/1412.7024 (2014). arXiv: 1412.7024. URL:
http://arxiv.org/abs/1412.7024.

[CPS06] Kumar Chellapilla et al. “High Performance
Convolutional Neural Networks for Document
Processing”. In: Tenth International Workshop on
Frontiers in Handwriting Recognition. Ed. by
Guy Lorette. http://www.suvisoft.com. Université de
Rennes 1. La Baule (France): Suvisoft, Oct. 2006.
URL:
https://hal.inria.fr/inria-00112631.

http://arxiv.org/abs/1412.7024
http://arxiv.org/abs/1412.7024
https://hal.inria.fr/inria-00112631

49/51

References II
[Jac+18] Benoit Jacob et al. “Quantization and Training of

Neural Networks for Efficient
Integer-Arithmetic-Only Inference”. In: The IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR). June 2018.

[Far+18] Julian Faraone et al. “SYQ: Learning Symmetric
Quantization For Efficient Deep Neural Networks”.
In: Proc. Computer Vision and Pattern Recognition
(CVPR). Utah, US, June 2018.

[Zho+16] Shuchang Zhou et al. “DoReFa-Net: Training Low
Bitwidth Convolutional Neural Networks with Low
Bitwidth Gradients”. In: CoRR abs/1606.06160
(2016). URL:
http://arxiv.org/abs/1606.06160.

http://arxiv.org/abs/1606.06160

50/51

References III
[Hub+16] Itay Hubara et al. “Quantized Neural Networks:

Training Neural Networks with Low Precision
Weights and Activations”. In: CoRR
abs/1609.07061 (2016). arXiv: 1609.07061. URL:
http://arxiv.org/abs/1609.07061.

[Cai+17] Zhaowei Cai et al. “Deep Learning with Low
Precision by Half-wave Gaussian Quantization”. In:
CoRR abs/1702.00953 (2017). arXiv: 1702.00953.
URL: http://arxiv.org/abs/1702.00953.

[Ras+16] Mohammad Rastegari et al. “XNOR-Net: ImageNet
Classification Using Binary Convolutional Neural
Networks”. In: CoRR abs/1603.05279 (2016). URL:
http://arxiv.org/abs/1603.05279.

http://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1702.00953
http://arxiv.org/abs/1702.00953
http://arxiv.org/abs/1603.05279

51/51

References IV
[Mel+17] Naveen Mellempudi et al. “Ternary Neural Networks

with Fine-Grained Quantization”. In: CoRR
abs/1705.01462 (2017). URL:
http://arxiv.org/abs/1705.01462.

[Zhu+16] Chenzhuo Zhu et al. “Trained Ternary Quantization”.
In: CoRR abs/1612.01064 (2016). URL:
http://arxiv.org/abs/1612.01064.

http://arxiv.org/abs/1705.01462
http://arxiv.org/abs/1612.01064

	Introduction
	Number Systems
	Convolutional Neural Networks
	Integer Quantisation
	SYQ: Low Precision DNN Training
	FINN: A Binarised Neural Network

	Tutorial

