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Abstract

Virtual Private Networks (VPN) are becoming increasingly popular network archi-

tectures for corporate networks. They enable corporations to connect Local Area

Networks (LAN) in main and branch offices as if they were in the same network.

As VPNs are built on the Internet infrastructure, the data exchange among different

local area network will be passed through the Internet and thus can be easily eaves-

dropped, masqueraded, etc. Therefore, certain security measures must be used to

deal with these privacy issues.

The Internet Protocol Security (IPSec) by the Internet Engineering Task Force

(IETF) addresses the above mentioned security issues. A project called the Free

Secure Wide Area Network (FreeS/WAN) was developed to provide an open source

IPSec based VPN solution. This application use Triple-DES as default encryption

mode for IPSec. Results show that the bottleneck in FreeS/WAN comes from en-

cryption and decryption of the data.

As shown in this dissertation, the performance of FreeS/WAN with IPSec is 50%

of that without FreeS/WAN. In order to improve performance of encryption, field

programmable gate array (FPGA) based accelerators were built on a reconfigurable

computing development platform called Pilchard. An implementation of Triple-

DES on Pilchard was built to replace the current Triple-DES software based library

(LibDES) used in FreeS/WAN. To compare performance of Triple-DES with that of

another cipher, a Pilchard based accelerator for the International Data Encryption

Algorithm (IDEA) was developed.

The resulting implementations achieved 120 Mb/sec for Triple-DES in CBC
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mode and 248 Mb/sec for IDEA in ECB mode. These ciphers were used as a new

cryptographic library for FreeS/WAN. Measurements show that this FPGA-based

FreeS/WAN offers a 30% speedup on Triple-DES CBC mode over the original soft-

ware library.
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Chapter 1

Introduction

1.1 Motivation

In a private network of a business, information and resource are shared. Information

flow is very important nowadays, for example, the operational costs of a business

can be cut down if a better supply chain model is employed. The business can

improve its services by sharing information internally and with its business partners.

Also due to the globalization of business environments, corporations have offices

all over the world. The different geographical locations make connections among

different private networks difficult.

The Virtual Private Network is an architecture to realize the connections among

different private networks over a public network. For example, the Internet can be

used as a convenient and low cost channel for a virtual private network. Internet is

a public channel and is not secure. Cryptographic algorithms can provide a way to

secure channel between private networks over Internet.

Field-Programmable Gate Arrays (FPGAs) are hardware devices which are re-

configurable, i.e. programming an FPGA can change its functionally. Implementa-

tions of cryptographic hardware using FPGAs offer higher performance than soft-

ware implementations. Software implementations of cryptographic algorithms are

sequential in nature. However, in cryptographic hardware, algorithms can execute

in parallel, offering a more efficient implementation. There are several advantages

1



Chapter 1 Introduction 2

to use FPGAs as the choice of hardware device for a virtual private network accel-

erator:

 most network applications offer various encryption standards as options. With

FPGAs, it is possible to reconfigure the chip for different encryption stan-

dards.

 FPGAs offer lower costs for small volumes, shorter development times and

faster time to market over application specific integrated circuit (ASIC) tech-

nology.

 the technology and capacity of FPGAs continue to improve over previous

years. The performance of FPGA accelerator can be improved once a faster

device is available without any further engineering.

1.2 Aims

The main aim of this work was to develop an FPGA based accelerator for Virtual

Private Networks. The following features were desired.

 develop a hardware accelerator which is integrated into a real network appli-

cation.

 design various cryptographic hardware accelerators to widen the choice of

algorithm.

 devise a hardware interface which is fully compatible with an existing soft-

ware cryptographic library for usage in other applications.

 provide a high performance hardware accelerator for Triple Data Encryption

Standard in Cipher-Block Chaining mode and the International Data Encryp-

tion Algorithm (IDEA) in Electronic Code Book (ECB) mode by using a new

reconfigurable hardware environment - Pilchard.
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1.3 Contributions

This thesis presents a FPGA based cryptographic accelerator for virtual private net-

work. The work presented in this thesis has the following features that distinguishes

it over all previous designs:

 a study of tradeoffs in parallel and serial implementations of the International

Data Encryption Algorithm was made [CTLL01]. In this work, the bit-serial

implementation of IDEA was implemented by M.P. Leong [LCTL00]. In the

bit-parallel implementation of IDEA, the pipelined IDEA core was my work

and the control section was implemented by K.H. Tsoi.

 improvements to the device driver for the the Pilchard reconfigurable hard-

ware environment were made in order to improve the bandwidth between the

PC and the FPGA.

 a high performance cryptographic accelerator was integrated in a real VPN

application and its performance measured. Although hardware based crypto-

graphic accelerators (summized in Section 2.6) exist in commercial products,

to the best of my knowledge, detailed reports of their design and performance

have not been published.

1.4 Thesis Outline

Background information concerning virtual private network are presented in Chap-

ter 2. Chapter 3 provides a description of previous work on the IDEA and DES

algorithms as well as their implementation in hardware. Also the tools and recon-

figurable hardware that were used in this research are introduced. Chapter 5 intro-

duce the architectural details of an FPGA based Virtual Private Network. Chapter

6 contains the results and benchmarks for this research. In Chapter 7, conclusions

and further directions for work are given.



Chapter 2

Virtual Private Network and

FreeS/WAN

2.1 Introduction

In this chapter, background knowledge about virtual private networks and a VPN

solution - FreeS/WAN are given. This chapter begins with a brief introduction to

Virtual Private Networks using IPSec. A section discussing the Internet Protocol

Security protocol (IPSec) is included, followed by information about LibDES which

is a popular software cryptographic library. Finally, the details about FreeS/WAN

is given.

2.2 Internet Protocol Security (IPSec)

IP packets are not secure over the Internet. It is trivial to fake the identity of an

IP address, modify the content of packets, replay packets and intercept packets. In

addition, we cannot guarantee that IP packets received are either coming from the

original source or that the content is the original content.

Therefore, the IPSec protocol [KA98c] was introduced to solve the following

problems:

4



Chapter 2 Virtual Private Network and FreeS/WAN 5

1. Eavesdropping : an adversary eavesdrops on the Internet, capturing data pack-

ets, e.g. credit card numbers, login names and passwords, etc. can be obtained

by eavesdropping. Using the IPSec protocol, data traffic is encrypted so that

it is difficult to obtain useful information by eavesdropping.

2. Masquerading : an adversary fakes his IP address to masquerade as a trusted

host when address-based authentication is used. The IPSec protocol pro-

vides a cryptographic authentication method to protect against masquerading.

With the IPSec Authentication Header Protocol, a receiver can make sure the

source of data is as claimed.

3. Session hijacking : an adversary takes over a connection after the source has

been authenticated. This scenario will not occur with IPSec protocol since the

adversary have no knowledge about the session keys, which is negotiated in

the IPSec Internet Key Exchange protocol, so they cannot encrypt or decrypt

the data packets.

4. Denial-of-service : An adversary sends a huge sequence of connection re-

quests to the target in order to make the target system overflow the buffer

space. For example, email bombing, TCP SYN flooding, etc. Although this

kind of attack is still possible with the use of IPSec protocol, the adversary

will expose his real IP address due to the fact that all data packets should be

properly authenticated.

The IPSec protocol provides three functionalities using three different protocols:

 the Authentication Header (AH) protocol

 the Encapsulating Security Payload (ESP) protocol

 the Internet Key Exchange (IKE) protocol

The Authentication Header (AH) protocol [KA98a] can authenticate the source

of data packets, protect the completeness of the data packets and protect against
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replay attacks. ESP (Encapsulation Security Payload) protocol [KA98b] shares all

properties that AH has and it can also protect data from unauthorized disclosure

and provide protection against traffic flow analysis. The security provided by IPSec

needs to use shared keys in order to authenticate and encrypt the data streams. The

Internet Key Exchange (IKE) protocol [HC98] is used to dynamically authenticate

parties involved in IPSec, negotiate the encryption method used, and produce shared

keys.

2.3 Secure Virtual Private Network

In this work, the term Virtual Private Network (VPN) [DH99] is use to refer to

the architecture that a private network constructed within a public network infras-

tructure. The connection of this network architecture can be either encrypted or

unencrypted. Also it is possible to implement Virtual Private Networks on other

networks, in this project, the Internet is assumed. IPSec is one of the protocol that

may use in VPN architecture that provide security and privacy by cryptographic al-

gorithms and hash functions. Another term, Secure Virtual Private Network (SVPN)

refers to a VPN with IPSec.

The key concept of Virtual Private Network is tunneling. With tunneling, VPNs

provide connection and protocol transparency among different Intranets of same

organization or even different parties. For connection transparency, different parties

are connected together as if they were on the same network. They do not need

to know the mechanism and the details of connections. For protocol transparency,

different parties using different protocol can be connected together as if they were

using the same protocol. This is achieved by encapsulation of data packets at the

end-points of a tunnel with a different protocol.

Although there are many advantages associated with using a VPN over the In-

ternet, the data would be transmitted in plaintext over an insecure channel. The

Intranet of a party is exposed to attacks from Internet which violates the major aim
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of VPN to be a private network.

There are two major in common protocols for VPNs.

1. IPSec

2. PPTP

PPTP is the protocol used in Microsoft’s VPN product and is proprietary. Thus,

this work will focus on IPSec which will documented by the IETF in RFCs [iet].

Internet Protocol Security (IPSec) is a protocol proposed to solve the concerns

about security and privacy. IPSec provide mechanisms to authenticate different

parties and data packets are protected by encryptions.

To summarize here are some VPN characteristics:

1. The VPN uses the Internet as the underlying public network infrastructure.

2. The VPN uses the IPSec as protocol to ensure privacy at the network layer.

This means encryption is done as per every packet.

3. Private addressing schemes can be used in Intranets and IP address is only

used on communication of end-points of tunnel.

As suggested by most vendors of VPN solutions [vpnc], there are three scenarios

that should be deal with in order to meet the requirements of a business. Three

different types of users should be able to grant access to the VPN of a corporation.

They are remote users, branch offices and business partners.

1. Remote access network - A remote user at home or on road needs access

to his/her company’s resources. The VPN should enable the remote users

to work as if (s)he was at a workstation in the office. Different connections

method should be provided in order to achieve the remote access into the

network, e.g. dialup, ISDN, mobile IP, etc.
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Internet / FR / ATM

Branch Office Main Office

Branch offices
network

Remote access
network

Business partner

Business partners network

City A

City B

VPN Server VPN Server

VPN Server

Remote user

Figure 2.1: Virtual Private Network

2. Branch offices network - Two or more trusted Intranets, which represent dif-

ferent branch and remote offices of a corporation, are interconnected together

by a VPN. Very often, Intranets are protected by firewalls which can act as

secure gateway connect to the Internet. Client workstations do not have to

worry about the security between Intranets since this is ensured by the VPN.

3. Business partners network - This is referred to as an Extranet by many VPN

solution vendors. It should be the most recent trend for VPN usage; however,

it is the scenario with least knowledge. Corporations can grant their busi-

ness partner temporal and limited access to their Intranet. Electronic business

applications among business partners include online quotations, order fulfill-

ment, etc.
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2.4 LibDES

LibDES is a publicity available software library for DES and Triple-DES, written

by Eric Young [lib]. It offers a large variety of highly optimized DES and Triple-

DES functions in different modes. For example, DES in Electronic Codebook Mode

(ECB), DES in Cipher Block Chaining Mode (CBC), 3DES in ECB mode, 3DES

in CBC mode, etc. LibDES is a common standard library which is used in various

application such as openSSL.

2.5 FreeS/WAN

In this work, the baseline software used for the implementation of the VPN accel-

erator was FreeS/WAN. FreeS/WAN [Nap00, Fre00] stand for Free Secure Wide

Area Network. FreeS/WAN is currently the most complete open source VPN solu-

tion available on Linux. In here, the version of FreeS/WAN used in this project is

1.5. It is currently built for Linux IPv4 network stack and work has commenced to

integrate into the IPv6 network stack.

FreeS/WAN supports both remote access network and branch office network,

however, it does not support business partner networks because the software does

not have any mechanism for temporal and limited access to network.

LibDES is used in FreeS/WAN as the DES and Triple-DES library. In LibDES,

DES and triple-DES in different modes are performed in software. Replacing the

software DES with a hardware based implementation is the main focus of this work.

The version of LibDES used in FreeS/WAN v1.5 is version 4.04.

2.6 Commercial VPN solutions

There are commercial VPN solutions using either software or hardware implemen-

tations for different cryptographic algorithms. Although different solutions may
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have different build-in cryptographic algorithm options, Triple-DES is available for

all VPN solutions. Performance of VPN solutions using Triple-DES from different

vendors is compared in Table 2.1 and Table 2.2.

Cisco Systems Inc. has a wide range of VPN solutions with different specifi-

cations. Cisco 3015 uses software encryption method and hence a relatively low

throughput of 4 Mb/sec is obtained. In Cisco 5000 series VPN solutions, different

numbers of encryption processors can be used. For the highest throughput VPN

solution in this series, 760 Mb/sec is achieved by using eight encryption processors.

Intel provides two VPN solutions using software encryption with throughputs of

8 Mb/sec and 20 Mb/sec. They also have a VPN solution using a PCI encryption

processor with a throughput of 85 Mb/sec.

Vendor VPN Solution Maximum throughputs Reference
(Mb/sec)

Cisco Cisco 3015 4 [vpna]
Intel Intel 3110 VPN gateway 8 [vpne]
Intel Intel 3105 VPN gateway 20 [vpnd]

Table 2.1: Comparison of VPN solutions using software encryption

Vendor VPN Solution Maximum throughputs Scalability Reference
(Mb/sec)

Cisco Cisco VPN 5001 45 1 [vpnb]
Cisco VPN 5002 190 2 [vpnb]
Cisco VPN 5008 760 8 [vpnb]

Intel Intel 3125 VPN gateway 85 1 [vpnf]

Table 2.2: Comparison of VPN solutions using hardware encryption
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2.7 Summary

In this chapter, virtual private networks and the details about FreeS/WAN were dis-

cussed. The Virtual Private Network is an architecture to connect two separate

LANs over a public network. The Internet is the most popular choice as the channel

due to its accessibility and cost. Since the Internet is insecure, IPSec is used to deal

with privacy issues. FreeS/WAN is an open source VPN solution using IPSec on

Linux.



Chapter 3

Cryptography and

Field-Programmable Gate Arrays

(FPGAs)

3.1 Introduction

This chapter introduces the basic concepts of cryptography and Field-Programmable

Gate Arrays. Firstly, DES, Triple-DES and IDEA algorithms and previous imple-

mentations are introduced. This is followed by description of different block cipher

modes of operation. The architecture of FPGAs is discussed, in particular, informa-

tion on the architecture of Xilinx Virtex-E FPGAs are given. The details concern-

ing the reconfigurable computing environment, Pilchard, is then presented. Finally,

Electronic Design Automation Tools and the FPGAs design flow is detailed.

3.2 The Data Encryption Standard Algorithm (DES)

The Data Encryption Standard (DES) [Nat94, Uni77] algorithm has been a popu-

lar secret key encryption algorithm and is used in many commercial and financial

applications. Also, it was the first commercial cryptographic algorithm with fully

12
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specified implementation details. It is defined by ANSI FIPS46-2. Although in-

troduced in 1976, it has proved resistant to all forms of cryptanalysis. However,

its 56-bit key is not large enough by today’s standards. A DES key search engine

called ”Deep Crack” could search 88 billion keys per second and this machine solve

RSA laboratories DES-III challenge [RSA99] on January 1999 in 22 hours.

DES is a block cipher as shown in Figure 3.1 which processes 64-bit plaintext

blocks and produces 64-bit ciphertext blocks. The effective portion of the secret

key is 56-bit out of 64-bit since although the key is 64-bit, 8-bits are used as parity

bits.

Encryption of DES proceeds in 16 identical rounds. From the input key, sixteen

48-bit subkey ! � are generated, one for each round. Within each round, 8 fixed 6 to

4-bit substitution mappings known as S-Boxes are used.

The plaintext have an initial bit permutation (IP) as shown in Table 3.1 and are

then divided into left "$# and right halves %&# , each 32-bit. Each round takes 32-bit

inputs " � �	� and % � ��� from previous rounds and produces 32-bit outputs " � and % �
for ��'()'*�,+ , as follows:

" �.- % � ���
" � - " � ���0/

132 % � ���54 ! �
6
487�9;:5<�:

102 % � �	�=4 ! �
6
- � 2?>@2?AB2 % � �	�

6
/ ! �

6C6

E is a fixed expansion permutation mapping % � ��� from 32-bit to 48-bit. P is an-

other fixed permutation on 32-bits. The equation shows the right half of each round

go through an expansion permutation from 32-bits to 48-bits and is then exclusive-

ored with the subkey of that round. The temporary result is passed through the

S-Box and forms the new 32-bit product of the right half. For each round, right

half and left half are exchanged. Finally both halves are combined together in the

16th round and permutated by the inverse of the initial bit permutation shown in

Table 3.2 to form the ciphertext. Decryption uses the same key and algorithm, how-

ever, the subkeys in internal rounds are applied in reverse order. For encryption,

the key schedule order is ! � 4 !BD 4 !FE 4,G,G,G54 ! ��
 . For decryption, the decryption key
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schedule is ! ��
 4 ! �IH 4 ! ��J 4,G,G,G=4 ! � .

KML KMN O � P O �Q+ � L � N �
+ N K � OMO PQ+ � L � N �,� O
+M� KRO O + P L P N �Q� � O +
+ O K + O�L OSN PQ� � O �,+ L
KST O�U O � PQP � K � T U �KMU K � O P P K � T � U �Q� P
+�� K P O�K P T � U �V� �,P K
+MP KMK O�T P U PV� �QP � K T

Table 3.1: Initial bit permutation (IP)

O�N L OSL �,+ K + � O + O PQ�
P U T OVT � K KQK �MP +MP PV�
P L + O + � O KWO �M� +M� P N
P T K OSK �,P K P ��� +�� � U
PM+ O OQO �,� K � � N + N � L
P K P O P �Q� K � � U KMU � T
P O � O � � N KQN � L KML �Q+
PMP � O � U OSU � T � KXT � K

Table 3.2: Inverse of initial bit permutation ( ���Y�	� )

3.2.1 The Triple-DES Algorithm (3DES)

Triple-DES algorithm [Nat99] was introduced to increase the the key size of DES

and maintaining compatibility with legacy DES software and hardware systems.

For encryption, the plaintext is processed by three cascaded DES cores as shown in

Figure 3.2, the first and the last DES cores are in encryption mode and the middle

one is in decryption mode. If the same key is used for ! �@Z�[;\ !BD , Triple-DES is

the same as DES with key !BE . For decryption of Triple-DES, the modes of three

cascaded DES cores are inverted so that the first and the last DES cores are in
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L2=R1 R2=L1 XOR f(R1,K2)

L15=R14 R15=L14 XOR f(R14,K15)

f

K16

IP-1

Ciphertext

R16=L15 XOR f(R15,K16) L16=R15

Round

Data Encryption
Standard

Figure 3.1: Data Encryption Standard algorithm
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DES DES-1 DES

DES-1 DES-1DES

Plaintext Ciphertext

Encryption

Decryption

K1 K2 K3

K3 K2 K1

Figure 3.2: Triple-DES algorithm

decryption mode and the middle one is in encryption mode. Triple-DES algorithm

increase the key size three times compared to DES, which is from 56-bit to 168-bit.

However, the processing time of Triple-DES increase three times as well.

3.2.2 Previous work on DES and Triple-DES

A software implementation of DES and Triple-DES by Biham in 1997 in ECB mode

achieved 46 Mb/second 22 Mb/sec respectively on an 300 MHz Alpha, which is a

64-bit processor . The most common DES software LibDES [lib] achieves 121.5

Mb/sec for DES ECB mode on an Intel Pentium III 866 MHz machine. LibDES

also achieves 42.9 Mb/sec for Triple-DES CBC mode on the same machine.

Hardware implementations offer much higher performance than DES software

implementation. In 1999, Free-DES [fre], a 3656 Mb/sec implementation of DES

algorithm on Xilinx Virtex XCV400-6 with 60 MHz clock rate was reported. A

1280 Mb/sec implementation of IDEA was reported in 1999 [WPR ] 99] by Wilcox et. al.

The Sandia National Laboratories developed an ASIC implementation of DES [WPR ] 99]
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which achieves 6700 Mb/sec. The fastest hardware DES hardware implementa-

tion [Pat00] is proposed by Patterson which achieves 10752 Mb/sec. This imple-

mentation fully unrolls and pipeline the DES rounds and operates at a 168 MHz

clock rate. It employs dynamic circuit specialization in an FPGA to achieve high

performance.

Previous high performance implementation of DES in hardware fully maximize

their throughput by unrolling and pipelining the design in Electronic Code Book

mode (see Section 3.6). Due to the data dependencies, pipelined DES implementa-

tions cannot have the same performance.

Year Implementation Throughput (Mb/sec) Reference
1997 software 121.5 [fre]
1999 Xilinx Virtex XCV400-6 3656 [fre]
1999 4 ^ Altera 10K100 1280 [WPR ] 99]
1999 ASIC 0.6 _a` CMOS 9280 [WPR ] 99]
2000 Xilinx Virtex XCV150-6 10752 [Pat00]

Table 3.3: Comparison of DES implementations

3.3 The IDEA Algorithm

IDEA takes 64-bit plaintext inputs and produces 64-bit ciphertext outputs using a

128-bit key.

The design philosophy behind IDEA is mixing operations from different alge-

braic groups including XOR, addition modulo �	��
 , and multiplication modulo the

Fermat prime ����
���� . All these operations work on 16-bit sub-blocks.

The IDEA block cipher [Sch96] (depicted in Figure 3.3) consists of a cascade

of eight identical blocks known as rounds, followed by a half-round or output trans-

formation. In each round, XOR, addition and modular multiplication operations are

applied. IDEA is believed to possess strong cryptographic strength because
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Figure 3.3: Block diagram of the IDEA algorithm.
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 its primitive operations are of three distinct algebraic groups of �b��
 elements

 multiplication modulo � ��
 �c� provides desirable statistical independence be-

tween plaintext and ciphertext

 its property of having iterative rounds made differential attacks difficult.

The encryption process is as follows. The 64-bit plaintext is divided into four

16-bit plaintext sub-blocks, d � to d J . The algorithm converts the plaintext blocks

into ciphertext blocks of the same bit-length, similarly divided into four 16-bit sub-

blocks, e � to e J . 52 16-bit subkeys, � � � �� , where ( and < are the subkey number and

round number respectively, are computed from the 128-bit secret key. Each round

uses six subkeys and the remaining four subkeys are used in the output transfor-

mation. The decryption process is essentially the same as the encryption process

except that the subkeys are derived using a different algorithm [Sch96].

The algorithm for computing the encryption subkeys (called the key-schedule)

involves only logical rotations. Order the 52 subkeys as � � � �� , G,G,G�4 � � � �
 , � � D �� , G,G,G ,
� � D �
 , G,G,G , � �gfC�� , G5G,G , � �gfC�
 , � ��hi�� , G,G5G , � ��hC�J . The procedure begins by partitioning the

128-key secret key � into eight 16-bit blocks and assigning them directly to the

first eight subkeys. � is then rotated left by 25 bit, partitioned into eight 16-bit

blocks and again assigned to the next eight subkeys. The process continues until all

52 subkeys are assigned. The decryption subkeys �j� � � �� can be computed from the

encryption subkeys with reference to Table 3.4.

In Electronic Codebook (ECB) mode [Sch96], the data dependencies of the

IDEA algorithm have no feedback paths. Additionally, in practice, latencies of

order of microseconds are acceptable. These features make deeply pipelined imple-

mentations possible.
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< - � �Y' < '
L

< -
U

�k� � � ��
2 � � � # � � ��

6 ��� 2 � � � # � � ��
6 �	� 2 � � � # � � ��

6 �	�
�k� � � �D �l� � � # � � �D �l� � � # � � �E ��� � � # � � �D
�k� � � �E �l� � � # � � �E �l� � � # � � �D ��� � � # � � �E
� � � � �J

2 � � � # � � �J
6 ��� 2 � � � # � � �J

6 �	� 2 � � � # � � �J
6 �	�

�k� � � �H � ��h � � �H � ��h � � �H N/A

�k� � � �
 � ��h � � �
 � ��h � � �
 N/A

Table 3.4: IDEA decryption subkeys �m�������� derived from encryption subkeys � �g���� .
��� � and � ���� denote additive inverse modulo �	��
 and multiplicative inverse �V��
3�n�
of � � respectively.

3.3.1 Multiplication Modulo oqpsrut
Of the basic operations used in the IDEA algorithm, multiplication modulo �q��
����
is the most complicated and occupies most of the hardware. Curiger et. al. [CBK91]

described and compared several VLSI architectures for multiplication modulo �����Y�
and found that an architecture proposed by Meier and Zimmerman [MZ91], using

modulo �W� adders with bit-pair recoding offers the best performance.

The C code for the multiplication modulo �	��
R�Y� operation by modulo �V��
 adders

using bit-pair recoding is as follows.

1 uint16 mulmod(uint16 x, uint16 y)

2 {

3 uint16 xd, yd, th, tl;

4 uint32 t;

5 xd = (x - 1) & 0xFFFF;

6 yd = (y - 1) & 0xFFFF;

7 t = (uint32) xd * yd + xd + yd + 1;

8 tl = t & 0xFFFF;

9 th = t >> 16;
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10 return (tl - th) + (tl <= th);

11 }

This algorithm requires a total of six additions and subtractions, one 16-bit mul-

tiplication and one comparison. However, in IDEA one of the operands of a mod-

ular multiplication operation is always a subkey, so the second subtraction can be

eliminated if the associated subkeys are pre-decremented.

3.3.2 Previous work on IDEA

The holder of the patent on the IDEA algorithm, Ascom implemented the IDEA ci-

pher in software which achieves
N
G P
T ^B� N 
 encryption per seconds, or an equivalent

encryption rate of 23.53 Mb/sec on an Intel Pentium II 450 MHz machine. Another

software implementation is proposed by Helger [Lip98] involve Intel MMX multi-

media instructions set. This implementation offer
N
G
K �v^F� N 
 encryption per seconds

or an equivalent encryption rate 32.9 Mb/sec on an Intel Pentium 233 MHz machine.

In 2000, Helger developed his software implementation in parallel architecture. His

4-way IDEA implementation achieves 440 Mb/sec on an Intel Pentium III 800 MHz

machine. The term 4-way means that there are 4 independent IDEA encryptions or

decryptions done in parallel. Our optimized software implementation running on a

Sun Enterprise E4500 machine with twelve 400 MHz Ultra-IIi processor, performs

� G P
N ^B� N 
 encryptions per second or a equivalent encryption rate of 147.13 Mb/sec.

Hardware implementations offer significant speed improvements over software

implementations by exploiting parallelism among operators. In addition, they are

likely to be cheaper, having lower power consumption and smaller footprint than

a high speed software implementation. The first VLSI implementation of IDEA

was developed and verified by Bonnenberg et. al. in 1992 using a 1.5 _a` CMOS

technology [BCF ] 91]. This implementation had an encryption rate of 44 Mb/sec.

In 1994, VINCI, a 177 Mb/sec VLSI implementation of the IDEA algorithm in

1.2 _a` CMOS technology, was reported by Curiger et. al. [CBZ ] 93, ZCB ] 94]. A
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355 Mb/sec implementation in 0.8 _w` technology of IDEA was reported in 1995

by Wolter et. al. [WMSL95], followed by a 424 Mb/sec single chip implementation

of 0.7 _a` technology by Salomao et. al. [SAF98] was reported. A paper design

of an IDEA processor which achieves 528 Mb/sec on four XC4020XL devices was

proposed by Mencer et. al. [MMF98]. In 2000, Leong et. al. proposed a 500 Mb/sec

bit-serial implementation of IDEA on an Xilinx Virtex XCV300-6 FPGA which is

scalable on larger devices [LCTL00]. Later, Goldstein et. al reported an imple-

mentation on the PipeRench FPGA which achieves 1013 Mb/sec [GSB ] 00]. A

commercial implementation of IDEA called the IDEACrypt Kernel developed by

Ascom achieves 720 Mb/sec [Asc99b] in 0.25 _w` technology. Another implemen-

tation derived from the IDEACrypt Kernel, called the IDEACrypt Coprocessor, has

a throughput of 300 Mb/sec [Asc99a].

Year Implementation Throughput (Mb/sec) Reference
1998 software 23.53 [Lip98]
2000 software 440 [Hel]
1992 ASIC 1.5 _a` CMOS 44 [BCF ] 91]
1994 ASIC 1.2 _a` CMOS 177 [CBZ ] 93, ZCB ] 94]
1995 ASIC 0.8 _a` CMOS 355 [WMSL95]
1998 ASIC 0.7 _a` CMOS 424 [SAF98]
1998 4 ^ XC4020XL 528 [MMF98]
1999 ASIC 0.25 _w` CMOS 720 [Asc99b]
2000 Xilinx Virtex XCV300-6 424 [LCTL00]
2000 ASIC 0.25 _w` CMOS 1013 [GSB ] 00]

Table 3.5: Comparison of IDEA implementations

Most of the previous hardware are known to use a precomputed key schedule or

only the encryption process was implemented, due to the fact that if is more difficult

to implement decryption for IDEA. For encryption, the whole key schedule (
K �w^

16 bits) can be derived from the first six subkeys (16 bits each) by shifting, while the

decryption key schedule is derived from the whole encryption key schedule. Also

the decryption subkey ! ���� is the multiplicative inverse mod �	��
��x� ) of ! � , where
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! � is the corresponding encryption subkey. It can be simplified to be ! �	�� / ! ��-
� . The conversion of decryption subkey require an iterative process based on the

encryption subkey and is more difficult to implement in hardware and hardware

implementations can get around this difficulty by computing all subkeys in software

and making them an input to the hardware [WMSL95].

3.4 Block Cipher Modes of operation

A block cipher is a mathematical function which maps n-bit plaintext blocks to n-

bit ciphertext blocks, where n is the blocklength. In order to perform decryption

uniquely, the encryption function is one-to-one mapping which is invertible. The

inverse mapping is defined as the decryption function. In most block ciphers, the

encryption and decryption process is similar so that the same hardware can be used.

A block cipher encrypts plainext in fixed-size n-bit blocks. However, if mes-

sages exceeds n-bit, there are different modes of operation can be used, namely:

There are four common modes :

1. Electronic Code Book (ECB) mode

2. Cipher-block Chaining (CBC) mode

3. Cipher feedback (CFB) mode

4. Output feedback (OFB) mode

These modes will be explained in the following sections.

3.4.1 Electronic Code Book (ECB) mode

Electronic Code Book mode (Figure 3.4) is the simplest approach for employing

block ciphers. For messages exceeding n-bits, the message is partitioned into n-

bit blocks and each of these blocks are encrypted independently. In ECB mode,
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Figure 3.4: Electronic Codebook mode

encryption is independent of the sequence of blocks, e.g. the last block can be en-

crypted first and followed by first block and this will not affect the ciphertext. Also,

identical plaintext blocks with the same key always result in identical ciphertext.

The ECB mode of operation is rather weak in security. For 8-bit blocks, once

we know that ’e’ is encrypted to ’z’, we know whenever the ciphertext is ’z’ if the

plaintext was ’e’. Thus ECB mode allows simple frequency analysis to be applied.

The algorithm of the ECB mode of operation can be described as:

A
[zy <8{�|S} (�~ [��

1 ~ < �l'���' }=4 y��&�
A@��2

{ �
6

�
: y <8{�|S} (�~ [��

1 ~ < �l'���' }=4�{ � �
A ���� 2

y �
6

where K is a k-bit Key, { � , G5G,G , {V� are the plaintext blocks and yW� , G,G,G , y � are

ciphertext blocks.
A&�

and
A ���� denotes encryption and decryption process with key

K respectively.
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3.4.2 Cipher-block Chaining (CBC) mode

In the CBC mode of operation (Figure 3.5), every plaintext block is exclusive-ored

with the previous ciphertext block before being encrypted. For example, the first

plaintext block { � is enciphered to produce yR� before it is encrypted to produce

y D . The next plaintext block { D is exclusive-ored with ciphertext block yM� . The

procedure is repeated until the end of message. In CBC mode, It is obvious that

every ciphertext block depends on previous ciphertext blocks.

For the first encryption, there is no previous ciphertext. An initialization vector

(IV) is introduced for initialization of the feedback value. The IV need not be secret.

For CBC mode, identical ciphertext blocks are obtained if the same plaintext

is enciphered using the same key and IV. If either IV, key, or first plaintext block

is changed, a different ciphertext is obtained. Since ciphertext y � is depends on { �
and all preceding plaintext blocks, the decryption order of ciphertext blocks needs

to be maintained. Correct decryption requires all preceding ciphertext blocks to be

correctly decrypted.

Since there are data dependencies of all plaintext and ciphertext blocks, if a

plaintext block { � is modified during encryption, it affects all following ciphertext

blocks. Thus it is not possible to encrypt multiple blocks in parallel (like in ECB

mode).

The algorithm of the CBC mode of operation is described as:

A
[zy <8{	|X} (�~ [��Sy # � �V� G

1 ~ < �l'c��' }=4 y � �
A � 2

{ � / y � ���
6

�
: y <8{�|S} (I~ [��Sy # � �V� G

1 ~ < �l'c��' }=4n{ � ��y � �	� /
A ���� 2

y �
6

k-bit Key K, n-bit IV, n-bit plaintext blocks { � , G,G5G , {�� are inputs and yR� , G,G5G , y �
is n-bit ciphertext blocks as output.

A��
and

A ���� denotes encryption and decryption

process with key K respectively.
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Figure 3.5: Cipher Block Chaining mode
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3.5 Field-Programmable Gate Arrays

FPGAs are hardware devices that can change their functionality by programming

the chips after fabrication. The programming process of FPGAs usually is less than

a minute and can be done in the field, therefore they are very suitable for use as a

reconfigurable platform. FPGAs consists of an array of configurable logic blocks

(CLBs) surrounded by input/output blocks (IOBs) which provide an interlace be-

tween configurable logic block and package pins, and a network of routing resources

called the general routing matrix (GRM) which interconnect the configurable logic

blocks.

In most commercial devices, such as the Xilinx Virtex and Virtex-E family, con-

figurable logic blocks are implemented as 4-input lookup tables together with an op-

tional output register or latch. The array of CLBs in FPGA are arranged in columns

and rows. Between CLBs, there are routing channels aligned horizontally and verti-

cally. CLBs are interconnected by routing channels and general routing matrix. The

GRM consists of an array of routing switches located at the conjunction of horizon-

tal and vertical routing channels. Since every CLB has a Lookup table and registers

, they maintain a high ratio of storage elements to computational elements. Also,

since these computational and storage elements are coupled together in CLBs, these

architectures are very suitable for the implementation of deeply pipelined designs.

3.5.1 Xilinx Virtex-ETM FPGA

The Triple-DES accelerator are built on the Xilinx Virtex-ETM FPGA. It is manu-

factured in a 6-layer-metal 0.18 _a` CMOS process. The maximum synchronous

clock rates for Virtex-ETM FPGA is 240MHz.

The Logic cell (LC) is the basic building block for Virtex-E CLB. A logic cell

consists of a 4-input function generator, carry logic, and a storage element. In fact,

every Virtex-E CLB consists of four logic cells, which are organized in two similar

slices as shown in Figure 3.7. Function generators in Virtex-E are implemented as
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Figure 3.6: Architecture of FPGAs
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Figure 3.7: Virtex-E CLB (2-Slice)

4-input look-up tables (LUTs). Besides function generation, each LUT can serve as

a 16 ^ 1-bit synchronous RAM. Combining two LUTs that within a slice, a 16 ^
2-bit or 32 ^ 1-bit synchronous RAM, or a 16 ^ 1-bit dual-port synchronous RAM

can be created. Besides synchronous RAM, 16-bit shift register can be implemented

from LUTs but limited to a specific LC in every slices.

Also, Virtex-E FPGAs provide large block Select RAM memories. Each Block

Select RAM component is a synchronous dual-ported 4096-bit RAM with indepen-

dent control signals for each port as shown in Figure 3.8. Block SelectRAM is

fully customized and data-widths of the two ports can be configured independently.

The selection of data-width of a Block Select RAM range from 1 to 16 bits with

depth 4096 to 256 correspondingly. These RAM provide a relatively large buffer

for storing plaintext and ciphertext in Triple-DES and IDEA cipher. Also its fully

customized feature enable the I/O interface operate in different clock rate as the



Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 30

WEA

ENA

RSTA

CLKA

ADDRA[#:0]

DIA[#:0]

WEB

ENB

RSTB

CLKB

ADDRB[#:0]

DIB[#:0]

DOA[#:0]

DOB[#:0]

RAMB4_S#_S#

Figure 3.8: Dual-Port Block SelectRAM

clock rate for cipher.

3.6 Pilchard

Pilchard is a reconfigurable computing development environment, which employs a

field programmable gate array. It was designed mainly to reduce the bottleneck of

bus interface transfers between FPGA and personal computer by using the memory

interface instead of the PCI bus interface. Nowadays FPGA systems can operate

at clock frequencies over 100MHz with microprocessors operate at 1GHz. The

speed of coprocessor systems are often limited by the bus interface, for example,

the author’s 496 Mb/sec implementation of IDEA cipher achieves only 39.2 Mb/sec
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through a cardbus interface [LLC ] 01].

The Pilchard board was designed to be compatible with the 168 pin 3.3 Volt, 133

MHz, 72-bit, registered synchronous DRAM in-line memory modules (SDRAM

DIMMs) PC133 standard. As SDRAM DIMMs PC66/100 standard shared the same

pinouts as SDRAM DIMMs PC133 standard, therefore, Pilchard board can be oper-

ated under PC66/100 standard as well. The Pilchard board can populated with any

Virtex or Virtex-E device in a PQ240 or HQ240 package.

The system interface of Pilchard board is developed using Linux. In order to

access registers of Pilchard board, UNIX mmap() system call is used to map virtual

addresses in user space to physical address of the Pilchard board. Data transfer

between PC and Pilchard use the 64-bit MMX instruction “movq” embedded in

inline assembly.

In benchmark of Pilchard board, write operation was reported to be 1063.04

Mb/sec using uncacheable mode [LLC ] 01]. Uncacheable mode guarantees that all

reads and writes appear on the system bus as the same order in program. For read

operations, Pilchard board achieves 422.40 Mb/sec. In a read/write benchmark, the

transfer rate is 595.92 Mb/sec. Compared to the measured transfer rate of the PCI

interface, which is 96.08 Mb/sec, Pilchard was 4 times faster.

3.6.1 Memory Cache Control Mode

Central processing unit (CPU) caching of reads and writes to Pilchard registers

could lead to incorrect results. The Intel Pentium Pro, Pentium II and Pentium III

has a Memory Type Range Register (MTRR), accessible from Linux, which allows

different memory regions to be of different types [pen00].

The “Uncacheable” memory type guarantees that all reads and writes will ap-

pear on the system bus in the same order as the program. Furthermore, no specu-

lative memory accesses, page-table talks or prefetches of speculated branch targets
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Figure 3.9: Picture of Pilchard

will occur [pen00]. Although the most conservative, it also leads to the lowest per-

formance.

3.7 Electronic Design Automation Tools

The VPN accelerator was developed using the Very High Speed Integrated Circuit

Hardware Description Language (VHDL). Hardware architectures can be described

using VHDL. Besides as a descriptive language for hardware, it represent a design

methodology.

The target hardware platform were Field Programmable Gate Arrays (FPGAs).

FPGAs can be reconfigurable by downloading a software bitstream. The software

bitstream is created from the VHDL description using the synthesis and implemen-

tation tools. The synthesis and implementation tools used was Synopsys FPGA ExpressTM

3.4 and Xilinx Xilinx FoundationTM 3.2i respectively.

Using FPGAs and VHDL offers a short turnaround time as shown in Figure 3.10.



Chapter 3 Cryptography and Field-Programmable Gate Arrays (FPGAs) 33

Since VHDL designs offer a higher level of abstraction over say schematic capture,

the design and debug time associated with this methodology is reduced. Once the

VHDL description has been verified via simulation, a synthesis tool is used to gen-

erate a netlist. The implementation tool takes the netlist and maps the component

to the target FPGA device. Then the place and route tools place the components

and route the interconnections in the FPGA. In the implementation stage, timing

constraints can be given and the tools will try to meet the constraint. Finally, the

bitstream file of the circuit design is generated by the implementation tools for a

specific FPGA. Downloading the specific bitstream to corresponding FPGA will

make it work as per the description in VHDL.

In the development cycle, the target FPGA device is given after the simulation

stage. Therefore, the same VHDL description can be used to synthesise netlists for

different devices. This features offer portability in that different FPGA vendors,

families and application specific integrated circuits (ASICs) can be targetted from

the same VHDL description.

3.8 Summary

In this chapter, background on cryptography and some of cryptographic algorithm

were given. Also FPGAs and the Pilchard environment were presented.

Most of the previous implementation of DES, Triple-DES and IDEA achieves

high performance by using pipelining in ECB mode. However, most of applications

recently suggest CBC mode which is more secure.

The decryption process in IDEA involve iterative calculation of subkeys, there-

fore, most IDEA hardware [WMSL95] uses precomputed keys or required the whole

key schedule (832 bits) to be an input. This creates a large overhead on data transfer

of key material in IDEA cipher.

FPGAs are hardware devices very suitable for rapid prototyping as its nature

to change its functionality after fabrication. Pilchard is a reconfigurable computing
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development environment that employ FPGAs with a DIMM slot interface in order

to improve transfer rate between PC and FPGA systems. This environment is used

in this project as it offer a reasonable performance and easy to use interface.
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Implementation

4.1 Introduction

In this chapter, the implementation details for the VPN accelerator are presented.

Firstly, the hardware platform used for the implementation is introduced, followed

by the implementation details of DES, Triple-DES and IDEA cipher in different op-

eration modes. Then the encapsulation of VPN accelerator in LibDES and FreeS/WAN

is discussed.

4.1.1 Hardware Platform

4.1.2 Reconfigurable Hardware Computing Environment

A reconfigurable hardware computing environment, called Pilchard, was used to

implement the Triple-DES accelerator. Pilchard is a DIMM RAM based FPGA sys-

tem. The Pilchard board used for Triple-DES and IDEA accelerator was populated

with a Virtex-E XCV1000E device in a HQ240 package with speed grade 6. The

XCV1000E device contains 12288 slices aligned in a 64 ^ 96 CLB array, which

equivalent to 1.5 million system gates. In addition, there are 96 ^ 4096-bit Block

Select RAMs for storing data and eight delay-locked loops for clock multiplication

and division.

36
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4.1.3 Pilchard Software

There are two major components in the Pilchard software namely the device driver

and application programming interface (API). The device driver enables Pilchard

to be accessible via a DIMM slot and specifies the physical memory range for

Pilchard. The API perform memory mapping between virtual and physical ad-

dresses for Pilchard upon initialization. A series of read and write function calls

in the API enables data transfer between the PC and Pilchard as shown below.

 write32(d, a) A 32-bit word referenced by pointer d is written to physical

memory address a. This function call fails if a is not in the memory range

specified in Pilchard driver.

 read32(d, a) A 32-bit word is read from physical memory address a and trans-

ferred to memory referenced by pointer d. This function call fails if a is not

in the memory range specified in Pilchard driver.

The original Pilchard software developed by M.P. Leong [LLC ] 01] already has

a fully functional device driver and 32-bit read and write function calls, namely

write32(d,a) and read32(d,a). The original version of Pilchard VPN accelerator had

limitations which its application to ciphers such as DES, Triple-DES and IDEA

employ a block length of 64-bit. Therefore, two write32() / read32() function calls

are needed in order to transfer every plaintext or ciphertext between the PC and

Pilchard.

As a result, two new API function, write64(d,a) and read64(d,a), were developed

based on the original read32 and write32 function calls. In order to perform 64-

bit data transfer, “movq” [mmx] (move quad word) assembly MMX instruction

was used. Both 64-bit API function calls are written in inline assembly which can

embedded into any C code.

 write64(d, a) A 64-bit double word referenced by pointer d is written to phys-

ical memory address a. This function call fails if a is not in the memory range
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specified in Pilchard driver.

 read64(d, a) A 64-bit double word is read from physical memory address a

and transferred to memory referenced by pointer d. This function call fails if

a is not in the memory range specified in Pilchard driver.

For 64-bit write function calls, a “movl” (move long word) instruction is issued

to copy the 32-bit destination address to a 32-bit general purpose register. Then a

“movq” (move quad word) instruction is issued to transfer the 64-bit data to MMX

register. Finally, another movq instruction copied the 64-bit data from MMX regis-

ter to the memory address that referenced by 32-bit general purpose register. Also

an emms instruction was issued to clear the MMX register, otherwise, floating point

calculations will result in Not A Number (NAN) in some cases. For 64-bit read

function calls, a “movl” instruction is first issued to copy the source address. Then

“movq” instructions are used to copy data from Pilchard to an MMX register and

finally to the user program memory.

4.2 DES in ECB mode

4.2.1 Hardware

The DES algorithm is a cascade of sixteen identical rounds of operations in between

an initial permutation and final permutation. A module for one round of computa-

tion is formed using ROM32 [Xil00a] and XOR primitives.

The DES core used in here is derived from the VHDL code written by Chris

Eilbeck. Since there are no data dependencies in ECB mode. The DES core is

pipelined into 16 stages corresponding to 16 rounds in DES shown in Figure 4.2.

The maximum clock rate achieve by the proposed DES core was 60.7 MHz.

Since the clock rate of interface is limited to 100 MHz, a clock divider was used

to divide the system clock by 2. Therefore, the DES core works at 50 MHz and
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Figure 4.2: System architecture of DES accelerator in ECB mode

the maximum encryption rate of the DES implementation on Pilchard is around 248

Mb/sec.

4.2.2 Software Interface

memp is the base address pointer to Pilchard mapped memory range. The key

material is transferred to Pilchard at the beginning and then the control register is

reset to zero in order to reset the DES core. Then 32 plaintext blocks are transferred

to DES core. When the first plaintext block is transferred to Pilchard, the control

register is set to 1 in order to trigger the start of DES core. Finally, 32 ciphertext

blocks are received from Pilchard.

The following is the pseudocode for a block for 32 DES encryptions in ECB
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mode:

1 des_ecb_encryption(key,data,memp)

2 {

3 /* copy key into key register */

4 write64(key,key_reg);

5

6 /* initialize control register to reset */

7 control=0;

8 write64(control,control_reg);

9

10 /* write 32 * 64 bit plaintext */

11 for(i=0;i<32;i++){

12 write64(data[i],memp+i*8);

13 /* early trigger DES core */

14 if(i==0){

15 /* set control register to 1

16 to trigger starting of DES encryption */

17 control=1;

18 write64(control,control_reg);

19 }

20 }

21

22 /* read 32 * 64 bit ciphertext */

23 for(i=0;i<32;i++)

24 read64(&data[i],memp+i*8);

25 }
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Since the Pilchard interface does not offer interrupts, for the software (PC) to

know about the status in hardware (Pilchard), polling is the only option. In order to

achieve highest performance in DES ECB mode, the assumption that DES core can

output the first ciphertext in the period that the 32 blocks of plaintext are written to

Pilchard was made. Correctness of operation was extensively tested by comparison

with software.

4.3 DES in CBC mode

4.3.1 Hardware

The DES core was modified to be totally combinational. Since in CBC mode, the

current encryption depends on previous ciphertext, only one encryption is processed

at a time so pipelining is not effective.

4.3.2 Software Interface

The following is the pseudocode for a block for 32 DES encryptions in CBC mode:

1 des_cbc_encryption(key,data,memp)

2 {

3 /* copy key into key register */

4 write64(key,key_reg);

5

6 /* initialize control register to reset */

7 control=0;

8 write64(control,control_reg);

9

10 /* write 32 * 64 bit plaintext */
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11 for(i=0;i<32;i++){

12 write64(data[i],memp+i*8);

13

14 /* set control register to 1

15 to trigger starting of DES encryption */

16 control=1;

17 write64(control,control_reg);

18

19 /* poll control register for

20 the end of encryption */

21 do{

22 read64(&control,control_reg);

23 }while(control==0);

24

25 /* read 32 * 64 bit ciphertext */

26 for(i=0;i<32;i++)

27 read64(&data[i],memp+i*8);

28 }

The interface for DES CBC mode (Figure 4.3) first requires reset of the finite

state machine. Then 248 different 64-bit plaintext are transferred to Pilchard from

PC via DIMM RAM data bus. This is followed by setting the control register to

1 in order to trigger the finite state machine and DES core. No interrupt routine

is provided in DIMM RAM interface, therefore, polling has to be done on control

register to detect completion of all encryptions. Finally, all ciphertext are read back

from Pilchard. The buffer size was chosen to be 248 because there is an 8-bit

effective address space for Pilchard, but 8 address were reserved for control and

key registers.
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4.4 Triple-DES in CBC mode

4.4.1 Hardware

The Triple-DES core (Figure 4.4) is formed by cascading three combinational DES

CBC cores. The Triple-DES core is combinational, but an external finite state ma-

chine was used to determine the readiness of input and output. The proposed Triple-

DES core operates at 2.135 MHz. The external finite state machine works at 50

MHz which is the system clock (100 MHz) divided by two. A 64-bit ciphertext is

obtained every 32 cycles. Therefore the performance of core is 50 ^ 64-bit / 32 =

100 Mb/sec. This theoretical result agrees with the real performance of Triple-DES

hardware functions benchmark embedded in LibDES.

In our Triple-DES core, a throughput of 96 Mb/sec was achieved. Triple-DES

consists of three cascaded DES core and thus, it require more processing time than

DES.

4.4.2 Software Interface

The following is the pseudocode for a block of 248 Triple-DES encryptions in CBC

mode:

1 3des_cbc_encryption(key1,key2,key3,data,memp)

2 {

3 /* copy key into key register */

4 write64(key1,key_reg1);

5 write64(key2,key_reg2);

6 write64(key3,key_reg3);

7

8 /* initialize control register to reset */

9 control=0;
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10 write64(control,control_reg);

11

12 /* write 248 * 64 bit plaintext */

13 for(i=0;i<248;i++){

14 write64(data[i],memp+i*8);

15

16 /* set control register to 1

17 to trigger starting of DES encryption */

18 control=1;

19 write64(control,control_reg);

20

21 /* poll control register for

22 the end of encryption */

23 do{

24 read64(&control,control_reg);

25 }while(control==0);

26

27 /* read 248 * 64 bit ciphertext */

28 for(i=0;i<248;i++)

29 read64(&data[i],memp+i*8);

30 }

The Triple-DES CBC mode interface is similar to DES CBC mode, the only

difference being the key size. Also the throughput of Triple-DES CBC mode is

lower than DES CBC mode since the datapath for Triple-DES is three times longer.
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4.5 IDEA in ECB mode

4.5.1 Multiplication Modulo ow�i��r�t
Modulo multiplication is the bottleneck in the IDEA algorithm. In a single round

of the algorithm there are four modular multiplications so a well-designed mul-

tiplication modulo �V��
���� operator is crucial since it directly affects the system

performance both in terms of area and throughput.

The modular multiplication algorithm described in Section 3.3.1 was used in our

design, but instead of taking � and | as inputs, the operator takes � and |V� as inputs.

As one of the operands is a subkey which is regarded as a constant, the modification

eliminates one subtraction operator by taking the advantage of pre-decremented

subkeys (Section 3.3.1, pseudocode line 6).

In order to implement a well-designed multiplication modulo �b��
��x� operator,

the throughput of the operator is maximized by introducing more pipeline stages. In

our design, 16-bit multiplier used in Section 3.3.1 (pseudocode line 7) is constructed

by Xilinx CORE Generator [Xil00b] which has a latency of 4 cycles. And the

multiplication modulo � ��
 ��� operator pipeline has a latency of 7 cycles.

4.5.2 Hardware

The IDEA algorithm is a cascade of eight identical rounds of operations, followed

by a output transformation. By instantiating building blocks, that is, additions,

XORs and modular multiplications, and inserting appropriate stage latches for time-

alignment, a module for one round of computation is formed. For the best area-

efficiency, stage latches are constructed by Virtex SRL16E primitives [Xil99, GA99].

Due to limited hardware resources, each round of the algorithm shares the same

physical resource, but with different key-schedules. The output transformation also

reuses the resources. In our implementation the key-schedules are stored inside
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ROM primitives. The architecture of the bit-parallel IDEA core is shown in Fig-

ure 4.5.

As mentioned earlier, for ECB mode operations, data dependencies of the IDEA

algorithm have no feedback paths. This property enabled the round architecture to

take input values until the pipelined is filled, and output values are redirected to the

input of the pipeline subsequently. In an IDEA round, the data passes through three

multiplication modulo � ��
 ��� operators, each of which has a latency of 7 cycles.

Thus the full round pipeline has a latency of 21 cycles For an output transformation,
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the data must pass through a single multiplication modulo ����
m��� operator with

pipeline latency of 7 cycles. Therefore the core has a total latency of �V�q^ L � T - � T�K
cycles. The core takes 21 64-bit plaintexts per ����^ U - � LMU cycles, equivalently

performing encryption at
2 �V����� LQU 6 ^�+ O ^ 1 Mb/sec with a system clock rate of1

MHz. For instance, at a 82 MHz clock rate, the core delivers an encryption rate

of 583 Mb/sec with a latency of 2.134 _w� .

4.5.3 Software Interface

The following is the pseudocode for a block of 175 IDEA encryptions in ECB mode:

1 idea_ecb_encryption(data,memp)

2 {

3

4 /* initialize control register to reset */

5 control=0;

6 write64(control,control_reg);

7

8 /* write 248 * 64 bit plaintext */

9 for(i=0;i<175;i++){

10 write64(data[i],memp+i*8);

11

12 /* set control register to 1

13 to trigger starting of DES encryption */

14 control=1;

15 write64(control,control_reg);

16

17 /* poll control register for

18 the end of encryption */

19 do{
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20 read64(&control,control_reg);

21 }while(control==0);

22

23 /* read 175 * 64 bit ciphertext */

24 for(i=0;i<175;i++)

25 read64(&data[i],memp+i*8);

26 }

The IDEA ECB mode interface is similar to DES CBC mode and Triple-DES

CBC mode interfaces. However, in the IDEA ECB mode, the key-schedule is pre-

computed and stored in FPGA. The data transfer of key-schedule is elimated.

4.6 Triple-DES accelerator in LibDES

In the above sections, the Triple-DES cipher interface for Pilchard was introduced.

Another Triple-DES functions was implemented in LibDES which uses Pilchard as

hardware accelerator. Both kernel mode version and user mode version has been

developed. Most of the cryptographic softwares operates in user mode, however,

because FreeS/WAN manipulates IPSec packet in kernel mode, a kernel version

was also required. The user mode and kernel mode functions differ from the repre-

sentation of memory address mapping for Pilchard. In user mode, a virtual address

is used in interface for Pilchard, however, a direct access to a physical address is

used in kernel mode.

As LibDES is a widely used encryption library for openSSL and other appli-

cations, the encapsulation of the Pilchard based accelerator interface in LibDES

enables other application to easily utilize the Pilchard board accelerator.
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4.7 Triple-DES accelerator in FreeS/WAN

In our implementation of a Triple-DES accelerator on Pilchard, a simple software

interface was built in order to perform verification benchmark and performance.

Modifications were needed to integrate the Triple-DES hardware accelerator and

FreeS/WAN.

The architecture of VPN and IPSEC protocols was unchanged, therefore, no

major modification on FreeS/WAN was required. Modifications were made on Lib-

DES, and the software based DES functions were replaced by calls to the hardware

accelerator on Pilchard.

In FreeS/WAN, there is a data structure that stores the encryption key in the

form of a key-schedule. In Triple-DES accelerator on Pilchard, the key provided

should be a raw-key. There are two solutions to this problem.

The interface of Triple-DES accelerator on Pilchard could be modified to accept

a key schedule as input. However, this modification will have great impact on the

performance of the Triple-DES accelerator. For Triple-DES encryption, a raw-key

of 3 ^ 64-bit = 192-bit is needed, but if key schedule were used, 3 ^ 16 ^ 48-bit =

2304-bit are needed to store the key schedule. This method requires 12 times more

storage and transfer, therefore, this method was not used.

On the other hand, LibDES can be modified such that it can accept a raw key.

However, problems with FreeS/WAN compatibility are encountered. In FreeS/WAN,

there is a data-structure tdb (tunnel descriptor block) storing information about VPN

connections. This includes the session key for the connection. Unfortunately, tdb

only has entry for the key schedule. To minimize modifications on FreeS/WAN

codes, a series of functions were rewritten so that tdb data structure does not need

to be changed.

Before the connection is ready and tdb data structure is filled, a raw-key would

be used during the process. The des setkey() function is called to transform this raw-

key into a key schedule. Then the key schedule is filled into the tdb � tdb key e
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entry of the structure. For Triple-DES, tdb � tdb key e is an array of 3 ^ 16 ^
64-bit for storing 3 different encryption keys with 16 rounds. For data alignment,

each 48-bit subkey is stored in a 64-bit array element. There are 3 different keys

used in Triple-DES so des setkey () is called 3 times.

First of all, modification were made to the des setkey() function. The 64-bit

raw key is passed to the first array element without modification. Therefore calling

des setkey 3 times will result in raw key 1 being stored in tdb � tdb key e[0] and

raw key 2 stored in tdb � tdb key e[15]. Finally, the last raw key is stored in tdb

� tdb key e[31]. Other array elements are empty since are no longer used for key

manipulation.

Then the interface for Triple-DES accelerator was embedded in des ede3 cbc encrypt().

Due to the fact that they have different data structures, conversion of data structure

between inputs and outputs is necessary.

4.8 IDEA accelerator in FreeS/WAN

In FreeS/WAN, the available options for encryption are DES and Triple-DES. The

IDEA accelerator was made in order to demonstrate the possibility for adding other

encryption algorithms and as a high speed accelerator for FreeS/WAN. The IDEA

ECB mode cipher that was discussed in Section 4.5 was implemented achieving 248

Mb/sec on Pilchard board, double the performance of the Triple-DES CBC core.

The IDEA accelerator interface is similar to Triple-DES CBC interface with a

difference in key management. In IDEA, the determination of the decryption key-

schedule was done in software. For an IDEA encryption, �,+�^ K � -
L PM� -bit is

needed. The overhead for input of key-schedule is huge and as a result, the IDEA

core has a hard-wired key-schedule for achieving high performance.
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4.9 Summary

In this chapter details of the implementation for different cryptographic algorithms

in different modes of operation were discussed.

A Triple-DES accelerator and an IDEA accelerator were implemented on Pilchard

which employs Virtex-ETM XCV1000E FPGAs.

Between the Pilchard interface of the Triple-DES accelerator and LibDES, a dif-

ferent key representation was used. Since in hardware, data transfer and data storage

should be minimized, a raw-key rather than a key schedule was used. LibDES was

modified accordingly.

In the IDEA accelerator, the calculation of decryption key-schedule require it-

erations which is difficult to realize in hardware. The 832-bit key-schedule create

large overhead on data transfer. As a result, key-schedule was hard-wired in the

IDEA accelerator.
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Results

5.1 Introduction

In this chapter, results obtained from the Pilchard system are presented. Firstly, the

benchmarking and testing environment is introduced. This is followed by perfor-

mance measurements of the IDEA and Triple-DES accelerator. Finally, benchmarks

using FreeS/WAN are presented.

5.2 Benchmarking environment

In this work, two computers set up with identical configuration were used for bench-

marking and obtaining all results. These two computers connect to a 100Mbit net-

work via a hub running FreeS/WAN version 1.5 with Linux Kernel 2.2.16 as shown

in Figure 5.1.

CPU P-III 866
RAM 128 MB
Motherboard Asus CUSL2

(Intel 815EP chipset)
Network card 3COM 590 (100 Mbit network card)
OS Mandrake v7.2 with kernel 2.2.16

Table 5.1: Configuration of machine for benchmark.

55
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5.3 Performance of Triple-DES and IDEA accelera-

tor

The Triple-DES and IDEA processors on Pilchard were verified using the Synopsys

VHDL Simulator, and was synthesized using Synopsys FPGA Express 3.5 and Xil-

inx Foundation Series 3.3i, with Xilinx Virtex-E XCV1000E-6 as the target device.

Both processors were successfully implemented on Pilchard board. All imple-

mentations were tested using Pilchard card with a memory slot interface with an

Xilinx Virtex-E XCV1000E-6 FPGA as Processing Element (PE).

5.3.1 Performance of Triple-DES core

Triple-DES core is made of three DES cores and therefore, the throughput of the

Triple-DES core is directly proportional to throughput of DES core. A study of area

and speed tradeoffs for a DES core with different number of rounds was conducted

in order to choose an efficient Triple-DES core with high throughput. Table 5.2

show the performance of different DES cores in ECB mode.

Number of Area Clock rate Throughput
combinational rounds (slices) (Mb/sec)
1 747 58.42 233.68
2 765 51.3 410.4
4 877 23.38 374.08
8 1121 12.32 394.24
16 1666 5.94 380.16

Table 5.2: Area and Speed Tradeoff among DES core with different rounds

From Table 5.2, the performance is similar among the DES cores. Therefore, a

core with 16 rounds was chosen since it has a simpler control and host interface.

The Triple-DES CBC core uses three combinational DES cores with 16 combi-

national rounds. It requires 5368 Virtex slices, which is 43.68% of the total 12288
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Figure 5.1: Architecture of the DES core with different number of combinational
rounds

slices in a Xilinx Virtex-E XCV100E device, and operates at 2.135 MHz, achieving

throughput of 2.135 MHz ^ 64-bit = 136.64 Mb/sec.

The Triple-DES accelerator was tested on the machine described in Table 5.1.

Performance was taken as the time to process data using Triple-DES encryption.

The Linux kernel function do gettimeofday() was used for timing. Including soft-

ware overhead, our Triple-DES accelerator achieves a measured throughput of 120

Mb/sec. According to figure 5.2, the performance of the Triple-DES accelerator for

small amounts of data is much lower than software. As data size increases, the per-

formance increases quickly and achieves a higher performance than software. This

figure does not reach to the 136.64 Mb/sec performance above due to handshaking

overheads.
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Figure 5.2: Performance of Triple-DES accelerator with different encryption size

5.3.2 Performance of IDEA core

The IDEA core is a fully-pipelined ECB implementation (8 rounds with output

transformations), which requires 9568 Virtex slices and occupies 77.86% of a Xilinx

Virtex-E XCV100E device. It achieves clock rate of 60.14 MHz. The expected

throughput of the IDEA core is �I� H�I� H ]¡�I�?H cycles ^ 60 MHz ^ 64 bits = 1920Mb/sec.

The IDEA accelerator was tested on the same machine and same setup as the

Triple-DES accelerator. The IDEA accelerator achieves 248 Mb/sec with all over-

heads included. Compared to the expected performance of the IDEA core, it is

relatively low. However, Pilchard board can only achieve around 248 Mb/sec for

I/O access in uncachable mode.
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5.4 Benchmark of FreeS/WAN

5.4.1 Triple-DES

In the series of tests for FreeS/WAN, the encryption standard was chosen to be

Triple-DES and authentication algorithm MD5-96, which is referred as 3des-md5-

96 in FreeS/WAN. 3des-md5-96 is the default encryption and authentication mode

suggested by FreeS/WAN.

ttcp [ttcb, ttca] was used to measure the throughput of the benchmark and the

benchmark was conducted for both TCP and UDP protocols. Different parameters

for ttcp were selected and tested. However, the ttcp parameters did not have major

effect on the benchmark. As a result, the following ttcp benchmarks were done

using the default settings of 8192 (source buffer) and 2048 (network buffer) bytes

respectively.

Another utility iperf was used to measure the throughput and similar test results

were obtained as ttcp.

Protocol Side Throughput Throughput Performance
no FreeS/WAN FreeS/WAN degradation

(in Mb/sec) (in Mb/sec) (%)
TCP sender 67.024 35.448 47.72
TCP receiver 66.968 35.360 47.19
UDP sender 93.848 45.560 51.45
UDP receiver 93.536 45.536 51.32

Table 5.3: Benchmark of ttcp with/without FreeS/WAN

For every packet sent out in single way connection, an acknowledgment packet

is received. The acknowledgment packet is small in size and which not favor the use

of Triple-DES accelerator. In this work, the encryption of acknowledgment packet

is handled by LibDES which has better performance when the encryption size is

small. However, this factor limits the speed up of the use of Triple-DES accelerator

in FreeS/WAN.
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Protocol Side Throughput Performance
Mb/sec Improvement (%)

TCP sender 45.788 29.1
TCP receiver 45.660 29.1
UDP sender 53.021 16.4
UDP receiver 52.882 16.1

Table 5.4: Benchmark of ttcp with FreeS/WAN using Pilchard based accelerator

As shown in Table 5.3, throughput using IPSec is around 50 % of throughput

without IPSEC. The performance of FreeS/WAN without IPSEC may represent the

bandwidth of a 100 Mbit network with overhead. In theory, a 100 Mbit network

offers 100 Mb/sec. This is slightly higher than the 93 Mb/sec performance without

FreeS/WAN. Thus it can be seen that the performance of VPN using IPSec is limited

by the speed of the software cryptographic library.

In Table 5.4, FreeS/WAN with the Triple-DES accelerator offers a 30 % speed

up over the original software cryptographic library.

5.4.2 IDEA

Since FreeS/WAN does not have IDEA library, no software performance can be

provided. However, as shown in Table 5.3, the performance of FreeS/WAN with

software cryptographic functions is limited by the performance of LibDES. Accord-

ing to the IDEA library provided in openSSL written by Eric Young, the estimated

performance of FreeS/WAN using IDEA is 116.32 Mb/sec. FreeS/WAN can offer

same performance using this library as a 100Mbit network.

The IDEA accelerator was verified by using ping and tcpdump command. The

receiver side use tcpdump to monitor the incoming packet pattern, and the sender

use ping command to send out ping packet with special pattern.



Chapter 5 Results 61

5.5 Summary

In this chapter, the performance of Triple-DES and IDEA accelerator were pre-

sented. Also benchmarks of FreeS/WAN using the Triple-DES accelerator is dis-

cussed.

FreeS/WAN in IPSEC with LibDES achieves only 50% of performance as with-

out IPSEC, this shows that the current software cryptographic library is not capa-

ble using in network applications. FreeS/WAN using our Triple-DES accelerator

achieves 55% - 70% of the performance without FreeS/WAN, which is a 30% im-

provement over software.
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Conclusion

The objective of this thesis was to develop a FPGA-based accelerator for virtual pri-

vate network. A study of FreeS/WAN and LibDES was conducted, which showed

that the performance of FreeS/WAN is limited by the speed of the Triple-DES ci-

pher. Therefore, an Triple-DES FPGA-based accelerator was proposed to increase

the performance of FreeS/WAN.

Area and performance tradeoffs among different DES cores were studied. It

was shown that DES core with a different numbers of combinational rounds give

similar performance. However, the area of a DES core increases linearly with the

number of combinational rounds. To simplify the implementation, a DES core with

16 combinational rounds was implemented. Besides DES core, various of hardware

implementations of different ciphers were compared. The results concerning these

candidates and the accelerator are as follows:

 hardware implementation of IDEA in ECB mode, DES in ECB mode, DES

in CBC mode and Triple-DES in CBC mode were implemented on Pilchard,

which populated with Xilinx Virtex-E XCV1000E device. The estimated

throughput of the cores were 3848 Mb/sec, 1942.4 Mb/sec, 360 Mb/sec and

136.8 Mb/sec respectively.

 the cores were tested on the Pilchard platform in uncachable mode and the

performance of IDEA in ECB mode, DES in ECB mode, DES in CBC mode
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and Triple-DES in CBC mode were 248 Mb/sec, 248 Mb/sec, 248 Mb/sec,

120 Mb/sec respectively.

 a virtual private network (FreeS/WAN) was integrated with the FPGA-based

accelerator and tested. Benchmarks showed that virtual private network of-

fer 30% improvement using the hardware accelerator over a software library.

Note that improvement of 89% is achievable for infinitely fast accelerator.

 the FPGA-based Triple-DES accelerator for VPNs offers an advantage of

high computional power only for large data sizes. According to Figure 5.2,

the hardware implementation is slower than software for small data size due

to data transfer overheads. However, if the data size is large, the hardware

implementation provides a three times speedup over software. Due to this

issue, the overall speedup of the VPN accelerator application was lower than

expected.

The bottleneck for VPN solutions was verified to be the encryption throughput.

The Triple-DES and IDEA accelerator were implemented to increase the encryption

throughput and hence the performance of VPN solutions. VPN solutions can attain

the same speed as a 100 Mbit network if a faster Triple-DES and IDEA cipher

were implemented. This work demonstrates the effect of employing cryptographic

hardware in network applications.

6.1 Future development

Rijndael is announced to be Advanced Encryption Standard (AES), the new en-

cryption standard as a replacement for DES and Triple-DES, by NIST in FIPS-197.

Rijndael offers a faster hardware implementation compared with DES as well as

a longer keysize. Therefore, it is feasible to implement a Rijndael accelerator for

virtual private network.
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As the number of system gates of available in an FPGA increase according

to Moore’s Law, it is feasible to implement several cryptographic algorithms in a

single chip. Different cryptographic algorithms can be used for a virtual private

network with different encryption options without reconfiguring the hardware.

In this work, the throughput of Triple-DES and IDEA accelerators are greatly

below the maximum throughput that Pilchard card can attain because of handshak-

ing overhead. If a network card interface and the corresponding TCP/IP and IPSec

packet handling modules are all implemented in the FPGA, many transfers between

Pilchard card and the host can be eliminated, greatly improving performance.
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