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Abstract

Machine learning is fast becoming a cornerstone in many data analytic, image processing

and scientific computing applications. Depending on the deployment scale, these tasks

can either be performed on embedded devices, or larger cloud computing platforms.

However, one key trend is an exponential increase in the required compute power as

data is collected and processed at a previously unprecedented scale. In an effort to re-

duce the computational complexity there has been significant work on reduced precision

representations. Unlike Central Processing Units, Graphical Processing Units and Ap-

plications Specific Integrated Circuits which have fixed datapaths, Field Programmable

Gate Arrays (FPGA) are flexible and uniquely positioned to take advantage of reduced

precision representations.

This thesis presents FPGA architectures for low precision machine learning algorithms,

considering three distinct levels: the application, the framework and the operator.

Firstly, a spectral anomaly detection application is presented, designed for low latency

and real-time processing of radio signals. Two types of detector are explored, a neural

network autoencoder and least squares bitmap detector. Secondly, a generalised matrix

multiplication framework for the Intel HARPv2 is outlined. The framework was designed

specifically for machine learning applications; containing runtime configurable optimi-

sations for reduced precision deep learning. Finally, a new machine learning specific

operator is presented. A bit-dependent multiplication algorithm designed to condition-

ally add only the relevant parts of the operands and arbitrarily skip over redundant

computation.

Demonstrating optimisations on all three levels; the application, the framework and the

operator, illustrates that FPGAs can achieve state-of-the-art performance in important

machine learning workloads where high performance is critical; while simultaneously

reducing implementation complexity.
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Chapter 1

Introduction

1.1 Motivation

Machine Learning is undergoing a renaissance. With deep learning at its forefront, com-

puters are able to provide better-than-human level accuracy on image recognition, drive

cars unassisted and perform in-depth analysis of personal health and fitness biomet-

rics. Machine learning is changing the way we access, interpret and interface with the

world [3, 4]. From social media to instrumentation; companies are beginning to adopt

machine learning into their organisations and customer facing products as a method

to increase revenue and improve customer experience. Modelling system behaviour, ex-

tracting customer interactions and facial recognition, to name a few, are important parts

of frameworks and applications used in both industry and research. Whether it is an em-

bedded device, such as a mobile phone, or a permanent cloud-based installation, machine

learning is now deployed at every level and scale. As the benefits of machine learning

become increasingly apparent, data is collected and processed at an unprecedented scale.

Consequently, there is a growing concern that traditional computing resources will be

insufficient to handle this exponential increase [5–7].

The computing resources required to efficiently develop and deploy machine learning

algorithms is often overlooked [6]. For example, AlexNet, which is considered small

by today’s standards, requires on the order of 109 math operations per image [8]. As

companies begin to see the potential of machine learning, there will be a dramatic

increase in the computing resources required [9]. To meet customer needs, companies

are turning to large cloud providers such as Amazon, Google or Microsoft to provide

the required compute and infrastructure. Algorithms are computationally intensive,

especially during development, and the Central Processing Unit (CPU) is insufficient to

handle large scale workloads [7]. In response, cloud providers are offering accelerators

1
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such as Graphical Processing Units (GPUs), and more recently Field Programming

Gate Arrays (FPGAs) and dedicated Application Specific Integrated Circuits (ASICs)

as alternatives [10]. As a recent example, Google now offers their own reduced precision

ASIC called the Tensor Processing Unit (TPU), illustrating their need for high efficiency

compute for deep learning and machine learning [9].

In an effort to reduce the computational complexity and overall processing requirements

of machine learning algorithms, there has been significant work focusing on reduced

precision representations [11–17]. Historically, single precision floating-point has been

the widely accepted gold standard due to its large dynamic range. However, in digital

systems, floating-point representation requires significant amounts of additional circuitry

to support its implementation, sacrificing performance.

1.2 Aims and Contributions

Reduced precision representations offer two key optimisations:

1. Lower computation complexity leading to reductions in power, area and delay.

2. A smaller memory footprint as fewer bits are required for parameters.

The FPGAs’ reconfigurable architecture allows for fast and relatively cheap changes

to datapath precision compared to other devices. As a result, FPGAs are uniquely

positioned to take advantage of reduced precision representations, since the datapaths

of CPUs, GPUs and ASICs are fixed at deployment. Lower precision representations can

be optimised for the FPGAs’ look-up table based architecture and the reconfigurable

fabric makes adapting to algorithmic requirements fast and simple. This makes FPGAs

the perfect fit for lower precision machine learning.

This thesis presents FPGA architectures for low precision machine learning at three dis-

tinct levels: the application, the framework and the operator. Precision optimisations
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at the application level involves leveraging the reconfigurable architecture of FPGAs to

take advantage of arbitrary precision fixed-point datapaths. Depending on the applica-

tion’s operating requirements, different precisions can be selected to optimise for area,

latency, accuracy and power. As illustrated in Figure 1.1, to support different precisions

at the application level, a customisable framework that contains a software library and

hardware template is presented. The framework is designed to provide a consistent and

reusable environment in which reduced precision applications can be constructed. With

multiplication as the fundamental operator used in machine learning applications and

frameworks, this thesis offers an optimised multiplication algorithm and implementa-

tion designed for seamless integration which provides improved performance for these

algorithms.

Working from top to bottom in Figure 1.1, a reduced precision radio-frequency (RF)

anomaly detection application is presented. The anomaly detector is given as an exam-

ple of a machine learning application where reduced precision representations allow for

larger model sizes, resulting in improved detection performance over floating-point. The

detector is a neural network (NN) based autoencoder, taking either raw Quadrature

(IQ) windows, or complex-valued frequencies. It is evaluated for a range of different

precisions and analysed in terms of area, latency, throughput and detector accuracy.

Another reduced precision detector based on a N -dimensional symbolic bitmap tech-

nique is presented and compared against the neural network detector. In contrast to

the neural network detector, the hardware implementation is area and compute efficient

requiring nine additions and multiplications, performed in O(1) time.

Second, a generalised matrix multiplication framework with variable precision, designed

for accelerating machine learning applications is explored. The framework is designed

to abstract the complexity of implementing custom reduced precision accelerators on

FPGAs and is easily integrated into existing platforms. It contains a software library

and hardware template, providing a consistent and reusable interface to the FPGA.

The library contains a software application programming interface (API) for easy in-

tegration into existing deep leaning and machine learning applications. The hardware

template contains key runtime configurable optimisations such as a wide range of pre-

cisions, blocking, fusing of operations and a customisable interleaving scheme; offering

substantial improvements for small matrix sizes and neural networks. The framework

is evaluated for three state-of-the-art neural networks (AlexNet [8], VGGnet [18] and

ResNet [4]), in addition to an in-depth comparison to the latest Pascal NVIDIA GPU

and other related works in the area.

Finally, a new operator is presented; a novel bit-dependent multiplier algorithm for ac-

celerating machine learning applications. The multiplier implementation is designed for
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easy integration into existing FPGA accelerator frameworks. By splitting the computa-

tional datapath into two separate sub-circuits, the multiplier quickly deduces whether

an accumulation is required, otherwise it skips the computation. The multiplier is evalu-

ated for multiple popular neural networks and compared against standard multiplication

techniques.

In summary, the contributions of this thesis are:

• A single-chip RF anomaly detector, utilising a neural network, which is fully

pipelined, producing an output every cycle. It leverages a heterogeneous archi-

tecture which supports updating the weights while inference proceeds, enabling

simultaneous learning and inference with the former conducted on a processor or

graphics processing unit [19, 20].

• A runtime configurable heterogeneous GEMM implementation which supports ar-

bitrary matrix sizes and offers a wide range of precision, blocking, fusing of oper-

ations, buffering schemes and load balancing. It includes a dynamic dot product,

enabling mixed precision training and binary inference [21, 22].

• A two speed multiplication algorithm where the datapath is divided into two sub-

circuits, each operating with a different critical path. This multiplier takes ad-

vantage of particular bit-patterns to perform less work; this results in reduced

latency, increased throughput and superior area-time performance compared to

conventional multipliers [23].

1.3 Thesis Structure

An introduction to the concepts of computer arithmetic, machine learning and deep

learning is presented in Chapter 2. The chapter begins with an overview of computer

arithmetic, focusing on reduced precision representations and their computation. Next,

the core ideas of machine learning are presented along with their mathematical de-

scriptions. Finally, neural networks, convolutional neural networks and their various

computational methods are explored.

In Chapter 3, the anomaly detection application is explored and the key concepts of

anomaly detection are discussed in detail. The neural network anomaly detector for

real-time processing of radio-frequency signals is described. The implementation details

of the autoencoder and fast Fourier transform algorithm are discussed. Furthermore, an

on-line algorithm for computing the discrete Fourier transform, sampled at irregular time

intervals is introduced along with an on-line bitmap anomaly detection technique. The
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neural network detector and bitmap detector are evaluated and their results presented.

Finally, the resulting hardware implementations and design concerns are explored.

Chapter 4 covers the generalised matrix multiplication framework, designed for deep

learning applications such as those presented in Chapter 3. Beginning with an overview

of the system, a summary of the software API and various tuneable parameters in the

hardware template are described. This is followed by an in-depth look at the hardware

template and key runtime configurable optimisations such as fusing of operations, cus-

tomisable interleaving schemes and dynamic dot product. Next, a discussion outlining

the implementation details of mixed precision computation are presented and evalu-

ated against a state-of-the-art GPU, illustrating that the FPGA remains competitive in

terms of performance per watt and outperforms the GPU on more exotic precision types.

Finally, the performance benefits of interleaving are explored and the framework is eval-

uated using three binarised neural networks (AlexNet [8], VGGnet [18] and ResNet [4]).

A discussion on the dynamic dot product module and a comparison to previous work

ends the chapter.

With the importance of multiplication in deep learning established, Chapter 5 presents

the Two Speed multiplier. It outlines an overview of the radix-4 Booth algorithm [24]

and the necessary changes needed to support the two speed optimisation. This is followed

by an illustrative example describing the control flow and a model for estimating the

multiplier’s performance. The chapter concludes with a comparison to three standard

methods, evaluated in terms of area, time and power.

The final chapter presents a summary of the work in this thesis and the direction of

future work.





Chapter 2

Background

2.1 Introduction

This chapter presents the concepts and terminology used in computer arithmetic and

architecture, reduced precision representations, multiplier implementations and neural

networks relevant to this thesis. It begins by presenting background information on

computer arithmetic and reduced precision representations; focusing on fixed-point rep-

resentations and different multiplier types. This is followed by a description of machine

learning and neural networks. The chapter concludes with an examination of neural

network computational techniques and the convolution layer.

2.2 Field Programmable Gate Arrays

A Field Programmable Gate Array is a configurable two dimensional grid of flexible logic

blocks [25]. These logic blocks contain look-up tables which can be configured to express

any logic function of their given inputs, and memory for storing bits, called registers.

The inputs and outputs of these logic blocks are connected together via programmable

interconnections, implemented as programmable switch matrices. This technology has

a distinct advantage over fixed function processors such as CPUs and GPUs as its flex-

ibility offers different approaches to implement a given algorithm. Higher degrees of

parallelism can be achieved through replication of computing units, pipelining and re-

ducing instruction execution overhead. Moreover, the use of FPGAs offers the potential

to tightly integrate machine learning with lower level data acquisition and/or networking

hardware, reducing buffer sizes and further optimising latency.

7
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In addition to logic cells, FPGAs contain two other common blocks: block memories

(BRAM) and digital signal processing (DSP) blocks. BRAMs are dedicated one or two

port memories which vary in size depending on the vendor and device. Each port on

the BRAM can be configured as either an input or output. DSP blocks are dedicated

math blocks, usually containing an adder and multiplier. Recently FPGAs have started

to add DSP blocks that include native single precision floating-point support. [26] These

blocks are fully pipelined and perform a multiply-accumulate every cycle with some

result latency. These two hardened blocks, along with the logic cells form the majority

of the FPGAs area and are arranged in columns.

An FPGA design is created by a two stage process named ‘synthesis’ and ‘place and

route’. These processes take a hardware description and determine the best configuration

of the flexible compute blocks. Synthesis takes files written in a hardware description

language (HDL) and translates them to a list of wire interconnects and logic functions;

this is called the net list. The net list is used in the map stage to create a physical

representation of the net list which is used in the place and route stage. The place and

route stage determines the exact configuration and layout of the device’s logic blocks

to meet the desired timing and area constraints. This process creates a hard-wired

configuration to implement the desired circuit. The exact layout is then stored in a

file called the bitstream. Historically, users have been required to express the desired

functionality using an HDL, however this is often verbose and overly complicated. To

overcome this, there has been significant work in high-level synthesis (HLS) [27, 28].

HLS abstracts away many of the hardware specific details in an HDL and allows the

user to express their desired functionally in a more succinct language.

FPGAs can be used as either standalone devices or heterogeneous accelerators [29]. The

work in this thesis focuses on heterogeneous accelerators for machine learning applica-

tions. Heterogeneous CPU and FPGA systems are typically connected via [30–32]:

• Advanced Mircocontroller Bus Architecture (AMBA) Interconnect, or

• The Peripheral Component Interconnect (PCI), PCI Express (PCI-e), Ethernet or

Serial Communication ports (JTAG, COMM, etc.).

The AMBA interconnect is designed for System-on-Chip (SoC) devices running an ARM

processor. While an in-depth understanding of the differences between ARM processors

and x86 processors is not required for this thesis, it is sufficient to say that in general,

x86 processors include more complex circuitry; resulting in higher performance and pro-

vide additional functionality compared to ARM processors. As a result, x86 processors

require more power and have been more suited to desktop and server based machines,

whereas ARM processors are used in embedded and low power applications such as
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mobile phones. As such, heterogeneous CPU and FPGA systems based on the AMBA

interconnect are designed for low power embedded applications. One of the main inter-

faces defined in AMBA is the Advanced eXtensible Interface (AXI). AXI targets devices

with high clock frequencies, thus making it an appropriate choice for high performance

FPGAs.

Connecting an FPGA over PCI, PCI-e, Ethernet or other serial ports is a method

for communicating with the FPGA on a discrete board. These discrete FPGAs have

dedicated memory located on their circuit boards that interface with the CPU via various

ports and pins. A typical application that involves offloading work to the FPGA is

performed in three steps: (1) the CPU transfers data to the FPGA dedicated memory,

(2) the FPGA will access that memory and perform its compute and (3) the result

will be returned to the dedicated memory, ready for the CPU to transfer it back. For

heterogeneous accelerators, exchange of data between the CPU and FPGA is often a

major performance bottleneck.

While there are other heterogeneous processor platforms that contend with ARM and

x86, the prevalence of these two are motivating a shift towards the interconnect stan-

dardisation [33]. Ease of use and low level software-hardware abstraction are valued

highly since they allow hardware blocks to operate on many different platforms without

significant redesign or reimplementation. Whilst other heterogeneous platforms may be

available, these two cover the majority of hardware designs.

2.3 Digital Arithmetic

Digital Arithmetic is the study of number representations, algorithms for operations

on numbers, implementations of arithmetic units and their use in general-purpose and

application-specific systems [34]. The two common cases of digital numbers are:

• fixed-point (FXD) numbers: represented by an integer I = {−N, . . . , N} and a

rational number x = a/2f , where a ∈ I and f is the fractional length, represented

as a positive integer

• floating-point (FP) numbers: x × bE , x is a rational number, b the integer base,

and E the integer exponent.

This section introduces the basic number systems for the fixed-point representation,

which is used in the following chapters. The floating-point representation described is

only used for evaluation later in the thesis.



Chapter 2. Background 10

2.3.1 Fixed-Point Number Representation

Performing operations on fixed-point numbers requires a specific representation [34]. A

number is represented by an ordered n-tuple, called a digit-vector, with each element

of the n-tuple a digit and the number of digits n denoting the precision of the rep-

resentation. First, a representation of non-negative integers is presented, followed by

the representation of signed integers and finally an extension to fractional fixed-point

numbers.

The integer x is represented by the zero-origin, leftward-increasing indexed digit-vector:

X = (Xn−1, Xn−2, . . . , X1, X0) (2.1)

A number system which represents x requires: the number of digits n, a set of allowable

values for the digits, and a rule of interpretation that corresponds to a mapping between

the set of digit-vector values and the set of integers. Di denotes the set of values Xi,

for example Di = {0, 1, 2, . . . , 9} is the digit set for the conventional decimal number

system. A set of integers, each represented by a digit-vector with n digits, is a finite set

with at most K =
∏n−1
i=0 |Di| different elements, where |Di| denotes the cardinality of

set Di.

If the representation is a one-to-one mapping between each digit-vector and a different

integer, then the number system is considered non-redundant. It follows that in a

redundant number system, multiple digit-vectors map to the same integer. Generally,

number systems are weight systems, their mapping represented by:

x =
n−1∑
i=0

XiWi (2.2)

where W = (Wn−1,Wn−2, . . . ,W1,W0) is the weight-vector.

Radix number systems are an example of a weight number system, where the weight-

vector is related to a radix-vector R = (Rn−1, Rn−2, . . . , R1, R0) as follows:

W0 = 1; Wi =
i−1∏
j=0

Rj (2.3)

In a fixed radix system all elements of the radix-vector R have the same value r, hence

the weight-vector is:

W = (rn−1, rn−2, . . . , r2, r, 1) (2.4)
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and substituting Equation 2.4 into Equation 2.2

x =
n−1∑
i=0

Xi · ri (2.5)

A canonical system is a set of values for Di = {0, 1, 2, . . . , Ri − 1}, with |Di| = Ri. A

non-canonical system is a set of digit values that are not canonical, i,e |Di| 6= Ri. In

the case of |Di| > R, it allows for more than one representation of a value, resulting in

a redundant system. A number system with fixed positive radix r and a canonical set

of digit values is called a radix-r conventional number system. For the commonly used

radix-2, the corresponding weight-vector is W = (. . . , 16, 8, 4, 2, 1).

2.3.1.1 Signed Integers

The non-negative integer representation is now extended to a signed representation to

facilitate the negative integers. There are two options for signed systems, Sign-and-

Magnitude (SM) and True-and-Complement (TC).

A signed integer x is represented in the SM system by a pair (xs, xm) where xs is the sign

and xm is the magnitude, represented as a positive integer. Generally, the two values of

the sign (+,−) are represented by a binary variable, where 0 corresponds to + and 1 to

−. The magnitude can be represented by any system, in the case of a radix-r system:

0 ≤ xm ≤ rn − 1 (2.6)

where n is the number of digits in the magnitude representation.

The TC system makes no distinction between the representation of the sign and mag-

nitude. An additional mapping, defined below, is required to make this representation

work. A signed integer x can be represented in the TC system by a positive integer xR

such that:

xR = x mod C (2.7)

where C is the complementation constant, a positive integer. For max|x| < C, Equa-

tion 2.7 is equivalent to:

xR =

x if x ≥ 0.

C − |x| = C + x if x < 0.
(2.8)
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Following this, in order to have an unambiguous representation it is required that

max(x) < C/2, such that the region for x > 0 and x < 0 do not overlap. The converse

mapping is

x =

xR if xR < C/2.

xR − C if xR > C/2.
(2.9)

When xR = C/2 = −x the representation is asymmetrical. The positive integers are

called the true forms and the negative integers the complement forms.

The positive integer xR can be represented in any system. For a digit-vector of n digits

the range is:

0 ≤ xR ≤ rn − 1 (2.10)

Usually the complementation constant is C = rn or C = rn − 1. In the case of radix-2,

this results in the two’s complement system C = 2n and the one’s complement system

C = 2n−1. For the two’s complement system xR = 2n−1 can represent either x = 2n−1 or

x = −2n−1, resulting an an asymmetric representation. Historically x = 2n−1 is chosen

to simplify the sign detection. The range of signed integers in the two’s complement

system is:

−2n−1 ≤ x ≤ 2n−1 − 1 (2.11)

For the one’s complement system C = rn−1, xR = C is represented with n digits hence

there are two representations of x = 0: xR = 0 and xR = 2n − 1. The range of signed

integers in the ones’s complement system is:

−(2n−1 − 1) ≤ x ≤ 2n−1 − 1 (2.12)

Sign detection in the SM and TC systems is:

sign(x) =

0 if x ≥ 0.

1 if x < 0.
(2.13)

For the SM case, detection is trivial as there is a dedicated signed bit xs. In the TC

system, since |x| ≤ C/2, the sign is determined by:

sign(x) =

0 if xR < C/2.

1 if x ≥ C/2.
(2.14)
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In the case of two’s complement and ones’s complement systems the most-significant bit

is used:

sign(x) = Xn−1 (2.15)

For the two’s complement case, mapping from the digit-vector to the value is performed

by:

x = −Xn−12n−1 +
n−2∑

0

Xi2
i (2.16)

2.3.1.2 Fixed-Point Fraction Representation

This last part further extends the signed integer representation to account for fractional

values. A fixed-point representation of a number x = xINT + xFR consists of integer

and fraction components represented by m and f digits, respectively, where n = m+ f .

Equation 2.17 shows the specific notation.

X = (X(m−1) . . . X1X0.X−1 . . . X−f ) (2.17)

For a two’s complement system xINT is calculated by:

xINT = −Xm−12m−1 +

m−2∑
0

Xi2
i (2.18)

and xFR is calculated by:

xFR =

0∑
−f

Xi2
i (2.19)

It follows that a two’s complement radix-2 fixed-point number can be calculated by:

x = xINT + xFR = −Xm−12m−1 +

m−2∑
−f

Xi2
i (2.20)

For example, −1.75 ≤ x ≤ 1.50 is represented by X = (X1X0.X−1X−2).
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2.3.2 Multiplication

Multiplication is arguably the most important primitive in machine learning and digital

signal processing applications. Sze et. al [35] illustrated that the majority of hardware

optimisations are aimed at improving multiplication, since multiplier circuitry grows

with complexity n2, as opposed to adders which grow with complexity n. Hence, careful

construction of the compute unit, with a focus on multiplication, leads to the largest

performance impact. Utilising dedicated FPGA multiplication hardware or optimisation

via reduced precision representations are important aspects of design that need to be

carefully considered.

This section presents an algorithm for the multiplication of positive integers. This is

followed by its extension for signed integers. Let x and y be the multiplicand and the

multiplier, represented by n digit-vectors X and Y in a radix-r conventional number

system. The multiplication operation produces p = x× y, where p is represented by the

2n digit-vector P . Multiplication is described as:

p = x
n−1∑
i=0

Yir
i =

n−1∑
i=0

rixYi (2.21)

Equation 2.21 describes a process that first computes the n terms xriYi and then per-

forms the summation. Computation of the ith term involves a i-position left shift of X

and the multiplication of a single radix-r digit Yi. This single radix-r digit multiplication

is a scaling factor of the ith digit in the digit-vector set. In the case of radix-2, this is

either 0 or 1. Performing the computation in this manner lends itself to a combinational

or parallel multiplication unit.

Instead, the multiplication can be expressed recursively:

p[0] = 0

p[j + 1] = r−1(p[j] + rnxYj) for j = 0, 1, . . . , n− 1 (2.22)

p = p[n]

Expanding this recurrence results in product p[n] = x × y in n steps. Each time step

j consists of a multiplication of x by a radix-r digit, xYj , similar to Equation 2.21.

This is followed by n digit left shift, and accumulated with the result from the previous

time step p[j]. The recurrence is finished with a one digit right shift. The recurrence is

expressed in this manner to ensure that the multiplication can proceed from the least-

significant digit of the multiplier y, while retaining the same position with respect to

the multiplicand x. An example of a radix-2 multiplication is illustrated in Figure 2.1
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n = 4
x = 13 (X = 1101)

y = 9 (X = 1001)

p[0] 
2xY 

4

0

0000
1101

p[1] 
2xY 

4

1

01101
0000

p[2] 
2xY 

4

2

001101
0000

p[3] 
2xY 

4

3

0001101
1101

p[4] 01110101 = 117

Figure 2.1: Unsigned Multiplication p = x × y, where x is the multiplicand, y is
the multiplier and X and Y are their respective n = 4 digit-vectors in the radix-2

conventional number system.

Extending the multiplication, Equation 2.21, to the two’s complement system is trivial

and by examining the multiplier y:

y = −Yn−12n−1 +
n−2∑

0

Yi2
i (2.23)

and substituting it into Equation 2.21, the new multiplication expression is given by:

p =
n−2∑
i=0

xYir
i − xYn−12n−1 (2.24)

Figure 2.2 illustrates the same example as Figure 2.1, however with the new two’s

complement system and updated Equation 2.24.

As per Section 2.3.1.1, the negation of x (−x) is performed by flipping all of the bits

(bf(1101) = 0010) then adding a single bit in the least-significant position (0010 + 1 =

0011).

2.3.3 Floating-Point Number Representation

This section introduces floating-point number representation [36]. While not explicitly

used in this thesis for reduced precision optimisations, most of the work is compared

against this representation. A floating-point number x consists of two components, the

significand M∗x and the exponent Ex. These components are combined with a constant
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Figure 2.2: Signed two’s complement Multiplication p = x× y, where x is the multi-
plicand, y is the multiplier and X and Y are their respective n = 4 digit-vectors in the

radix-2 conventional number system.

b, called the base:

x = M∗x × bEx (2.25)

The sign of the number x is determined by the sign of the significand M∗x . The significand

M∗x can be represented using any representation system, SM or TC, however it is common

practice to use SM. It follows that a floating-point number x can be represented by a

tuple (Sx,Mx, Ex).

x = (−1)Sx ×Mx × bEx (2.26)

In this case M∗x = (−1)Sx ×Mx, where Sx is the sign such that Sx ∈ {0, 1} and Mx

denotes the magnitude of the significand.

The floating-point representation is redundant; a floating-point number can have several

representations. This redundancy is not helpful and to improve accuracy, a normalised

representation is defined so that the most-significant digit of the significand always

differs from zero. This reduces the range of floating-point numbers so that the smallest

representable number is:

x = rm−f−1 × bEx (2.27)

To avoid this reduction in range, a special set of unnormalised numbers called denor-

malised numbers are allowed. These denormalised numbers are the set of values that

cannot be represented in normalised form.
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The main advantage of a floating-point representation is the increased dynamic range;

which is defined as the ratio between the largest and smallest number that can be

represented in the number system. The drawback of the floating-point representation is

that it is less precise. As mentioned above, the precision of a representation corresponds

to the number of digits in the significand, since the n digits in the representation is

divided between the significand and the exponent, a floating-point number of n digits

has a smaller precision than its n digit fixed-point counterpart.

In addition to smaller precision, floating-point numbers have more complex circuit im-

plementations, requiring larger area and greater delay. Addition, subtraction, multipli-

cation and division of a floating point number involves three stages: shifting, adding and

rounding. During addition and subtraction, the exponent of the two operands need to

match, this is achieved by shifting one of the significands. After matching the exponents,

integer addition is performed on the significands as normal and the result is rounded

and normalised. Multiplication and division on the other hand involve adding/subtract-

ing the exponents, integer multiplation/division on the significands and is finalised by

rounding and normalisation. Each basic operation requires three separate stages, of-

ten with complex rules regarding rounding and normalisation. In contrast to the integer

and fixed-point operations, which involved a simple adder or multiplier circuit, the three

stage complexity of the floating-point representation significantly increases the hardware

utilisation cost. To support floating-point operations efficiently in FPGA, the vendors

are including IEEE 754 compliant DSP [26].

2.4 Machine Learning

Machine Learning aims to model a process based on its history [37]. The core objective

is for a learner to generalise from past information. Given some large set of N inputs

{x1, x2, . . . , xN}, known as the training set, and their target {y1, y2, . . . , yN}, the goal

of the learner is to find some function f(x), such that the predictions {ȳ1, ȳ2, . . . , ȳN},
generated by Equation 2.28, match the targets.

ȳi = f(xi) (2.28)

where i is one of the elements in the dataset. Note that for each input x, there is one

target y. The function f(x) is determined during the training phase, also known as the

learning phase. Once the precise form of the function f(x) is known, new inputs, not
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originally from the training set can then be identified. Identifying these new inputs is

performed during the inference phase.

A simple regression problem, fitting a polynomial curve, is considered a machine learning

problem. The formulation of the function f(x) is now extended to include the coefficients

of the polynomial, w, to f(x,w) hence the curve can now be expressed as:

f(x,w) = w0 + w1x+ w2x
2 + · · ·+ wMx

M =
M∑
j=0

wjx
j (2.29)

where M is the order of the polynomial and xj is x raised to the power of j.

The coefficients will be determined during the training phase by minimising the error

function E(w). An error function E(w) measures the difference between the function

f(x,w), for any given value of w, and the target yi of any particular input xi. In this

case, a typical error function is given by the mean squared error between the predictions

ȳi, calculated using f(xi,w), and the target yi. Hence Equation 2.30 is minimised to

find the values of the coefficients, such that {y1, y2, . . . , yN} = {ȳ1, ȳ2, . . . , ȳN}.

E(w) =
1

2n

N∑
i=0

(f(xi,w)− yi)2 (2.30)

In this simple example, the error function is a quadratic function of the coefficients w,

hence the minimisation of the error function has a unique solution; the derivative of the

error function with respect to the coefficients which is found in closed form. For other

machine learning algorithms such as neural networks, finding the precise form f(x) is a

more complex problem, requiring dedicated training algorithms.

2.5 Deep Learning

Deep Learning is the study and application of many-layered neural networks, trained on

large datasets [37, 38]. Neural networks are a class of machine learning algorithms that

are described as a connected graph of basic compute nodes called neurons. It operates

in the same fashion as the polynomial model, Equation 2.29, This section begins by

introducing the fundamental unit in a neural network, the neuron and is extended to a

single layer network, which is a one dimensional collection of neurons. The single layer

network is then expanded upon to a multilayered description. A method for training

neural networks is described and a discussion on other neural network layer types and

computation methods concludes the section.
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2.5.1 The Neuron

A neuron is the fundamental compute unit in a neural network and operates in a similar

fashion to the polynomial model, Equation 2.29. Given a single M dimensional input

x = {xM , xM−1, . . . , x2, x1}, a vector of coefficient w = {wM , wM−1, . . . , w2, w1} called

weights, an activation function σ(z) and a bias b, where M is the input dimensionality.

The output of a neuron a is defined by:

a = σ(xMwM + xM−1wM−1 + · · ·+ x2w2 + x1w1 + b)

= σ(
M∑
i=1

xiwi + b)

= σ(wTx+ b) = σ(w · x+ b) (2.31)

In Equation 2.31, the corresponding inputs and weights are multiplied together and

summed with the bias which is passed to the activation function. In vector form, this

is expressed as σ(wTx + b) or σ(w · x + b) denoting the dot product between the two

vectors. Usually, σ(z) denotes the sigmoid function, otherwise known as the logistic

function and is defined as:

σ(z) =
1

1 + e−z
(2.32)

To understand the sigmoid function, consider the case when z = w ·x+ b→ +∞. Then

e−z ≈ 0 and σ(z) ≈ 1. In the case when z = w · x + b → −∞, then e−z ≈ ∞ and

σ(z) ≈ 0. Figure 2.3 illustrates a three input neuron example, the activation function is

implicit within the neuron itself. Finally, for convenience, it is common to represent the

bias as the 0th weight w0 = b and set the 0th input to 1, resulting in 1×w0 = b. Hence

Equation 2.31 can be further simplified to:

a = σ(w · x) (2.33)

where w = {wM , wM−1, . . . , w2, w1, b} and x = {xM , xM−1, . . . , x2, x1, 1}.

b

x
1

x
2

x
3

w
1w

2

w
3

a

Figure 2.3: Single Neuron: The activation function σ(z) is implicit within the neurons
output.
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2.5.2 Single Layered Network

A single layer neural network is a one dimensional vector of neurons. By extending the

single neuron to a collection of neurons, the neural network can now act as non-linear

function estimator. As shown in Figure 2.4, each neuron is connected to all inputs and

produces it own output. Given the size of the layer D, The computation for a single

layered network can be described as:

aj = σ(wj · x) for j = 1, 2, . . . , D (2.34)

where j denotes the jth neuron. The output of the single layer neural network is a

vector of neuron output a = {aD, aD−1, . . . , a2, a1}. Since each neuron has own set of

x
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x
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x
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x
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x
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D-1

a
D
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b
2

b
3

b
D-2

b
D-1

b
D

Figure 2.4: Single Layer Network: The weightsw have been excluded to avoid clutter.
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weights, the weights for the network W can be described as a matrix:

W =



wD,M wD,M−1 . . . wD,1 bD

wD−1,M wD−1,M−1 . . . wD−1,1 bD−1

...
...

. . .
...

...

w2,M w2,M−1 . . . w1,1 b2

w1,M w1,M−1 . . . w1,1 b1


(2.35)

Given that zj = wj ·x for the jth neuron, the computation for all z’s, z = {zD, . . . , z1}
can be expressed as the matrix-vector multiplication WxT :

z =


zD
...

z1

 =


wD,M . . . wD,1 bD

...
. . .

...
...

w1,M . . . w1,1 b1



xM

...

x1

1

 (2.36)

Expressed in vector form:

z = WxT (2.37)

Finally, if Φ(z) denotes an element-wise application of the activation function σ(z), then

computing the single layer network is:

a = Φ(WxT ) (2.38)

where a denotes the vector of outputs a = {aD, . . . , a1}.

Up until this point, the description has only considered processing a single input from

the training set at one time. As described in Section 2.4, machine learning often involves

processing a large dataset of training examples. Processing multiple input vectors in a

neural network is performed by sequentially evaluating Equation 2.38. This approach

is very memory intensive. For large networks, the weights need to be loaded for every

input vector. To alleviate this, multiple input vectors can be processed in batches by

modifying Equation 2.36.

Given the dataset of input vectors X = {xB, . . . ,x1} where B denotes the batch size.

The corresponding set of output vectors Z = {zB, . . . ,z1} is given by:

Z =


zD,B . . . zD,1

...
. . .

...

z1,B . . . z1,1

 =


wD,M . . . wD,1 bD

...
. . .

...
...

w0,M . . . w0,1 b1



xM,B . . . xD,1

...
. . .

...

x0,B . . . x0,1

1 . . . 1

 (2.39)



Chapter 2. Background 22

In matrix form:

Z = WX

A = Φ(WX) (2.40)

where A is the output matrix after the element-wise activation function Φ(z).

In summary, computing a single layer network can be performed using a matrix-vector

multiplication and the single input vector form a = Φ(WxT ). If multiple inputs are

computed concurrently, a matrix-matrix multiplication can be used with the matrix

form A = Φ(WX).

2.5.3 Multilayered Network

Building upon the single layer network, Figure 2.5 illustrates an example of a four layer

network. The nomenclature for mutlilayer networks is as follows: first the input layer x,

followed by a series of hidden layers, also known as fully connected layers (FC), a1,a2

and a3 where the superscript denotes the layer number, and finally the output layer a4.

Historically, this is known as a Multilayer Perceptron (MLP). Multilayer networks are the

most commonly used today since they are able to represent more complex models than

their single layer counterparts. Additionally, more complex non-linear combinations can

be learned as subsequent layers are connected to the previous layer’s interpretation of its

input, i.e. learned information is not restricted to only the inputs; Using hidden layers

allow more complex interactions to be learnt.
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Figure 2.5: Multilayer Network: This is an example of a four layer network, the
inputs and each layer have their own dimensionality, Di, where i denotes the ith layer

and the dimensionality of the input vector x is Dx = M .
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Generalising Figure 2.5 requires a modification to the notation in Section 2.5.2. Specifi-

cally, the superscript ai denotes that this is the output activations of the ith layer. Given

this, the computation for a multi layer network of L layers each with their respective

size {Dx, D1, D2, . . . , DL} (Dx the dimensionality of the input vector x is Dx = M) can

be expressed as:

a1
j = σ(w1

j · x) for j = 1, . . . , Dx

alj = σ(wl
j · al−1) for j = 1, . . . , Dl and l = 2, . . . , L (2.41)

where j denotes the jth neuron and l the lth layer.

Equation 2.41 describes a two step process. The first hidden layer is computed with the

input layer, followed by a recurrence of the previous layers activations al−1 to calculate

the lth layers activations al. The notation can be simplified to a matrix-based form for

single x input vectors as follows:

a1 = Φ(W 1x)

al = Φ(W lal−1) for l = 2, . . . , L (2.42)

where al denotes the lth layer activation vector and W l the lth layers weight matrix.

Finally, processing multiple input vectors in a batch is performed by:

A1 = Φ(W 1X)

Al = Φ(W lAl−1) for l = 2, . . . , L (2.43)

where Al is the l layers activation matrix for the set of inputs X.

2.5.4 Training

The objective of the training algorithm is to modify the weights such that an optimal

network configuration is found. The goal is for the output of the final layer aL =

{aLD, . . . , aL0 } to match the target y = {yD, . . . , y0} for the input training set. Similarly

to the error function presented in Equation 2.30, the aim is to reduce the difference

between the prediction aL and the target y. The error function can also be called the

cost function. Given the mean squared error cost function for an individual input x is:

C =
1

2

D∑
i=1

(aLi − yj)2 (2.44)
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The standard method to train neural networks is to use the backpropagation algorithm

and gradient descent. Gradient descent is an iterative algorithm which updates the

parameters of the model via a scaled gradient of the cost function, ∇C. It can be

thought of as taking “steps” towards the optimal solution. For example, updating the

weight wlij involves

wlij = wlij − ν∇C (2.45)

where ν is the learning rate, a constant which controls how large a “step” is made.

The backpropagation algorithm is used to to calculate ∇C. Fundamentally, backprop-

agation is a measure of the rate of change of the cost function with respect to changes

in the weights and biases. This involves computing the partial derivatives ∂C/∂wlji and

∂C/∂blj , where j denotes the jth neuron, l the lth layer and i then ith weight in the

neuron. To achieve this, the value δlj , which is the error in the jth neuron in the lth

layer, is calculated for the current input vector. Working from the final layer L, δLj is

calculated by:

δLj =
∂C

∂aLj
σ′(zLj ) (2.46)

This expression can be understood as the rate of change of the final layer activation ∂C
∂aLj

and a measure of how fast the activation function σ′ changes with respect to zLj , i.e.

σ′(zLj ). In matrix-based form this is expressed as:

δL = ∇aC � σ′(zL) (2.47)

where ∇aC is a vector of the partial derivatives of C with respect to aLj ( ∂C
∂aLj

) and �
is the Hadamard product, the element-wise product of two vectors. Note that for the

example cost function, Equation 2.44, ∇aC can easily be calculated as the difference

between the two vectors:

∇aC = (aL − y) (2.48)

The error in any layer δl is now defined as:

δl = ((W l+1)T δl+1)� σ′(zl) (2.49)

where (W l+1)T is the transpose of the weight matrix at the (l + 1)th layer. Intuitively,

this can be understood as a two step process. Firstly, ((W l+1)T δl+1) moves the error

from δl+1 back through the network to the output of the lth layer. Secondly, �σ′(zl)
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moves the error through the activation function in layer l, resulting in the lth layers

error δl.

With Equation 2.47 and Equation 2.49, the error in any layer can be calculated. Now,

the two partial derivatives ∂C/∂wlji and ∂C/∂blj are calculated by:

∂C

∂blj
= δl (2.50)

and

∂C

∂wlji
= al−1

i δl (2.51)

The algorithm for training a neural network involves performing the feedforward step

on an input vector x to compute zl and al for each layer. Next, the output error

is calculated δL = (aL − y) � σ′(zL) and the error is backpropagated by calculating

δl = ((W l+1)T δl+1) � σ′(zl) for each layer. The final step is to apply gradient descent

to the weights and biases. Algorithm 2.1 illustrates the training algorithm.

Algorithm 2.1: Neural Network Training Algorithm

Data: X: Input Dataset
// For each Input Vector

1 for k = 1 to N do
// Compute a and z for each layer

2 (al, zl) = Feedforward(xk);
// Compute δL

3 δL = (aL − y)� σ′(zL);

// Backpropagate the error to compute δl for each layer

4 δl = ((W l+1)T δl+1)� σ′(zl);
// Perform Gradient Descent, updating the weights and biases for all

input vectors

5 wl → wl − ν
N

∑N
i=1 δ

l
i · a

l−1
i ;

6 bl → bl − ν
N

∑N
i=1 δ

l
i;

2.5.5 Neural Network Computation

So far this section has covered a formal description of neural networks, including the for-

mulation of single to multi layered networks and a brief look at the training methodology.

This section concerns itself with computing the neural network. Specifically, the compu-

tation required to evaluate Equation 2.42 and Equation 2.43, the equations describing

the single input and multi input cases for multi layered neural network computation.
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As noted above, Equation 2.42 and Equation 2.43 are expressed as matrix-vector and

matrix-matrix multiplication problems. These matrix and vector operations are common

amongst high performance and scientific computing algorithms, many requiring signif-

icant computational resources to complete in a timely manner. As a result, optimised

Basic Linear Algebra Subroutine (BLAS) libraries have become the main workhorse for

computing these algorithms [39]. As illustrated below, the routines offered in these li-

braries can be used to compute individual layers, both the single input case Equation 2.38

and batch case Equation 2.40.

BLAS functionally is categorised into sets of routines called “levels”, each corresponding

to the degree of complexity of the algorithms. The level 1 routines focus on vector-vector

operations, the typical example ‘axpy’ computing:

y → αx+ y (2.52)

where y and x are vectors and α a scalar constant. This first multiplies each element

of x by the scalar α then computes the element-wise sum of αx and y. An important

attribute of level 1 routines is that they typically take linear time, O(n). O() denotes

Big-O notation which is an estimate of the time taken for running a particular routine.

Level 2 routines focus on matrix-vector operations, and typically take quadratic time

O(n2). An example of a level 2 routine in the generalised matrix-vector multiplication

(GEMV):

y → αAx+ βy (2.53)

where A is a matrix, and β a scalar constant. Note that this is very similar to the single

input case Equation 2.42. By substituting Equation 2.53 into Equation 2.38 and setting

the appropriate constants, the GEMV can be used to compute a single layer.

a = Φ(1×Wx+ 0× 0) (2.54)

where α = 1, β = 0, A = W and y = 0 a vector of zeros since there is no need to

perform accumulation.

Finally, the level 3 routines perform matrix-matrix operations. These take cubic time

O(n3) and are the most costly of the three levels. General matrix multiplication (GEMM)

is a key routine, performing a matrix-matrix multiplication [39]. The ‘GEMM’ routine

is expressed as:

C → αAB + βC (2.55)
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where A,B and C are matrices, and α and β are scalar constants. Similar to the matrix-

vector case, ‘GEMM’ can be substituted into Equation 2.40 to calculate a single layer

for the batch input case.

A = Φ(1×WX + 0×Ø) (2.56)

where Ø denotes a matrix of zeros, α = 1 and β = 0.

2.5.6 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of neural networks with an additional

layer, referred to as the convolution layer (CONV), designed for image-based problems.

LeNet [40] was the first neural network to popularise convolutional neural networks for

use in document recognition.

A convolution is performed by taking each filter and applying a dot product to sections

of the input volume. After each application, the filter slides across the width and height

by some stride; this creates a two dimensional activation map. This process is repeated

for each filter, creating multiple two dimensional activation maps. These activation

maps are stacked along the depth dimension, creating the output volume. Given some

input I where the dimensions of the input are the height IH , the width IW and depth

ID. The dimensions of the output O are calculated by:

OW =
(IW − F + 2P )

S
+ 1 (2.57)

OH =
(IH − F + 2P )

S
+ 1 (2.58)

OD = K (2.59)

Where OH is the output height, OW the output width, OD the output depth, K is

the number of filters, F is the filter’s height and width, S is the stride and P is the

padding length. The standard method for computing the convolution layer is described

in Algorithm 2.2.

The computation complexity (for inference) of the batched standard convolution is given

by:

B · ID ·OD ·OH ·OW · F 2 (2.60)

where B is the image batch size. While the different methods for computing the con-

volution layer are not necessary for understanding the contributions of this thesis, Ap-

pendix A contains a brief summary of the three most prominent techniques.
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Algorithm 2.2: Standard Convolution

Data: I: Input Volume, W : Filters
Result: O: Output Volume

1 OW = (IW−F+2P )
S + 1;

2 OH = (IH−F+2P )
S + 1;

3 OD = K;
4 for i = 0 to ID do
5 for o = 0 to OD do
6 for j = 0 to OW do
7 for l = 0 to OD do
8 for m = −F/2 to F/2 do
9 for p = −F/2 to F/2 do

10 jI = Sj +m;
11 lI = Sl + p;

// Negative Indices resolve to 0
12 O[o][j][l]+ = I[i][jI ][lI ] ∗W [i][o][m][p];

2.6 Summary

A brief background on FPGAs, digital arithmetic, machine learning and neural networks

was presented is this chapter. It contained a discussion of FPGA designs, including

the differences between heterogeneous architectures. The fundamentals of the fixed-

point and floating-point number representations were outlined, and a description of

the standard multiplication algorithm was presented. The core concepts of machine

learning were introduced, using polynomial curve fitting as a motivating example. The

chapter continued with a description of neural networks. It began with a mathematical

description of the neuron and later expanded on these to a multilayer description. The

chapter concluded by outlining the standard training algorithm, backpropagation, and

described various computational techniques in addition to the convolution layer.

With this as a foundation, precision optimisations in the three distinct levels; the appli-

cation, the framework and the operator, are now presented. The next chapter focuses on

the application. A real-time radio-frequency anomaly detector is described, utilising a

neural network autoencoder. The anomaly detector operates at a low precision, allowing

the FPGA to implement more complex network topologies compared against traditional

precision approaches. As a point of comparison, an on-line bitmap detection technique

is presented and the resulting implementation evaluated against the autoencoder ap-

proach. Both detectors operate with high throughput and low latency, demonstrating

superior performance to traditional standard techniques.
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Real-Time Radio-Frequency

Anomaly Detection

3.1 Introduction

Anomaly detection, otherwise known as outlier detection, is the problem of identifying

data which is not in accordance with expected behaviour. When processing data streams

time is of the essence, as quickly making a determination is often times as important as

making a decision. Processing high frequency signals in real-time is computational de-

manding due to the very high data rates involved. Real-time data mining and machine

learning techniques have long been applied to fields ranging from forecasting finan-

cial markets to autonomous vehicles, adaptive processing and machine prognostics [41].

Specifically in the case of radio-frequency communication used in hostile environments,

real-time anomaly detection is particularly important in identifying missing or tampered

information. Although there has been considerable progress in addressing how to scale

off-line systems to match the rapidly increasing quantities of data, real-time learning

remains a challenge. New algorithms and computer architectures are needed as current

implementations based on general-purpose computing are not able to process data with

sufficiently low latency or high throughput. For any application, the premise of machine

learning is the same: a computer system will learn to model future outcomes based on

previously acquired data.

The following chapter presents two FPGA-based spectral anomaly detectors as an exam-

ple of a reduced precision application. The first detector employs a bitmap technique to

perform anomaly detection and uses a reformulation of the Discrete Fourier Transform

(DFT) to compute the power spectrum in an on-line manner. When given a new input,

29
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Figure 3.1: Block diagram of system implementation. The autoencoder module ac-
cepts the raw IQ data from the radio core.

the implementation is designed to update its state in time complexity O(1). This is the

asymptotic minimum complexity of any technique which considers all the input data.

As a point of comparison, a neural network anomaly detector is presented. There is

a distinct lack of low latency neural network anomaly detectors in the area of radio-

frequency signals. The detector in this chapter aims to address this by illustrating

real-time anomaly detection through the utilisation of low precision neural network

implementations. The detector, illustrated in Figure 3.1, is a neural network autoencoder

designed for physical-layer radio-frequency signals. This thesis presents a fully pipelined

implementation, utilising a reduced precision representation to ensure energy efficient

and parallel computation. The implementation is integrated on the same chip as other

processing hardware, able to achieve low latency and high throughput, producing an

output every cycle. It is a heterogeneous architecture, supporting weight updates while

inference is performed. This enables simultaneous training and inference with the former

conducted on a processor or GPU.

The contributions of this chapter are:

• An on-line power spectrum computation technique for both regularly and irregularly-

sampled time series data, reducing latency compared with the discrete Fourier

transform and fast Fourier transform.

• An on-line formulation of the bitmap anomaly detection technique, resulting in an

implementation that updates its state in time complexity O(1).
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• A single-chip implementation of a physical-layer RF neural network anomaly de-

tector which is fully pipelined and can produce an output every cycle.

• The highest reported performance to date, supporting continuous 200 million sam-

ples per second (MS/s) complex inputs with latencies of 100 ns (time-domain) and

140 ns (frequency domain), at least 4 orders of magnitude lower than the processing

time in GNU radio [42].

• A heterogeneous architecture which supports updating of weights while inference

is performed; enabling simultaneous learning and inference with the former con-

ducted on a processor or GPU.

3.2 Anomaly Detection

Expanding on the concepts of machine learning introduced in Chapter 2, anomaly de-

tection is a type of machine learning aimed at identifying data samples that aren’t in

accordance with what is expected [41, 43–45]. Figure 3.2 is an example of a typical

regression type anomaly [1]. The time period 0 to 1000 illustrates normal behaviour,

whereas from time period 1000 to 2000 there is a deviation, hence signifying anomalous

data. In this case the time series is tracking the position of a gun barrel being raised and

lowered repeatedly; the anomaly occurs when the individual fumbles the gun, creating

the position anomaly.

The method of anomaly detection used in this thesis, involves finding the difference

between the current input vector x and the expected input vector x̄:

x̄ = f(x,w) (3.1)

where x̄ is given by a function f(x,w) with coefficients w:

0 500 1000 1500 2000 2500 3000
−1

−0.5

0

0.5

1
Hand Tracking Dataset

Figure 3.2: Anomaly Example: This is 2D hand tracking video [1]. The anomaly can
clearly be seen from time period 1000 to 2000.
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This technique of anomaly detection is classed as an unsupervised learning problem and

does not need an expert to generate the targets y before training. The coefficients

are learned on non-anomalous inputs, building a set of coefficients w that perform the

identity mapping x → x̄. A difference function d(x, x̄) determines the similarity or

differences between the two vectors. A typical difference function for regression problems

is the Euclidean distance between the two vectors:

d(x, x̄) =

√√√√ N∑
i=0

(xi − x̄i)2 (3.2)

where N is the length of the input vector.

Using the difference function, data is determined to be anomalous if above a particular

threshold l. In the case of a binary anomaly decision, the following is used:

anomalous =

1, if d(x, x̄) > l

0, otherwise
(3.3)

3.2.1 Discrete Fourier Transform

In some cases, It is advantageous to extract additional information to include in the

input vector x [46]. One such method involves converting a signal into the frequency

domain by sampling the signal and dividing it into its frequency components. Each of

these components are expressed as a single sinusoidal oscillator with distinct frequencies,

amplitudes and phases, and can be used as additional inputs in machine learning sys-

tems. This section provides a small background on the process of extracting the single

sinusoidal oscillators.

The DFT, defined in Equation 3.5, is a complex-valued function of frequency.

Xk =

N−1∑
n=0

xne
−j2πkn/N (3.4)

Xk =
N−1∑
n=0

xn[cos(2πkn/N)− i ∗ sin(2πkn/N)] (3.5)

where xn is an N -point time series (n = {0, 1, . . . , N − 1}) sampled at uniformly spaced

points in time and k denotes the number of frequency bins, chosen such that k =

{0, 1, . . . , N − 1}.

The computation complexity of computing Equation 3.5 is O(N2). A fast Fourier trans-

form (FFT) is an algorithm that calculates the DFT using O(N logN) operations where
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Algorithm 3.1: Radix-2 Decimation in Time FFT

1 Function fft(x,N, s)
Data: {x0, x1, . . . , xN}, N , s
Result: {X0, X1, . . . , XN}

2 if N = 1 then
3 X0 = x0;
4 else
5 {X0, . . . , XN/2−1} = fft(x,N/2, 2s);

6 {XN/2, . . . , XN} = fft(x+ s,N/2, 2s);

7 for k = 0 to N/2− 1 do
8 t = Xk;

9 Xk = t+Xk+N/2 ∗ e−j2πk/N ;

10 Xk+N/2 = t−Xk+N/2 ∗ e−j2πk/N ;

N is a power of 2. The most commonly used FFT is the Cooley-Tukey FFT algo-

rithm [47]. Algorithm 3.1 illustrates the recursive method for computing the radix-2

(decimation in time).

After performing the DFT, by either using an FFT algorithm or directly from the

Equation 3.5, the resulting complex-valued frequencies can be used as additional inputs

in an anomaly detection system.

3.2.2 Previous RF Anomaly Detector and FPGA-based Detectors

There has been considerable recent interest in utilising advances in neural network tech-

nology for RF anomaly detection applications. The most relevant to this thesis is by

O’Shea et. al [48], who applied a number of anomaly detectors to RF signals. Starting

with Frequency Modulation (FM), Global System for Mobile Communications (GSM),

industrial, scientific, and medical radio (ISM), and long-term evolution (LTE) band data;

Short-time Broadband Bursts, Brief Periods of Signal Non-Linear Compression, Pulsed

QPSK Signals and Pulsed Chirp Events were introduced as anomalies. A comparison

of a number of algorithms: a 3rd order Unscented Kalman Filter/Predictor, dense neu-

ral network, long short-term memory and Dilated Convolutional Neural Network was

conducted and it was observed that in most cases, the neural network approaches out-

perform the Kalman-based approach. This work did not address the issue of real-time

implementation. Latency in GNU radio/Universal Software Radio Peripheral platforms

(USRP - they measured USRP1 and USRP2 whereas the device used in this thesis is a

newer USRP3) was thoroughly analysed by Trong et. al [42]. They concluded that the

time for processing at the host computer dominates the communication bus latency and

measured values well in excess of 1 ms.
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Other examples of anomaly detection in the reconfigurable computing literature is net-

work intrusion detection. This requires operation at network line speeds, where the

advantages of FPGAs are clear. Das et. al [49] proposed a system based on feature

extraction and Principle Component Analysis (PCA) to identify anomalies. Their archi-

tecture could support data at over 20 Gbps. The PCA part of the system was performed

in an off-line manner.

Carter et. al. [50] proposed an Exponentially Weighted Moving Average (EWMA) method

where an anomaly is detected when the absolute value of the difference between the lo-

cal mean and the input data sample exceeds the estimated standard deviation times a

constant multiplier. This results in an effective and robust method that quickly adapts

to distributional data shifts. It has update time complexity O(1), making it suitable

for a low latency, high throughput implementation. Unfortunately, it only considers the

simple mean value and cannot track changing sequences of patterns in the data.

3.3 On-line Learning for Power Spectral Detection

This section focuses on the bitmap anomaly detection technique. An on-line formula-

tion of this technique is presented and evaluated on the physical-layer radio-frequency

signals. It provides high throughput and low latency anomaly detection at a reduced

hardware resource cost. The bitmap detector uses the power spectrum calculated using

a reformulation of the DFT for irregularly sampled time series. As with the frequency

spectrum, the power spectrum is often used in applications including machine prog-

nostics [51], astronomy [52] and computational finance [53]. In some applications, it is

either impossible to sample at uniform intervals, e.g. astronomical observations [52], or

data points are sampled at irregularly spaced intervals e.g. financial tick data [53].

3.3.1 Power Spectra of Irregularly Sampled Time Series

The standard tool for calculating power spectral density is the DFT. For an N -point

time series xn, n = {0, 1, . . . , N − 1} sampled at uniformly spaced time points, the DFT

is defined as:

Xk =

N−1∑
n=0

xne
−j2πkn/N (3.6)

This section presents the reformulations of existing power spectra and anomaly detection

algorithms to facilitate efficient FPGA-based spectral anomaly detection implementa-

tions. Though computing Equation 3.6 for frequency bins k = {0, 1, . . . , N − 1} is most
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common, the frequency resolution can be arbitrarily chosen which is particularly useful

for the purpose of estimating power spectra. Where the frequency domain resolution of

M bins is uniformly distributed across the frequency range of ω ∈ (−π, π) is ω = 2πk/N(

in radians per sample).

As a function of ω, Equation 3.6 can be rewritten as:

X(ω) =
N−1∑
n=0

xne
−jωn (3.7)

The periodogram or normalised power for frequency ω is commonly computed from the

squared magnitude of X(ω):

P (ω) = | 1
N
X(ω)|2 (3.8)

For the generalised univariate time series xn = x(tn) with arbitrarily spaced but strictly

increasing sampling times tn, Equation 3.7 may be used by replacing the time index n

in complex exponent by the samples observation time tn:

X(ω) =

N−1∑
n=0

xne
−jωtn (3.9)

where ω is in radians per unit time tn. Now computing over uniformly spaced frequency

bands ω = 2πj/M , and j = {0, 1, . . . , (M − 1)}, the power based on Equation 3.9 is

known as the classical Fourier periodogram.

To further reduce computational and bookkeeping costs, an exponentially decaying

weight is applied, replacing the fixed-width sliding window.

X(ω) = (1− γ)
N−1∑
n=0

γN−1−nxne
−jωtn (3.10)

where γ is the exponential weighting factor γ ∈ (0, 1). Given a particular choice of

sample half-life λ (in number of samples), γ is related to λ by γλ = 1
2 .

As the number of samples N increases towards infinity, the sum of exponential weights

will converge to:

limN→∞
∑N

n=0 γ
N−n = logeγ

γ−1

∫∞
0 γndn = 1

1−γ (3.11)

and hence the normalisation by its inverse (1− γ).



Chapter 3. Real-Time Radio-Frequency Anomaly Detection 36

In the case of computing Equation 3.10, it is desirable to have the power updated as

soon as a new sample is available with the least amount of computation possible. The

DFT at the time of sample number N with adjusted time reference is:

X(ω,N) = (1− γ)
N∑
i=0

γN−ixie
−jω(ti−tN ) (3.12)

Using the latest sample time tN as the zero time reference is intuitive for on-line data

streaming and this phase shift has no effect on the magnitude of power.

It is quite simple to manipulate and express Equation 3.12 as a recursive function of its

previous value at N − 1:

X(ω,N) = (1− γ)
N−1∑
n=0

γN−ixne
−jω(tn−tN ) +

(1− γ)xNe
−jω(tN−tN )

= X(ω,N − 1) γ ejω(tN−tN−1) +

(1− γ)xN (3.13)

The phase shift is based on the time elapsed after the previous update, ∆t = tN − tN−1

and does not depend on any absolute time reference, updates require O(1) computation.

The power is then computed by:

P (ω,N) = |X(ω,N)|2 (3.14)

Note that while M evenly spaced frequencies is used in this work, the algorithm allows

for the selection of an arbitrary number of frequencies. Non-uniform spacings may be

advantageous in some applications.

Compared with the classical periodogram, Least-Squares Spectral Analysis (LSSA), oth-

erwise known as the Lomb-Scargle periodogram, generally produces better and more

accurate power spectra by including compensation terms, which reduce the effect of

global aliasing due to non-uniform sampling [52, 54]. However, Scargle also stated that

the Lomb-Scargle periodogram typically does not differ significantly from the classical

periodogram [52]. Since the full Lomb-Scargle periodogram is approximately 3-4 times

more expensive to compute, and its output is subsequently discretised into a small num-

ber of symbols, it is safe to assume that the classical periodogram will be a sufficient

approximation.
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3.3.2 Bitmap Anomaly Detection

The bitmap detector in this thesis is based on an algorithm proposed by Kumar et. al. [55].

The numerical input is first quantised to a discrete representation. While Kumar et. al.

used Symbolic Aggregate approXimation (SAX) [2], which generates symbols that are

approximately equiprobable, this requires two passes through the data. This implemen-

tation processes the data in a single pass by taking the most-significant b bits of the

data. The number of symbols is determined by 2b, in the case of b = 2, a 4 symbol

alphabet is used, represented by the symbols a,b,c and d. The quantisation and signal

string process is illustrated in Figure 3.3, resulting in ccbabcd.

Once the signal string has been extracted, bitmaps are then constructed from the time

series of symbols in a window of size W . The frequency of all contiguous sequences

of length-d symbols (i.e. all d-grams) is calculated, and used as entries in a bitmap

represented by a d dimension array, of 2b dimensional size. The number of symbol

transitions is calculated directly by W − (d − 1). For the symbol signal in Figure 3.3,

d = 2 as represented by the length two symbol transitions, and b = 2, the bitmap size is

a 4× 4 array illustrated in Figure 3.4.

A bitmap contains the frequency of the symbol transition, each element in the bitmap is

initialised to 0 and accumulated by 1 for each symbol transition. Transitions are order

Figure 3.3: Signal Quantisation: In this example the signal is quantised based on the
two most-significant bits of the input. This creates four separate bands which identify
the signal’s symbols when sampled at a particular point in time. For this example
signal, the input is sampled every 20 time steps, resulting in the signal string ccbabcd.

Finally, the symbol transitions are extracted from the signal string [2].
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Figure 3.4: Signal Bitmap: This contains the frequency count for d = 2 and the signal
ccbabcd.

dependent with the first symbol denoting the first dimension of the bitmap, symbol two

denoting the second dimension, and so on until dimension d. Hence, cb and bc increment

two different locations in the bitmap. Figure 3.4 illustrates the resulting bitmap for all

adjacent pairs in Figure 3.3’s symbolic signal, the entries contain the frequency for d = 2.

Performing anomaly detection using the bitmap technique results in a comparison be-

tween two windows. Detector and reference bitmaps, BD and BR, are calculated for

two different window sizes, WD and WR respectively. Typically, WR is significantly

larger than WD as the aim of BR, the reference bitmap, is to contain a large portion of

non-anomalous signal. Comparing the two bitmaps involves taking a normalised sum of

squared differences and arriving at a final score; the relative difference between the two.

This is illustrated in Equation 3.15, Each bitmap can be unrolled and represented as a

single dimension vector of length 2b × d.

s =

2b×d∑
i=0

(
BR[i]

WR − (d− 1)
− BD[i]

WD − (d− 1)
)2. (3.15)

Each frequency count is normalised by dividing through by the total number of symbol

transitions in the bitmap, WR− (d− 1) and WB − (d− 1) for the reference and detector

respectively, to allow for the two differently sized windows to be compared. Hence, A

symbol transition, SYM , is calculated by concatenating the bits of the d subsequent

quantised values to create the index, illustrated in Equation 3.16.
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SYM = cat(Qji−d, . . . , Q
j
i−1, Q

j
i ). (3.16)

As new inputs are received, both the detector and reference windows are slid by one

value, taking in the new input and removing the oldest value. This is often referred

to as a sliding window, with the detector and reference overlapping on the most recent

values. The reference window typically extends further back in time, amortising the

effect of any anomalous data.

3.3.3 Algorithm & Implementation Details

This algorithm is a result of combining the power spectra computation and the bitmap

anomaly detection techniques, described in Algorithm 3.2. Each channel of the power

spectra requires two memories, MR and MB, that contains the symbols for its own

reference and detector bitmaps respectively. For each input sample x, a vector of the

previous DFTXi−1, the time elapsed since the last input δt and the previous quantisation

vectors Qi−d−1, . . . , Qi−1 is required.

The anomaly detection is conducted over C channels, resulting in C scores sj (j =

0 . . . (C − 1)). The consolidated anomaly score is simply

a =
1

M

∑
j

sj (3.17)

and an anomaly is detected if

anomaly =

{
TRUE a > l

FALSE otherwise
(3.18)

where l is a user-defined threshold.

This allows for detection of anomalies resulting from subtle changes in particular fre-

quencies. While summation was used to aggregate anomaly scores over the channels,

many alternative techniques are available. For example, the max function could result

in more sensitive detection.

To optimise the algorithm for an efficient FPGA implementation, Step 4 can be simplified

by replacing the for loops with another two memories containing BR and BD, only

updating the bitmap with the changed value. Each bitmap undergoes two updates, the

incoming symbol SYM and the outgoing symbols MR[WR − (d − 1)] and MD[WD −
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Algorithm 3.2: On-line Channel Independent Spectra Anomaly Detection

// Called for each input sample, x, i represents the increment in time.

Data: x, δt, Xi−1, Qi−1 . . . Qi−d−1

Result: S, Xi, Qi
1 for j = 0 to C do

// Step 1: Calculate the Power Spectra

2 Xj
i = Xj

i−1γe
jωj∆t + (1− γ)x;

3 P = |Xj
i |2;

// Step 2: Quantise and Symbol

4 Qji = sr(P,L− log2−1); // sr:right shift

5 SYM = cat(Qji−d−1, . . . , Q
j
i−1, Q

j
i ); // cat:concatenation function

// Step 3: Update Window Memories

6 M j
R[1 : WR − (d− 1)] = M j

R[0 : WR − (d− 2)];

7 M j
D[1 : WD − (d− 1)] = M j

D[0 : WD − (d− 2)];

8 M j
R[0] = SYM ;

9 M j
D[0] = SYM ;

// Step 4: Create the Bitmaps

10 for k = 0 to WR − (d− 1) do

11 BR[M j
R[k]]+ = 1;

12 for k = 0 to WD − (d− 1) do

13 BD[M j
D[k]]+ = 1;

// Step 5: Calculate the Score

14 Sj =
∑2b×d

k=0 ( BR[k]
WR−(d−1) −

BD[k]
WD−(d−1))2;

(d − 1)] for the reference and detector respectively. Similarly, Step 5 can be optimised

by updating a running score using only the changed elements of the bitmaps. Given

the three changed symbol transitions, SYM , MR[WR] and MD[WD], the update is

performed in three parts:

1. Score Update: removes the bitmap values associate with the three changing

symbol transitions.

2. Bitmap Update: updates the bitmaps

3. Score Update: accumulates back the updated bitmap values associated with the

3 changing symbol transitions.

Finally, to support the new optimisations, Algorithm 3.2 needs to be reorganised so

that updating the window memories is performed last. The new algorithm is shown in

Algorithm 3.3 along with an illustration of the hardware blocks in Figure 3.5.

The implementation is parameterised according to Table 3.1, any of which can be modi-

fied at compile time. Since theM frequency components can be computed independently,
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Algorithm 3.3: Optimised On-line Channel Independent Spectra Anomaly Detection

// Called for each input sample, x, i represents the increment in time.

Data: x, δt, Xi−1, Qi−1 . . . Qi−d−1, S
Result: S, Xi, Qi

1 for j = 0 to C do
// Step 1: Calculate the Power Spectra

2 Xj
i = Xj

i−1γe
jωj∆t + (1− γ)x;

3 P = |Xj
i |2;

// Step 2: Quantise and Symbol

4 Qji = sr(P,L− log2−1); // sr:right shift

5 SYM = cat(Qji−d−1, . . . , Q
j
i−1, Q

j
i ); // cat:concatenation function

// Step 3: Update Score Part 1

6 Sj− = (
Bj

R[SYM ]

WR−(d−1) −
Bj

D[SYM ]

WD−(d−1))2;

7 Sj− = (
Bj

R[Mj
R[WR]]

WR−(d−1) −
Bj

D[Mj
R[WR]]

WD−(d−1) )2;

8 Sj− = (
Bj

R[Mj
D[WD]]

WR−(d−1) −
Bj

D[Mj
D[WD]]

WD−(d−1) )2;

// Step 4: Update Bitmap

9 Bj
R[SYM ]+ = 1;

10 Bj
D[SYM ]+ = 1;

11 Bj
R[M j

R[WR]]− = 1;

12 Bj
D[M j

D[WD]]− = 1;
// Step 5: Update Score Part 2

13 Sj+ = (
Bj

R[SYM ]

WR−(d−1) −
Bj

D[SYM ]

WD−(d−1))2;

14 Sj+ = (
Bj

R[Mj
R[WR]]

WR−(d−1) −
Bj

D[Mj
R[WR]]

WD−(d−1) )2;

15 Sj+ = (
Bj

R[Mj
D[WD]]

WR−(d−1) −
Bj

D[Mj
D[WD]]

WD−(d−1) )2;

// Step 6: Update Window Memories

16 M j
R[1 : WR − (d− 1)] = M j

R[0 : WR − (d− 2)];

17 M j
D[1 : WD − (d− 1)] = M j

D[0 : WD − (d− 2)];

18 M j
R[0] = SYM ;

19 M j
D[0] = SYM ;

the computation complexity can range from O(1) in which all channels are processed in

parallel, to O(M) when they are processed one channel at a time.

In the implementation, several further optimisations are applied:

1. Computation of the exponential ejωj∆t is avoided by using a 512-entry look-up

table.

2. All computation is done in fixed-point with wordlength L. In this case 16 bits was

chosen to compare with the neural network anomaly detector.
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Table 3.1: Default parameters for the bitmap anomaly detector implementation.

Parameter Description Default

L Global wordlength 16
γ Recursive DFT decay rate 0.995

WD Detector window length 9
WR Reference window length 33
M Number of frequency channels 4-32
b Number of symbols in alphabet 8
l Anomaly threshold 0.5
d Bitmap level 2

3. The score computation and bitmap updates are performed. This computation

requires six addition/subtractions and six multiplications for each of the three

changed indices.

4. Combinations of the L, b and d parameters are chosen so that the required number

of bits, L× bd, is less than the size of a block RAM on the FPGA.

This implementation was created in Xilinx Vivado HLS 2013.4, targeted at a Xilinx

Virtex 7 XC7VX690TFFG1930-3. It employs reduced precision at multiple stages; the

on-line DFT, the quantisation and the bitmap update steps.

3.4 Bitmap Detection Evaluation

This section describes the resource utilisation, performance and accuracy of the bitmap

detector. Firstly, identifying an anomaly in repeated hand motions in a 2D video [1]

Power Spectra Quantisation
Remove Oldest 

Symbol Pair
Update Bitmap 

Memory
Add Newest 
Symbol Pair

Update Windows

Detector Bitmap Reference Bitmap 

Detector Window

Reference Window

Score

Bitmap Memories

Window Memories

Input

Output

Figure 3.5: Overview of the Spectra Anomaly Detector: Each block represents a step
from Algorithm 3.3.
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is shown. Secondly, the detector is evaluated on the synthetic and real FM data sig-

nals and compared against the neural network detector. The anomalies were injected

into the signals in the same manner as Section 3.6.1. Unless specified otherwise, the

parameters were determined by a grid search over a range of values and the accuracy

was determined by comparing detected anomalies with anomalies known a-priori. If two

configurations produced very similar anomaly scores, the configuration which reduced

the computational requirements was chosen.

3.4.1 Detector Accuracy Example

As an example of bitmap anomaly detection technique, Figure 3.6 shows a selected

subset of the time series along with the aggregated anomaly score. The parameters for

the 2D video hand tracking time series were M = 16, γ = 0.99,WR = 600,WD = 100,

d = 2 and b = 8. The anomalous behaviour between 1000 and 2000 clearly causes an

increased anomaly score and results in an easily identifiable anomaly. A more thorough

treatment of the detectors performance in regards to RF signals is proved at the end of

the chapter with a comparisons to the neural network detector.
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1
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0 500 1000 1500 2000 2500 3000
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Figure 3.6: Hand tracking in a 2D video. The raw data is shown as well as an
aggregated anomaly score.
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Table 3.2: FPGA bitmap anomaly detector implementation compared with a C im-
plementation, disregarding input/output. Times reported are to process a single data

input.

M Throughput Latency CPU Throughput Latency
Time Speedup Reduction

1 40 ns 68 ns 34 ns 0.9× 0.5×
4 40 ns 68 ns 273 ns 7× 4×
8 40 ns 68 ns 544 ns 14× 8×

16 40 ns 68 ns 1085 ns 27× 16×
256 40 ns 68 ns 17969 ns 449× 264×

Table 3.3: Resource utilisation for M = 1. Numbers in parentheses indicate the
available resources on the chosen FPGA.

LUTs Flip Flops BlockRAM DSP

220 (433200) 541 (866400) 3 (2940) 14 (3600)

3.4.2 Resource Utilisation & Performance

The default parameters as summarised in Table 3.1 were used to create an M = 1 design.

This was synthesised to obtain the FPGA resource utilisation summarised in Table 3.3.

Vivado reported an initiation interval of 10 clock cycles, a latency of 17 cycles and a

maximum frequency of 250 MHz. Projections for the performance of multiple channels

are given in Table 3.2. Since multiple channels are processed and extracted from a single

input vector in parallel, the throughput of the entire system is constant regardless of

the number of channel processed.

The datapath for the design requires a total of six L bit fixed-point multipliers, nine

subtracters, and seven adders, and is independent of the other parameters. The total

memory in bits required for the design is 2MLbd+L(WR+WN ). The first term accounts

for the reference and detection bitmaps, and the second for window buffers.

As can be seen from Table 3.3, DSP resources restrict the maximum number of parallel

designs to approximately 256. However, designs can go beyond this value using look-up

table (LUT) resources. The next limit is BRAMs which restrict M to approximately

1000.

The same C implementation used to synthesise the FPGA design was compiled using gcc

version 4.6.3 with the -O3 compiler flag. Execution speed was tested on a 1.6 GHz Intel

Core i5 Sandy Bridge processor with 4 GB of memory, 3 MB cache and using the Mac

OSX Mavericks Operating System. CPU execution time was recorded by appropriately

instrumenting the program using the high resolution Linux timer. Both FPGA and CPU
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results do not include input/output overheads and the effect of other peripheral devices

has been taken into account. For the CPU benchmarks the data was generated and

stored in the cache, for the FPGA benchmarks it was stored in the block memories. The

low memory access time and higher clock frequency allowed the CPU to outperform the

FPGA for the single channel case. However when multiple channels are considered the

CPU requires each channel to be processed iteratively resulting in the significant speed

demonstrated by the FPGA.

The Vivado Power Report estimates the M = 1, allowing for a direct comparison to

the CPU, design running at 250 MHz to have a power consumption of 0.3 W , 99% of

this being static power. In comparison, the same processor used for the speed tests

draws 11.25 W , making the FPGA approximately 37.5× more power efficient. The

CPU requires 34 ns which is similar to that of the FPGA, making the energy efficiency

approximately 33.75× better. For larger values of M , energy efficiency is significantly

higher.

3.5 Neural Network Frequency Domain Detection

As a point of comparison, a neural network anomaly detector designed for physical-layer

radio-frequency signals is presented in this section. Over recent years, neural networks

have achieved results surpassing all other approaches on difficult pattern recognition

problems such as image analysis, speech recognition and machine translation. While

previous work has demonstrated the utility of applying neural networks to RF appli-

cations, little has been published on their real-time implementation. Neural network

algorithms are massively parallel in nature, and amenable to computation using low-

precision; making them very suitable for efficient digital implementations.

3.5.1 Design Considerations

Performing anomaly detection on physical-layer radio-frequency signals presents the fol-

lowing challenges. Firstly, anomalies can appear in each frequency bin, however their

effects might not be apparent until non-linear combinations of the respective frequencies

are taken into account. Secondly, seasonality and the signal’s history plays an important

role in determining future predictions; the choice of window size often dictates the per-

formance of the detector if long term effects need to be considered. Finally, the operating

precision needs to be selected thoughtfully; without sufficient precision, small anomalous

events can be lost either due to rounding or truncation in the number representation.
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Figure 3.7: Simplified 4-layer autoencoder signal flow diagram.

Hence, the neural network detector was designed to address these issues in the following

ways:

• All frequency channels are considered in the one model, allowing for non-linear

combinations of the individual frequencies.

• The neural network is not restricted to a sliding window size; it is built from all

historical data. This addresses limitations in prediction accuracy resulting from

either an insufficient model size, shifts in signal pattern or historical anomalies not

present in the model’s current history.

• A range of different precision experiments and implementations were conducted

and constructed to identify limitations in prediction accuracy and detector hard-

ware performance.

• The weights are improved over time as an off-line training step is performed on

a subset of the most recent input data. The weights used for inference are then

updated using the new weights from this training step.

3.5.2 Autoencoder

An autoencoder is a multilayer neural network, constructed in two parts: an encoder and

decoder. The encoder starts with the original inputs and passes it through successively

smaller layers. The final layer of the encoder stage is overlapped with the first layer

of the decoder. The decoder takes the encoded input back to its original size through

another group of successive layers.

Autoencoders are generally symmetrical, an example autoencoder is illustrated in Fig-

ure 3.7 for a 4-layer network. The inputs are given by the vector x ∈ RDx , and the
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outputs are x̂ ∈ RDx , where Dx is the length of the input vector. It is trained on the

identity mapping, striving to make the inputs and outputs match, enabling unsupervised

training. Each layer implements the vector function F l : RDl → RDl+1 (Dl is the number

of inputs of the layer):

al = Φ(W lal−1 + bl) (3.19)

where L is the number of layers, 0 ≤ l ≤ L the layer number, W l ∈ RDl+1×Dl the weight

matrix, bl ∈ Rm the bias and Φ is the activation function applied element-wise, which

is the identity function for the 0’th and final layers and the element-wise rectified linear

unit (relu(x) = max(0, x)) otherwise.

Dimensionality reduction is performed since the dimensionality of the middle layers are

fewer than the input/output. This is illustrated in Figure 3.7 with the first two layers

acting as an encoder which compresses the input to 1-dimension. Similarly, the final two

layers act as a decoder by taking the compressed representation and reproducing the

input. The mean squared error is used as the cost function, however any type of neural

network training scheme can be used to minimise the reconstruction error, the experi-

ments described in this thesis use standard backpropagation to train the network [56].

3.5.3 System Architecture & Implementation

Referring back to Figure 3.1, The host computer is responsible for training; updating

the neural network weights to ensure that the model remains relevant. The training

routine operates in a batched manner, waiting for 1024 input samples before running

the new batch along with the weights of the previous model. Initial and/or updated

biases and weights thus computed are downloaded to the FPGA which implements the

autoencoder, operating independently of the host computer. Training isn’t performed

on the FPGA because the anomaly detector implementations use the majority of the

FPGAs resources, as demonstrated later in Table 3.4. The hardware autoencoder op-

erates at the baseband sampling rate, maximising the probability of detecting transient

anomalies, and ensuring the system is able to react as soon as possible. Training on the

computer allows the anomaly detector to adapt to changing environmental conditions,

while avoiding the problem of training on the FPGA, which would impact performance.

While this implementation focuses on RF signals, it is relevant to the general problem of

real-time neural network processing and can be generalised to other application domains

and neural network architectures.

Figure 3.8 shows a block diagram of the fully pipelined spectral anomaly detection

architecture. The design supports a 200 MS/s sampling rate, producing an input and
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Figure 3.8: Block diagram of the anomaly detector FPGA implementation.

output every cycle. The architecture consists of five or four stages depending on the

configuration. The first stage of this design is the Windower, which accepts complex I/Q

samples from the source and uses a shift register to produce a sliding window of past

inputs to the next stage. This is followed by an optional FFT stage, enabling anomaly

detection in either the time or frequency domain. The FFT is implemented using a 4-

stage radix-2 based algorithm derived from reference [57], and described in Section 3.2.1.

It is important to note that for efficient hardware implementations, the twiddle factors,

e−j2πk/N , are calculated ahead of time with the values stored in an on-chip look-up

table. The real and imaginary outputs of the FFT/Windower are concatenated to

form the inputs of the autoencoder, which is trained to reconstruct an input window

after performing dimensionality reduction. If anomalies occur, the autoencoder will

be unable to reconstruct the input. Comparing a threshold to the squared L2-norm

L22(x, x̂) =
∑N

i=0(xi − x̂i)2 between the input and output of the autoencoder, yields a

binary anomaly/normal determination.

3.5.4 Precision

All values are represented using 16 bit fixed-point numbers with the neural network

weights employing truncated rounding and saturating arithmetic [58]. Accumulation

is performed using 32 bit fixed-point to provide extra integer bits, avoiding potential

overflow. The resulting values are converted back to 16-bit, with saturation performed

if needed. This maps efficiently to the FPGAs digital signal processing (DSP) blocks,

which includes dedicated 25x18 bit multiply-accumulate circuitry. The FFT block oper-

ates with complex inputs and outputs, while the autoencoder uses real values by stacking

both real and imaginary parts of the FFT output into a single real valued vector. This

relatively high precision for inference ensures that the fixed-point results will achieve

similar accuracy to floating-point [59].
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Table 3.4: Resource Utilisation for Varying Precisions

Precision II Latency BRAM DSP FF LUT MSE
(cycles)

Available N/A N/A 1590 1540 508400 254200 N/A

FP32 1 834 2322 7244 14943048 646378 2.29e-9
FXD32.10 1 70 2322 4168 1401256 123158 1.61e-8
FXD24.8 1 78 1752 2120 1375918 82603 3.18e-6
FXD20.8 1 77 1448 2120 1158282 71575 3.39e-5
FXD18.8 1 28 1284 1352 279778 60477 7.93e-4
FXD16.7 1 28 1192 1352 252426 57581 3.69e-4

Deciding upon the precision requires careful analysis of the hardware resource utilisation

and the error introduced for the typical signal with anomalies present. Table 3.4 shows a

breakdown of the hardware utilisation by changing the neural network’s precision. In this

case DSP stands for the digital signal processing blocks, FF denotes Flip-Flop and LUT

the look-up table resources. For single precision floating-point the required resources

far exceed what is available on the FPGA, making a fully floating-point implementation

intractable. For fixed-point precision 32, 24 and 20 the resource utilisation in terms of

DSP, FF is significantly above what is available on the FPGA. This is due to the DSP

architecture only supporting up to 18 bit multiplications in a single DSP. Hence, extra

DSPs are needed to handle the extra precision and extra FF to support routing the

results at a high frequency. For fixed-point 18 bit and 16 bit, the required resources are

within the FPGAs limits, even allowing for additional functionally to be implemented

if needed. 16 bit fixed-point was chosen for its lower resource utilisation, with minimal

impact to the prediction accuracy as illustrated in the Mean Squared Test Set Error

(MSE) column. Given the threshold values, presented in Section 3.6.1, required to

detect the anomalies in RF signals, the different between 1e− 9 and 1e− 4 make little

difference in the detection accuracy.

3.5.5 Interface

To support on-line updates of the neural network models, the implementation allows the

neural network weights and biases, as well as the threshold value, to be updated during

operation via a memory mapped register interface. This allows the FPGA to continu-

ously perform inference, with continuous training at a lower speed on a microprocessor.

Periodic updates of the weights and biases are made to the FPGA. The entire imple-

mentation is generated from a Python description using standard module generation

techniques to produce a synthesisable C output. Google’s TensorFlow package is used

on the host machine for training. The implementation is configurable so that arbitrary
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sized FFT and neural networks can be implemented. Their configuration is set a compile

time by the developer based on their requirements.

3.6 Neural Network Detection Evaluation

In this section, the performance of a 16-point complex FFT and a 32-input, 4-layer net-

work (32,16,8,16,32) is studied. This network configuration was chosen since the network

showed satisfactory accuracy in identifying anomalies and was small enough to fit on

the FPGA in a fully pipelined manner. The radio platform was an Ettus X310 software

defined radio, which supports DC-6 GHz operation with up to 160 MHz of baseband

bandwidth; PCIe, dual 10 GigE, and dual 1 GigE interfaces; utilising a Xilinx Kintex-7

XC7K410TFFG900-2 FPGA. The design was synthesised from C to register transfer

language (RTL) using the Xilinx Vivado HLS tool [58] and a bitstream generated using

the Xilinx Vivado 2015.4 Design Suite. Verification of the hardware implementation was

completed at three levels: C simulation, register transfer level simulation and testing on

the Ettus X310 using the RFNoC software development package and interface.

3.6.1 Detector Accuracy

The detector was evaluated using a synthetic signal generated by modulating a sine wave

with a randomly modulated tone and an FM signal was recorded using the Ettus X310

SRD. Three types of anomalies, similar to those in [48], were injected into each signal.

The anomalies have a given amplitude, A, and exist over time window t ∈ [ts, te), where

ts and te are the start and end time of the anomalous period:

• Period of Gaussian Noise across the entire bandwidth: Modelled as n(t) = Gaussian(−A,A).

• Pulsed Complex Sinusoid: n(t) = A∗exp(2πtFn) where Fn = Uniform(−Fs/2, Fs/2)/Fs.

• Pulsed Chirp Event: n(t) = A ∗ exp(2πtFn) where Fn ranges linearly from Fc1 to

Fc2. Both Fc1 and Fc2 are sampled from Uniform(−Fs/2, Fs/2)/Fs.

Figure 3.9a and Figure 3.9b respectively demonstrate successful detection of different

anomalies in the frequency and time domain. Figure 3.9a shows the FFT windows

(top panel) and the (L2)2 (bottom panel), whereas Figure 3.9b shows the signal in the

time domain (top panel) and the (L2)2 (bottom panel) from the anomaly detector. In

Figure 3.9a, the complex sinusoid was injected at time step 0.010 and its effect can clearly

be show, with a correct identification of the anomaly in the (L2)2 panel. Similarly, at

time step 0.075 and 0.150 the chirp event and Gaussian noise were injected respectively,

both resulting in correct identifications of the anomalies.
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(a) Frequency domain anomaly detection example.

(b) Time domain anomaly detection example.

Figure 3.9: Anomaly detection example. The top panel displays the signal in the (a)
frequency or (b) time domain. The 3 different types of anomaly can clearly be seen
from left to right: pulsed sinusoid, chirp and Gaussian. The bottom panel shows the

(L2)2 and anomaly threshold.

In Figure 3.9b, the same anomalies were injected in the same order at time steps 0.010,

0.080 and 0.150. For the synthetic signal, the neural network anomaly detector correctly

identified the 3 types of noise with little difficulty. As illustrated in the figures, the

threshold value used for all cases was 40% above the running average of the (L2)2.
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(a) Frequency Domain Detection: Sample using the Ettus X310

(b) Time Domain Detection

Figure 3.10: FM Anomaly Detection: Sample using the Ettus X310

Figure 3.10a and Figure 3.10b shows the anomaly detector operation on real FM signals.

The performance is similar to the synthetic case, resulting in correct identification of

three anomalies. In a practical application, the choice of threshold should be guided by

the value of the (L2)2, and an analysis over different signal-to-anomaly ratios (SAR),

similar to Figure 3.11, should be performed.
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Figure 3.11 shows the probability of correctly detecting an anomaly at different SARs.

In this particular case, windows were identified as anomalous if the (L2)2 was 40% over

its running average. The SAR was calculated using the power, P = 1
N

∑N
i=0(x2

i ), and

Equation 3.20.

SAR = 10 log10(
PSignal
PAnomaly

) (3.20)

As the power of the anomaly becomes proportionally smaller to the signal power, the

probability of detection also decreases. As illustrated in Figure 3.11, detection in the

frequency domain is more resilient to decreasing anomaly power, however its impact is

marginal and may be overcome with different thresholding schemes.

3.6.2 Resource Utilisation & Performance

The results presented in Table 3.5 show the latency, initiation interval (II) and resource

utilisation of the design. Importantly, all modules to perform inference (Windower, FFT,

NN, L22 and Thres) have an II of 1, meaning it is fully pipelined, and a total latency

of only 37 cycles. Since the implementation operates at 200 MHz, the throughput and

latency are 200 (complex) MS/s and 185 ns respectively, as illustrated in Table 3.6.
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Figure 3.11: Probability of detection. Multiple signals with anomalies of varying
amplitude were generated for the frequency and time domains. The figure displays the

average probability of making a correct detection.
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Table 3.5: Breakdown of autoencoder performance and resource utilisation

Module II Latency BRAM DSP FF LUT
(cycles)

Windower 1 0 0 0 1511 996
FFT 1 8 0 40 4989 2577
NN 1 16 4 1280 199034 19273
L22 1 4 0 32 1482 873
Thres 1 0 0 0 3 21
Weight Update 258 257 0 0 22049 4609

224079 Inference (FFT+NN) 1 28 1196 1352 230132 29411
Inference (NN) 1 20 1196 1312 225143 26834

Total N/A N/A 1196 1352 252426 57581
Total Util. N/A N/A 75% 87% 49% 22%

Most BRAMs are contained within the top-level, ‘Inference’, module

Since both the FFT and NN require multiply-accumulate operations, the DSP resources

constrain the parallelism of the design. On-chip block random access memories (BRAMs)

are the next resource constraint, since all weights and biases are stored on-chip. This

could be addressed by using off-chip memory, at the cost of greatly increased latency;

potentially becoming a bottleneck in the design.

3.7 Detector Comparison

Figure 3.12 and Figure 3.13 illustrate the performance of the bitmap detector compared

with the neural network detector for the synthetic and real FM data respectively. Unlike

the 2D hand tracking example, the bitmap technique finds it significantly harder to

correctly identify all three types. In Figure 3.12 the neural network detector performs

well, correctly identifying the three anomalies. Compared with the bitmap detector,

the first anomaly is detected, however the peak score is delayed. For the other two

anomalies, their scores are relatively low and in both cases report a lower score than

non-anomalous data.

Table 3.6: Raw anomaly detection performance.

Operation Throughput Latency

Inference(FFT+NN) 5 ns 140 ns
Inference(NN) 5 ns 100 ns
Weight Update 1290 ns 1285 ns
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Figure 3.12: (A) This is the synthetically generated signal (B) The bitmap detector
score, compared with the neural network (C), the bitmap technique significantly under-

performs.

This performance trend is continued in Figure 3.13. Compared with the neural net-

work detector, which correctly identifies the three anomalies, the bitmap detector only

identifies the final anomaly correctly.

In regards to resource utilisation, the bitmap with 16 channels is compared against

the standard neural network configuration in Table 3.7. Whilst both implementations

target difference devices, the FPGA logic blocks are consistent across the two devices
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Figure 3.13: (A) This is the recorded FM signal (B) The bitmap detector score, com-
pared with the neural network (C), the bitmap technique significantly under-performs.

generations and are comparable in terms of FPGA resource utilistaion. As expected the

simpler bitmap detector requires significantly less hardware resources than the neural

network detector, using an order of magnitude less LUTs and 6× less DSPs. However,

examining Figure 3.12 and more importantly Figure 3.13, illustrates that the bitmap

detector significantly under performs, often incorrectly identifying non-anomalous data.
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Table 3.7: Breakdown of autoencoder and bitmap performance and resource utilisa-
tion

Module II Latency BRAM DSP FF LUT
(cycles)

Spectral Bitmap (16 Ch) 10 17 48 224 8656 3520
Neural Network (FFT+NN) 1 28 1196 1352 230132 29411

3.8 Summary

In this chapter, two different anomaly detection techniques were outlined, a neural net-

work radio-frequency detector and a power spectra bitmap detector. The feasibility of

single-chip, 200 MHz sample-at-a-time neural network anomaly detection, resulting in

high throughput and ultra-low latency was demonstrated. This paves the way for the

inclusion of real-time neural networks in sophisticated software defined radio systems,

with potential applications in fault diagnosis, spectrum enforcement and collaborative

spectrum sharing. Demonstrating the feasibility of addressing severely constrained real-

time anomaly detection applications using FPGA technology.

One drawback of the neural network approach is the number of FPGA resources re-

quired to perform the computation. A bitmap detector was presented and compared

against the neural network detector. While the bitmap detector required significantly

fewer hardware resources, the detector performance was significantly lower than the

neural network detector; only able to identify one out of the three anomalies correctly.

Even though the neural network detector correctly identified all three anomalies, the

detector’s parallel performance was limited by the size of the network, which in turn

is limited by the number of DSPs available on a given device. Given the flexibility of

FPGA technology as opposed to other devices such as CPUs and GPUs, a low operating

precision was chosen to facilitate a larger network, showcasing that the customizable

logic allows for greater architecture exploration.

With this in mind, the next chapter presents a generalised matrix-multiplication frame-

work, aimed at accelerating low precision neural network applications. The framework

is implemented on the Intel HARPv2 [60], combining a 14 core Broadwell Xeon CPU

and an Arria 10 GX1150 FPGA. It consists of a highly configurable hardware template

with a streamlined software stack and runtime API, allowing for a wide range of different

precisions, various core sizes and tuneable runtime configurable parameters.
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A Matrix Multiplication

Framework

4.1 Introduction

To enable high performance machine learning on FPGAs, a framework which provides

a consistent and reusable interface to the accelerator is necessary. Although machine

learning algorithms differ in cost function and application, as discussed in Section 2.4

the majority of computation can be expressed as BLAS operations.

The previous chapter focused on machine learning applications and compared various

precisions to their respective hardware utilisation. This chapter moves one level of ab-

straction lower and presents a framework designed for accelerating machine learning

applications. The framework supports various precisions and operating modes as well as

customisable modules designed for accelerating deep learning. The chapter contains a

discussion on the design of low precision operating modes and optimisations for ensuring

high compute efficiency. It begins with the relevant background on the Intel Heteroge-

neous Accelerator Platform Version 2 (HARPv2) and a brief look at reduced precision

deep learning. Next, the framework, based on the GEMM compute algorithm discussed

in Section 2.5.5, is presented along with an evaluation of its GEMM functionality. The

chapter continues with a description of the deep learning specific functions added to the

framework and concludes with an evaluation of three state-of-the-art reduced precision

neural networks.

59
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4.2 Contributions

The contributions addressed in this chapter are:

• A configurable heterogeneous GEMM implementation which supports arbitrary

matrix sizes and offers a wide range of precision, blocking, fusing of operations,

buffering schemes and load balancing.

• A systolic GEMM template that allows runtime customisation of memory inter-

leaving, offering performance improvements of up to 2.7x on small matrices and

4x for certain neural networks. In addition, it incorporates a scheme for fusing

operations so inline computation such as ReLU, Batch Norm and Clipping can be

done in FPGA hardware, minimising CPU overhead.

• A dynamic dot product, enabling mixed precision training and binary inference

which leverages the HARPv2 architecture, providing up to a 1.67x improvement

over a 14 core CPU.

• An evaluation of performance using popular deep neural networks (AlexNet,

VGGNet and ResNet) on the HARPv2 platform used for ILSVRC15[61], and a

study on the efficiency of the hardware template and its impact on deep learning

performance. The resulting binary implementation is, to our knowledge, the fastest

and most flexible reported to date.

4.3 Intel Heterogeneous Accelerator Platform Version 2

The Intel HARPv2 is a heterogeneous CPU and FPGA system with an Intel Xeon E5-

2600 v4 and an Arria 10 FPGA GX1155 [60]. The Xeon is a server-based CPU designed

for parallel compute and energy efficiency using the x86 instruction set. Typically, the

Xeon line of CPUs provide more parallel processing cores than their desktop equivalent,

the Core i series. The E5-2600 has 14 cores all connected by two levels of shared memory,

the cache and system memory. The cache is a small, but fast local memory utilised by the

CPU to store its most accessed and used information. By comparison, system memory

is much larger; at the cost of increased latency in accessing stored information.

Differing from the aforementioned heterogeneous CPU and FPGA systems in Section 2.2,

the FPGA is connected to the CPU via three distinct links: the Quick Path Intercon-

nect (QPI), and two PCI-e links. To support these links the FPGA is partitioned into

two parts, a runtime static region containing the Blue Bitstream and a runtime repro-

grammable region. As illustrated in Figure 4.1, the programmable section of the FPGA

communicates to the Blue BitstreamTM via the Cache Coherent Interface (CCI). Mem-

ory requests through the CCI are taken by the Blue Bitstream and routed to the Xeon
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AAL

Figure 4.1: Intel HARPv2: The blue bitstream communicates directly with the Xeon
and makes memory requests to system memory. The CCI interface abstracts away the
complexity of handling the three links and provides a DMA like interface to the user.

via one of the three links, QPI (VL0), PCI-E 0 (VH0) or PCI-E 1 (VH1). Memory

requests are made to data located in either the cache or system memory that is address-

able to both the Xeon and FPGA. This capability allows for two unique opportunities:

(1) since both the Xeon and FPGA are on the same package, the FPGA architecture can

be targeted to accelerate only the important parts of the algorithm, taking advantage of

any domain specific optimisations that are unavailable to the CPU. (2) Both the CPU

and FPGA can work in the same address space, enabling fine-grained offloading and

heterogeneous load balancing. Load balancing can be performed on a per-op basis as

opposed to dataflow type approaches in which distinct parts of the algorithm are handled

by each core. These key advantages allow the Xeon and FPGA to work harmoniously

and take advantage of each device’s strengths.

4.3.1 Intel Accelerator Abstraction Layer

Shown in Figure 4.1, the Accelerator Abstraction Layer (AAL) is a software stack that

runs on the Xeon and provides the necessary runtime services and API to access the

FPGA device. At a very high level, AAL services can be briefly classified into two

categories:
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• AAL user-mode runtime: These are interfaces that abstract the FPGA hard-

ware via a service oriented model. Various services in the AAL user-mode runtime

can be aggregated to build application specific services.

• AAL kernel-mode driver: These include interfaces for allocation of Direct

Memory Access (DMA) buffers with shared addressing between the hardware

and the user’s application. It provides interfaces to access Memory Mapped IO

(MMIO) registers in the hardware.

4.3.2 Intel Blue Bitstream

Intel Blue Bitstream (BBS), illustrated in Figure 4.1, is the infrastructure shell com-

ponent in the FPGA. It abstracts the QPI and PCIe links to provide a simple, load-

store-like, interface to the user’s accelerator, the CCI. The Intel BBS also handles partial

reconfiguration (PR), a method for updating the reconfigurable region without powering

down the device, and provides AAL kernel visible MMIO registers for device enumeration

and initialisation.

4.3.3 Existing accelerators on Xeon+FPGA

As the Xeon+FPGA platform continues to gain popularity, prior work has studied ac-

celeration on this platform, such as [62, 63]. [62] studied CNNs with math optimisation.

[63] studied irregular pointer chasing applications. Heterogeneous CPU-Accelerator plat-

forms are quickly becoming pervasive throughout computational systems and clusters.

With the fast adoption of machine learning and deep learning in business, the com-

putational requirements of cloud and local distributed systems are increasing at an

exponential rate.

Several studies [64–66] have focused on key workloads to better understand the require-

ments of these algorithms and their performance on CPU+FPGA systems. [64] provides

a quantitative analysis of a QPI based CPU+FGPA system compared to a PCI-E based

CPU+FPGA system. Key differences between the two platforms, such as different mem-

ory models and peak bandwidth, were highlighted and a decision tree based flowchart

was provided as a guide to assist developers when choosing a platform. The main con-

clusion was that QPI based systems are desirable for applications where the CPU and

FPGA need to operate on the same small set of data, whereas PCI-E based systems

tend to perform better for offload type applications.
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4.4 Reduced Precision Deep Learning

With significant research [11–17] indicating that 8 bit or lower precision is sufficient

for inference, dedicated hardware such as the Google TPU [9] and the NVIDIA V100

GPU [67], which are optimised for lower precisions, have been reported. The benefit of

moving to a reduced precision format for neural network computation lies in the efficiency

of the multiply and accumulate operations. By moving from single precision floating-

point to a 32 bit fixed-point, normalisation is removed and scaling is simplified, resulting

in smaller hardware. Hence, by lowering the number of bits, n, in the representation,

the area and complexity requirements of the multiplication reduce by factors of n2 as

per Equation 2.21 for x and y of the same bit width. In summary, this results in:

• A smaller memory footprint compared to the traditional single precision floating-

point.

• The ability to replace the conventional multiply-accumulate with more area effi-

cient implementations.

4.4.1 Binarised Neural Networks

Binarised Neural Networks (BNNs) are gaining significant traction in the neural network

and FPGA communities [11–17]: The number of multiply-accumulates (MACs) needed

by newer topologies is growing significantly and it often takes days or weeks to train

these networks. As the number of layers in these networks increases, the size of the

model can quickly surpass the available system memory when stored as single precision

floating-point numbers. BNNs address these issues by changing the representation from

single precision floating-point to a single bit for either the weights or both the activation

and weights; resulting in a 32x reduction in storage. To support this new representation,

the dot product w�a changes to either a conditional negation and accumulation or an

XNOR and signed bitcount in the case of both binarised weights and activations.

Figure 4.2: Two types of Binary Neural Network implementations: (a) demonstrates
the real activations and binary weights case. (b) illustrates where both activations and

weights have been binarised.
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Figure 4.3: Example of a Binarised Dot Product

Figure 4.2 illustrates two different types of BNN network operations, the same process is

applied to both the FC and CONV layers of the network. The first type of binarisation

are binarised weights and full precision activations. This has the benefit of reducing

the amount of storage for the weight matrix, as well as removing the need for a full

precision multiplication. In the first case, the sign of the binarised weights is applied to

the activations and an adder chain is used to accumulate into a single result. Binarised

weights and full precision activations generally reduce the storage requirements of the

weight matrix by 32x and replace multiplication with a conditional negation.

In the second case, both the weights and the activations are binarised. Traditionally,

Equation 2.31 would use multiplications and additions to perform the dot product.

However, as illustrated in Figure 4.3, since both activations and weights have been

binarised, the operation can be replaced with an XNOR and a signed bitcount, similar

to a population count, given that the representation follows: 1 = 1 and −1 = 0 in binary.

The bitcount operation performs a running sum where each 1 contributes a +1 and each

0 contributes a −1.

While BNNs allow a substantial number of matrix multiply operations to be converted

to binary operations (XNOR and bitcount), there are still other types of operations

required by the algorithm. A state-of-the-art BNN [15] typically continues to use full

precision (FP32) for the first and last layers of the network during forward pass, in

order to achieve acceptable accuracy. Prior FPGA accelerators proposed modifying the

algorithm (e.g., [16, 17]) to use fixed precision data types that are more FPGA-friendly

(i.e., do not require FP32 operations). However, their experiments targeted only smaller

datasets (MNIST, CIFAR) instead of larger scale (ImageNet), where accuracy is often

more sensitive to such data type changes.

Moreover, during the backward pass, the gradients are calculated in floating-point preci-

sion and require a matrix multiplication between the floating-point and binarised values

(i.e., full precision gradients and activations against the binarised weights). Implement-

ing the variety of computations needed for both training and inference has the potential

to over-complicate the FPGA design. This may not be the optimal design choice and

offloading computation to a more appropriate device may result in higher performance.
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4.4.2 Previous Reduced Precision Deep Learning Accelerators

Interest in low precision CNN’s has dramatically increased in recent years. Research has

shown that similar accuracy to single precision floating-point can be achieved [14, 15, 68–

72]. Due to the high computational requirements of CNN’s, reduced precision implemen-

tations offer opportunities to reduce hardware costs and training times. Since FPGAs

can implement arbitrary precision datapaths, they have advantages over the fixed data-

paths of GPU’s and CPU’s. Moreover, the highest performance implementations on all

platforms utilise reduced precision for a more efficient implementation.

Previous work [73–87] has mainly focused on general accelerators, implemented either

as a sequence of instructions on fixed hardware, or accelerator platforms designed for

linear algebra intensive computation.

Systolic array based architectures implement a grid of local-connected processing units to

perform a matrix-to-matrix multiplication. Most notability, Jouppi et. al. [73] describe

the Tensor Processing Unit (TPU), an Application Specific Integrated Circuit (ASIC)

that utilises a systolic array to compute operations necessary with 8 or 16 bit weights

and activations. It boasts a very high throughput on a variety of applications with a

latency on the scale of ms, claiming a peak throughput of 92 TOps/sec. Venkatesh et.

al. [82] use a method described in [88] to implement a VGG style network with ternary

weights and half-precision floating point activations. They create an ASIC accelerator

for training networks in addition to inference with a systolic array like structure. Due to

the use of floating point activations, they achieve high accuracy on CIFAR10 of around

91%.

Differing from the systolic array approach, vector processors contain several indepen-

dent processing lanes, with the capability of each determined by the lanes architecture.

Chen et. al. [74] created a custom ASIC utilising 16 bit fixed point achieving a peak

throughput of up to 42 GMAC/s. Their architecture contains an array of independent

processing elements, each receiving operation instructions. In the programmable logic

domain, Wang et. al. [75], Qiu et. al. [76] and Meloni et. al. [78] presented neural

network accelerators for the Zynq CPU+FPGA. Each implemented a vector processor

and utilised low precision to improve computational performance for object detection

and image recognition. Wang et. al. [75], Qiu et. al. [76] and Meloni et. al. [78]

achieved 2 TOps, 187 GOps and 169GOps respectively. Finally, Zhang et. al. [79] im-

plemented an accelerator using the frequency domain representation of the convolution.

Their datapath converts the activations into the frequency domain and uses a point-

wise multiplication to perform to convolution; this is followed by an inverse FFT. The
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computation is performed in floating point and implemented on the Intel QuickAssist

platform containing a CPU and Stratix V FPGA, achieving 123.5 GFLOPs.

In the past, FPGA devices did not have sufficient capacity to implement entire neural

networks on-chip, and single-chip deep learning applications were intractable. In recent

years, however, high-performance FPGA implementations of neural networks for infer-

ence have been reported. An illustrative example by Zhang et. al in 2015, achieved

62 giga floating-point operations per second (GFLOPS) in single precision floating-

point [89], using a roofline model to balance computational resources and memory

bandwidth. Very low precision implementations have also been reported. For exam-

ple, binarised (1-bit) implementations of neural networks can achieve 12.3 million image

classifications per second with 0.31µs latency on the MNIST dataset with 95.8% accu-

racy [17]. By reducing precision, it is possible to keep all weights on-chip, achieving

higher performance with lower energy consumption. In a manner similar to the present

design, both implementations used high level synthesis from a C description.

Beyond FPGAs, there have been many accelerators proposed for neural networks, and

other machine learning algorithms in general. Several studies have proposed ASIC accel-

erators for neural networks (e.g., [90]), as well as other machine learning algorithms (e.g.,

[91]). GPUs have also been used to accelerate neural networks. As the Xeon+FPGA

platform continues to gain popularity, there has been prior work that studied accelera-

tion on this platform, such as [62, 63]. [62] studied CNN with math optimisation (e.g.,

FFT transformation).

4.5 Overview

To accelerate machine learning algorithms on the Intel HARPv2 platform, a matrix

multiplication framework, illustrated in Figure 4.4, was designed and built to handle

multiple precisions and a wide range of applications. Various HW/SW co-design and

heterogeneous load balancing techniques are applied to achieve synergistic collaboration

between Xeon CPUs and the FPGA. The framework supports arbitrary matrix sizes and

offers a wide range of precision, blocking, fusing of operations, buffering schemes and load

balancing. It contains a systolic GEMM template that enables runtime customisation

of memory interleaving and a scheme for fusing operations; allowing inline computation

to be performed on FPGA hardware while minimising CPU overhead.

The hardware template contains a dynamic dot product, enabling mixed precision data-

paths in the same hardware. As illustrated in Section 3.6.2, the number of DSPs quickly

became the bottleneck to further parallelising the design, since the network was fully
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Figure 4.4: The framework consists of an API and hardware template. The high
level API provides a function call similar to those used in BLAS libraries. The low level
API is optional and allows the developer to configure certain aspects of the hardware

template at runtime.

pipelined. To allow the anomaly detector to support larger compute graphs, a systolic

based architecture, such as the one presented in this chapter, allows computation of

arbitrarily sized layers to be staged. This removes the network size restriction at the

cost of latency and throughput. The main difference between the two approaches is that

the systolic array is reused multiple times to compute larger layer sizes, whereas the

fully unrolled approach aims to map each multiplication and addition onto the FPGA

fabric. The framework is designed for the HARPv2 architecture, however other FPGAs

are supported via the CCI interface.

4.6 API

The hardware template presented in Section 4.7 is implemented on the Intel HARPv2

platform with an accompanying software stack and API. As illustrated in Figure 4.4,

the API contains a high-level function interface for easy integration and a low-level

template interface for fine-grained control. To maintain consistency with other GEMM

implementations, the high level API is modelled on other linear algebra libraries. Given

Equation 2.55 and previous BLAS libraries, the simplified GEMM signature for the

single precision floating-point (FP32) version is:

void gemm( trans a , t rans b , i n t m, i n t n , i n t k , f l o a t alpha , f l o a t ∗ a , i n t

lda , f l o a t ∗ b , i n t ldb , f l o a t beta , f l o a t ∗ c , i n t ldc ) ;
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This signature is provided in a set of libraries that are easily compiled into the developer’s

code base. For most projects, this should provide sufficient performance as optimisations

are performed within the function without developer interaction.

Table 4.1 presents a list of the current parameters tuneable in the GEMM implementa-

tion. Both the precision and accumulator width are configurable at compile time when

the systolic GEMM bitstream is generated. If multiple precisions are required for a

workload, the API provides a single function for partial reconfiguration, allowing for

fast precision switching, on the order of 300 ms. Post processing fused operations such

as value scaling, clipping, rounding and a few deep learning specific operations such as

Rectified Linear Unit (ReLU) and Batch Normalisation can be performed; while the

results are transferred back to the system memory. These post processing operations

are enabled at compile time to be added into the design and can be configured to be

bypassed at runtime.

For precisions other than FP32, the developer can set the desired accumulator width

at compile time, however this affects memory and logic resource utilisation. Similarly,

the developer has access to the systolic array interleaving factors. These allow for fine-

grained adjustments to trade off bandwidth with compute efficiency. Section 4.7.3 covers

this in more detail. The maximum interleaving level is set at compile time and is bound

by the number of memory resources available on the device. The exact level, however,(up

to the set maximum) can be controlled at runtime via the lower level APIs.

4.6.1 Runtime Support

The API exposes various configurable parameters to the user-level software. Applications

that use the framework, leverage the Intel HARPv2 user mode runtime and kernel

driver to set these parameters. The integration of runtime software with the hardware

accelerator template is shown in Figure 4.5. The hardware template and API chooses

Table 4.1: Tuneable Options

Parameters Type Options

Systolic Array Size (Section 4.7) C *Logic & Memory Limited
Precision (Section 4.7.1) C FP32, INT16, INT8, INT4, Ternary, Binary
Accumulator Width (Section 4.7.1) C *Logic & Memory Limited
Interleaving (Section 4.7.3) C&R *Memory Limited
Fused Ops (Section 4.9.1) C&R Scaling, Batch Norm, Clip, Rounding, ReLU

*Limited by the size of the systolic array and available hardware resources. Features
are controllable at compile (C) time, runtime(R) or both (C&R)
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between the different memory links. The default setting performs bandwidth balancing

between all three.

template<typename T1 , typename T2>

void fpga gemm<T1 , T2> : : fpga gemm(

trans a , t rans b ,

i n t m, i n t n , i n t k , f l o a t alpha , T1∗ a , i n t lda ,

T2∗ b , i n t ldb , f l o a t beta , T1∗ c , i n t ldc

i n t i a lead inter leave , i n t i b lead inter leave , i n t i f e ede r in t e r l e ave ,

GEMM MODE i mode ) ;

The low-level functions are templated to support different precisions and modes in Ta-

ble 4.1. The number of elements packed into cacheline also changes depending upon

the precision. The low level API is shown above. “a rows” and “b cols” refers to the

number of rows and columns in A and B matrices respectively. The “common” param-

eter refers to the common dimension in both the matrices. “i alpha” and “i beta”

refer to the scaling parameters and “i mode” refers to the mode in which the hard-

ware accelerator template is set. “i a lead interleave”, “i b lead interleave” and

“i feeder interleave” are the interleaving parameters. These parameters can be used

by the runtime to control the memory interleaving and improve the compute efficiency.

Internally, the application API uses the AAL user mode runtime to access and initialise

the FPGA device.

Switching precision during runtime is supported by the dynamic configuration API.

The API shown below, requires precompiled bitstreams and the AAL service, which

internally uses partial reconfiguration to switch from one mode to the other.

Figure 4.5: Software and Hardware Stack: The CCI, blue bitstream and AAL are
provided by the HARPv2 platform.
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i n t config afu sgemm ( const char ∗pathname ) {
gemmAAL<int , int> hardware template ;

hardware template . setHW( true ) ;

r e turn hardware template . configSGEMM( pathname ) ; }

4.6.2 Heterogeneous Load Balancing

The hardware template also supports heterogeneous load balancing. At runtime the

workload is partitioned across both the FPGA and CPU. In the case of a GEMM, the

A and B matrices are divided into sub blocks and the computation is balanced across

the two compute engines. This is useful for particularly large workloads in which the

majority of the work is taken by the GEMM function.

4.7 Hardware Template

The hardware template illustrated in Figure 4.4 contains the systolic array and several

modules which handle memory interleaving, a fused operation scheme and dynamic dot

product. As illustrated in Figure 4.6, the hardware template is a systolic array of pro-

cessing elements (PEs), each containing a dot product module and two memory buffers;

named the cache buffer and drain buffer. The systolic array operates by iteratively pro-

cessing chunks of the input matrices stored in the feeders. There are two orthogonal

feeders that connect to their respective edges of the array. The design is fully pipelined,

with each cycle’s data fed into the array via the feeders and propagated along the appro-

priate rows and columns. The feeders are, by default, double buffered to ensure multiple

read requests are in-flight; in order to saturate system bandwidth and minimise com-

pute stalls due to insufficient memory. The data management unit (DMU) is responsible

for requesting the input data, filling the feeders, draining out completed sections of the

compute and generating write requests to the system memory. Within the systolic array,

input vectors are interleaved into each PE to take advantage of data reuse and help meet

the bandwidth requirements of the system. Since the input is interleaved, a small cache

within each PE is necessary to store the partial results for accumulation used later in

the computation.

4.7.1 Processing Element

The PE, illustrated in Figure 4.7, contains a dot product module with two memories: a

partial results ‘cache’ and completed results ‘drain’. Input vectors are passed into each
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Figure 4.6: Systolic Array: The array size is configurable with one limitation, the
drain bus width must be ≤ 64 bytes. For FP32 this limits the number of columns to

j = 16.

PE every cycle where a dot product is performed and partial results are accumulated.

In cases where the dot product is larger than the input vector length, the partial result

is stored in the cache to be used later in the computation. If the dot product length is

smaller than the input vector length, or more commonly, the final partial input vectors

have been passed to the PE; the completed result is stored in the drain and is ready to

be taken out of the array.

To ensure high throughput, reading out the array, i.e. ‘draining’, can be performed while

partial results of the next chunk are produced and stored in the cache, as both memories

operate independently. One exception to this, is when a set of complete results would

be written into a non-empty drain. In this case, the computation is stalled until the

drain is empty. The array control signals for the computation stage are passed across

rows, whereas the control signals for the drain are passed across columns. Each PE is

responsible for passing data in a linear fashion along its row and column. Additionally,

each PE is fully pipelined so that the result of a single dot product is produced every

cycle.
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Depending on the desired bit width, the dot product is either performed in DSPs, con-

structed using logic resource, or a combination of both. The dual DSP and logic element

dot product simply divides the multiplications and additions by first fully utilising the

allocated DSP resources, then implementing the rest in logic. For example, in the 16

bit fixed-point case, the DSP resources are sufficient to implement all multiplications

and additions. However in the case of 8 bit fixed-point, half of the operations are im-

plemented using logic; the first 16 multiplications and additions performed in the DSPs

and the second 16 performed using logic. In the case of 4 bit fixed-point this is more

pronounced, since the ratio is 1:3, rather than the 1:1 of the 8 bit case. The PE currently

supports single precision floating-point (FP32), 16, 8, 4 and 2 bit fixed-point (INT16,

INT8, INT4, INT2) and more exotic data types for deep learning workloads: INT16 ×
Ternary, INT8 × Ternary, Binary × Binary (BIN × BIN).

For the fixed-point data types, the bit width of each stage of the adder tree in the dot

product is increased by one. Apart from FP32, the accumulator bit width is configurable

at compile time for all data types. After accumulation the results are truncated and

rounded before they are stored into the ‘cache’ or ‘drain’.

Figure 4.7: Processing Element: This is a PE for a given row (i) and column (j). The
dot product data type is configurable at compile time and is the only data dependent

module in the entire architecture.
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4.7.2 Feeders & Drain

The feeders are memory modules that manage the flow of data into the array. By default,

each feeder is double buffered allowing one buffer to be operated while the other is being

filled. The number of buffers is configurable and more than one may be desirable when:

(1) one matrix is significantly smaller than the other or, (2) when the CPU is operating

under certain load conditions that reduce the overall bandwidth given to the FPGA.

By adding additional buffers, periods of poor performance due to low bandwidth can be

reduced. The feeders operate in one of three stages, idle, loaded or full.

• Idle: All buffers are either empty or in the process of filling, no computation can

be performed during this time.

• Loaded: One buffer is completely full and is available for computation, during this

time the other buffers are empty and can be filled.

• Full: All buffers are full and at this time memory requests are stalled.

When the feeders are either loaded or full there is at least one complete buffer ready to

be fed into the grid.

The drain is a large interconnect though which the results flows into the columns of the

systolic array.

When signalled to drain, the memories at the bottom of the array start to empty. Each

column acts as a large first-in, first-out memory (FIFO) that produces a result every

cycle. As memory locations become available in the bottom row of the PEs, the PEs

above start to empty and begin filling the PEs below them. By combining all columns

into a single data bus, the grid produces one complete cache-line every cycle. Stochastic

rounding and round to nearest are supported during draining by the framework and are

configurable at compile time.

4.7.3 Blocking and Interleaving

During GEMM each element in matrix A is used n times and each element in matrix B

is used m times. By aiming to store both A and B on-chip and reusing each element,

bandwidth requirements are minimised. When dealing with larger matrices, the number

of on chip memories quickly become the limiting factor. To handle larger matrix sizes

both A and B are partitioned into chunks and transferred in batches. This is usually

referred to as blocking and is a standard practice in GEMM implementations to achieve

high performance.
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Interleaving, on the other hand, is an architecture specific optimisation designed to

enable data reuse on a fine-grained level. It takes advantage of the data reuse in a

GEMM and operates by feeding the same vectors into the PEs in a specific order. Both

the leading dimension of matrices A and B, m and n respectively, have independent

interleaving factors that are controlled at both compile and run time. Figure 4.8 shows a

simplified example, a 1x1 systolic array, of how interleaving operates within the hardware

template. Each row in Feeder A and column in Feeder B are partitioned into two separate

blocks, ax and bx respectively, the result of these partitions are accumulated to create

the final 3x2 matrix. The interleaving factors for feeder A and B are 3 and 2 respectively.

At t = 0, a0 and b0 are passed into the PE and the partial result is stored in the first

location in the cache. At t = 1, the pointer to memory location a in incremented, b0 is

reused and a1 is passed into the PE with the partial result stored in the second location

in the cache. This continues on to t = 3 where the a memory pointer is reset back to zero

and the b memory pointer is updated, now a0 is reused and b1 is passed into the PE, the

Figure 4.8: Interleaving Example: This shows a simplified example of how the PE
operates and the concept of interleaving.
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partial result is stored in the fourth location in the cache. At t = 6 the first column and

row of A and B respectively, have been processed and moves on to the second row and

column. Instead of accumulating zeros, the previous value from t = 0, a0b0, is added to

the result of a3 and b2 and is stored back into the first location. This process continues

in a similar fashion for t = 7, ..., 11 until all rows and columns have been processed.

A combination of blocking and interleaving are used together to improve performance.

The blocking size is determined by the interleaving factor as well as the number of rows

and columns in the systolic array. With a fixed interleaving size, the systolic array

performed at near peak theoretical performance for large matrices, however there was a

significant decrease in performance for smaller matrix sizes. This is due to the fact that

both matrix A and B needed to be padded with zeros until they were a multiple of the

block size. It was observed that by adding configurable memory interleaving support at

runtime, the performance significantly improved as these restrictions were lifted. The

performance improvements are discussed later in Section 4.8.2.

In most cases the optimal interleaving size can be directly calculated using:

I = min
xL,...,xH

modulo(DIM,x) (4.1)

where x is the range of different interleaving values supported by the hardware template

and DIM is the leading dimension of either the A or B input matrices. It follows

that the size of the blocks leading dimension for A and B can be calculated using

SA = IA ∗HWROWS and SB = IB ∗HWCOLS respectively.

Now, given the dot product size (SD) and the length of the a block’s common dimension

(SC), the number of cycles per block can be calculated using the A and B interleaving

sizes (IA and IB) as illustrated in:.

Cycles = IA ∗ IB ∗
SC
SD

(4.2)

Given the blocks sizes of A (SAxSC), B (SBxSC) and C (SAxSB) and Equation 4.2, the

read and write bandwidth requirements can be calculated directly using:

Bandwidth = f
Bytes(SASC + SBSC + SASB)

Cycles
(4.3)

where f is the operating frequency of the design and Bytes is the number of bytes used

to represent each element of A, B and C.

Using Equation 4.3, the optimal configuration of the systolic array can be calculated,

given the overall bandwidth of the system and the desired operating precision. Since

the required bandwidth is a function of the A, B and C blocks sizes, SA, SB and SC
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respectively, modifying either the number of rows or columns, or common dimension

buffer size can significantly change operating characterises for given number of DSPs. For

‘skinny-tall’ matrices increasing the number of columns, whilst decreasing the number

of rows results in significant improvements in overall efficiency as demonstrated later in

Section 4.8.2.

4.8 Implementation & GEMM Evaluation

This section covers the GEMM portion of the evaluation. The FPGA is compared

against a state-of-the-art high performance GPU in terms of both raw performance,

measured in tera-operations per second (TOPs), and performance per watt, measured

in TOPs per Watt (TOPs/Watt). The hardware template is written in SystemVerilog

and the API in C and C++. The FPGA available in the Intel HARPv2 is an Arria

10 GX1150 with 427.2K ALMs (1.150M logic elements (LEs)), 1518 hard DSP blocks

and 2K M20K memory blocks. Synthesis and ‘place and route’ were performed using

Quartus Prime Pro version 15.1. All FPGA results were gathered by measuring the

execution time of the function call for each configuration on the HARPv2 system. The

GPU results were measured in a similar fashion. The power of the FPGA is measured

by a tool provided by the HARPv2, measuring the power consumption of the Arria 10.

For the GPU, an NVIDIA power profiling tool is used to collect the power consumption

over the workload.
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Figure 4.9: Arria 10 Peak Performance: the peak performance of the framework for
a few selected precisions.
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Since the systolic array size is configurable at compile time, it can be tailored to the

resources available on the FPGA. In the case of the HARPv2, all of the available area was

used to implement the hardware template minus the area taken by the Intel BBS. For

FP32, this results in 160 PEs, with an array size of 10 rows and 16 columns, operating at

312.5MHz. With the dot product size configured to 8, this uses 1280 of the available 1285

DSPs, since 233 of the 1518 DSPs are used by the BBS. Even though the measurements

are performed on the HARPv2, the hardware template is only dependent on the CCI

interface and can be configured for larger or smaller FPGAs.

Figure 4.9 presents the performance of the GEMM architecture on the Arria 10. For all

FP32 modes, a floating-point addition and multiplication is needed, hence all operations

are performed in the DSP. While it is possible to implement these operations in logic, it

quickly becomes very expensive as the design is constrained by routing resource when in-

creasing the array size. Additionally, for lager bit widths such as FP32, the performance

is limited by the number of DSPs available on the chip. For FP32T (FP32×Ternary)

further optimisations can be made by removing the multiplication and implementing a

simplified multiplexer unit.

For integer precisions a better than linear scaling of performance is observed. As the bit

width becomes smaller, the dot product is a good fit for the FPGA architecture. INT16

doubles the FP32 performance since each DSP can perform two multiplications and two

additions. The hardware template supports using logic resources when implementing a

larger array. However specifically for INT16, the multiplication utilisation and routing

resources become a significant issue and only result in a small improvement in the peak

TOPs. Since the DSP architecture does not natively support 8 bit operations, doubling

the performance is achieved by using a dot product built out from both DSPs and logic

elements. For INT8 and INT4, extra rows were added to the array since there was

sufficient logic resources available to implement additional math operations. Moving to

INT8T (INT8×Ternary) provides a performance per watt improvement over INT8 since:

• Each multiplication is replaced by a multiplexer.

• With the removal of the multiplication, the accumulator bit width can be reduced.

The BIN GEMM is implemented completely in logic and uses an XOR and lookup-table

based dot product, presented in Section 4.9.2.

4.8.1 GPU Comparison

GPUs are known for their linear algebra performance as shown in Figure 4.10, reported

performance from previous studies [12, 92]. The GPU compared against in this thesis
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is the NVIDIA Titian X P102. Where possible, the GEMMs are performed using the

optimised CUDA BLAS library, otherwise optimised implementations have been used

from previous studies [12, 92]. The matrices are blocked and loaded in the GPU. For the

binarised GEMM computation, the population count instructions are supported in the

GPU via the popc() for 32 bit and popcll() for 64 bit. A streaming multiprocessor

(SM) in an NVIDIA Titan X can issue 32 popc() instructions every cycle, resulting

in 1024 binary ops per cycle. At an operating frequency of 1.531GHz and 28 SMs, the
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peak GPU performance is 43.89 TOPs.

Compared to the Arria 10, the GPU has higher raw performance for all cases apart from

the binary GEMM. Considering power, the FPGA shows superior performance for BIN

and INT4 which are not a good fit for the GPU architecture. However, considering that

the GPU is at a newer processes node compared to the FPGA, TSMC 16 nm and 20 nm

respectively, a normalised Arria 10 result of the same design and frequency has been

plotted, with power requirements cut by 60% [93]. In the normalised case, the FPGA

outperforms the GPU especially for the binary GEMM.

4.8.2 Memory Interleaving

Efficiency is calculated by comparing the measured TOPs to the theoretical maximum

value for a given design. The theoretical TOPs is calculated by taking the number of

compute units and multiplying by the frequency, disregarding any time for data transfer.

Figure 4.12 and Figure 4.13 illustrate the efficiency of the array at different matrix sizes

as well as the improvements from the memory interleaving optimisation. The sizes tested

were square matrices of the x axis labels, i.e., for 256 the A, B and C matrices are all

256×256. Regardless of matrix size, each precision required the same power as the test

case presented in Figure 4.11.

For the smallest matrix size, 256, the efficiency for the unoptimised FP32, INT16 and

INT8 designs (D) are all below 20%. In these cases the low efficiency is caused by an
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framework with (I) and without (D) memory interleaving.
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Figure 4.13: Memory Interleaving Improvements

inefficient use of blocking, thus memory interleaving alleviates these issues as per Equa-

tion 4.3. With runtime configurable memory interleaving (I), presented in Section 4.7.3,

a 2.7x improvement in efficiency for the smaller matrix sizes is observed. In some cases

even with memory interleaving, the efficiency of the design is quite low, specifically the

512 case for INT8. Usually the data transfer of the next chunk in the input matrix

is hidden during the computation of the previous chunk. For smaller matrix sizes, the

number of chunks are small and hence the transfer cost cannot be amortised by the

compute. Therefore, the initial transfer time for the first chunks of A and B as well as

the transfer of C account for the majority of the measured execution time. This issue

can be resolved by staging multiple GEMMs such that transfer of the A, B and C chunks

overlap with the compute from the previous GEMM. This is similar to how larger single

GEMMs are performed. For matrix sizes past 512, the efficiency for all precision is

above 80% and becomes 90% past 1024 where it quickly reaches peak performance. For

square matrix size 4096 the effectiveness of memory interleaving has been diminished,

however as discussed later in Section 4.10.2, non-square matrix sizes still see significant

improvements.

4.8.3 Heterogeneous Load Balancing

Figure 4.14 presents the performance of the FP32 GEMM when load balancing is per-

formed over the FPGA and 14 core Xeon CPU. Peak performance is achieved as the

work split approaches 60% on the FPGA and 40% on the CPU. In this configuration the

FPGA and CPU contribute similar peak performance. This is consistent for most block

sizes apart from 20480. In this case, the whole compute is performed on either the CPU

or the FPGA. Interestingly, for this particular workload the optimal partitioning size
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Figure 4.14: Heterogeneous Load Balancing

is 4096, showing that a finer-grained partitioning of the problem performs better than

coarse-grained sizes such as 10240. This illustrates that the CPU and FPGA working in

tandem can achieve a 1.6x improvement in performance over a 14 core only implemen-

tation. While the results shown in Figure 4.14 are only for FP32, the same software is

used for the lower precisions, however at the time an optimised low precision GEMM

was not available for the CPU.

4.9 Deep Learning Optimisations

This section discusses deep learning specific optimisations and hardware template fea-

tures available in the framework. Specifically, the fused operations and dynamic dot

product modules from Figure 4.4 are described. Results for three different binary net-

work topologies, (AlexNet [8], VGGnet [18] and ResNet [4]) are presented and are evalu-

ated against the GPU. The impact of memory interleaving on AlexNet at various batch

sizes for FP32 is illustrated and further possible optimisations are discussed. Finally,

several possible mixed precision implementations are investigated and their performance

for both training and inference is evaluated.

4.9.1 Fused Operations

In the context of deep learning, often additional operations such as the activation func-

tion or batch normalisation are performed after the FC or CONV layers.
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Figure 4.15: Fused Operations: The post processing module is configurable at compile
time and runtime, and provides key neural network functions.

Presented in Figure 4.15, as the results are drained out of the systolic array, a post

processing module can apply some basic operations. The modules are written such

that they can be enabled at compile time, with a controllable bypass at runtime. For

example, if only the GEMM function call is made, then any additional functions active

in the post processing module will be bypassed to maintain the integrity of the GEMM

results. The post processing module contains a common interface so that extra functions

such as sigmoid, tanh or custom scaling schemes can be added without modification to

the systolic array.

4.9.2 Binarised Dot Product

The architecture for the binarised dot product is presented in Figure 4.16. As described

in Sec. 4.4.1 the weights and activations are represented as +1 and −1, however to take

advantage of the XNOR and bitcount operations, −1 is represented as a 0 in binary.

Every cycle, two new input vectors are fed into the dot engine, the XNOR is performed

and the result is partitioned across multiple look-up tables. The look-up tables perform

a bitcount of their respective inputs and the result is fed into an adder reduction tree.

After the reduction, any partial result passed in from the PE cache is accumulated and

stored back into the PE cache for further computation.

4.9.3 Mixed Precision Neural Networks

Training of neural networks on FPGA hardware has been challenging since typically the

gradient update step needs to be performed in higher precision. Additionally, in the case
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Figure 4.16: Binarised Dot Product: the two inputs are passed to the XNOR. The
partial result is accumulated with result from the REDUCE module.

of convolution neural networks, the backpropagation stage, described in Section 2.5.4,

is performed using matrix multiplications which are laid out differently to convolution

in most FPGA architectures. Since most FPGA implementations to date have focused

on only supporting native convolution, this restricts them to inference. On the Intel

HARPv2, it is possible to stage the computation such that the FPGA performs the

forward pass and the CPU the backwards pass. Specifically, The FPGA handles per-

forming the reduced precision CONV and FC layers, allowing the CPU to perform the

full precision batch normalisation/local response normalisation, SoftMax, gradient up-

date step and the first and last CONV/FC layers. The working sets of these steps is

staged such that both the CPU and FPGA can be fully utilised at all times. Inference

is mainly handled by the FPGA with the CPU taking care of the normalisation and

SoftMax layers. By removing the need to handle all possible layers on the FPGA, the

architecture can be streamlined and best utilised for a single compute function.

From a framework perspective, such as TensorFlow or Caffe, a simple API call is pro-

vided by a shared library that performs either a CONV, FC, CONV-ReLU, FC-ReLU or

GEMM. In terms of hardware, all necessary data transformations are performed either

before or during the memory transfer; this way all complexity of managing the FPGA

is hidden and abstracted away. As a result, the framework can decide which imple-

mentation is best for a particular section of the topology. In the case of the binarised

CONV and FC layers, the scaling is performed either inlined by the CPU as the results
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are transferred from the FPGA into system memory, or by the fused post processing

operations. Additionally, performing a sigmoid activation function instead of ReLU is

handled by disabling the fused ReLU operator in the FPGA via a memory mapped

register. Followed by performing the sigmoid functions on the Xeon as the results are

streamed back into the Xeon’s cache.

4.9.4 Dynamic Dot Product

In addition to mixed precision computation across both the FPGA and CPU, a dynamic

dot product designed as a direct replacement for the traditional dot product is available

in the hardware template. Recent work [92] has shown that through the use of a novel

quantisation scheme, hardware friendly backpropagation can be supported via a mixed

precision FP32x(Binary/Ternary/Integer) dot product. To support this, the ability to

dynamically switch between dot product types during runtime was added. Figure 4.17

presents the necessary change to the PE. To illustrate the advantages of this change,

a BIN×BIN dot product in DOT 1 and a FP32xFP32 dot product in DOT 2 was

implemented. With the addition of dynamic dot product switching, both training and

inference can be supported on the FPGA.

For a typical layer in a state-of-the-art BNN [92] the FPGA performs the BIN × BIN

operations very efficiently, hence the CPU can be freed during that time to perform other

tasks in its pipeline. Table 4.2 illustrates the required operations of the middle and end

portions for a binarised AlexNet. It shows that different layers can be partitioned, for

both forward and backward passes, across the FPGA, CPU or using heterogeneous load

Figure 4.17: Dynamic Dot Product Switching: Dynamic dot product switching allows
for greater micro-architecture exploration and flexibility when designing for reduced

precision networks.
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Table 4.2: Mixed Precision Inference and Training

Layer
Location Type

Forward Backward Forward Backward

... ... ... ... ...
conv FPGA FPGA+CPU BIN×BIN FP×BIN
c&r FPGA N/A INT STE
relu FPGA FPGA+CPU INT FP
norm FPGA CPU FP FP
pool CPU CPU FP FP
... ... ... ... ...
fc CPU CPU FP×FP FP×FP
prob CPU CPU FP FP

For the standard configuration of a BNN, a mixed precision implementation on the
Xeon+FPGA utilising the dynamic dot product could operate in this manner. The
straight through estimator (STE) is used for the clipping and rounding (c&r) layer,

hence no operation is required on the backwards pass.

balancing (FPGA+CPU). The ReLU operation during the forward and backward pass

can be performed on the FPGA or CPU depending on which device the result was

calculated on. For the batch norm operation the forward pass can be performed on the

FPGA as it is a scale and shift operation.

4.10 Deep Learning Evaluation

This section evaluates the framework on three deep learning workloads: AlexNet [8],

VGGnet [18] and ResNet [4]. While the GEMM targets many different precisions, binary

neural networks were chosen specifically since:

• From Figure 4.9, these clearly offer the best performance over a GPU.

• Recent work [92] has shown that implementations can achieve high accuracy even

for binary weight and activation networks.

Additionally, a study on the effectiveness of memory interleaving on layer efficiency is

provided, focusing on the AlexNet topology running in FP32. Finally, a mixed precision

training and inference scheme is presented, targeted at leveraging heterogeneity and the

dynamic dot product module.

The evaluation was performed on both the CONV and FC layers for inference with

the standard mini-batch size used for each topology. The total network performance

and Images per Second (IPS) is calculated based on the weighted average of the layer’s



Chapter 4. A Matrix Multiplication Framework 86

operation contribution to the overall network. A runtime breakdown of each topology

was collected using the 14 core Xeon Broadwell CPU running Caffe with Intel MKL2017.

4.10.1 Binary Network Performance

Theoretically, the FPGA is capable of performing 131072 binary ops per cycle. Running

at 312.5MHz the peak FPGA performance is 40.96 TOPs. As shown in Figure 4.9,

Figure 4.10 and Figure 4.11 the FPGA and GPU achieve 40.77 TOPs and 41.01 TOPs

for the binary GEMM respectively, which is within 99% of their theoretical peak per-

formance. Compared to the GPU, the FPGA achieved 849.38 GOPs per Watt which

results in a 1.44x improvement in energy efficiency over the GPU at 585.86 GOPs per

Watt.

4.10.1.1 AlexNet

As illustrated in Table 3.6, the FPGA, without load balancing, achieves 83% and 86%

of the GPU raw performance for AlexNet and VGGNet. When measuring power, the

FPGA provides a 1.1x improvement in average energy efficiency over the GPU. However

as illustrated in Table 4.3, taking into account the distribution of the compute and the

estimated IPS, the FPGA is within 99% of the GPU IPS and provides a 1.34x improve-

ment in energy efficiency for inference. Compared to the CPU, both the FPGA and

GPU provide a 2.6x improvement in IPS for inference, while the FPGA is 2.5x more
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Figure 4.18: AlexNet Layer Performance



Chapter 4. A Matrix Multiplication Framework 87

Table 4.3: AlexNet Estimated Topology Performance

CPU(I) FPGA(I) GPU(I) CPU(T) FPGA(T) GPU(T)

IPS 607.8 1610.4 1626.6 286.9 406.3 407.3
IPS/Watt 3.68 33.5 24.5 1.74 8.46 6.14

This shows results for both Inference (I) and Training (T)

energy efficiency compared with the GPU. When training is considered, the FPGA per-

formance is within 99.7% of the GPU performance whilst providing a 1.37x improvement

in energy efficiency. During training the CPU is capable of 286.9 IPS which is within

70% of the FPGA and GPU performance, however the FPGA and GPU provide 4.8x

and 3.5x better energy efficiency respectively. This demonstrates that it is critical to

consider the problem at the framework level as raw TOPs do not provide the full picture.

4.10.1.2 VGGNet

For VGGnet, presented in Figure 4.19, the FPGA is within 87% of the GPU on average.

However, when looking at the middle layer of VGGnet, CONV 5, 6, 7, 8, 9, 10, 11 and

12 are all within 99% or even better than the GPU implementation. When power is

considered, the FPGA provides a 1.05x improvement over the GPU. As illustrated in

Table 4.4, the FPGA again achieves within 95% of the IPS of the GPU for inference

and is 1.35x times more energy efficient over the entire topology. Compared to the

CPU, the FPGA and GPU are 8.5x times faster and 20x time more energy efficient in
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Figure 4.19: VGGNet Layer Performance
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Table 4.4: VGGNet Estimated Topology Performance

CPU(I) FPGA(I) GPU(I) CPU(T) FPGA(T) GPU(T)

IPS 14.2 114.8 121.45 6.03 9.89 9.94
IPS/Watt 0.09 2.39 1.76 0.04 0.21 0.14

This shows results for both Inference (I) and Training (T)

inference, however for training the difference is less pronounced at 1.6x and 3.8x for IPS

and IPS/Watt respectively; since 90% of the computation time is taken by the backward

step. However, for training the FPGA is still within 99.5% of the GPU performance and

provides a 1.43x boost in energy efficiency.

4.10.1.3 ResNet

For ResNet-34 the FPGA only achieves 70% of the GPU performance at 23.47 and 33.34

TOPs respectively. However it is on par for energy efficiency at 489.05 GOPs/Watt for

the FPGA and 485.68 GOPs/Watt for the GPU, showing a 1.03x improvement. This

drop in FPGA performance compared to AlexNet can be understood by examining the

layer breakdown presented in Figure 4.20. The GPU outperforms the FPGA for the

first three layer sets which contribute 50% of the total operations. While increasing the

batch size can alleviate some of this discrepancy, this is undesirable since it can affect

training rate and total execution time.
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Figure 4.21: FP32 AlexNet Efficiency

Examining the first layer specifically, the FPGA achieves 7.88 TOPs, which is 19% of the

measured peak performance presented in Figure 4.9. The main cause of this inefficiency

is introduced by the padded zeros in the common dimension of the input matrices.

4.10.2 Effect of Memory Interleaving on AlexNet

Figure 4.21 and Figure 4.22 show the performance of the first five CONV layers in

AlexNet for FP32. Different batch sizes ranging from 1 to 64 illustrate the performance

improvement that is provided by memory interleaving. For a batch size of 1, A and
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Figure 4.23: A Breakdown of the static design (D) vs configurable interleaving (I)
for different batch sizes on AlexNet at FP32 precision.
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B are long-skinny/short-fat matrices. Hence with fine control of the interleaving, 1.8x

and 1.6x improvement for the first two layers is observed, while for layer 3,4 and 5 the

improvement is over 3x and up to 4x. For a batch sizes of 4, 16 and 64, the A and B

matrices are becoming increasingly square. Hence the same level of improvement isn’t

reached, however it achieves near peak performance. The improvement for the first

layer is more significant than the others since the first layer exhibits the worst long-

skinny/short-fat matrix sizes. However it is clear that memory interleaving significantly

improves the efficiency, achieving a 1.3x up to 4x improvement.

4.10.3 Dynamic Dot Product

As discussed in Section 4.9.3, mixed precision GEMMs are needed to handle both the

forward and backwards pass. Typically, the first CONV and last FC layers are performed

at full precision while the inner layers are performed at lower precision [92]. As shown

in Table 4.2, during the backward pass, the gradients are computed using single preci-

sion floating-point hence the operation is a FP32×BIN GEMM. While the framework

contains an API for switching between different precisions (Section 4.6.1) the latency is

determined by the partial reconfiguration time. In the cases where the PR latency is

too high, a dynamic dot product may be more appropriate.

By examining the breakdown for binarised AlexNet, similar to Table 4.2, three FPGA

implementations were designed, two with dynamic dot product, targeting different por-

tions of the topology: (1) a single BIN×BIN, (2) a BIN×BIN and FP×FP, (2H) a

version of (2) that performs the FP×FP GEMM utilising heterogeneous load balancing

(FPGA+CPU) and finally (3) a BIN×BIN and FP×BIN. All other layer operations not

supported are assumed to be implemented in software on all cores of the Xeon.

Table 4.5: Implementation Peak Performance

Impl. BIN×BIN FP×FP FP×BIN Forward Backward Total
(TOPs) (TFLOPs) (TFLOPs) (ms) (ms) (ms)

SW - - - 421 471 892 (1x)

(1) 40.77 0 0 158 (F) 471 (C) 630 (1.41x)
(2) 25.4 0.8 0.8 164 (F) 537 (F) 702 (1.23x)
(3) 25.4 0 0.88 165 (F) 502 (F) 668 (1.33x)
(2H) 25.4 1.4 1.4 163 (F+C) 369 (F+C) 533 (1.67x)

Where possible, the operation was performed on the FPGA (F), the 14 core CPU (C)
or using heterogeneous load balancing (F+C).
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Implementations (1) and (2) were synthesised for the HARPv2 whereas (3) was extrap-

olated using the results of (2) and the analysis from Section 4.8. Additionally, (2) is

able to perform the FPxBIN operations by representing the BIN values as floating-point.

Given that inference and training take 421ms and 892ms respectively, implementation

(1) accelerates the BIN×BIN operations which account for 272ms of the execution time

(all in the forward pass). This corresponds to 65% and 30% of the total interference

and training time respectively. (2) accelerates the most layers with the BIN×BIN and

FP×FP operations accounting for 327ms (77%) and 735ms (82%) of the total execution

time. Finally, (3) accelerates the BIN×BIN and FP×BIN operations accounting for

272ms (65%) and 593ms (66%) of inference and training time respectively.

As illustrated in Table 4.5, for pure inference, implementation (1) achieves the best

results, reporting the fastest forward execution time. However for training (Forward

and Backward), implementation (2H) and (3) show a greater speed up, achieving 1.67x

and 1.41x improvement over a software only implementation. Implementations (2), (3)

and (2H) use the dynamic dot product, hence the BIN×BIN performance suffers since a

smaller systolic array size is used to accommodate the extra routing resources. Although

implementation (2) implements all operations on the FPGA, this reduces the amount

of hardware that can be dedicated to the bottlenecks, resulting in the lowest speed up,

1.23x.

The CPU+FPGA implementations (1), (3) and (2H) show that the best overall perfor-

mance is achieved by leveraging the CPU and specialising the implementations for only

the most profitable parts of the algorithm, or by utilising heterogeneous load balancing.

Compared to other CPU+FPGA platforms the same network performance would not be

achieved since these are often SoC type CPU that have relatively low FLOPS compared

with the Xeon CPU.

Table 4.6: Previous Work

[17] [94] [16] This thesis

Platform Zynq z7045 Kintex US KU115 Zynq 7Z020 Arria 10 GX1150
Logic Elements (LEs) 350K 1,451K 85K 1,150K
Power (W) 11.3 41 4.7 48
TOPs (Peak) 11.612 14.8 0.32 40.77
MOPs / LE 33.17 10.19 4.43 35.45
GOPs / Watt 1027.68 360.97 44.2 849.38
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4.11 FPGA Comparison

Compared to other work, the hardware template in the BIN×BIN configuration achieves

the highest peak TOPs, MOPs / LE and the second highest GOPs / Watt. Comparing

across different devices and manufacturers is difficult and care was taken to ensure that

accurate comparisons are made. While the results reported in [17] are for an older

process node and lower frequency, [94] shows their framework performance on a device

of similar size and process node as this thesis. It is expected that [17] should achieve

better energy efficiency since the device is targeted at low power SoC applications, while

the HARPv2 is targeted at data centres. One advantage of the hardware template is that

it provides several other data types and customisations that benefit applications outside

of deep learning. Additionally, with the Xeon CPU able to provide high floating-point

compute power, any changes to the underlying neural network algorithms, such as those

presented in [92] can be supported without changes to the hardware architecture. Whilst

it is possible to support SoC type FPGAs, the framework was designed to operate on

data centre based FPGA.

4.12 Summary

This chapter presented a customisable matrix multiplication framework that includes a

simple software API and a hardware template for designing custom GEMM accelerators

on the HARPv2. The framework consists of a highly configurable hardware template

with a streamlined software stack and runtime application programming interface, which

allow for a wide range of different precisions, various core sizes and tuneable runtime

configurable parameters. This flexibility, allows the framework to adapt to the users

requirements and alleviates performance bottlenecks that effect other systems. Various

Deep Learning optimisations were presented, fused operations, dynamic dot product

and the binarised dot product, allowing for fine-grained customisations for specific deep

learning applications.

The framework was evaluated and it was illustrated that the in-package integrated FPGA

can remain competitive with a high-end discrete GPU on raw performance. An evalua-

tion of performance using popular deep neural networks (AlexNet, VGGNet and ResNet)

on the HARPv2 platform was performed, using ILSVRC15[61]; and a study on the ef-

ficiency of the hardware template and its impact on deep learning performance was

presented. Compared to previous FPGA work, the HARPv2 reports the highest TOPs,

MOPs/LE and second highest GOPs per Watt. While the GPU provides better per-

formance for particular layers, when considering total topology performance the FPGA
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achieves similar performance and better energy efficiency. Utilising the Xeon+FPGA,

a flexible usage model capable of performing training and mixed precision methods was

presented and evaluated.

In the case of binarised neural networks, the FPGA either matched or exceeded the

GPUs performance and offered insight into some of the issues faced when designing for

this system. Several heterogeneous implementations were evaluated, illustrating that

dedicating FPGA resources to accelerating specific bottlenecks and utilising the CPU

for other operations, results in higher performance implementations. While the HARPv2

is still an emerging technology, it stays competitive with a high performance discrete

GPU by taking advantage of close collaboration between the FPGA and CPU.

The performance of the framework is largely dependent on the number of multiply-

accumulates as well as the efficiency of those multiplications. In the next chapter, a

novel two speed multiplication algorithm is presented. The multiplier is designed with

deep learning and neural networks in mind, taking advantage of bit-patterns to perform

less work. This characteristic is particularly useful to a matrix multiplication accelerator,

since the most expensive operation is the multiplication.





Chapter 5

Multiplication for Machine

Learning

5.1 Introduction

Work on optimising multiplication circuits has been extensive [95], with the modified

Booth algorithm at higher radices generally accepted as the highest performing imple-

mentation for general problems [96]. Extending upon previous work, this chapter de-

scribes a new machine learning operator; a two speed serial multiplication algorithm and

implementation. It conditionally adds the non-zero encoded parts of the multiplication,

skipping over the zero encoded sections.

As illustrated in Chapter 4, reduced precision representations are often used to improve

the performance of a design, striving for the smallest possible bit width to achieve a

desired prediction accuracy [97]. At compile time, the precision is fixed and changes in

requirements often involve redesign and reimplementation. Datapaths are designed with

the largest required bit width to ensure the correctness of each result. Consequently,

occasions when the datapath could operate at a lower precision, standard multipliers per-

form unnecessary computation in the most-significant bits, resulting in lower efficiency.

To mitigate this, mixed-precision datapaths have been proposed [98, 99]. These attempt

to use lower precision datapaths for the majority of the computation, only switching to

a higher precision when necessary. However, these are normally implemented with two

separate datapaths, resulting in increased area and reducing overall flexibility.

The two speed (TS) modified Booth multiplication algorithm and implementation pre-

sented in this chapter is able to skip over encoded all-zero or all-one computations, in-

dependent of location. The multiplier inputs all bits of both operands in parallel and is

95
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designed to be a basic building block, easily incorporated into existing DSP block, CPUs

and GPUs, resulting in improved computational performance, given the appropriate in-

put set. This chapter starts with an introduction of the radix-4 booth multiplication

algorithm and is followed by a description of the two speed optimisation. A key element

of the multiplier is that sparsity within both the input set and the number’s internal bi-

nary representation both lead to performance improvements. The multiplier’s datapath

is divided into two subcircuits, each operating with a different critical path; it is able to

take advantage of particular bit-patterns to perform less work.

5.2 Contributions

The contributions of this chapter are:

• A two speed Booth multiplication algorithm and implementation where the data-

path is divided into two subcircuits, each operating with a different critical path.

• Demonstrations of how this multiplier takes advantage of particular bit-patterns

to perform less work; this results in reduced latency, increased throughput and

superior area-time performance compared to conventional multipliers.

• A model for estimating the performance of the multiplier and evaluation of the

utility of the proposed multiplier via an FPGA implementation.

5.2.1 Previous Work on Reduced Precision Multiplication for Neural

Networks

The most comparable work to this multiplier is the parallel-serial, or shift-add, multiplier

described in Chapter 2. As described in Equation 2.23, the product p is iteratively

calculated by examining individual bits of X each cycle and accumulating a scaled Y .

An extended version of this multipliation technique is presented in this chapter, the

Booth multiplication algorithm [24]. The TS multiplier is compared directly to a Booth

version of the parallel-serial multiplier in the results section of this chapter.

Other relevant work in multiplcation circuits involve bit and digit serial approaches and

has focused on on-line arithmetic [100] and efficient mapping of the algorithms to the

FPGA architecture. Shi et. al. [101] analysed the effect of overclocking radix-2 on-line

arithmetic implementations and quantified the error introduced by timing violations.

They found a significant reduction in error for DSP based applications compared with

conventional arithmetic approaches. Zhao et. al. [102] presented a method for achieving

arbitrary precision operations utilising the on-chip block RAMs to store intermediate

values.
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In the domain of neural networks, Judd et. al. [97] presented a bit-serial approach for

reduced precision computation. They showed a 1.3x to 4.5x performance improvement

over classical approaches as their arithmetic units only perform the necessary computa-

tion for the particular bit width.

5.3 Radix-4 Booth Multiplication

Multiplication can be performed using the Booth algorithm [24]. This section reviews the

radix-4 Booth algorithm [24], an extension to the multiplier presented in Section 2.3.2.

Fundamentally, multiplication computes x×y where x and y are n bit two’s complement

numbers, the multiplicand and multiplier respectively; producing a 2n two’s complement

value in the product p. The multiplication algorithm considers multiple digits of Y at a

time and is computed in N partitions:

N = bn+ 2

2
c (5.1)

A parallel version of the algorithm is given by:

p = (Y1 + Y0)x+
N∑
i=1

22i−1(Y2i+1 + Y2i − 2Y2i−1)x (5.2)

Following the notation in Section 2.3.2, Y denotes the n length digit-vector of the mul-

tiplier y. The radix-4 Booth algorithm considers 3 digits of the multiplier Y at a time

to create an encoding e given by:

ei = Y2i+1 + Y2i − 2Y2i−1 (5.3)

where i denotes the ith digit. As illustrated in Table 5.1, apart from Yi+2Yi+1Yi = 000

and Yi+2Yi+1Yi = 111 which results in a 0, the multiplicand is scaled by either 1, 2, −2

or −1 depending on the encoding.

This encoding ei is used to calculate a partial product PartialProducti by calculating:

PartialProducti = eix = (Y2i+1 + Y2i − 2Y2i−1)x (5.4)

This PartialProduct is aligned using a left shift (22i−1) and the summation is performed

to calculate the final result p. Since the Y−1 digit is non-existent, the 0th partial product

PartialProduct0 = (Y1 + Y0)x. A serial (sequential) version of the multiplication is
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Table 5.1: Booth Encoding

Yi+2 Yi+1 Yi ei

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 2
1 0 0 2̄
1 0 1 1̄
1 1 0 1̄
1 1 1 0

2̄ and 1̄ represent −2 and −1 respectively.

performed by computing each partial product in N cycles:

p[0] = 2n−2(Y1 + Y0)x

p[j + 1] = 2−2(p[j] + 2n(Y2j+1 + Y2j − 2Y2j−1)x) for j = 1, . . . , N − 1 (5.5)

p = p[N ]

To better understand the two speed optimisation presented in the next section, Equa-

tion 5.6 is represented as an algorithm in Algorithm 5.1 and illustrated in Figure 5.1.

Two optimisations are performed to allow for better hardware utilisation. Firstly, the

product p is assigned the multiplier y (p = y), this removes the need to store y in a

separate register and utilises the n least-significant bits of the p register. Consequently,

as the product p is shifted right (p=sra(p, 2)), the next encoding ei can be calculated

from the three least-significant bits (LSBs) of p. The second optimisation removes the

realignment left shift of the partial product (2n) by accumulating the PartialProduct

Algorithm 5.1: Booth Radix-4 Multiplication: x, y are n bit two’s complement num-
bers, p denotes the 2n two’s complement result, and sra (the shift right arithmetic
function). y is assigned to the n least-significant bits of p, hence the encoding, E, can
be calculated directly from P .

Data: y: Multiplier, x: Multiplicand
Result: p: Product

1 p = y;
2 e = (P [0]− 2P [1]);
3 for count = 1 to N do
4 PartialProduct = e ∗ x;
5 p = sra(p,2);
6 P [2 ∗B − 1 : B] + = PartialProduct;
7 e = (P [1] + P [0]− 2P [2]);
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Figure 5.1: n bit Serial Multiplier. There are five key components to the standard
radix-4 serial Booth multiplier: the shifter, encoder, partial product generator, control
and adder. As the partial results are generated in the adder, they are accumulated in

the n most-significant bits of the product register.

to the n most-significant bits of the product p (P [2 ∗B − 1 : B] + = PartialProduct).

5.4 Two Speed Multiplier

This section presents the two speed extension to the serial Booth multiplication al-

gorithm and implementation. The key modification to the serial Booth multiplier, is

partitioning the circuit into two paths; each having critical path, τ and Kτ respectively

(see Figure 5.2). This results in the two speed multiplier, demonstrated in this thesis.

The multiplier is clocked at a frequency of 1
τ , where the Kτ region is a fully combinato-

rial circuit with a delay of Kτ . K is the ratio of the delays between the two subcircuits.

K̄ = dKe is the number of cycles needed for the addition to be completed before storing

the result in the product register; used in the hardware implementation of the multiplier.

As illustrated in Algorithm 5.2, before performing the addition, the encoding, e, (the

three least-significant bits of the product) is examined and a decision is made between

two cases: (1) The encoding and PartialProduct are zero and 0x, respectively, or (2)
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Figure 5.2: n bit Two Speed Multiplier. This contains an added control circuit for
skipping and operating with two different delay paths.

the encoding is non-zero. These two cases can be distinguished by generating:

skip =

1, if P [2 : 0] ∈ {000, 111}

0, otherwise
(5.6)

When skip = 1 only the right shift and cycle counter accumulate need to be performed,

with a critical path of τ . In the case of a non-zero encoding (skip = 0), the circuit is

clocked K̄ times at τ . This ensures sufficient propagation time within the adder and

partial product generator, allowing the product register to honour its timing constraints.

Algorithm 5.2: Two Speed Booth Radix-4 Multiplication: When E = 0, zero encodings
are skipped and only the right shift arithmetic function is performed.

Data: y: Multiplier, x: Multiplicand
Result: p: Product

1 p = y;
2 e = (P [0]− 2P [1]);
3 for count = 1 to N do
4 p = sra(p,2);

// If non-zero encoding, take the Kτ path, otherwise the τ path

5 if e 6= 0 then
// this path is clocked K̄ times

6 PartialProduct = e ∗ x;
7 P [2 ∗B − 1 : B] + = PartialProduct;

8 e = (P [1] + P [0]− 2P [2]);
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Hence the total time T taken by the multiplier can be expressed as Equation 5.7, whereN

is defined by Equation 5.1, and O is the number of non-zero encodings in the multiplier’s

Y digit-vector.

T (O) = (N −O)τ +OK̄τ (5.7)

The time taken to perform the multiplication is dependent on the encoding of the bits

within the multiplier y, an upper and lower bound can be calculated for the total exe-

cution time given O = N and O = 0. From Equation 5.7, the max and min are:

Nτ ≤ T ≤ NK̄τ (5.8)

The minimum execution time occurs when y = 0, in this case, all bits within the multi-

plier are 0 and every three LSB encoding result in a 0x scaling and O = 0. There are

a few combinations that result in the worst case, when O = N . One case would be a

number of alternating 0 and 1, ie. 1010101..10101..10101. In this case, each encoding

results in a non-zero PartialProduct.

5.4.1 Control

As shown in Figure 5.3b and Figure 5.3a, the control circuit consists mainly of: one

log2(N) accumulator, one log2(K̄) accumulator, three gates to identify the non-zero

encodings and a comparator. Counter2 is responsible for counting the number of cycles

needed for the addition without violating any timing constraints, i.e, K̄. When the

bi bi+1bi+2

Non-Zero?

Counter1++

Shift

Counter2++

Equal K?
yes

yes

no

no

(a) Controller flowchart

Counter1

Counter2

+

= K

+

bi bi+1 bi+2

skip

(b) Control Circuit

Figure 5.3: Two counters are used to determine (1) when the multiplication is finished,
and (2) when the result of the Kτ circuit has been propagated.



Chapter 5. Multiplication for Machine Learning 102

encoding is non-zero, Counter2 is incremented. Counter1 accumulates the number

of encodings that have been processed. As shown in Section 5.3, the number of cycles

needed to complete a single multiplication is N , therefore the accumulator and Counter1

needs to be log2(N) bits wide. Counter1 is incremented when the comparator condition

has been met, Counter2 = K̄, or a zero encoding is encountered. When Counter1

increments, the signal is given to perform the right shift.

The control needs to distinguish between the zero and non-zero encodings. It contains a

three gate circuit, performing Equation 5.6; taking in the three LSBs of the multiplier y.

Two cases of zero encoding exist. The three gates are designed to identify these non-zero

encodings; an inverter is connected to the accumulator of Counter2, incrementing, in

these cases.

5.4.2 Example

Figure 5.4 provides an example of the control operating in the multiplier and the time

taken to perform the multiplication. Each cycle, the three least-significant bits of the

multiplier y are examined and an action is generated based on their encoding. Since

000 results in a 0x partial product, the first action is a “skip” and only the right shift is

performed in τ time. The next three bit encoding, 010, is examined and results in a 1x

partial product. This generates the “add” action in which Counter2 is accumulated to K̄

and the product register is held constant. After K̄τ time, the value stored in the register

has had enough time to propagate through the adder and the result is latched in the

product register without causing timing violations. The multiplier continues operating

in this fashion until all bits of y have been processed and the final result produced. In

Figure 5.4, the total time is 3τ + 3K̄τ since there are three “skips” and three “adds”.

Figure 5.4: Control example: Non-zero encodings result in an “add” action taking
K̄τ time, whereas zero encodings allow the “skip” action, taking τ time. For the
first encoding, only the two least-significant bits are considered with a prepended 0 as

described in Section 5.3.
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Figure 5.5: p(i) 32 bit distribution: the distribution of the frequency of particular
non-zero encoded numbers for the Gaussian and Uniform sets.

5.4.3 Set Analysis and Average Delay

Given an input set D of length l and a function f(y) (given by Equation 5.9) that

calculates the number of non-zero encodings for a given multiplier y, the probability

distribution p of encountering a particular encoding can be calculated by Algorithm 5.3.

f(y) = ¬(Y1 ⊕ Y0) +

N∑
i=1

(¬(Y2i+1 ⊕ Y2i) ∧ ¬(Y2i ⊕ Y2i−1)) (5.9)

where ¬, ⊕ and ∧ are the logical ‘not’, ‘xor’ and ‘and’ symbols respectively.

Figure 5.5 shows the Gaussian and Uniform encoding probability distribution for 32-bits.

There are significantly less numbers in the lower, non-zero encoding region compared

with the higher, non-zero encoding region, resulting in increased computation time.

However, as discussed in Section 5.5, for other workloads, the sets can shift and change

depending on the problem and optimisation techniques used.

Algorithm 5.3: Probability of a Particular Encoding: � denotes the element-wise
division.
Data: D: Input Set
Result: p: Product

1 Count{0, 1, . . . , N} = {0};
2 for i = 0 to l do
3 Count[f(Xi)]+ = 1

4 p = Count� l
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Using the probability p, the average delay of the multiplier can be calculated using

Equation 5.10.

T =
1

N

N∑
i=0

p(i)T (i) (5.10)

where T is calculated using Equation 5.7 and p(i) denotes the probability of encountering

an i non-zero encoded number.

5.4.4 Timing

During standard timing analysis, the Kτ path would flag a timing violation when

analysing the circuit at the frequency 1
τ . There are two options to address the timing

violation. The first involves a standard ‘place and route’ of each individual multiplier

as it is instantiated in the design. An additional timing constraint is included to ad-

dress the otherwise violated Kτ path, allowing timing driven synthesis and placement to

achieve the best possible layout. The second option is to create a reference post-‘place

and route’ block that is used whenever the multiplier is instantiated. This ensures each

multiplier has the same performance and is placed in exactly the same configuration.

There are downsides to each option. The first option gives the tools freedom to place

the blocks anywhere, however the performance of individual instantiations may differ

if the Kτ and τ sections cannot be placed at the same clock rate. For the second

option, placing a reference block requires availability of free resources in the layout

specified. While this ensures high performance, placing the reference block may become

increasingly difficult as the design becomes congested.

5.5 Evaluation

This section presents the results for the TS multiplier. The multiplier is compared

against the standard 64, 32 and 16 bit versions of parallel-parallel and serial-parallel

multipliers. For all configurations tested up to 64 bits, the K scaling factor in the Kτ

subcircuit was always less than two. Allowing the hardware to be further simplified to

a bit-flip operation removing the need to compare K̄ with an accumulator.



Chapter 5. Multiplication for Machine Learning 105

5.5.1 Implementation Results

The area and delay of different TS multiplier instantiations are given in Table 5.2 for

an Intel Cyclone V 5CSEMA5U23C6 FPGA. These results were obtained using the In-

tel Quartus 17.0 Software Suite. During placement and routing the software performs

static timing analysis across four different PVT corners, keeping voltage static. Specif-

ically: (1) Fast 1100mv 0C, (2) Fast 1100mv 85C, (3) Slow 1100mv 0C and (4) Slow

1100mv 85C. The TS multiplier was ‘placed and routed’ using the timing constraint

based methodology and all frequencies reported for each multiplier represent the upper

limit for each one considered as a standalone module, incorporating these into existing

designs may decrease their operating frequency. The Area ∗Time is calculated by look-

ing at the set of the inputs and using Equation 5.10. Unless otherwise specified, Time

is considered to be the result latency and Area, the number of logic elements. The TS

multipliers were evaluated using the Gaussian and Uniform sets, as they are important

sets in machine learning applications, as well as two neural network weight sets.

All sets were generated in single precision floating-point and converted to fixed-point

numbers. The integer length was determined by taking the maximum value of the

set and allocating sufficient bits to represent it fully, hence saturation did not need to

be performed. The number of fractional bits are the remaining bits after the integer

portion has been accounted for. The Gaussian set was generated with a mean of zero

Table 5.2: Multiplier Implementation Results

B Type
Area Max Delay Latency Power
(LEs) (ns) (Cycles) (mW)

64

Parallel(Combinatorial) 5104 14.7 1 2.23
Parallel(Pipelined) 4695 6.99 4** 9.62
Booth Serial-Parallel 292 3.9 33 2.23
Two Speed 304 1.83 (τ) 45.2* 5.2

32

Parallel(Combinatorial) 1255 10.2 1 1.33
Parallel(Pipelined) 1232 4.6 4** 5.07
Booth Serial-Parallel 156 3.8 17 1.78
Two Speed 159 1.76 (τ) 25.6* 3.18

16

Parallel(Combinatorial) 319 6.8 1 0.94
Parallel(Pipelined) 368 3.2 4** 3.49
Booth Serial-Parallel 81 2.72 9 1.67
Two Speed 87 1.52 (τ) 14* 4.35

For Two Speed, the Max Delay represents the τ subcircuit and K̄ = 2, hence 2τ is the
delay of the adder subcircuit.

* This is the average latency over all of the tested sets.
** While the latency of the pipelined multiplier is four, the throughput is one.
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Figure 5.6: The improvement in Area ∗Time for 4 different multiplier configurations
respectively. Five different sets are presented for the TS multiplier.

and standard deviation of 0.1. For the Gaussian-8 set, the numbers were scaled such

that they are represented in 8 bits. The uniform set was generated by selecting numbers

between −1 and 1.

The neural network weight sets are from two convolutional neural networks, AlexNet [8]

and a 75% spare variant of LeNet [40], LetNet75, trained using the methodology pre-

sented by Han. et. al [103]. The Parallel(Combinatorial)and Parallel(Pipelined) mul-

tipliers are taken from an optimised FPGA library provided by the vendor and are

designed for high performance [104]. Since the performance of a Parallel (Pipelined)

multiplier is a function of its pipeline depth, the reported values are the best results

from numerous configurations to ensure a fair comparison. The Booth Serial-Parallel

(SP) multiplier uses the radix-4 booth algorithm, illustrated in Algorithm 5.1 whereas

the TS multiplier implements Algorithm 5.2.

Figure 5.6 presents the improvements in Area ∗ Time for the four different multipliers,

with the Parallel(Combinatorial) illustrating baseline performance for each configura-

tion. Area∗Time is an important metric for understanding architecture design attributes

and the magnitude of possible tradeoffs between area and speed [105]. The fixed cy-

cle times of the Booth Serial-Parallel, Parallel(Combinatorial) and Parallel(Pipelined)

multipliers result in the same performance regardless of the input set. However, the

TS multiplier is designed to take advantage of the input set and outperforms all other



Chapter 5. Multiplication for Machine Learning 107

multipliers in the 32 bit and 64 bit configuration. In the 16 bit configuration, the TS

multiplier exhibited similar performance to the baseline.

The highest performing set is the 64 bit Gaussian-8; showing a speed up of 3.64x. For

the Gaussian and Uniform sets, the 64 bit configuration provides a 2.42x and 2.45x im-

provement respectively. At 32 and 16 bits, the TS multiplier’s improvements range from

1.47-1.52x and 0.97-1.02x respectively. The Gaussian-8 set illustrates that inefficiencies

introduced by using a lower bit representation are alleviated by the TS multiplier; the

majority of the most-significant bits are either all 0’s in the positive case, or all 1’s in

the negative case, allowing multiple consecutive “skips”.

5.5.2 Set Analysis

Figure 5.7 shows the probability distributions of the five problems tested at 32-bits.

It illustrates the differences between the Gaussian, Uniform, AlexNet, Gaussian-8 and

LeNet75 sets and why particular sets perform better than others. For Gaussian-8, the

majority of the encoding is in the 2−4 range, resulting in a significant number of “skips”

for each input. While the non-zero numbers in the LeNet75 set contain high encoding

numbers, the set also contains 71% zeros, therefore the majority of the computations

are “skips”.
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Figure 5.7: p(i) 32 bit distribution: The probability that y will be a particular
encoding.
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5.5.3 Multiplier Rankings

Table 5.3 highlights the strengths and weaknesses of each multiplier in terms of six impor-

tant factors. Area, Time, Power, Area∗Time, Time∗Power and Area∗Time∗Power,
often dictate which multiplier is most appropriate for the current design. Typically,

tradeoffs are analysed and the variant with the highest performance is chosen. When

designed for a small area, either the Booth Serial-Parallel or TS multiplier are the

best choices as they have the smallest area footprint. Alternately, when both area

and speed are factors, the TS multiplier outperforms the Booth Serial-Parallel mul-

tiplier as illustrated in Table 5.3 and Figure 5.6. If area isn’t a concern, the Paral-

lel(Combinatorial) multiplier is the best choice. When taking power into account, the

Parallel(Combinatorial) multiplier outperforms the Parallel(Pipelined) multiplier.

As highlighted in Table 5.3, in terms of Area ∗ Time ∗Power, the Booth Serial-Parallel

offers the highest performance and is 1.9x better than the Parallel(Combinatorial) mul-

tiplier for a bit width of 64. However the TS multiplier still provides a sizeable im-

provement, achieving a 1.29x improvement on average, peaking at 1.5x for LeNet75 and

Gaussian-8.

While the analysis focuses on latency, the Parallel(Pipelined) multiplier is generally

throughput orientated. Calculating the Area ∗Time with respect to throughput, shows

that the Parallel(Pipelined) multiplier achieves a 1.84-2.29x performance improvement

over the Parallel(Combinatorial) multiplier for bit widths 16, 32 and 64. The TS mul-

tiplier still shows favourable results for both the Uniform and Gaussian sets, while

outperforming on the Gaussian-8 and neural network sets.

Table 5.3: Multiplier Performance Metrics - Latency

B Type Area T ime Power Area ∗ Time T ime ∗ Power Area ∗ Time ∗ Power

64

Parallel(Combinatorial) 5104 14.7 2.23 75028 32.78 167314
Parallel(Pipelined) 4695 27.96 9.62 131274 268.98 315716
Booth Serial-Parallel 292 128,7 2.23 37696 287.00 84062
Two Speed* 304 82.71 5.2 25187 430.12 130972

32

Parallel(Combinatorial) 1255 10.2 1.33 12808 13.57 17034
Parallel(Pipelined) 1232 18.4 5.07 22678 93.29 114977
Booth Serial-Parallel 156 64.6 1.78 10116 114.99 18007
Two Speed* 159 45.05 3.18 7186 143.27 22852

16

Parallel(Combinatorial) 319 6.8 0.94 2169 6.39 2039
Parallel(Pipelined) 368 12.8 3.49 4714 44.67 16452
Booth Serial-Parallel 81 24.48 1.67 1987 40.88 3319
Two Speed* 87 21.28 4.35 1851 92.56 8053

* Average over all tested sets, the individual results will change for specific applications.
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5.6 Summary

This chapter presented a two speed multiplication algorithm and implementation, which

is divided into two subcircuits, each operating with a different critical path. In real-time,

the performance of this multiplier can be improved solely on the distribution of the bit

representation. It was illustrated that for bit widths of 32 and 64, important compute

timess, such as Uniform and Gaussian, and neural networks can expect substantial

improvements of 3-3.56x using standard learning and spare techniques.

The cost associated with handling lower bit width representations, such as Gaussian-8

on a 64 bit multiplier are alleviated and show up to a 3.64x improvement compared with

the typical parallel multiplier.





Chapter 6

Conclusion

In this thesis, FPGA architectures for low precision machine learning workloads has been

presented. An approach to optimising these workloads was illustrated at the application,

framework and operator levels. It was demonstrated that at each of these levels, there

exists distinct techniques for improving area, latency and throughput without sacrificing

functionality.

In Chapter 3, two different radio-frequency anomaly detection techniques were explored;

a bitmap detector and a neural network autoencoder. A new on-line algorithm for spec-

tral bitmap anomaly detection was proposed. Implementations of this new algorithm

provided one to two orders of magnitude improvements in speed, latency, power and

energy over a single threaded implementation compiled from the same C source code. It

was shown that reducing the neural networks precision representation improved the hard-

ware utilisation and the implementations performance. This demonstrated the feasibility

of a single-chip, 200 MHz sample-at-a-time NN-based anomaly detection, resulting in

high throughput and ultra-low latency. This illustrates that inclusion of real-time neural

networks in sophisticated software defined radio systems, with potential applications in

fault diagnosis, spectrum enforcement and collaborative spectrum sharing can address

severely constrained real-time anomaly detection problems using FPGA technology.

Chapter 4 presented a customisable matrix multiplication framework. The framework

includes a software API and a hardware template for designing custom GEMM accel-

erators on the HARPv2. Utilising the runtime API, the framework allows for a wide

range of different precisions, various core sizes and tuneable runtime configurable pa-

rameters. This flexibility allowed the framework to adapt to networks requirements

and alleviated performance bottlenecks that effect other systems. It illustrated that

in-package integrated FPGAs can remain competitive with a high-end discrete GPU on

raw performance and performance per watt. A study on other optimisations, targeted

111
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at deep learning, and their impact on performance was presented. It was demonstrated

that for binarised deep learning workloads, the FPGA was either on par or exceeded the

GPUs performance and offered insight into memory bandwidth constraints and the im-

pact of configurable memory interleaving. Finally, four heterogeneous implementations

were explored and evaluated in regards to total execution time. It illustrated that by

dedicating FPGA resources to accelerating specific bottlenecks and utilising the CPU

for other operations; results in higher performance implementations equipped to take

advantage of close collaboration between the FPGA and CPU.

Chapter 5 presented a two speed multiplication algorithm. Divided into two subcir-

cuits; each operating with a different critical path, the performance of this multiplier is

improved solely on the distribution of the bit representation. The multiplier performs

its optimisation in real-time, taking advantage of sparsity in the input distribution and

individual multiplier inputs. Improvements up to 3x and 3.56x over traditional multipli-

ers were demonstrated for the 32 bit and 64 bit compute distributions respectively. The

3.64x performance improvement offered by the 64 bit TS multiplier for the Gaussian-8

distribution, motivates a single mixed precision datapath implementation; providing the

flexibility to compute any bit width without reconfiguration or recompilation.

6.1 Future Work

6.1.1 Anomaly Detection

The neural network detector showed significant promise in the area of FM anomaly

detection. Future work could include a detailed study on other types of anomalies

found in different radio signals such as WiFi and QPSK type signals. While the neural

network implementation achieves high throughput and low latency, the network size is

significantly smaller than the current state-of-the-art networks in other fields. Additional

work could examine trade-offs between more complex and accurate networks, operating

at a higher latency.

A standard multi-layered perception autoencoder was used to reconstruct the input

window without the anomalies present. This was useful since an unsupervised learning

technique allowed anomalies to be identified without labelled training data. However,

this restricted the autoencoder to reconstruct only previously observed data. While

the off-chip training and weight update technique aimed to alleviate this restriction via

an on-line learning approach; future work could examine other network topologies that

learn to identify the anomalies impact on the signal, rather than learning the underlying

signal itself.
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Finally, the current on-line learning approach uses an off-line processor to update the

weights and bias, requiring significantly higher latency than inference. Implementing

training on the FPGA was limited by the available hardware resources, however by re-

ducing the autoencoder’s latency and thoughput requirements, combined inference and

training could be possible on the FPGA. Future work in this area could be directed at im-

plementing an on-line learning algorithm on the FPGA. While backpropagation requires

significant computational resources, other methods such as node or weight perturbation

provide a more FPGA friendly method of computing the gradients.

6.1.2 GEMM Framework

Chapter 4 considered deep learning as a case study; while this is an important emerging

technology, other more established problems could also benefit for GEMM acceleration

on FPGAs. GEMM is used in a wide range of problems, and future work could include

more detailed analysis of high performance computing and scientific computing appli-

cations, including other machine learning algorithms. The framework supported fused

operations such as ReLU and Batch Norm, however these were only available during the

forward pass of the computation. During backpropagation, only the GEMM portion of

the framework can be used, as the fused operator do not support their derivative com-

putation. Future work could extend these fused operators to support backpropagation,

enabling more efficient training.

Two methods for performing mixed precision computation on the framework was of-

fered, however in the dynamic dot product implementation, routing resources limited

the binary computation. The other method involved dynamically reconfiguring the re-

programmable region with different precisions as needed. Unfortunately, the latency

involved in reconfiguring the device made this approach intractable to real-time imple-

mentation. As future work, an alternative implementation could separate the systolic

array into multiple smaller arrays, each dedicated to a particular precision. A mixed

precision implementation that effectively utilises the FPGA resource could be achieved,

tailoring the array sizes according to the amount of work required by the particular

precision. Furthermore, scaling the implementation to larger FPGAs, such as the Intel

Stratix 10, provides additional compute resources, however the cost of increased array

size and memory bandwidth requirements needs further study and analysis.

6.1.3 Two Speed Multiplier

The two speed multiplication algorithm takes advantage of its inputs bit representation

to speed up its computation. This thesis focused on typical input distributions such
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as the Gaussian and Uniform distributions; including already established input distri-

butions for AlexNet and LeNet. Future work in this area could examine new neural

network learning methodologies, aimed at taking advantage of the two speed multipli-

cation algorithm. One possible method involves a new cost function that takes into

account the accuracy of the machine learning algorithm, as well as the hardware cost in

terms of area-time.

During the analysis, the layers in the neural networks were constrained to operate at

the precision of the multiplier. However, as shown by the Gaussian-8 example, the two

speed multiplier is able to provided significant performance improvements even when

the majority of the most-significant bits are not needed. Future work could examine the

performance improvements over traditional multipliers when the different layers operate

at different precisions.

Finally, the neural network analysis was limited to the theoretical case where the multi-

plier operates at maximum efficiency. One side effect of the multiplier is the non-uniform

computation latency requiring additional circuitry, such as FIFO and other buffers, to

ensure the multiplier operates at peak efficiency. Future work could implement the mul-

tiplier in a larger system and evaluate its performance, comparing the theoretical results

presented in this thesis.

6.2 Closing Remarks

The aim of this thesis has been to demonstrate precision optimisations in FPGA imple-

mentations of machine learning. The thesis opens with the application of reduced pre-

cision anomaly detection at reduced precision. Two anomaly detectors were evaluated;

the first, using a neural network and the second, a bitmap approach. The neural net-

work detector demonstrated that a reduced precision implementation enables larger and

more complex models, resulting in better detection. With the benefits of low precision

neural networks established, a generalised framework was presented; aimed specifically

at the most compute intensive parts of a neural network. It was evaluated against three

state-of-the-art binarised networks on ImageNet, showing comparable raw performance

and higher energy efficiency when compared with GPUs. With multiplication as the

fundamental building block of this framework, the two speed multiplication algorithm

was presented aimed to improve computation time solely based on the bit distribution

within the weights. Under typical use, the TS multiplier is capable of achieving sub-

stantial improvements in Area∗Time. These optimisations combine to tell a compelling
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story. Realising high performance implementations of machine learning workloads, re-

quires careful examination at three distinct levels; the application, the framework and

the operator.





Appendix A

Convolution Layer Computations

A.1 Introduction

To reduce the computational complexity, or improve memory utilisation, three methods

for computing a convolution have been studied as alternatives to the standard convolu-

tion method presented in Section 2.5.6. These methods are:

• im2col [106, 107]: This does not directly effect the number of computations; the

layout of the computation is changed to improve memory utilisation.

• Winograd [108–110]: This is a minimal filtering algorithm F (m×m, r×r), reducing

the number of computations needed to perform the convolution.

• FFT [111]: Circular convolutions in the spatial domain are equivalent to pointwise

products in the Fourier domain, effectively reducing the number of computations

that are performed.

A.2 imc2col

Unlike the Winograd and FFT approaches, the GEMM approach does not reduce the

overall computational complexity; it aims to reformat the computation to behave like

a GEMM. One of main issues in efficient direct convolution algorithms is idle proces-

sor time due to cache misses. By transforming the computation to resemble a GEMM,

techniques such as blocking and prefetching are used to alleviate any memory bottle-

necks [39]. The transform, called Image-to-Column (im2col) is performed on the input

and output images before and after the GEMM. A simplified im2col algorithm is illus-

trated in Algorithm A.1, where IH = IW = NI and OH = OW = NO.

117
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Algorithm A.1: im2col Algorithm.

Data: I: 3D Input Image
Result: O: 2D Output Column Format

1 for i = 1 to ID × F × F ×N2
O do

// Calculate Output indices

2 p = F/N2
O;

3 q = F mod N2
O;

// Calculate Input indices

4 d = (p/F )/F ;
5 i = q/NO + (p/F ) mod F ;
6 j = q mod NO + p mod F ;

// Input to Output Assignment

7 Op,q = Id,i,j ;

Note that in this case, NO is calculated using:

NO = NI − F + 1 (A.1)

The im2col algorithm creates the A matrix (F×F×ID, OW ×OH) and is split into three

parts; first the output indices are calculated, followed by the input indices and finally

the assignment step. The B matrix is created by transforming the four dimensional

filter array (F, F, ID, OD), into a two dimensional matrix (OD, F ×F ×ID). This is done

by stretching the (F, F, ID) filters into single dimensional (F × F × ID) vectors. These

vectors are then stacked, creating the (OD, F × F × ID) output matrix B. C is then

computed via a GEMM to produce the (OW ×OH , OD) output matrix. Multiple images

can be batched, resulting in a (F × F × ID, OW ×OH ×B) A matrix.

A.3 Winograd

Winograd [110] illustrated that a 1D minimal filtering algorithm F (m, r) for some se-

lected values of m and r is:

Y = AT [(Gg)� (BTd)] (A.2)

where BT , G and AT are constant transform matrices calculated for a particular m

and r. g and d are the filter and input sections respectively, � denotes the Hadamard

product, an element-wise matrix multiplication, and Y the output section. By a nested

application of the 1D case, the 2D case, F (m×m, r × r) is expressed as:

Y = AT [(GgGT )� (BTdB)]A (A.3)
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The Winograd algorithm for 2D convolution is split into three section. First, the in-

put image and filter transformations are performed, V = (BTdB) and U = (GgGT )

respectively. Second, the element-wise matrix multiplication M = U � V . Finally, the

output transform Y = ATMA. Further analysis of the algorithm is outside the scope

of this thesis and the reader is referred to Winograd [110], or Blahut [109] for a mod-

ern interpenetration of the algorithm. Using the Winograd algorithm, the computation

complexity of the batched convolution is calculated using:

α′(1 + β′/OD + γ′/P + δ′/ID) ·B ·N2
I · ID ·OD (A.4)

where NI = IW = IH , P = B × dNI/me × dNI/me, β′, γ′ and δ′ are the number

of computations performed during the input, filter and output transformation steps,

α′ = (m+F−1)2

m2 . Achieving a large speed up requires that β′, γ′ and δ′ are relatively

small compared to their respective Os, P and Is. Compared to the direct convolution

(Equation 2.60), in the best case the maximum speed up is r2/α′.

A.4 FFT

The Convolution Theorem states that circular convolutions in the spatial domain are

equivalent to pointwise products in the Fourier domain [112]. Letting F denote the

Fourier transform and F−1 its inverse, the convolution between two functions f and g

is calculated as:

f ∗ g = F−1(F(f) · F(g)) (A.5)

It follows from Equation A.5, that the convolution of the filter array f , and a batch

of input images g can be calculated by applying the Fourier transform to both f and

g, performing a matrix multiplication, then finishing with an inverse Fourier transform.

While an in-depth treatment of this approach is beyond the scope of this thesis, a modern

interpretation can be found in Mathieu et. al [111]. The computational complexity for

the batched case can be generalised to:

2Cn2 log n[B ·OD + ID ·B + ID ·OD] + 4B · ID ·OD ·N2
I (A.6)

where C represents the hidden constant in the FFT complexity. Comparing Equa-

tion 2.60 and Equation A.6, the FFT computation only consists of a product of at most

four terms, whereas the direct convolution is a product of five terms.
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