
A Flexible Arithmetic System for Simulation

TSOI Kuen-Hung

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science & Engineering

c©The Chinese University of Hong Kong

November 2007

The Chinese University of Hong Kong holds the copyright of this thesis. Any

person(s) intending to use a part or the whole of the materials in this thesis in a

proposed publication must seek copyright release from the Dean of the Graduate

School.

Abstract

Custom hardware accelerators are commonly used in simulation systems requiring

high computational power. Such applications often have fewdata dependencies,

allowing implementation using parallel datapaths. For such problems, optimization

of the datapath of the circuits leads to significant improvements in overall perfor-

mance.

The Computer Arithmetic Synthesis Technology (CAST) framework, developed

in this work, allows one to quickly explore the design space in three dimensions: the

number system, the operator architecture and the configuration of individual opera-

tors. It utilizes sophisticated arithmetic algorithms andreconfigurable architectures,

captured in the object libraries. The final result is an optimized datapath satisfying

user requirements, and the output can be controlled at different levels.

To demonstrate its ability, the CAST framework is used to implement a number

of simulation systems including the datapath for the force computation pipeline of

N-body simulation and Monte Carlo simulation for interest rate financial deriva-

tives. A novel multiplier generator and an efficient random number generator are

also presented as basic building blocks for simulation. Together, these tools pro-

vide an easy way to describe simulation system in a number system independent

manner, and generate implementation to satisfy different performance, area and ac-

curacy constraints.

i

Statement of originality

The work presented in this thesis was carried out by the author during his doctoral

program in the Department of Computer Science and Engineering, The Chinese

University of Hong Kong, between 2003 and 2007, under the thesupervision of

Prof. Philip H.W. Leong.

The ideas and experiments presented are original with exceptions stated explic-

itly below.

• The implementation of CAST framework including modeling hardware com-

ponents as C++ objects, embedded simulation function, circuit generation and

performance evaluation are work of the author.

• The floating-point and logarithmic operators are based on the FPLIB pack-

ages from Aremnaire project at ENS Lyon [aEL06]. The elementary func-

tion approximation is based on the STAM algorithm [SS99a] and developed

jointly by the author and Chun Hok HO. Other arithmetic libraries in CAST

are the work of the author.

• The three dimension multiplier (TDM) part of the parallel multiplier genera-

tor is based on the three-greedy algorithm [SMOR98] from Paul F. Stelling et

al.

• The architecture and implementation of the alternating step generator RNG

are joint efforts of the author and Ivan Ka Ho LEUNG.

ii

• The interfacing and performance benchmarking of the N-bodyforce pipeline

are the work of Jackson Ho Chuen YEUNG. The architecture and implemen-

tation of the pipeline core are the work of the author and ChunHok HO.

• The bit width optimization of the Monte Carlo core is the workof the author

and Chun Hok HO. The other parts of the system are done by GuangLie

Zhang and others.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Hardware Accelerated Simulation 5

1.3 Objectives . 7

1.4 Contributions . 9

1.5 Thesis Organization . 10

2 Background and Review 12

2.1 Introduction . 12

2.2 Modern Reconfigurable Platforms 12

2.3 FPGA Design Methodology . 14

2.3.1 Xilinx Core Generator . 16

2.3.2 Floating-Point Module Generator using ASC 17

2.3.3 FPLIB . 17

2.3.4 PAM-Blox I/II . 18

2.3.5 JHDL . 18

2.3.6 Handel-C . 19

2.4 Hardware Acceleration on Simulation Systems 19

2.4.1 Floating-Point N-Body Simulation 20

2.4.2 Space Plasma Simulator 20

2.4.3 ReCSiP System . 21

iv

2.4.4 GRAPE Project . 21

2.5 Summary . 22

3 CAST - A Framework for Flexible Datapath Exploration 23

3.1 Introduction . 23

3.2 Computer Arithmetic . 25

3.2.1 Fixed Point . 25

3.2.2 Floating-Point . 26

3.2.3 Logarithmic Number System 27

3.2.4 Elementary Functions . 28

3.3 Overview of CAST . 31

3.3.1 Implementation . 32

3.4 Arithmetic Operator Library . 35

3.5 Unified Arithmetic Operator Class 40

3.6 Summary . 42

4 Mullet - A Multiplier Generator 43

4.1 Introduction . 43

4.2 Parallel Multiplier Structure .44

4.2.1 Partial Product Generators (PPGs) 45

4.2.2 Partial Product Summers (PPSs) 46

4.3 Mullet Architecture . 48

4.4 Results . 53

4.5 Summary . 56

5 A Novel Random Number Generator 58

5.1 Introduction . 58

5.2 Background . 60

5.2.1 Oscillator Sampling based Physical Noise Source 60

5.2.2 Alternating Step Generator 62

v

5.3 Architecture and Implementation62

5.3.1 Clock Doubler . 64

5.4 Results . 66

5.4.1 NIST Test Suite . 67

5.4.2 Diehard Test Suite . 68

5.4.3 TestU01 Test Suite . 69

5.5 Summary . 69

6 Monte Carlo Simulation 70

6.1 Introduction . 70

6.2 Computation ofπ via Monte Carlo Simulations 72

6.2.1 MC Arithmetic System and Wordlength Determination . .73

6.2.2 Determining Fraction Size 74

6.3 The BGM Model, Interest Rate Cap and Monte Carlo Simulation . . 75

6.3.1 Hardware Architecture . 78

6.3.2 BGM Number System and Wordlength Determination . . . 80

6.3.3 BGM Core Architecture 81

6.3.4 Pipelined Path Generation 83

6.3.5 Cap Pricing and Post-Processing Implementation 84

6.4 Summary . 86

7 N-Body Simulation 87

7.1 Introduction . 87

7.2 The N-body Problem . 88

7.3 Coprocessor Implementation . 88

7.4 Conclusion . 91

8 Experimental Results 92

8.1 Monte Carlo Simulator . 92

8.2 N-body Simulator . 96

vi

8.2.1 Arithmetic Library . 96

8.2.2 N-body Coprocessor . 98

8.3 Summary . 102

9 Conclusion 104

Bibliography 106

vii

List of Figures

1.1 Current design practice. 3

1.2 Improved design practice. 4

2.1 FPGA structure. 13

2.2 FPGA design flow. 15

3.1 Input partition of STAM. 29

3.2 Structure of simplified STAM with three segments. 31

3.3 Example circuit and the object hierarchy. 33

3.4 Datapath of the floating-point adder. 36

3.5 Datapath of the floating-point multiplier. 37

3.6 Simplified datapath of the LNS addition operation,ADD l. 38

3.7 Floating-point STAM datapath. 39

4.1 A 4-bit parallel multiplier showing the partial productgenerator and

summer. 45

4.2 Radix-4 MBE circuit. 46

4.3 TDM model and 3-greedy scheme. 47

4.4 Assignments of 6 HWM units to a partitioned design.a) Bad as-

signment with longer delay.b) Good assignment with shorter delay. 50

4.5 MBE components.a) MBE3 MUX; b) MBE4 multiplicand generator 50

4.6 WS scheme of PPS. 51

4.7 Signed multiplication for TDM. 52

viii

4.8 Performance of different multiplier schemes for different input sizes. 55

5.1 Oscillator sampling using D-type flip-flop. 61

5.2 Alternating step generator. 62

5.3 Proposed PRNG circuit. 63

5.4 Xilinx Virtex ring oscillator implementation. 64

5.5 Clock doubler circuit. 65

5.6 Poker test results as a function of the clock doubler delay. 65

6.1 The system architecture block diagram. 73

6.2 Quantization error as a function of fraction size for fixed-point and

floating-point implementations of theπ-simulation. 75

6.3 The system architecture block diagram for BGM-simulation. 79

6.4 Quantization error as a percentage with varying fraction size. 80

6.5 The Primitive Processing Loop Architecture for BGM Core. 82

6.6 The 2-D data flow arrangement for the BGM Simulation. 85

7.1 Top level block diagram showing the architecture of the coprocessor. 90

7.2 Architecture of the force pipeline. 90

8.1 Memory usage ofADD,MUL andx−3/2 (number of Virtex-II 18-Kbit

BlockRAMs). 97

8.2 Frequency comparison of theADD, MUL andx−3/2 operators. 98

8.3 Area utilization of theADD, MUL andx−3/2 operators. 99

8.4 Area comparison of N-body implementations. 101

8.5 Performance comparison of N-body implementations. 102

8.6 Quantization error for force calculation in the N-body problem. . . . 103

ix

List of Tables

1.1 Dimensions for Optimization . 2

1.2 Constraint Factors . 2

3.1 Summary of arithmetic operators available in the current CAST sys-

tem. 41

4.1 Performance of 52x52 multiplier for all possible schemes. The

speed is the minimum clock period inns unit and the area is the

LUT count. 54

4.2 The calibration table of Virtex II FPGA56

5.1 Comparison of poker test results with and without a clockdoubler. . 65

5.2 Implementation summary (Xilinx XCV300E-8). 66

5.3 NIST RNG test result summary for the PRNG. 67

5.4 Diehard RNG test result summary. 68

6.1 Latency of arithmetic operators in CAST. 74

6.2 Results obtained from optimizing the wordlengths of thearithmetic

operators. The pairs (a,b) refer to (integer wordlength, fractional

wordlength) and (exponent wordlength, fractional wordlength) for

the fixed and floating-point cases respectively. 81

8.1 Optimized Implementation for BGM core 93

8.2 Synthesis results for theπ-simulation with Virtex-II Pro XC2VP30FF896. 94

x

8.3 Synthesis results for the BGM-simulation using a Virtex-II Pro XC2VP30FF896. 94

8.4 Device utilization summary for BGM-core modules 94

8.5 Comparison of Speed-up forπ-simulation 95

8.6 Comparison of Speed-up for BGM-simulation 95

xi

Chapter 1

Introduction

1.1 Motivation

Simulation is a process to imitate real processes in an artificial environment with

the aim of extracting characteristics and projecting results of the modeled pro-

cesses. Simulation can be applied to many areas including science, finance and

entertainment. For example, it has been used to study classic physics problems

such as heat distribution [Met93, ZHF+07], pressure reactions [LRN+01], wave

systems [SSL01], aerodynamics [Cho97], particle dynamics[LKM02], typhoon

prediction [DJW03] and quantum phenomena [CLS02]. Other scientific studies that

utilize simulation include chemistry [GJS03] and medical care [PDA01]. Besides

scientific applications, simulation is also used in financial sectors to address prob-

lems in pricing [Fu95], risk measurement [MS01] and market prediction [EM96].

With the rapid growth in the entertainment market, it is alsoimportant to apply

simulation to create more realistic experiences in both films and games [BHW96].

Since the systems will spend most of their time processing data through a fixed

flow in a main loop, optimization via hardware acceleration may greatly improve

the overall system performance. In such a situation, a customized datapath is con-

structed to perform the required computation. Through specialization, it is possible

to achieve much higher performance than software due to increased levels of paral-

lelism and higher memory bandwidth.

1

Chapter 1 Introduction 2

Table 1.1Dimensions for Optimization

Number Representation2’s complement, fixed-point, floating-point,
logarithm numbers, etc.

Pipeline Stages Deep pipeline v.s. low latency
Radix Bit serial, digit serial and bit parallel
Precision Tradeoffs between precision and hardware resources
Arithmetic There are many different ways to perform the same

arithmetic computation, e.g. ripple carry, carry-save
or carry look-ahead for adders.

Synthesis Algorithms Different optimizations such as common
sub-expression removal, resource scheduling, etc.
can be applied

Table 1.2Constraint Factors

Timing Many designs require operation above a given minimum
frequency

Area A finite amount of hardware resources are available
Power Consumption For embedded systems, the power consumption may

be an important concern
Special Device This may include internal memory blocks, internal
requirements dedicated multipliers and I/O pins
Bandwidth Communication channels limited the rate of distributing

data to processing elements

In general, the datapath is a directed graph of arithmetic operators. In every

portion of the system, their timing and precision requirements may be different and

the available degrees of freedom are shown in Table 1.1. At the same time there are

issues that constrain the choices of implementation as shown in Table 1.2.

Various systems have been developed to generate designs in this space using

high level language to circuit synthesizers, or a set of optimized libraries for circuit

construction. The problems associated with these work flowsare that developers

either sacrifice control over implementation details or spend too much effort at low

levels while losing the focus of optimization at the system level. Fig 1.1 shows

the current design practice. There is no easy way to optimizea design in various

Chapter 1 Introduction 3

Figure 1.1Current design practice.

change parameters
improve design:

every operator
set parameters for

draft design

check available resources

list design constraints

get design performance

all constraints fulfilled?

under current algorithm?
possible to fulfill constraints

improve design:
change algorithm

implement design

yes

yes

start

done

no

no

dimensions within a set of given constraints.

The number of iterations required may depend on the experience and skills of

the hardware designer. In addition, such skill must be updated frequently to adapt

to new technologies as they become available. On the other hand, the arithmetic

algorithms and the specifications of the target hardware platforms are well defined.

A major design challenge is to link up these two domains and iterate to find the

suitable solution.

Productivity can be improved if there is a method to handle such tasks under

a single framework. The idea is to store the arithmetic algorithms in a modular

and parameterized form. Information of both the arithmeticalgorithm and hard-

ware platform can be stored in extensible libraries. Metrics are used to evaluate

Chapter 1 Introduction 4

Figure 1.2 Improved design practice.

reconfigure using
new parameters

enter design

enter target information

enter design constraints

self evaluation

all constraints fulfilled?

need user modification?

improve design:
change parameters

improve design:
change algorithm

status
report

start

no

yes

done

yes

no

the current configuration and the result is fed back to improve the design. The sys-

tem can optimize the design by changing parameter values andre-evaluating until

pre-defined constraints are met. Figure 1.2 shows the improved design practice.

To maximize reuse and shorten development time, a method of connecting exist-

ing blocks to form larger blocks is needed. Such a feature allows complex systems

to utilize optimized building blocks. To dissociate the underlaying hardware infor-

mation from the description, a uniform interface should be used for connection and

configuration. Furthermore, the description should be as simple as possible so that

development and learning time is reduced. As new arithmeticalgorithms become

available, it must be able to easily adapt them in the system.

Another important part of the system lies in user configuration. An interface is

Chapter 1 Introduction 5

required to minimize efforts when switching operators or changing parameters of

the operators. Through the common interface, users can specify the constraints to

the top-most and/or any sub-blocks. Also, a method is required to propagate the

constraints and configuration from top level to submodules of the design. Finally,

to enable optimization, the system must have a fast and accurate way to evaluate the

current configuration.

1.2 Hardware Accelerated Simulation

A common scenario for simulation is to model real world systems given their initial

condition, environment and inputs. The system reports status information while

processing input data and changing internal states. This flow usually requires the

ability to process large amounts of data within limited timeframe. When computer

systems are used to perform simulation, the computing powerof the system is often

a limit to the scale or resolution. Several common characteristics associated with

simulations are summarized below:

Parallelism Most real world systems contain objects which act and interact con-

currently. In a computer simulation, parallelism should beexploited to reduce

execution time. In many systems, the data being processed are independent

of one another, increasing the permissible amount of parallelism.

Large and frequent input Many simulation systems require multiple streams of

inputs and generate and update a large set of internal states. This requires ef-

ficient ways to access large amounts of data with high bandwidth, particularly

for parallel systems.

Computationally Intensive The speed and quality of the simulation are dominated

by the computing power of the system in a given time frame.

Simulation has been studied and applied since the early daysof computers. The

advance of computer technology and the increase of available computing power

Chapter 1 Introduction 6

allow more simulation systems to be built-in computer software. These systems

have become increasingly complicated and the timing requirements tighter. Per-

sonal computers and work stations often lack the computing power to handle large

and real time simulation process. Common techniques to accelerate simulation sys-

tems are briefly discussed below.

Microprocessors To address the performance issues of serial/single thread sys-

tems, parallel and distributed architectures based on microprocessors or digital sig-

nal processor (DSP) have been proposed. The systems are partitioned into modules

which can be assigned to different processing elements and processed concurrently.

These methods utilize parallelism to improve overall performance. Limiting factors

include load balancing, network bandwidth and communications overhead.

ASICs Application Specific Integrated Circuits (ASICs) are capable of the

highest performance and even large-scale distributed and DSP solutions cannot

compete with fully customized ASIC designs [Mak05]. For fixed datapaths and

predictable data access patterns, a custom ASIC design can maximize the utiliza-

tion of the given silicon resources by providing customization of arithmetic for the

required accuracy, fine grain parallelism and point-to-point interconnections of pro-

cessing elements. The drawbacks of the ASIC solution include high initial cost and

long development time. It is also difficult and costly to further modify, extend and

improve the design.

Reconfigurable platform This is a middle ground between ASICs and mi-

croprocessors. Often a pure software implementation on conventional off-the-shelf

processors cannot fulfill the demands of today’s sophisticated simulations and an

ASIC solution is too expensive. Reconfigurable platforms offer the potential of

ASIC-like performance without the high initial cost. In this research, they are pro-

posed for hardware accelerated simulation systems and can achieve a higher level of

performance than distributed and DSP solutions, with lowercost than an ASIC de-

sign. Some characteristics of a reconfigurable platform in simulation are presented

below.

Chapter 1 Introduction 7

Since the reconfigurable platforms provide a high degree of freedom in de-

signing parallel architectures, fine grain parallelism canbe efficiently represented.

Most simulation systems are highly customized and domain-specific. The amount

of reuse is limited and the design cost of ASIC cannot be amortized over a large

number of users. Reconfigurable platforms are suitable for such low volume, high

performance application domains.

New algorithms for both scientific and financial simulation can be implemented

on the reconfigurable platform without major changes in the physical hardware.

This also helps in exploring the behaviors of different models, architectures and

simulation algorithms. The parameters and models under which the simulation pro-

cess is executed are subject to change. In a reconfigurable platform, these changes

can be made as easy as in software implementations while maintaining perfor-

mance.

For reconfigurable platforms, the tools to synthesis the hardware design for a

simulation accelerator are relatively easy to master and inexpensive. Small changes

in the design, simple modification of the configuration and replacement with new

libraries can be performed by experienced users.

With all the above advantages, reconfigurable platforms arebecoming popular

for accelerating simulation problems [HGG+05, GVH06, BTLM06]. This poses the

need for an overall optimization framework. Optimization can be done at several

levels including the architecture, arithmetic and the datapath. The complete system

must be considered since local optimization of individual levels may lead to a poor

global solution.

1.3 Objectives

For accelerating simulation systems on reconfigurable platforms, a framework for

designing data paths which considers system design and performance optimization

of the final circuit is needed. The main objective of this workis to design and

Chapter 1 Introduction 8

implement a framework which can be applied to construct advanced simulation

systems for real world designs. The framework proposed includes the following

functionalities:

• Methods to enter datapath designs at an abstract level. The design entry is

based on the conventional object-oriented C++ language andusers can control

details concerning each individual operator.

• A means to verify the functional correctness of the design atthe software

level. The verification method uses the same description framework as de-

sign entry and thus can be performed by users with little hardware design

experience.

• A library of components ranging from simple logic primitives to optimized

elementary function generators. Besides arithmetic operators which are the

most useful building blocks for constructing simulation systems, auxiliary

units such as random number generators are included.

• An interface for specifying configuration and constraints of the operators.

This also ensures a correct interface between arithmetic operators in different

number systems.

The most significant feature of this work is the ability to capture computer arith-

metic and reconfigurable hardware design expertise in a single framework and uti-

lize this information to improve the performance of the design. Several levels of

optimization are applied in the system.

The highest level of optimization is performed at the arithmetic level in which

the representation and the number systems used the design are considered. Knowl-

edge of computer arithmetic and understanding of the simulation model are required

for this task. By providing arithmetic operators in different number systems and a

unified interface for using these operators, developers canconstruct an efficient sim-

ulation system with minimal effort.

Chapter 1 Introduction 9

The second level of optimization is performed when constructing individual op-

erators. The framework provides a simple way to select schemes for implementing

an operation after the input and output representation has been fixed at the previous

level of optimization.

The third level of optimization is performed after the type and structure of the

individual operators have been fixed in the system. Due to different requirements

on precision and limitations on physical resources, the bitwidth of each operator

can be fine tuned for further optimization.

There are many dedicated hardware resources available in modern reconfig-

urable computing platforms. Understanding the availability and usage of these

resources can help to further improve the design. The framework will try to op-

timize designs by automatically utilizing resources according to the target platform

specifications.

The framework also allows users to specify requirements andconstraints such as

available resources and allowed inaccuracies in the results. It can then automatically

determine a suitable instance of the rendered design.

In summary, one can use the framework to quickly explore different designs. It

provides a means to evaluate designs based on simulation andestimation. Based on

this evaluation, users can modify the design by setting different parameters at the

design entry description. The unified operator interface significantly simplifies the

task of mixing operators from different libraries.

1.4 Contributions

This research work contributes to the knowledge on efficientdatapath generation

for simulation applications. It is useful for acceleratingsimulation system on re-

configurable platform. The major contributions are as follows:

• A novel framework, Computer Arithmetic Synthesis Technology (CAST), for

designing and optimizing arithmetic datapaths which are animportant part of

Chapter 1 Introduction 10

simulation systems. By combining the knowledge of both computer arith-

metic and datapath design, the framework helps to improve the simulation

process on reconfigurable platforms.

• A novel and efficient construction for a uniform random number generator

(RNG) [TLL07] which combines the unpredictable nature of a real hardware

RNG with the efficiency of a pseudo RNG in a compact design. This unit

provides the primary inputs to many simulation systems.

• A set of arithmetic operator building blocks [THYL04, TL05]together with

auxiliary functions for interfacing and optimization. This important part of

the framework allows users to explore and optimize the design in various

dimensions.

• The proposed framework was applied to two practical simulations: the N-

body problem [THYL04] and Monte Carlo interest rate simulation [ZLH+05].

The achieved results demonstrate the power of the frameworkand also ad-

vance the state of the art in these applications.

1.5 Thesis Organization

The thesis is organized as follows. In Chapter 2, the reconfigurable platform is

introduced and current design practices with related research on hardware acceler-

ated simulation systems are reviewed. In Chapter 3, background theory on number

systems and datapath optimization are discussed and the details of the proposed

framework are presented. In Chapter 4, a parallel multiplier generator is used as

an example to demonstrate the usage of the framework. In Chapter 5, a novel uni-

form random number generator is presented. Then in Chapter 6, the application

of the framework to a Monte Carlo interest rate simulator is presented to show the

framework’s ability to optimize for a given output precision. Chapter 7 presents

an N-body force simulator which was optimized at the number system level. The

Chapter 1 Introduction 11

results of implementing the framework and these examples are given in Chapter 8.

Finally, Chapter 9 presents conclusions of this research.

Chapter 2

Background and Review

2.1 Introduction

This chapter provides background on Field Programmable Gate Array (FPGA) de-

vices, high level design methodologies and hardware accelerators for simulation

systems.

The chapter is organized as follows. In section 2.2, the basic architecture of

modern reconfigurable devices is presented. Then in section2.3, different ap-

proaches for improving FPGA design flow are presented. Finally in section 2.4,

previous related research on hardware accelerated simulation systems are reviewed.

2.2 Modern Reconfigurable Platforms

The basic structure of an FPGA is a 2-D array of Configurable Logic Blocks (CLB)

surrounded by programmable interconnect switches. Insidethe CLB, there is a set

of primitive function elements including lookup tables (LUT), flip-flops (FF) and

other simple logic gates. The process of mapping a design to FPGA platform in-

volves configuring the CLB to perform some logic sub-function and specifying the

connections between them through programmable switching nodes. This informa-

tion is stored in configuration memory which can be programmed by the user using

an standard interface such as JTAG. Changing the design is a process of changing

12

Chapter 2 Background and Review 13

Figure 2.1FPGA structure.

CLB

CLB LUT FF

PRM

PRM

PRM

PRM

CLB

CLB

CLB CLB

CLB

the content of the configuration memories and no modificationof physical elements

or rewiring in silicon is required. Inside the CLB, connections between primitives

are controlled by multiplexers (MUX). The connections between CLB are relatively

flexible and made via Programmable Routing Matrices (PRM) and bus lines; how-

ever, they are limited in capacity. A block diagram of a generic FPGAs is shown in

Figure 2.1.

Today’s advanced FPGA chips also offer special embedded blocks such as large

memory blocks (BlockRAM) and fast carry chains between adjacent logic blocks

[Xil02]. Dedicated multipliers and other DSP related blocks can also be found.

Some features of FPGA designs compared with other VLSI technologies are listed

below:

• Fast design to product time. Both the time for circuit development and pro-

gramming the FPGA device are short compared with the required time for

layout and manufacture in ASICs.

• Easy simulation and debugging. Software simulators and debuggers provide

efficient methods for finding bugs and estimating performance. Since silicon

Chapter 2 Background and Review 14

level verification and testing have been done by the FPGA manufacture, only

simulation and verification on a functional level are required in most FPGA

based designs.

• It is possible to use the same FPGA hardware platform for manydifferent

applications. This makes designs more flexible, extensibleand cost effective.

This characteristic of FPGA also makes it suitable for low cost prototyping of

early designs which are subjected to change. In fact, FPGAs are commonly

used for design verification of ASICs in industry.

• The design can be upgraded after deployment without hardware replacement.

It is also possible for skilled and experience end users to improve and opti-

mize the design for specific applications.

The traditional FPGA design flow is shown in Figure 2.2. Design entry can be

either schematic capture or synthesis via a Hardware Description Language (HDL).

The schematic flow is more intuitive for small designs while the HDL flow provides

an efficient way to implement and manage large and complex designs.

In the synthesis flow, a netlist is generated describing the logic functions and

their interconnections. The functions are then mapped to the logic primitives of the

target FPGA platform. The placement of logic primitives androuting of connections

are altered to find an optimized solution which will meet the constraints stated by

the designer. The implementation process generates a bitstream representing the

configuration of the FPGA, which can be downloaded to the chip.

2.3 FPGA Design Methodology

In this subsection, current FPGA design methodologies are presented. These in-

clude library generators and high level language synthesis. The advantages and

disadvantages of each method are also discussed.

Chapter 2 Background and Review 15

Figure 2.2FPGA design flow.

Schematic Capture HDL Languages

Design Entry

Synthesis

Design

Netlist

Bitstream

Design Download

Reports

Design Verification
(Simulation)

Mapping

Place & Route

Bitstream Generation

Floorplanning

Implementation

Chapter 2 Background and Review 16

2.3.1 Xilinx Core Generator

Module generators are able to generate customized designs from their input param-

eters. For example, the Xilinx Core Generator library for FPGAs [Inc02] provides

highly optimized libraries for the fixed-point multiplication, multiply-accumulate,

division and Coordinate Rotation Digital Computer (CORDIC) operations. Besides

the arithmetic operations, peripheral interfaces and common designs such as FIFO

are also provided. In the Core Generator system, users select the module to be

generated and configure the parameters through a graphical user interface (GUI). It

provides a wide range of parameters for each module including the size, functions,

I/O, resource constraints and even placement information.The generated modules

are usually in format of Xilinx proprietary format used in the Xilinx back end tool

chain.

The advantages of this kind of vendor-provided module generator is the achiev-

able optimization through detailed low level customization. This requires knowl-

edge of dedicated hardware available and physical layout onthe devices. To achieve

the same performance using conventional hardware description languages (HDL)

such as Verilog and VHDL is time consuming. Also, it is difficult to maintain and

improve the resulting circuits.

Unfortunately, the number of modules provided by this kind of vendor pro-

vided system are limited. For arithmetic system, operatorssuch as constant coeffi-

cient multipliers, square root and logarithmic number system computation are not

included. In such libraries, there is usually little flexibility in the numerical rep-

resentation which is usually fixed or floating-point. The configuration parameters

for the modules are mostly concerned with target platform optimization rather than

numerical algorithms. The most important point is that these systems only opti-

mize and generate individual modules and lack the ability toconsider the complete

design. Developers are required to interface these discrete modules to form a com-

plete design, and optimization on the system level may require several iterations of

Chapter 2 Background and Review 17

reconfiguration and regeneration of these modules.

2.3.2 Floating-Point Module Generator using ASC

Flexible floating-point module generators have been developed [LTM03] using a

different approach. This system relies on the A Stream Compiler (ASC) [Osk06]

for low level circuit generation. Users can use the arithmetic operators, such as the

‘+’ and ‘×’ symbols, in C++ language directly for circuit description. The ASC

will then be used to compile the program into corresponding FPGA netlist. Num-

ber representation and format of floating-point data are created as custom types and

classes in C++. Parameters can be configured to control sign mode, normalization,

rounding and bit width of the generated modules. These parameters are automat-

ically determined based on the required optimization option, which is selected by

users from among throughput, latency and area.

2.3.3 FPLIB

A similar idea of providing a parameterized module generator had been done at the

HDL level. FPLIB [aEL06], developed in the Aremnaire project at ENS Lyon, is

a library for hardware operators for floating-point and logarithm number systems

(LNS). The library utilizes thegenericparameter in VHDL for configuring the bit

width of the generated modules. Besides the common operators such as add, sub-

tract, multiply, divide and square root, the library also provides a set of conversion

operators for bridging different number systems or operators with different preci-

sions.

The above examples of module generator systems can improve FPGA design

productive and performance. They configure the module basedon parameters ei-

ther specified explicitly by the user or implicitly from abstract level optimization

requirements. The major disadvantages of these systems is the lack of global op-

timization on the datapath. Also, users have limited control over the optimization

Chapter 2 Background and Review 18

process. The ability for users to extend and improve the modules may depend on

different back ends and involve modification of the tools themselves.

2.3.4 PAM-Blox I/II

PAM-Blox [MMF98] was one of the first module generators whichallowed pro-

grammed generation of circuits from C++. A recent extension, PAM-Blox II [Men02],

has been reported in 2002. In the system, complicated circuits such as constant co-

efficient multipliers, Booth multipliers, CORDIC units areimplemented in PAM

objects. To implement a circuit, the user should first enter the design in a structural

connection of different objects provided in the PAM. The system then generates a

circuit in Xilinx netlist format representing the datapathof the C++ program. The

final configuration stream will then be produced by Xilinx place and route tools.

Higher level design is performed by combining such descriptions in a structural

manner.

The PAM system improved productivity by freeing developersfrom traditional

HDL. But the system only generates individual modules and other system level con-

cerns such as interfacing between modules remain the duty ofdevelopers. Also, the

modules in the PAM are rigid in both size and function. Similar designs with little

variations require creation of different objects. Finally, simulation and verification

require external tools that operate on the generated netlist. This makes it difficult to

debug the circuit by relating the netlist and C++ descriptions.

2.3.5 JHDL

In 1997, the JHDL [HBH+99] project was initiated in the Configurable Computing

Laboratory at Brigham Young University. It uses the Java language for design en-

try in which functional blocks are treated as objects. The lower level libraries are

tightly coupled with the primitives in Xilinx FPGAs. The abstraction level increases

Chapter 2 Background and Review 19

as higher level libraries are device independent. Users candesign the complete dat-

apath in JHDL using a structural description. The APIs for circuit construction are

very similar to the HDL description with input/output port interfaces and aconnect

method to connect the objects’ ports. Auxiliary tools such as a simulator, schematic

extractor and state machine generator are also provided.

2.3.6 Handel-C

High level synthesis algorithms are also used to speed up thedevelopment on FPGA

platform. The Handel-C [Pag96] language from Celoxica can accept a C-syntax

like description and generate the corresponding circuits.Unlike the JHDL system,

Handel-C is a behavior language for circuit generation based on the custom com-

piler analyzing the extended syntax in the user program. Simulation and debugging

tools are also provided in the integrated developing environment (IDE). This helps

to realize and verify an existing algorithm on hardware without experience in hard-

ware development. This can also benefit experienced developers for rapid proto-

typing and evaluation of system architecture. The Handel-Csyntax is based on the

ANSIC-C standard with extensions. The extensions help to optimize circuit perfor-

mance by allowing users to specify hardware related information such as variable

bit width and parallel constructs.

2.4 Hardware Acceleration on Simulation Systems

Examples of simulation systems accelerated using dedicated hardware are reviewed

in this section.

Chapter 2 Background and Review 20

2.4.1 Floating-Point N-Body Simulation

An N-body simulation system using optimized floating-pointunits was implemented

by Lienhartet al. in 2002 [GAM02]. Using a 16-bit significand floating-point repre-

sentation, the system can achieve about 3.9Gflops at 65MHz ona Xilinx XC2V3000

FPGA. The system built is to perform the computation of smoothed particle hy-

drodynamics method (SPH). The authors prefered floating-point over logarithmic

arithmetic as the latter required a large ROM to implement adders. In the design,

the resource utilization is dominated by the adder, dividerand square root oper-

ators. With the help of Xilinx Block Multipliers, a single floating-point multiplier

consumes about0.5% of the total FPGA resources. The complete design fits in49%

of the logic resources. Results also show that a 22-bit implementation will be two

to three times larger than the implemented 16-bit version.

2.4.2 Space Plasma Simulator

In 2003, Popoola and Gough developed a system to simulate thespace plasma using

FPGAs for acceleration [PG03]. The design included a soft core CPU and some

co-processing units such as FFT and floating-point sine/cosine computation. The

results show that the accelerated system is several orders of magnitude faster than a

software implementation. The system uses the 1D electrostatic code to investigate

various phenomenon in space plasmas. In a single iteration,the system needs to

assign positions and velocities of the particles to the nodes; compute the electric and

magnetic fields at the nodes; compute the force field; and interpolate to obtain new

particle positions and velocities. For a simulation including hundreds of thousands

of particles, the system utilized three parallel co-processing units to off-load the

computationally intensive tasks of the controlling processor. The improvement of

this parallelized design increases as the number of particles simulated is increased.

Chapter 2 Background and Review 21

2.4.3 ReCSiP System

Reconfigurable platforms have also been used in biochemicalresearch. In 2004,

Masatoet al. [YOFA04a] constructed a stochastic biochemical simulatorbased on

Gillespie’s First Reaction Method (FRM) using a high throughput floating-point de-

sign. Equipped with a Xilinx XC2V6000 FPGA chip, the ReCSiP system can run

105 times faster than an AMD AthlonXP2800+ processor. The set of fine grain pro-

cess with heavy intra-process communication in the simulation make it inefficient

in distribute or cluster systems. The core of the platform isa set of four parallel

reactor modules, each including 6 floating-point multipliers, 5 floating-point adders

and a random number generator. Using over77% of the FPGA area and operating

at 76MHz, the system outperforms both AlthlonXP2800+ and Xeon 2.8G Dual pro-

cessors by utilizing a 27 stage pipeline and multiple parallel simulators in a single

chip.

2.4.4 GRAPE Project

The GRAPE project in Japan [Pro05] in 2005 performs double-precision calcula-

tions of gravitational N-body simulations in high speed. The modified SIMD ar-

chitecture is suitable for integration of over 1,000 processing elements on a single

ASIC and targets execution speeds exceeding 1 Petaflops. TheGRAPE project has a

long history of developing platforms for N-body simulation. The previous GRAPE

systems are based on the idea of deep pipelines and massivelyparallel architectures.

Examples are GRAPE-2 [TTJD91], GRAPE-4 [MTES97] and GRAPE-6 [MFK00].

For example, the GRAPE-6 project in 2002 delivered up to 64Tflops of computing

power. The 1.8M gate GRAPE-6 processor was fabricated using0.25µm tech-

nology. With 6 parallel pipelines, a single processor can provide 31Gflops using

a 22.5MHz system clock. The bottleneck of the GRAPE-6 systemis the intra-

processor communication. Various approaches were developed to reduce the im-

pact of bandwidth limitations in the system. The final GRAPE-6 system includes

Chapter 2 Background and Review 22

dedicated network board to connect 4 host computers and 16 processor boards as a

computer module and 4 modules are connected through a Gigabit Ethernet Switch.

The new GRAPE-DR [Mak05] system proposed another approach for higher

computing power. Over 1,000 processors, which are extremely simple yet fully pro-

grammable, will be connected through hierarchical broadcast/reduction networks in

a single chip.

2.5 Summary

As shown in this chapter, the reconfigurable device is an excellent platform for ac-

celerating simulation systems when high computational power can be achieved by

hardware parallelism, deep pipelines and efficient intra-processor communication.

The hardware accelerators range from single chip FPGA implementation to large

scale multi-core, multi-chip designs. It is shown that these hardware accelerators

can achieve better results than pure software designs running on high-end proces-

sors. Various tools and development environments have beenproposed to improve

productivity by providing optimized libraries or high level synthesis. While having

achieved their objectives, these tools have limitations onthe degree and level of

achievable optimization.

Chapter 3

CAST - A Framework for Flexible

Datapath Exploration

3.1 Introduction

To efficiently explore the design space for simulation problems, a unified framework

is needed to express the various design and implementation details of the hardware.

In a traditional design flow, hardware description languages (HDL) such as VHDL

and Verilog are used as the primary design entry method. These languages are well

defined and wildly adopted in industry. A developer can use HDL to describe and

control every detail of a design and achieve highly optimized results. The major

disadvantage of the HDL flow is that it is too low level and too much effort is spent

on design details.

To address the above problems, new methodologies have been proposed. Most

of them can be classified into two classes: high level language synthesis tools [Pag96,

BH98, HLT+02] and library generators [Xil00b, MMF98]. The first methodis to

translate a conventional high level computer language, such as C and Java into an

equivalent hardware circuit. The second method provides aninterface for user to

configure the parameters of a predefined library set and generate the desired circuit.

Some examples of these methodologies have been presented inChapter 2.

Both methods provide an abstraction of the hardware detailswith an efficient

23

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 24

interface for developers. Each have different emphasis anddrawbacks.

• The main advantage of the first method is the familiarly of programming

tools. Most developers know how to program in high level languages and one

can easily port an algorithm from existing software to hardware with mini-

mum modification. However, such simplicity does not generate high perfor-

mance results in general. Developers either need insert additional information

such as parallel constructs or they have to depend on the embedded optimiza-

tion algorithms of the tools.

• The library generator approach is usually specialized for certain applications.

For example, there are generators for floating-point arithmetic, CORDIC com-

putation, lookup tables for approximation, etc. The performance of the gener-

ated circuits depends on the configuration entered by users.While achieving

high quality for individual modules, the overall performance of the complete

design may not be optimal due to the lack of a high level understanding of the

problem. Also, the flexibility is usually limited in the generator and new or

customized algorithms are difficult to add to the system.

To address the above problems, the Computer Arithmetic Synthesis Tool (CAST)

was developed. It is a framework for datapath design and optimization using an ob-

ject oriented approach.

One of the major features of CAST framework is to allow users to switch and

mix different number representations. Fixed-point, floating-point and logarithmic

number systems are supported and these are explained later in this chapter. A lookup

table based algorithm is presented for approximating elementary functions. These

are examples of computer arithmetic knowledge captured in the CAST framework.

The features and implementation of the CAST framework is also presented here.

We will explain the usage and internal architecture of CAST by examples. One of

most valuable parts of CAST is the arithmetic operator library. The implementation

of each operator and a unified interface for using them is presented.

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 25

This chapter is organized as follows. In section 3.2, several number systems with

their attributes and applications are presented. Section 3.3 will give an overview of

the implementation details of CAST. Section 3.4 presents a set of operators in differ-

ent number systems implemented in the CAST library. A unifiedconfiguration and

creation interface for these operators is presented in Section 3.5 Finally, Section 3.6

concludes this chapter on the CAST framework.

3.2 Computer Arithmetic

In this section, a brief review of the fixed, floating and logarithmic number repre-

sentations is presented. More detailed descriptions can befound in computer arith-

metic textbooks such as Koren [Kor93], Flynn [WF82, Fly01],Parhami [Pat00] or

Ercegovac [EL04].

3.2.1 Fixed Point

Unsigned integers are used to represent the nonnegative integers. AnN-bit un-

signed integer has a range[0, 2N − 1] and can be described in binary form, withui

being thei’th binary digit:

U = (uN−1uN−2 . . . 0), ui ∈ {0, 1}.

This represents the number

U =

N−1∑

i=0

ui2
i.

The two’s complement representation is the most widely usedscheme for in-

tegers. The representation is similar to the unsigned integers except that the most

significant bit has a weighting of−2N−1. A two’s complement integerX of differ-

entN can be represented in binary form, withxi thei’th binary digit as

X = (xN−1xN−2 . . . 0), xi ∈ {0, 1}.

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 26

X has a range of[−2N−1, 2N−1 − 1] and represents

X = −xN−12
N−1 +

N−2∑

i=0

xi2
i

The two’s complement integer representation can be generalized to represent

fractional numbers by scaling. A two’s complement fractionis represented as a

pair (N, F)I, whereN is the word length in bits,F is the fractional word length

and the subscriptI shows that it is an integer representation. The most significant

N − F bits of the number represent the integer part and the remaining F bits are

the fractional part of the number

Y = (

integer︷ ︸︸ ︷
aN−1 . . . aF

fraction︷ ︸︸ ︷
aF−1 . . . a0).

This corresponds to a scaling of the two’s complement integer representation by the

factorS = 2−F and the two’s complement fraction numberY represents

Y = 2−F × (−xN−12
N−1 +

N−2∑

i=0

xi2
i)

Note that the two’s complement fraction(N, 0)I corresponds to the two’s comple-

ment integer case and(N, N)I has a range of[−1, 1).

3.2.2 Floating-Point

Floating-point numbers are an approximation to the real numbers and offer wider

dynamic range than fixed-point numbers, at the expense of reduced precision and

larger implementation complexity and area. In the IEEE 754 standard [IEE85] for-

mat, three fields are used to represent a floating-point number and it can be repre-

sented as the pair(N, F)F whereN is the total word length,F is the word length

of the significand (also known as the mantissa) and the subscript F shows that the

pair represents a floating-point number. The most significant bit is a sign bitA, the

following J(= N − F − 1) bits,bi encode the exponent fieldB and the remaining

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 27

F bits ci encode the mantissa fieldC

Z = (
A︷︸︸︷
a0

B︷ ︸︸ ︷
bJ−1 . . . b0

C︷ ︸︸ ︷
cF−1 . . . b0).

A represents the signS where

S =

+1 if a0 = 0

−1 if a0 = 1

The unsigned integersB andC are encoded representations of the exponent and

mantissa respectively. The exponentE, is stored in a biased representation with

E = B − (2J−1 − 1). For normalized numbers,B 6= 0 and the significand is

represented byM = 1+C ×2−F . This is a two’s complement fraction(F +1, F)I

with the most significant bit being implicitly set to 1. IfB = 0, it is called a

denormalized number, and there is no implicit 1 in the(F, F)I fraction.

The number represented is given by

Z =

S × 2E × M if (0 < B < 2J − 1)

S × 2E × (M − 1) if (B = 0)

S ×∞ if (B = 2J − 1 andC = 0)

NaN if B = 2J − 1 andC 6= 0).

3.2.3 Logarithmic Number System

The logarithmic number system (LNS) is a special case of floating-point in which

the mantissa is always 1 (i.e. only the sign and exponent fields are used). It has the

advantages of simplified implementation at the expense of reduced precision. For

anN bit LNS number,(N, F)L, the most significant bit is a zero flag,Z. Z is zero

if the number is zero (since there is no log of zero), otherwise set. The next most

significant bit is used for a sign bit and the rest of the numberis the base 2 logarithm

of the magnitude of the number to be represented in(N −2, F)I two’s complement

fraction format. IfE is the value of this two’s complement fraction andS is defined

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 28

as for floating-point, then

L =

0 if Z = 0

L = S × 2E if Z = 1

The LNS is good for applications where large dynamic range isneed. The im-

plementation of multiplication and division in LNS is very efficient compared to

floating-point. Unfortunately, computing addition and subtraction requires large

lookup tables.

3.2.4 Elementary Functions

In many systems, there is a need to compute elementary functions such assin, log

and exp. To achieve the high throughput requirements in hardware accelerators,

table lookup methods are used instead of iterative algorithms as in software im-

plementations. The main idea behind the table lookup approximation algorithms

is using the Taylor Expansion. If a functionf(x) has continuous derivatives up to

(n + 1)th order, then

f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)(x − a)2

2!
+ · · ·

+
f (n)(a)(x − q)n

n!
+ Rn

=

n∑

i=0

f (i)(a)(x − a)i

i!
+ Rn (3.1)

where

Rn =

∫ x

a

f (n+1)(u)
(x − u)n

n!
du

=
f (n+a)(ξ)(x − a)n+1

(n + 1)!
for a < ξ < x

To reduce the required hardware resources and/or computation power, only the

first few terms in the Taylor series are used to approximate the function. The se-

lection ofa will affect the error introduced and a carefully selecteda can be used

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 29

to introduce symmetry in the lookup table as explained later. If a = 0, the series is

call a MacLaurin Series.

The Symmetric Table Addition Method (STAM) [SS99a] method was developed

for this approximation. The STAM uses the first two terms of the Taylor series to

approximate a functionf(x) as f̃(x) [SS97]. In the STAM, a set of lookup tables

are constructed and the precision of the output is maximized.

Assume that then-bit input, x, of the function to be approximated ranges in

[0, 1). It is first partitioned inm segments as shown in Fig 3.1 wherex =
∑m−1

i=0 xi.

In the description below, we follow the original STAM notation in whichxi is an

n-bit number with all bits in other segments are masked to zero. It is different from

theith digit notation in fixed-point representation in Section 3.2.1.

Figure 3.1 Input partition of STAM.

2−1 −n02
−n0− n1

X 0

n1

X 1

n0

1 2

0. X m−1

nm−1
n

2
− n10−n − nm

The ranges ofxi are shown here:

0 ≤ x0 ≤ 1 − 2−n0

0 ≤ xi ≤ 2−pi−1 − 2−pi

(3.2)

wherepi =
∑i

k=0 nk.

We then select mid points in the ranges ofxi:

δi = (2−pi−1 − 2−pi)/2 (3.3)

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 30

Let a = x0 + x1 +
∑m

2 δi and use the first two terms of Taylor Expansion:

f̃(x) = f(x0 + x1 +
m∑

2

δi) +

f ′(x0 + δ1 +
m∑

2

δi)(
m∑

2

xi −
m∑

2

δi)

= a0(x0, x1) +

m∑

2

ai−1(x0, xi) (3.4)

where

ai−1(x0, xi) = f ′(x0 + δ1 +

m∑

2

δk)(xi − δi) 2 ≤ i ≤ m

Functionsai are evaluated by table lookup method with much less entries in the

table compared with direct lookup for functionf(x). The final step is to sum the

outputs of all the small tables as the approximated result.

The number of entries in tableai is 2n0+ni in a direct implementation. This

size can be reduced by half using the symmetric nature of the table. First, we

notice that2δi − xi equals the bitwise inversion ofxi. This is obvious by listing all

the binary patterns ofxi. Then we notice thatai(x0, 2δi − xi) equals the bitwise

inversion ofa1(x0, xi). This can be shown by replacingxi by 2δi − xi in ai =

f ′(x0 + δ1 +
∑m

2 δk)(xi − δi).

From the above two properties, the table can be reduced to half its original size.

Only the bits from thepi + 1th to thepi+1 − 1th position are used to index the

lookup table. Thepi
th bit is used the transform the index and result. The transform

is simply the bitwise XOR of the index and the result with thepi
th bit.

Full details including table size reduction achieved and error analysis can be

found in [SS99a]. A simplified STAM design using only three segments is shown

in Figure 3.2.

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 31

Figure 3.2Structure of simplified STAM with three segments.

x0 x1 x2

n

Table
a0(x0, x1)

Table
a1(x0, x2)

XOR

n0 n1 n2 - 1

Adder

XOR c

sign(a1)

f(x)

p

p0

p1

p1-1

n2 - 1

~

3.3 Overview of CAST

The CAST system is a framework for building optimized arithmetic and logic cir-

cuits in hardware in which circuits are treated as objects interconnected by wires

(which are also objects). Object-oriented features of the C++ programming lan-

guage are used to allow module generators to interrogate objects for information

such as their state and delay. Simulation and generation of synthesizable VHDL

code can be performed by direct execution of the program. On top of this envi-

ronment, a module library which provides a computer arithmetic scheme that is

independent of numerical representation, number format and operators is available.

The underlying circuit description is a structural one built from primitive elements.

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 32

To use the CAST system, developer instantiates objects fromthe CAST library and

assign values to these objects. The C++ language is used in the CAST system.

In the CAST system, hardware components are modeled as C++ objects which

have configuration attributes. By controlling these attributes, users can modify the

datapath without concern as to the internal structure and interface of the circuits.

The CAST system also provides an interface to simulate the constructed circuit in

software level. This can verify the functional correctnessof the design in its early

stages. The resulting circuit is generated in structural VHDL codes which can be

passed to the hardware vendor’s tool chain directly.

The CAST system also has a built-in simulation feature. In addition, search al-

gorithms are embedded in the system to obtain optimized results for both individual

modules and the overall design.

3.3.1 Implementation

Two libraries are used in CAST. One is utility library which is responsible for sim-

ulation and rendering of the circuits. The other is a primitive module library which

consists of logic gates, adders, multiplexers, registers,etc. They can be connected

together to form arbitrary designs and a circuit is modeled as a graph of intercon-

nected objects. An example of a design to computey = ax+b is given in Figure 3.3.

In this example, the testbench moduletb includes three primitive modules:my mul,

my dff andmy add. A component booker, also shown in the figure, is responsible

for logging the creation of all primitives. In the object hierarchy, the composite

moduletb is called by the top level CAST system and is the parent of all three sub-

modules. When the parent is to be simulated/rendered, all underlying children are

simulated/rendered automatically.

Two methods are used to simulate a circuit:sim clk() for registering values

at clock edge; andsim eva() for the combinational parts of the circuit. For prim-

itive modules, thesim eva()method is a set of expressions relating the outputs to

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 33

Figure 3.3Example circuit and the object hierarchy.

A

P = A*B

B

P

HObj

my_mul
A

P = A+B

B

S

HObj

my_add

D

Q

HObj

my_dff

A

X

B

Y

CLK

Compo

tb

CAST main

CAST

<Compo>tb

<HObj>my_mul

<HObj>my_add<HObj>my_dff

my_dff

my_mul

my_add

component_book

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 34

the inputs. Thesim eva() method in a composite module calls thesim eva()

methods of the submodules iteratively according to dependencies derived from the

interconnection graph. When thesim eva() method of the composite object re-

turns, the circuit is in a stable state and the value of any intermediate signal can be

examined.

The simulation function of the CAST system helps designers to debug logic at

a software level in the early stages of development. For primitive modules, it is

the library designer’s duty to ensure the simulation behavethe same as that of the

generated VHDL circuit. CAST will ensure the consistency between the simula-

tion and implementation for designs formed from an interconnection of primitives.

Writing a testbench is also easier since the stimuli can be created using standard

C++ functions.

The following example creates the adder object of Figure 3.3, performs a sim-

ulation and generates a VHDL description and testbench. ”my add” will be the

instance name of the adder and the portsA, B andSwill be generated automatically.

// create adder

my_add=new Add_n("my_add",2*n);

// connect I/O

connect(my_mul->P, my_add->A);

connect(my_dff->Q, my_add->B);

...

// simulate 1 clock cycle

tb.sim_clk();

// print out result

sim_result(add->S);

// generate VHDL (including testbench)

tb.gen();

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 35

When a module is created, the constructor first saves a local copy of the configu-

ration, e.g. the adder width2n. Then thecircuit()method is called to construct

the circuit. Finally, the current object is registered to its parent.

To generate the VHDL code for a circuit, thegen() method is used. In this

method, the I/O ports are first created, and then the components, their instances and

interconnections are generated in a manner which avoids forward references.

3.4 Arithmetic Operator Library

CAST was designed to be extensible with a view that it can be used to support many

different number systems, arithmetic operators and implementation schemes. In the

current prototype, the fixed-point, floating-point and LNS number systems can be

used and the operators supported are addition, subtraction, multiplication andx−3/2,

those being required for the N-body problem.

The implementation of the+, − and× operators for the fixed-point system

follows the standard two’s complement integer methods. A common ripple carry

adder/subtracter using the fast carry chain was used for addition. Different addi-

tion schemes such as carry select and carry lookahead for long wordlengths can be

integrated into the CAST system by overriding thegen() function of this operator.

The input/output format and precision of the addition/subtraction fixed-point op-

erators are the same and no pre/post-processing is required. In the case of multipli-

cation of two(N, F)I two’s complement fractions, an(2N, 2F)I result is obtained.

In CAST, the operators default to using the same format for inputs and outputs and

so in order to convert the result back to(N, F)I format, it must be scaled by2−F

and the least significantN bits used.

The floating-point operators are implemented in a manner similar to the IEEE

754 standard [IEE85] except that Not-a-Number (NaN) and denormalized numbers

are not implemented. The round-to-nearest mode is used for all operations and the

size of exponent and fraction is parameterized.

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 36

Figure 3.4Datapath of the floating-point adder.

shift right

2’ complement2’ complement

normalization
rounding

swap

frac(x+y)exp(x+y)sign(x+y)

exp(x’)

sign(y’)sign(x’)

x yexp(x) exp(y)

x’ y’

The floating-point adder accepts two inputsf1 andf2 and returns the sum in

the same format. The implementation is pipelined with a latency of 3 cycles. In

the first cycle,f1 andf2 are swapped if the exponent off1 is smaller than that of

f2, and the difference between the exponents off1 andf2 are calculated. In the

second cycle, the significands are aligned. the intermediate sum is computed and

the position of the leading one is determined using a priority encoder. In the final

cycle, the result is normalized and rounded and the exponentcorrected to produce

the output.

The floating-point multiplier accepts operandsf1 andf2 and returns the product

in the same format as the inputs. In the first cycle, the sign bit is calculated and

the intermediate exponent and product are also computed. Inthe second cycle, the

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 37

Figure 3.5Datapath of the floating-point multiplier.

fixed point
multiplier

exp(x)+exp(y)−bias

normalization

rounding

frac(x*y)exp(x*y)

frac(x) frac(y)exp(y)exp(x)sign(x) sign(y)

sign(x*y)

intermediate result is normalized. In the third cycle, the result is rounded to produce

the output.

The LNS implementation used in CAST is based on the open source code of

the Aremaire project [aEL06]. The LNS operations accept andproduce numbers

in the format described in Section 3.2. The multiplication in LNS is performed by

summing the two exponents and setting the zero flag appropriately. The sign bit

is computed as the XOR of the sign bits of the two inputs as in the floating-point

case. The LNS addition ofX = log2(x) andY = log2(y), ADD l, is computed by

making use of the following identity [Kor93]:

Z = log2(x ± y) = log2 (x(1 ± y/x))

= log2(x) + log2(1 ± 2log2(y/x))

= X + log2(1 ± 2Y −X)

The implementation usesY − X to index a lookup table which generateslog2(1 ±
2Y −X), and this table is constructed in Xilinx devices using distributed16× 1 LUT

RAM rather than BlockRAM. When they input is negative, a subtraction must be

performed and thus theADD l module must include tables for both1 + 2log2(Y −X)

and1 − 2log2(Y −X). Figure 3.6 shows a block diagram of the datapath for the LNS

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 38

Figure 3.6Simplified datapath of the LNS addition operation,ADD l.

LUT for
addition

abs(Y−X)sign

sign(x) sign(y)

sign(x+y)

LUT for
subtraction

X Y

X+Y

f(sign(x), sign(y), op)

addition operation. In the actual implementation, extra swapping logic is included

for the case thatY − X is negative. To perform a subtraction, the sign bit of the

second input is inverted prior to being passed to the addition module.

A class implementing the Symmetric Table Addition Method (STAM) [SS99b],

which can approximate any twice differentiable function isavailable to construct

operators such asx−3/2 [HTY+03] which is useful in the N-body simulation. STAM

offers very good flexibility but the tables can become large if high accuracy is re-

quired.

In the N-body force pipeline application example in Chapter7, functionf(x) =

x−3/2 is needed to be evaluated. Computing the functionx−3/2 in LNS is done by

using shift and add operations to multiply the LNS number by -1.5. The fixed-point

implementation is computed directly using STAM. For floating-point, STAM can

only be directly applied to the significand part of the number. If the number is

represented byx = (1.f) × 2E wheref is the fraction andE is the exponent, the

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 39

Figure 3.7Floating-point STAM datapath.

sign fractionexponent

fixed point STAM

normalize

−bias

2
3

even/odd

shift count

B
A

rounding

A−B

sign fractionexponent

10
bias−

2
−0.5

floating-point case can be handled using [HTY+03]:

f(x) = x−3/2 = ((1.f) × 2E)−3/2 = (1.f)−3/2 × 2−3E/2

A fixed-point STAM module forx−3/2 is used to calculate(1.f)−3/2. If the expo-

nentE is even, multiplication by2−3E/2 can be achieved by simply multiplying the

input’s exponent by−3E/2. If E is odd,x−3/2 can be rewritten as:(1.f)−3/2 ×
2−(⌊−3E/2⌋+1) × 2−1/2. In [HTY+03], a floating-point multiplication was used to

handle the exponent of the odd exponent case. In the current design, a fixed-point

multiplier, as shown in Figure 3.7, was used to optionally multiply by 2−1/2 and the

2−(⌊−3E/2⌋+E0 term (whereE0 is the least significant bit of E) is added to the expo-

nent. The new scheme results in a more compact circuit and eliminates the need for

a normalization step before floating-point multiplication. To improve throughput,

pipeline registers were inserted and a 3 clock cycle latencyintroduced.

A set of modules for converting between number systems was also developed.

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 40

When converting from floating to fixed-point number systems,a shift amount is

computed from the exponent. The fractional part (and the implicit ‘1’ of the signifi-

cand) will be shifted according to the shift amount. The finalresult should be two’s

complemented if the sign bit is set. When converting from fixed to floating-point,

the absolute value of the number is passed to a priority encoder to find the position

of the most significant set bit. Then the number is shifted to form the significand and

the exponent calculated. For conversion from LNS to the floating-point system, the

significand,2frac(LNS), wherefrac(LNS) is the fractional part of the LNS number,

is computed using a lookup table. The integer part of the LNS goes to the exponent

after addition of the bias. In conversion from floating-point to LNS, the integer part

of the LNS is formed by subtracting the bias from the exponent. The fractional part

of the LNS is computed by a lookup table of thelog2() function.

For all three number systems, operators may cause overflow/underflow. In the

current hardware implementation, these special cases are not handled.

3.5 Unified Arithmetic Operator Class

A class of general arithmetic operators was developed. After the description of a

circuit is constructed, the library provides an easy way to change the configuration

of arithmetic operators in the circuit. Configuration of an operator includes the num-

ber system, the number format and latency allowed. This information is supplied as

parameters when the object is created. For example, to use an8-bit exponent and

23-bit fraction floating-point adder with 3 clock cycle latency, the module is created

as:

ADD_f("my_add", this, 8, 23, 3);

The operator interface for different number systems is unified in a single class:

CAST ADD, CAST MUL, etc. The class includes operators from the parameterized

fixed-point, floating-point and LNS libraries. As an example, the following code

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 41

Table 3.1Summary of arithmetic operators available in the current CAST system.

ADD SUB MULT x−3/2

Fixed Pt. ADD n() SUB n() MUL n() POWM15n()
width width width width, segments,

guard bits
Float Pt. ADD f() SUB f() MUL f() POWM15f()

exp, frac exp, frac exp, frac exp, frac, segments,
guard bits

LNS ADD l() SUB l() MUL l() POWM15 l()
int, frac int, frac int, frac int, frac

Unified CAST ADD n() CAST SUB n() CAST MULT n() CAST POWM15n()
a, b, ns a, b, ns a, b, ns a, b, ns

Key - segments, guard bits: from configuration file according to width.exp, frac:
width of exponent and fraction.int, frac : width of integer part and fractional part
of exponent.ns: number system selection.a: width of fixed-point, exp of floating-
point, int of LNS.b: frac of floating-point, frac of LNS.

segment creates an LNS adder:

CAST_ADD("my_add", this, 8, 23, LNS);

Table 3.1 is a summary of the available arithmetic operatorsfor the different

number systems as well as the attributes bounded to these operators.

A latency parameter may be used to select different implementations. User can

query the latency of any object using thedelay() method. When different op-

erators for different number systems and/or precision are used, their latency may

change e.g. fixed and floating multipliers may have differentlatencies. When as-

sembling a datapath, the user is responsible for matching the latency of the operators

by inserting delay elements.

The unified operator class thus provides a consistent interface to the arithmetic

library and encapsulates the internal details of their semantics and implementation

in a manner that one can use the library with minimal knowledge about its imple-

mentation.

Chapter 3 CAST - A Framework for Flexible Datapath Exploration 42

3.6 Summary

In this chapter, we presented background on number systems and the STAM al-

gorithm for approximating elementary functions. An understanding of these arith-

metic systems is necessary for building hardware accelerators for simulation sys-

tems which involve large numbers of arithmetic operations.

We also introduced the CAST framework and showed its the features and in-

ternal structure. The operators for different number systems and approximation

algorithms are implemented within CAST. This process captures computer arith-

metic knowledge. Users can use the operators through a unified interface. They can

be used without detailed knowledge of their implementation. Furthermore, as an

generic interface is presented, users do not need to specifythe arithmetic system to

use. This can be inferred by optimization, the computer deciding which system is

best suited to a given application.

Chapter 4

Mullet - A Multiplier Generator

4.1 Introduction

Multipliers are one of the most important operators in simulation applications. Al-

though a wealth of knowledge exists about parallel multiplier design, the best ar-

chitecture is dependent on the desired multiplier size and the technology which is

used. For example, for a small multiplier, the partial products (PPs) might be best

generated using a simple AND structure and ripple carry adders used to accumulate

them. For larger sizes, a Wallace tree might be faster. Furthermore, the crossover

point where the Wallace tree is faster depends on the VLSI technology used as well

as whether the design is on an application specific integrated circuit (ASIC) or a

field programmable gate array (FPGA).

Many different parallel multiplier architectures have been proposed in the liter-

ature (e.g. [Kor02, EL04]). High speed multipliers typically reduce the number of

PPs in the partial product generator (PPG) stage via Booth’sencoding and reduce

the number of logic levels in the partial product summer (PPS) using tree structures.

Different kinds of adders can also be used in the PPS stage. Some FPGA devices

have hardwired dedicated multiplier units and practical multiplier module genera-

tors should use them when appropriate. Given the bewildering number of choices, it

is difficult even for an expert to find an optimal multiplier without investing a large

amount of time to the task.

43

Chapter 4 Mullet - A Multiplier Generator 44

In this chapter, we describe an automatic multiplier generator calledMullet

(MULtpLiEr Tool) that can generate multipliers which are combinations of sim-

pler primitive elements. Mullet is built on the CAST framework and becomes part

of the CAST system as a library generator. A search through the different com-

binations can easily explore tradeoffs. Furthermore, by synthesizing a number of

designs and recording their performance, Mullet can determine its own timing, area

and power model parameters and calibrate itself. To the bestof our knowledge, no

other multiplier module generator is able to consider all ofthese issues in a unified

manner. This will demonstrate how the CAST system can be usedto balance the

performance and resource cost and utilize special featuresin the target platform.

We apply this system to the generation of parallel multipliers for Xilinx Virtex FP-

GAs [Xil04b] and show, as in the result chapter, that the multipliers generated by

our tool are better than those of the Xilinx CoreGenerator and XST tools for large

multiplier sizes.

The rest of this chapter is organized as follows: In Section 4.2, we present par-

allel multiplier architectures which are used as primitiveelements in our tool. In

Section 4.3 we describe the features and architecture of Mullet. The implemen-

tation details and performance results are show in Section 4.4. Finally we draw

conclusions about this work in Section 4.5.

4.2 Parallel Multiplier Structure

In this section we introduce the generation and optimization of parallel multiplier

constructs in the CAST system.

We assume that inputs are in two’s complement format and we perform parallel

signed multiplication of ann-bit multiplicandA with anm-bit multiplier B. The

resulting productP is n + m bits in size. Figure 4.1 shows the basic architecture of

a 4-bit parallel multiplier. The multiplier can be broken down into two independent

units, the PPG and PPS.

Chapter 4 Mullet - A Multiplier Generator 45

Figure 4.1 A 4-bit parallel multiplier showing the partial product generator and
summer.

Multiplicand A

+)
+)

sign Ext

3

2

1

0

Multiplier B

+)

0

3 2 01

7
p

6 5 4 3 2 1 0
p p p p p p p

33 32 31
p

30
p

23 22 21 20

13 12 11
p

10

03 02 0001

pp
p ppp

p p p
p p p

b

p

bbb
aaaa

PP
PP

PP
PP

3 2 1

4.2.1 Partial Product Generators (PPGs)

AND scheme

In Figure 4.1, the partial productsPP0 − PP3 are computed by forming the

bitwise AND of bi with A, i.e. PPi = biA. Using this method, the number of PPs

generated ism and the length of each PP isn. We call this method for generating

the partial products theAND scheme. For signed multiplication, the PPs should be

sign extended as shown in the figure.

Modified Booth Encoding (MBE)

The modified Booth’s algorithm [Boo51] considers multiple bits of B. If two

bits are considered (radix-4), the partial products are generated according to a cod-

ing table. Figure 4.2 shows the circuit for the modified Boothencoding (MBE)

PPG, with a lookup table being used to produce the appropriate multiplexor selec-

tion according to three bits of multiplierB. PPi is formed from bitsB2i+1, B2i and

B2i−1 (B−1 = 0) so only⌈m/2⌉ partial products are generated, half as many as for

the AND scheme. The scheme can be generalized to higher radixes, a radix-8 MBE

scheme requiring only⌈m/3⌉ partial products. This is, of course, at the expense of a

more complex partial product generation scheme. Variants of Booth’s algorithm can

further improve performance by introducing more complicated encoders [Mac61]

and conditional-sum adders [YJ00].

Chapter 4 Mullet - A Multiplier Generator 46

Figure 4.2Radix-4 MBE circuit.

MUX B B5..B1 B3..B−1 1B..

−A 2A

Multiplicand (A)

0A−2A

Multiplicand Generator

PP3

MUX

PP2

MUX

PP1

3

4.2.2 Partial Product Summers (PPSs)

Weighted Sum (WS)

The PPs produced by a PPG must be summed in order to form the final result.

A straightforward way to do this is to use an array of adders toform the weighted

sum of the PPs as show in Figure 4.1.

The array can be constructed using simple carry ripple adders (CRAs) or faster

schemes such as carry look-ahead or carry select adders. Forripple adders, the

critical path is the Manhattan distance from the LSB of the first PP to the carry out

from the MSB of the last PP. This delay can be modeled as a carrychain of length

n + m and is shown as the dotted line in Figure 4.1.

Three Dimensional Method (TDM)

The three dimension method (TDM) proposed in [OVL96] and [SMOR98] uses

compressor trees to sum the partial products and a delay balancing scheme so that

signal delays are minimized in a globally optimal manner. For each weight, trees are

used to produce two equal weight bits of output, shown as vertical lines connected

to the final adder of Figure 4.3(a).

In general, the delays from different inputs to the outputs of a compressor may

be different. An optimal method for interconnecting the compressors to reduce the

global delay for the TDM has been reported by Stelling [SMOR98]. Unfortunately,

Chapter 4 Mullet - A Multiplier Generator 47

Figure 4.3TDM model and 3-greedy scheme.

final adder

10

03 02 0001

pp
p ppp

p p
p p p ppppp

pp
p p pp

p p

01 000203

10
p

111213

20212223

p
30

p
313233

a
bbbb

aa
1 023

0123

a

p

p
7 6 5 4 3 2 1 0

p p p p p p p

p

a

3 2 1 0

3 2 01
a a

b b b b
a

33 32 31
p

30
p

23 22 21 20

13 12 11
p

(a) TDM model for PPS.

[8]
4

3

2

1

4

2

3

1

11 1 31 11 2 7[]

2 2

3

8

[1 1 1 2 3 7]

[2 2 2 3 7]

[3 3 7]

(b) Three-greedy scheme for 9 in-
puts example.

the computational requirements are extremely high, makingthis method unsuitable

for schemes in which a search over many different multipliers is applied. Instead,

we employ the three-greedy algorithm [OVL96, SMOR98] whichproduces multi-

pliers of similar quality but is several orders of magnitudefaster. The implementa-

tion of the algorithm can be described by the simplified pseudocode in Algorithm 1.

Figure 4.3(b) shows an example of using the three-greedy algorithm to compress

9 inputs. Circled numbers represent the order of compressorgeneration and num-

bers beside the signals represent the delay of the line. The delays of the inputs to the

compressors are (1,1,1,1,1,1,2,3,7). The updated available input delay list after each

compressor was generated are also shown on the right. It can be seen that inputs

which have large delay are placed in positions with minimum delay to the output.

The technique just described uses 3:1 compressors but this can be generalized to

deal with arbitrary compression ratios.

Chapter 4 Mullet - A Multiplier Generator 48

Algorithm 1 Simplified pseudocode for the TDM method.

createblist[2n][]; // store bits with same weight
initial blist with bits in partial products with same weight;
for (i := 0; i < 2n; i + +) do

sort(blist[i]);
end for
for (i := 0; i < 2n; i + +) do

while size of(blist) > 2 do
new compressor X;
connect first k bits fromblist[i] to input of X;
remove first k bits formblist[i];
evaluate output delays of X;
put X Sum intoblist[i];
put X Cout intoblist[i + 1];
sort(blist[i]);

end while
end for

4.3 Mullet Architecture

Mullet combines the primitive elements described in the previous section to create

multipliers of arbitrary size. In this section, the architecture of Mullet is described

in detail.

To isolate the PPG and PPS parts of a multiplier circuit, we create a general-

ized PP object in CAST. APP object represents a partial product which has no

logic or circuitry associated with it. i.e. it simply contains the signals associated

with a particular partial product. The attributes associated with thePP object in-

clude the weight of the LSB and the maximum delay from the primary input of

the circuit, which is used in the TDM design. The weight information is used to

ensure correct alignment in the PPS and the delay information is used for optimiza-

tion of the circuit such as required in the TDM approach.PP objects are stored

in a list when the PPG component is generated. This object-oriented implementa-

tion scheme provides a clean and uniform interface between the PPG and PPS and

allows new algorithms and/or architectures be easily included.

Chapter 4 Mullet - A Multiplier Generator 49

Hardware Multipliers (HWMs)

Modern FPGA devices such as the Xilinx Virtex-II have dedicated hardware

signed multipliers of fixed input size [Xil04b]. These do notuse the logic resources

of the FPGA and are usually faster than a similar multiplier built from logic re-

sources. The HWM element is represented as a primitive object in CAST. For the

Xilinx Virtex II devices considered in this work, the multiplier is 18× 18-bit signed

multiplier which can be used as a17×17-bit unsigned multiplier. Larger multipliers

can be constructed from HWMs.

In order to break a large multiplier into smaller ones the system first partitions

the multiplier and multiplicand into several smaller bit segments. If the input seg-

ment includes the MSB, it is signed extended to 18-bits. Otherwise, a 17-bit (or

smaller) unsigned HWM is used. For maximum speed and minimumlogic uti-

lization, a HWM should be used wherever possible. Unfortunately, the number of

HWM resources on an FPGA device is limited and there are oftensituations in

which the user may want to save some of the HWMs for other partsof the design.

Figure 4.4 shows examples of the assignment when only six HWMunits are avail-

able. Examplea) is a random assignment with longer delay compared withb) which

follows the assignment method described. In Mullet, the user can specify how many

HWMs to use. The system will assign the HWMs to the least significant segments

first and thus reducing the critical path delay of the circuit.

If the size of a sub-multiplier is small, a simple AND/WS multiplier is smaller

and faster than a HWM. This sub-multiplier occurs frequently since the inputs are

not always a multiple of the width of HWM unit. A calibration procedure was

created to find the size of multiplier under which the AND/WS scheme is preferred.

Modified Booth Encoding

Mullet currently supports radix-4 and radix-8 MBE primitives which are called

MBE3 and MBE4 respectively since they scan 3 and 4 bits at a time. In the MBE3

example, the2A output is generated by shifting the inputA and has no logic delay.

Chapter 4 Mullet - A Multiplier Generator 50

Figure 4.4Assignments of 6 HWM units to a partitioned design.a) Bad assignment
with longer delay.b) Good assignment with shorter delay.

a)

General Logic

Dedicate MUL unit

b)

Figure 4.5MBE components.a) MBE3 MUX; b) MBE4 multiplicand generator

a)

2i−1B
B2i

B2i+1

B2i−1

2iB

0 A 2A 0 −A −2A

A

NEG

−4A−3A −2A−A4A 3A2A 0

A

b)

Output−A is generated by 2’s complementingA and requires ann-bit adder. The

−2A output is generated by shifting the−A value. The total cost of multiplicand

generator is an n-bit adder in MBE3 and a 5-to-1 MUX. The PP generation for

MBE4 is also shown in the figure.

For MBE4, the multiplicand generator needs to produce±3A and±4A. The

±4A is computed with a simple shift operation from±2A. ±3A requires one more

n-bit adder level so the total delay introduced is two levels of n-bit adder. The MUX

for MBE4 includes two MBE3 MUXes in parallel and an extra 2-to-1 MUX.

Chapter 4 Mullet - A Multiplier Generator 51

Figure 4.6WS scheme of PPS.

PP list

WS
WS

n+2n+1n3210

PPS using WS

PPG

.... PPPP PPPPPPPPPP

Mullet will first generate the± multiplies from the multiplicand. It then seg-

ments the multiplier B according the number of bits to be scanned (currently 3 or

4). The final step is to make connections to the MUXs.

Weighted Sum (WS)

The weight sumobject in Mullet will accept two PP objects and output a PP

object. The circuit forweight sum is dynamically generated in CAST according

to the width and weight of the two inputs. The inputs will be appropriately sign

extended and aligned before they are summed.

After the PPG circuit is created in the module generator, allPPs are available in

a list pp list. Mullet will first sort the list in ascending order of weight.The first

two PPs are removed from the list and added to form a new PP which is appended

to the list. This process is continued until there is only onePP left in the list which

is the final productP of the multiplier. This process is illustrated in Figure 4.6.

Compression Tree

The most simple compressor is a3 : 1 compressor implemented as a full adder.

There are different ways to implement the full adder which lead to different area

and delay models. In [SMOR98], the full adder delays are modeled as an XOR gate

count where the carry out delay is 1 XOR gate delay and the sum output is 2 XOR

gate delays. In most FPGA architectures, this is not true dueto their implementation

using a 4-input LUT and fast carry logic.

We can build larger compressors by interconnecting standard 2 : 1 and3 : 1

Chapter 4 Mullet - A Multiplier Generator 52

Figure 4.7Signed multiplication for TDM.

carry from

ppppppp

column 3

final result:

negative vector
1

xx
s s s s

xxxx
+)
+) 1

ssss
x

x x x x x x x

column 2

tree at
TDM

p

10
p

111213

20212223
p

30
p

313233

1 023

0123

30
p

12
pp

21
p

03
6 5 4 3 2 1 0

01234567

0123

3 2 1 0

0123456

a a a a
b b b b

00
p

pppp
pp

p p pp
p p

010203

compressors. CAST will make use of LUT4 and F5 primitives in the FPGA to

optimize area and speed when implementing the high ratio compressors. The delay

model for these compressors is determined by the number of levels of LUT required.

The original TDM algorithm was proposed for unsigned multiplication. We

modified the algorithm to accept signed numbers. The final product for signed mul-

tiplication can be constructed by subtracting the negativevector formed from the

MSBs of allPPs. We embedded this subtraction in thePPAby inserting inverters

and adding one extra bit to the LSB column. The design is further optimized by

starting from the first signed bit instead of the LSB as shown in Figure 4.7. By

feeding the resulting vector as the TDM input, we can computesigned multiplica-

tion using the original TDM components with a maximum overhead of two extra

input bit per each column. If there are two signed bits in a column, such as in the

HWM PPG result, we use NXOR and NAND operators to produce a negated sum

and carry for them. The negated sum will be fed into the current column while the

negated carry will be used in the next column. Due to the nature of thePPG, the

maximum carry length in forming the negative vector only across two columns.

Multiplier Generator

The multiplier generator accepts a set of configuration parameters as input and

generate a multiplier. The PPG can be one of AND, MBE and HWM. The PPA can

be either WS or TDM. The choices of PPG and PPA are independent.

To implement the TDM algorithm, the system is able to obtain delay and other

Chapter 4 Mullet - A Multiplier Generator 53

information from the circuit objects in the CAST system. Every object has its own

delay model which is used to compute the maximum delay at eachoutput. These

delays are then propagated through the connections.

New primitive elements for PPG and PPS schemes can be easily added. After

supplying a CAST module and the necessary timing and area model information,

the new multiplier architecture can be registered in Mulletand will be available to

the user to instantiate. The object-oriented nature and clean interfaces within CAST

serve to hide unnecessary information.

4.4 Results

Multiplier performance for different input size using different schemes are shown

Figure 4.8. All results are collected with the tools set to the highest optimization

effort. The results were compared with the Xilinx CoreGen system as well as a mul-

tiplier directly generated using the “*” operator in XST on aXilinx XC2V6000-6

FPGA. The correctness of a multiplier can be verified both by simulation in CAST

by compiling the program with a C++ compiler and/or VHDL simulation. In the

verification process, we exhaustively test all the possibleinputs for a8×8 multiplier

for all possible configurations by comparing the results against software multiplica-

tions. Random input vectors were used to verify larger multipliers. In this section

we present experimental results based on Xilinx FPGA devices. The VHDL codes

generated by Mullet were first synthesized using the Xilinx Synthesis Tools (XST)

and then implemented using the ISE 6.2i tools.

The delays are measured between input and output registers of the multipliers.

The configurations shown in Figure 4.8 are optimized for speed. As shown in the

table, the performance of the generated circuit is better then those from XST and

CoreGen when the input width is large. In our experiments, circuits using TDM3

performed better for multipliers larger than 40 bits because of the reduced number

of logic levels. Xilinx CoreGen can only accept input up to 64bits, and so no

Chapter 4 Mullet - A Multiplier Generator 54

Table 4.1Performance of 52x52 multiplier for all possible schemes. The speed is
the minimum clock period inns unit and the area is the LUT count.

Configuration speed area Configuration speed area
AND+WS 21.540 2935 MBE4+WS 25.035 6919
AND+TDM3+CRA 15.563 7869 MBE4+TDM3+CRA 18.963 9086
AND+TDM3+CSA 15.597 8060 MBE4+TDM3+CSA 18.761 8263
AND+TDM4+CRA 41.872 10977 MBE4+TDM4+CRA 58.868 8467
AND+TDM4+CSA 40.163 11111 MBE4+TDM4+CSA 57.606 8606
AND+TDM5+CRA 69.372 10672 MBE4+TDM5+CRA 63.443 8778
AND+TDM5+CSA 68.121 10768 MBE4+TDM5+CSA 63.617 8903
AND+TDM6+CRA 35.480 9903 MBE4+TDM6+CRA 58.848 8125
AND+TDM6+CSA 37.041 11535 MBE4+TDM6+CSA 58.519 8268
MBE3+WS 29.586 7033 HWM+WS 19.711 362
MBE3+TDM3+CRA 19.427 8384 HWM+TDM3+CRA 13.891 469
MBE3+TDM3+CSA 18.855 7390 HWM+TDM3+CSA 12.977 522
MBE3+TDM4+CRA 45.687 8406 HWM+TDM4+CRA 35.486 587
MBE3+TDM4+CSA 40.827 8625 HWM+TDM4+CSA 36.702 697
MBE3+TDM5+CRA 61.837 7641 HWM+TDM5+CRA 40.434 619
MBE3+TDM5+CSA 61.459 7614 HWM+TDM5+CSA 39.890 708
MBE3+TDM6+CRA 40.676 7184 HWM+TDM6+CRA 40.612 965
MBE3+TDM6+CSA 38.298 7312 HWM+TDM6+CSA 39.831 1238

comparison was made for multiplier larger then 64 bits. For the 19 bit multiplier,

our tool uses 1 MULT18X18 HWM while the other two use 4 HWMs. The resulting

speed is faster at the expense of requiring more LUTs.

In practice, we often need to find out what is the best implementation scheme

for a given sized multiplier. The user may wish to optimize for speed, area or

both. Using Mullet a user can easily explore tradeoffs associated with different

schemes. A 52x52 bit multiplier is used as an example and the results agree with

our expectation for different configurations.

A w × w table, wherew is the width of the HWM, records the feedback and

helps making decision of the choice of implementation. Whena decision between

an AND/WS and HWM is made, the Mullet will use the current input size,n × m,

of the sub-multiplier to address anw × w table wherew is the width of the HWM.

Chapter 4 Mullet - A Multiplier Generator 55

Figure 4.8Performance of different multiplier schemes for differentinput sizes.

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 10 20 30 40 50 60 70

S
pe

ed
 (

ns
)

MUL width (bit)

CAST (w/ HWM)
XST (w/ HWM)

CorGen (w/ HWM)
CAST (w/o HWM)

XST (w/o HWM)
CorGen (w/o HWM)

(a) MUL Speed.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 10 20 30 40 50 60 70

A
re

a
(L

U
T

s)

MUL width (bit)

CAST (w/ HWM)
XST (w/ HWM)

CorGen (w/ HWM)
CAST (w/o HWM)

XST (w/o HWM)
CorGen (w/o HWM)

(b) MUL Area.

Chapter 4 Mullet - A Multiplier Generator 56

Table 4.2The calibration table of Virtex II FPGA

1 2 3 ... 18
1 A/W A/W A/W ... A/W
2 A/W A/W A/W ... A/W

2.847ns 3.822ns
3 A/W A/W HWM HWM

4.352ns .
.
.

18 A/W A/W HWM ... HWM
3.822ns

The entries in the table can be one of{AND/WS, HWM, empty}. If the entry is

empty, Mullet will call external programs to implement then × m multiplier and

compare the speed with the HWM, selecting the better of the two and recording the

choice back in the table. Furthermore, multipliers of size smaller thann×m will be

marked to be AND/WS. Similarly, if the HWM is better, all multipliers of size larger

thann × m will be marked to be HWM. The method of caching decisions obtains

the most accurate information when needed and saves computation time. Table 4.2

shows an fully marked calibration table with delay information of AND/WS scheme

for the XC2V6000-6 device.

4.5 Summary

In this chapter, we presented a system that can be used to generate different paral-

lel multiplier structures based on the CAST framework. The multiplier generator

utilize the built in area and speed estimation functions in CAST object to evaluate

the generated circuits. These features allow different search methods to optimize

multiplier circuits automatically. Even without the searching algorithms, it can be

used to explore the complete design space in an efficient way.

By isolating the PPG and PPS part, it shows that different implementation schemes

Chapter 4 Mullet - A Multiplier Generator 57

of a operator can work together within the CAST framework smoothly. Both arith-

metic knowledge and FPGA specific features are considered when selecting a suit-

able scheme. It is shown that CAST can be used to provide multiple levels of

optimization control while hiding the hardware details with a unified interface.

Chapter 5

A Novel Random Number Generator

5.1 Introduction

The Random Number Generator (RNG) is an important primitivewidely used in

simulation as an input source. A physical random number generator (PRNG) de-

rives its output from a physical noise source and its output is nondeterministic in

nature. Given the importance of random number generation, surprisingly few hard-

ware implementations of PRNGs have been reported. There arethree commonly

used techniques in the literature, namely oscillator sampling, direct amplification

and discrete time chaos. In the oscillator sampling approach, period variation (i.e.

oscillator jitter) in a low frequency clock of low quality factor (Q) is exploited by

using it to sample a high frequency clock. The direct amplification technique dig-

itizes thermal or shot noise, using an amplifier and comparator. Finally, chaotic

systems are also used to produce PRNGs.

In this chapter, a high performance PRNG which uses a physical random source

to control two linear feedback shift registers in a manner similar to that of an al-

ternating step generator (ASG) stream cipher is proposed. This approach combines

some of the benefits of both approaches and achieves high throughput, small area

and good randomness properties. The same approach could be applied to combine

other weak physical random number generators with a stream or block cipher.

58

Chapter 5 A Novel Random Number Generator 59

In 1984, Fairfield, Mortenson and Coulthart [FMC84] developed the first in-

tegrated RNG based on oscillator phase noise. In the design,a high frequency

oscillator was sampled using a low frequency oscillator. After removing duty cy-

cle biases via a parity filter, the flip flop output was fed into alinear feedback shift

register (LFSR) based scrambler. The design generated 27 bps using a 1000 Hz

low frequency clock. The Intel RNG is part of the Intel 8xx chipset starting with

the Intel 810 and is implemented in the Intel 82802 Firmware Hub Device (FWH).

It uses amplified thermal noise to drive a voltage controlledoscillator (VCO), and

oscillator sampling is used to detect the phase noise of the VCO to produce a digital

random source [JK99].

We have previously reported an FPGA design which employs oscillator sam-

pling [TLL03]. In this design, a low frequency RC oscillatorwas used to sample

an internal high frequency clock. The design requires only three external passive

components to control the time constant of the RC oscillator. Phase noise in the

RC oscillator produced randomized output which was filteredthrough a parity fil-

ter. A disadvantage of this approach is that the output rate is limited by the speed

of the RC oscillator and in order to pass the NIST and Diehard tests, the maximum

rate was limited to 4.7 kbps. The only other FPGA based implementation was one

by Fischer and Drutarovsky [FD02] which used a variation of oscillator sampling.

Their design was based on the randomness of jitter in an analogue phase locked

loop (PLL) and a decimator was used to ensure that at least onesample affecting

jitter was included in every output data. The design was implemented on an Altera

APEX EP20K200-2X FPGA with a 33.3 MHz external clock. With an88.245 MHz

internal clock, it can generate 69 kbps. For FPGAs such as theAltera APEX E

and APEX II devices which have internal PLLs, this approach requires no external

components. The disadvantage of this approach is that few FPGAs have this feature.

Physical random number generators based on chaotic systemscan lead to very

compact CMOS implementations. In 2001, Stojanovskiet al. [SPK01] imple-

mented an analog chaos-based RNG in a 0.8µm CMOS process utilizing switched

Chapter 5 A Novel Random Number Generator 60

current techniques. The estimated output bit rate of this design was 1 Mbps. An-

drea Gerosaet al. [GBP01] also implemented a RNG based on a chaotic system.

Their design with a pipelined ADC (analog-to-digital converter) occupied2.2 mm2

silicon area and the design can generate 8-bits of data usinga 20 MHz clock. Petrie

et al., combined oscillator sampling, direct amplification and discrete time chaos to

produce an analog VLSI chip which was robust to power supply noise and substrate

signal coupling [PC00]. Implemented in2 µm CMOS, the chip produces random

numbers at 1.4 Mbps. The design occupied an area of1.5 mm2 and dissipated

3.9 mW of power.

In comparison to the approaches described above, the designpresented in this

chapter, an output rate of 400 Mbps was achieved on a Xilinx XCV300–8 devices

and the design occupies approximately 130 Xilinx Virtex slices. Furthermore, it

was implemented entirely in digital technology with no external components.

The rest of the chapter is organized as follows: In Section 5.2, background

information about physical random source and Alternating Step Generator are pre-

sented. The architecture of the PRNG and its FPGA implementation are presented

in Section 5.3. In Section 5.4, the experiment results are presented. Conclusions are

drawn in Section 5.5.

5.2 Background

5.2.1 Oscillator Sampling based Physical Noise Source

Oscillator sampling based noise sources typically use a lowfrequency clock (Fl)

with large phase noise to sample an accurate high frequency clock (Fh) and resulting

a random sequence (Fr) as shown in Figure 5.1. If the phase noise ofFl is of the

same order as the period of the high frequency clock, an output which is random is

obtained [FMC84]. However, since the output rate of this approach is that of the

low frequency clock, the output rate of this PRNG is determined by the frequency

Chapter 5 A Novel Random Number Generator 61

Figure 5.1Oscillator sampling using D-type flip-flop.

Fh

Fl

Fr

Clk

QD

D−FF
Fh

Fl

Fr

of Fl. If the frequency ofFl is increased to improve the output rate, the phase noise

usually decreases, leading to correlations in the output.

There are several factors which affect the randomness of theoutput [FMC84].

The first is that the duty cycle ofFh may not be 50%. In this situation,Fr will have

unequal probability of being zero or one. AnN-bit parity filter [ECS94, FMC84]

can be used to deskew a non-uniform distribution. If the ratio of ones to zeros in

the raw random bitstream isp : q, then the probability that the parity will be one

or zero is the sum of the odd or even terms of the binomial expansion of(p + q)N .

This sum can be evaluated to calculate the probability of a one at the output of the

parity filter and is1
2
((p+ q)N +(p− q)N). Sincep+ q = 1, this expression reduces

to 1
2
(1 + (p − q)N). As N increases, this expression tends to 0.5.

The second factor is the selection of clock frequency. Period of the generated

clock will change from time to time due to circuit internal instability and external

noise coupling. If the variation of the period inFl is not large enough, there will

be correlation between bits and so the value of the output canbe predicted to some

extent from the previous values. Previous research has shown that, from the proba-

bility density function of guessing the next bit, the standard deviation of the period

variation ofFl should at least be 0.75 times the period ofFh to reduce bit to bit cor-

relation [FMC84]. Thus increasingFh and reducingFl leads to more randomness.

A third factor affecting the quality of the RNG is the random source itself. As

there are both periodic and aperiodic electromagnetic noise inside a computer sys-

tem, there may be correlation in the output sequence as the result of coupling of

Chapter 5 A Novel Random Number Generator 62

Figure 5.2Alternating step generator.

LFSR2ce

LFSR1ce

LFSRSCLK
ASGout

periodic noise from the power supply, clocks, crosstalk, thermal effects etc. This

issue is not addressed in this work.

5.2.2 Alternating Step Generator

The ASG is constructed from three LFSRs as shown in Figure 5.2[Gun88, MvOV97].

The binary output of the selection LFSR (LFSRS in the figure),is used to select

whether LFSR1 or LFSR2 is clocked. The output of the ASG is theXOR of the

output of LFSR1 and LFSR2. The characteristic polynomials of LFSR1 and LFSR2

are irreducible and different. In addition, the greatest common divisor of the periods

of LFSR1 and LFSR2 should be equal to 1.

Several attacks on the ASG have been proposed. If the connection polynomials

of LFSR1 and LFSR2 are primitive trinomials, the generator can be attacked using

the linear syndrome method [ZYR91]. In our design, a high Hamming weight poly-

nomial was chosen to prevent this attack. Golic proposed an attack based on the

edit distance [GM98]. This attack requires computing the edit distance for every

possible pair of initial states of LFSR1 and LFSR2 and is hence not practical for

large shift register lengths (approximately 127 in our case).

5.3 Architecture and Implementation

In the proposed approach, a physical noise source, hereafter called the oscillator

noise source (ONS), is produced by oscillator sampling as shown in Figure 5.3.

Chapter 5 A Novel Random Number Generator 63

Figure 5.3Proposed PRNG circuit.

ce LFSR2

LFSR1ce
ASGoutONS

CLK
D Q

The high frequency clock,Fh, is generated using a 3-inverter ring oscillator im-

plemented in a single Xilinx Virtex slice, while the low frequency oscillator input

comes from the system clock (133 MHz) in our tested configuration. These two

signals are combined using an edge-triggered D-type flip-flop to produce a non-

deterministic but correlated random output. This output isused instead of the selec-

tion LFSR of an ASG.

In order to achieve a high output rate, the ONS should produceoutputs at the

same rate as the system clock. This is normally derived from acrystal controlled

oscillator and has low phase noise. Hence the system clock should be connected to

the clock input of the D type flip-flop (as shown in Figure 5.3),and a high frequency

oscillator connected to the D input. For the FPGA implementation, a high frequency

ring oscillator was used. Ring oscillators are commonly used for phase locked

loops, clock recovery circuits and frequency synthesizers, but have high phase noise

compared with circuits employing passive resonant components [Raz96]. Thus they

combine the advantages of being implementable entirely within an FPGA and high

phase noise.

It is desirable to make the frequency of the ring oscillator as high as possible

in order to reduce the correlation resulting from sampling the ring oscillator with

the system clock. A naive implementation would require 3 lookup tables (LUTs)

and hence 1.5 Xilinx Virtex slices [Xil00a]. The FPGA implementation used an

additional 2-input XOR gate present in the Xilinx Virtex slice to reduce the imple-

mentation to 1 Virtex slice as shown in Figure 5.4. This has the advantage of higher

speed because wiring is reduced and the XOR gate is faster than a LUT.

The LFSRs were implemented using the SRL16 [Xil00a] featureof the Xilinx

Chapter 5 A Novel Random Number Generator 64

Figure 5.4Xilinx Virtex ring oscillator implementation.

CLK

TRNGout

Virtex Slice

INV2

INV3

INV1

CLK
QD

INV2 INV3 INV1

QD

LUT

LUT
QD

Virtex chip which enables a 1-16 stage shift register to be implemented in a single

LUT.

5.3.1 Clock Doubler

As discussed in Section 5.2, increasing the high frequency clock, Fh, improves

the randomness of the ONS output. It is possible to apply a clock doubler to the

output of the ring oscillator as shown in Figure 5.5. The poker test in the NIST

testsuite [U.S94] was used to observe the effect of different delay values for the

clock doubler, and the results are shown in Figure 5.6. The poker test is passed if

the result is between 1.03 and 57.4 [MvOV97]. As it can be seen, small and large

values of the delay do not result in clock doubling and the poker test results are

poor. The poker test results show a significant improvement for delay values, as

reported by the Xilinx timing analyzer, of approximately 2.5 ns. Table 5.1 shows

a comparison of the best poker test results with and without aclock doubler. Note

that although the clock doubler offers an improvement, the ONS output does not

pass the poker test.

Chapter 5 A Novel Random Number Generator 65

Figure 5.5Clock doubler circuit.

ONS

CLK

Delay

Clock Doubler

QD

Figure 5.6Poker test results as a function of the clock doubler delay.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

P
o
k
er

 t
es

t
re

su
lt

 (
X

)

Delay (ns)

Table 5.1Comparison of poker test results with and without a clock doubler.

Delay(ns) Poker test result
0 1579.77

2.474 124.013

Chapter 5 A Novel Random Number Generator 66

Table 5.2Implementation summary (Xilinx XCV300E-8).

Design Period Slices BRAM
Design (ns) (% XCV300) (% XCV300)
PRNG 7.482 129 (4%) 4 (12%)

5.4 Results

An implementation of the PRNG was synthesized and implemented using the Xilinx

ISE 8.2i software. The LFSR was inferred as chain of SRL16 components on the

device which resulted in very small area cost (only 59 LUTs and 147 FFs as reported

by Xilinx tools). The FPGA platform used was a Pilchard FPGA card [LLC+01]

which employs the SDRAM bus instead of the PCI bus used in conventional FPGA

boards. The FPGA device used was a Xilinx Virtex XCV300E-8 device. The LFSRs

were chosen so as to have a random irreducible connection polynomial of degrees

127 and 129 with approximately the same number of 0 and 1 coefficients [Gun88,

MvOV97].

The initial states of the LFSRs were random numbers with approximately an

equal number of 1’s and 0’s.

Table 5.2 summarizes the resource utilization and performance of the PRNG

including a host interface to read back the data. The high frequency clock of the

PRNG can operate at over 400 MHz, but experiments described in this paper used

a 133 MHz clock so that the output sequence could be collectedvia the SDRAM

interface of the host computer. As reported by the Xilinx timing analysis tool, the

minimum ring oscillator frequency was 800 MHz.

Since the ONS output of the the clock doubler improves randomness, results

reported below are without the clock doubler (i.e. the delaywas set to 0). It was

also verified that the implementation passes the below testswhen an appropriate

delay for the clock doubler was added. This increases confidence that the design

will operate correctly even if the delay of the clock doubleris set to an inappropriate

Chapter 5 A Novel Random Number Generator 67

Table 5.3NIST RNG test result summary for the PRNG.

Test P-value Pass Rate
Frequency 0.145326 0.9900
Block Frequency 0.657933 0.9700
Cusum-Forward 0.383827 1.0000
Cusum-Reverse 0.867692 1.0000
Runs 0.289667 0.9700
Long Run 0.759756 0.9900
Rank 0.514124 0.9900
FFT 0.779188 1.0000
Aperiodic Templates 0.657933 0.9600
Periodic Templates 0.289667 0.9900
Universal 0.162606 1.0000
Approximate Entropy 0.924076 0.9900
Random Excursions 0.637119 0.9565
Serial1 0.534146 1.0000
Serial2 0.262249 1.0000
Lempel Ziv 0.616305 0.9900
Linear Complexity 0.637119 1.0000

value.

5.4.1 NIST Test Suite

For the NIST test suite (version 1.4), all parameters were set according to the rec-

ommendations in [Ruk01] and the test sequences were 1 Mbit insize. The sample

size, i.e. the number of bit sequences to pass the tests was 100. Table 5.3 summa-

rizes the NIST test results for the PRNG. The significance level α was chosen to be

the default of 0.01 (99% confidence) to pass a test if its P-value is larger than this

number. ThePass Rateis proportion of the 100 binary sequences that passed the

test, It can be seen that the PRNG passes all NIST tests.

Chapter 5 A Novel Random Number Generator 68

Table 5.4Diehard RNG test result summary.

Test P-value
Birthday Spacings 0.310619
Overlapping 5-Permutation (chisqr 66.743792)0.994677
Overlapping 5-Permutation (chisqr 107.948832)0.253086
Binary Rank (31x31) 0.155
Binary Rank (32x32) 0.080
Binary Rank (6x8) 0.051318
Bitstream 0.008018
OPSO 0.996754
OQSO 0.011809
DNA 0.050285
Steam Count-the-1 0.066896
Byte Count-the-1 0.040476
parking Lot 0.921990
Min. Distance 0.496703
3D Spheres 0.016095
Squeeze 0.456598
Overlapping Sums 0.080856
Runs up 0.053444
Runs down 0.738119
Craps 0.985720

5.4.2 Diehard Test Suite

Although the Diehard test suite is one of the most comprehensive publicly available

sets of randomness tests, unfortunately there are no well-defined pass criteria. Intel

calculated that the entire 250 test suite passes with a 95% confidence interval for P-

values between 0.0001 and 0.9999 [Int99], and this method was used for our testing.

The Diehard test results are summarized in Table 5.4. If multiple p-values are in the

result,the worst case value is presented. The PRNG random sequence passes the

Diehard test.

Chapter 5 A Novel Random Number Generator 69

5.4.3 TestU01 Test Suite

TestU01 [LS07] is a set of C libraries for RNG performance evaluation. We de-

veloped programs to test our RNG results using this library.The random data was

stored in a file and then read in as an external RNG source. The reports shows

that our RNG passes theRabbit, theAlphabit, thenSmallCrushand theCrushtest

batteries (TheBigCrushtest was not run due the huge data requirement).

5.5 Summary

In this chapter, a new random number generator (RNG) was introduced. This circuit

combines a physical random number source with a high speed stream cipher to

produce a physical noise source based random number generator with small area,

high output rate and good statistical properties. This RNG would be suitable for

simulation and cryptographic applications. This RNG can beinstantiated as black

box in CAST framework as a reliable and fast input for the simulated process.

Chapter 6

Monte Carlo Simulation

6.1 Introduction

Monte Carlo simulation (MC) is a technique which makes a large number of ran-

domized trial runs (each trial called apath) to infer the probability distribution of

the outcome. MC simulation is often the only tool for treating otherwise intractable

problems such as the pricing of financial derivatives and scientific calculations on

stochastic processes. Computation speed is a major barrierfor deployment of MC

solutions in many large and real-time applications.

Previous work on applying reconfigurable computing to accelerating Monte

Carlo simulations has been proposed. McCollum et. al. described a hardware

design for generating random numbers from arbitrary distributions and applied it

to several MC problems including computation ofπ, Monte Carlo integration and

stochastic simulation for chemical species [MLBP03]. Gokhale et. al. described

the application of FPGAs to heat transfer simulation [GFA+04] and Yoshimi et. al.

applied FPGAs to the stochastic simulation of biochemical reactions [YOFA04b].

Cowen and Monaghan presented a generic MC architecture targeting mainly physics

simulations [CM94], and Postula et. al. reported an MC processor for the simulation

of sintering [PAL96]. In each case, considerable speedups over standard software

based implementations were observed.

70

Chapter 6 Monte Carlo Simulation 71

In this chapter, We demonstrate the feasibility of applyingreconfigurable com-

puting technology to practical, large scale simulation problems which require floating-

point arithmetic.

A major issue faced when developing scientific applicationsin digital hardware

is the choice of number representation and wordlength. We propose that a general-

ized, number system independent description of the algorithm based on the CAST

framework. Thus the most suitable number representation and accuracy for a given

application can be found via optimization [THYL04].

A generic architecture for MC simulation in which an on-chipprocessor is com-

bined with a hardware path generator which combines flexibility and speed is pre-

sented. The same design methodology can be applied to a classof MC applications.

Moreover, since processor and hardware accelerator are on the same chip, their in-

terconnection does not impose a bottleneck on system performance.

The MC design methodology is applied to two different problems, the first be-

ing to compute an approximation toπ. The second example is a real-world finan-

cial engineering application, the BGM interest rate model [BGM97]. In the BGM

example, different paths are calculated simultaneously inorder to avoid data de-

pendencies. Using the MC design methodology, with the help of the π and BGM

examples, it shows that the performance of single chip machines which can be used

to accelerate complex MC simulations.

The chapter is organized as follows. In section 6.2, a general architecture for

Monte Carlo Simulations is presented along with its application to an example in

which an approximation toπ is computed. In section 6.3, the BGM model, hardware

architecture and core used in its implementation are presented. Conclusions are

given in section 6.4.

Chapter 6 Monte Carlo Simulation 72

6.2 Computation ofπ via Monte Carlo Simulations

This section describes a simple MC processor for computing the value ofπ. We use

this method to illustrate the MC architecture; there are other methods for computing

π that are faster. Imagine a circle of radiusr circumscribed by a square with sides

of length2r. If a large number of darts are thrown uniformly at the square, the

proportion of darts which hit inside the circle is given by:

area of circle
area of square

=
πr2

(2r)2
(6.1)

= π/4. (6.2)

The above proportion is the same if only the top right-hand quarter of a square cen-

tered at the origin is considered. Thus, ifr = 1, π can be approximated by randomly

generating two random numbers,x andy, x, y ∈ [0, 1), calculating whether the co-

ordinate(x, y) is within the top quarter of a circle (x2 + y2 < 1), calculating the

proportion of trials inside and outside the circle, and multiplying this result by 4 to

obtain an approximation toπ. In pseudocode form, this can be described as:

Step 0:h = 0

Step 1: fork = 1 to NumBatch

Step 2: x = rand(), y = rand()

Step 3: if ((x2 + y2) < 1)

Step 4: h = h + 1

Step 5:π ≈ 4∗h
NumBatch

and will be referred to as theπ-simulation.

FPGA technology is used to implement a Monte Carlo simulation with the goal

of reducing the execution time as compared with a traditional software implemen-

tation. With a fully pipelined implementation, an iteration can be computed every

cycle. The hardware architecture of a generic MC engine is shown as a block dia-

gram in Figure 6.1. As applied to theπ-simulation, the random number generator

block consists of two parallel uniform number generators, implemented using linear

Chapter 6 Monte Carlo Simulation 73

feedback shift registers. The MC core computes steps 3 and 4 of the pseudocode,

no post processing is required, and step 5 is implemented in the on-chip micropro-

cessor.

Figure 6.1The system architecture block diagram.

int MC_Simulate_Batches(int NumBatch)

{

 /* Simulate batches */

 for(n=0; n<NumBatch; n++) {

 mc_GenPath(Data);

 }

 /* Resulting mean and standard error */

.

}

Random Number

Generators

Monte Carlo

SIMULATION

CORE

Address

Generate

& Control

Unit

Interface to Host

BLOCK

RAMs

POST

PROCESSING

Random Number

Generators

...

Microprocessor

UART

Interface

6.2.1 MC Arithmetic System and Wordlength Determination

Although experience may tell us that a fixed-point implementation would be the

most suitable for theπ-simulation, for other MC simulations, perhaps those in-

volving variables with larger dynamic range, floating-point may be a better choice.

Moreover, even for a fixed-point implementation, the wordlength requirements of

the variables cannot be explicitly determined. In order to address this problem, the

CAST framework was used to provide an environment in which tradeoffs between

different arithmetic systems of arbitrary wordlength can be compared. It saves de-

sign time, facilitates quantitative comparisons between different arithmetic systems

Chapter 6 Monte Carlo Simulation 74

Table 6.1Latency of arithmetic operators in CAST.

Arithmetic Adder Multiplier Divider
Fixed-Point 1 1 3

Floating-Point 3 3 4

at different precisions and is well suited for designing thefully pipelined datapaths

of MC cores. Table 6.1 shows the latency of operators for the different number

systems.

In the CAST system, fixed-point numbers are represented as two’s complement

fixed-point fractions. Floating-point numbers are similarin format of the IEEE 754

standard except that the size of the exponent and fraction are parameterized; there

are no denormalized numbers, and a round-to-nearest schemeis used. Since the

resource requirements for high precision LNS adders and subtractors in CAST is

very high [THYL04], only fixed and floating-point number systems were considered

in this application.

6.2.2 Determining Fraction Size

To evaluate the minimum amount of resources required to produce at least 4 decimal

place accuracy (as required in financial applications), theCAST library is used to

generate the C++ code for a bit-exact simulation of the different fixed and floating-

point operations provided by the arithmetic library, parameterized by the number

format (i.e. integer, exponent and fraction sizes).

In this way, only quantization error and number system account for differences

between double precision floating-point (used as a reference) and the simulation of

the quantized hardware implementation. Figure 6.2 shows the results. According

to these results, we find implementation schemes which minimize area subject to

accuracy requirements. The actual implementation selected used 17 bits for the

multiplier fraction and 21 bits for the adder fraction.

Chapter 6 Monte Carlo Simulation 75

Figure 6.2 Quantization error as a function of fraction size for fixed-point and
floating-point implementations of theπ-simulation.

-90

-80

-70

-60

-50

-40

-30

-20

-10

0
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fraction Size

Q
u

an
ti

za
ti

o
n

 E
rr

o
r

(d
B

)

fixed point

floating point

6.3 The BGM Model, Interest Rate Cap and Monte

Carlo Simulation

Interest rates fluctuate over time and since nearly all economic activity is depen-

dent on this instrument, there is considerable interest in modeling for valuing and

hedging purposes. The BGM model [PPvR05] is commonly used because of its

theoretical elegance and ease of calibration1 .

Interest rate caps can be explained by first considering a floating-rate loan where

interest rate is updated periodically (e.g. every 3 months)according to the market

rates. A cap is an option which gives the holder the right to stick with a specified

rate if the market rate goes higher than it. This provides insurance to the borrower

against rises in interest rates.

Within the BGM framework, the price of a cap or other interestrate derivative

is usually computed using Monte Carlo simulation since it isdifficult to apply other

approaches under the BGM model. An advantage of Monte Carlo simulation is its

1Hull [Hul00] provides a good introduction to financial derivatives. See section 4.5 for forward
interest rate, section 20.3 for caps and section 22.3 for an introduction to the BGM model and other
interest rate products.

Chapter 6 Monte Carlo Simulation 76

applicability to pricing a large range of derivatives, and straightforward implemen-

tation directly from the stochastic model rather than requiring further derivation

(as for tree or finite difference methods). However, it has the drawback of being

computationally expensive.

DenoteF (t, tn, tn+1) as the forward interest rate observed at timet for a period

starting attn and ending attn+1. Suppose the time line is segmented by the re-

set dates(T1, T2, ..., TN) (called the standard reset dates) of actively trading caps

on which the BGM model is calibrated. In the BGM framework, the forward

rates{F (t, Tn, Tn+1)} are assumed to evolve according to a log-normal distribu-

tion. Writing Fn(t) as the shorthand forF (t, Tn, Tn+1), the evolution follows the

stochastic differential equation (SDE) withd stochastic factors:

dFn(t)

Fn(t)
= ~µn(t)dt + ~σn(t) · d ~W (t) n=1 . . . N. (6.3)

In this equation,dFn is the change in the forward rate,Fn, in the time intervaldt.

The drift coefficient,~µn, is given by

~µn(t) = ~σn(t) ·
n∑

i=m(t)

τiFi(t)~σi(t)

1 + τiFi(t)
(6.4)

wherem(t) is the index for the next reset date at timet andt ≤ tm(t), τi = Ti+1−Ti

andσn is thed-dimensional volatility vector. In the stochastic term (the second term

on the right hand side of Equation 6.3),d ~W is the differential of ad-dimensional

uncorrelated Brownian motion~W , and each component can be written as

dWk(t) = ǫk

√
dt (6.5)

whereǫk is a Gaussian random number drawn from a standardized normaldistribu-

tion, i.e. ǫ ∼ φ(0, 1.0). A Gaussian random number generator [Knu81] is required

to implement the Brownian motion.

A number of financial derivatives, including caps, knock-out caps, swaps, Bermu-

dan bond options and flexi-caps can be priced under the BGM model [Hul00]. To

Chapter 6 Monte Carlo Simulation 77

simplify the example of pricing a derivative with FPGA-based hardware, we only

consider caps in this application2 .

The cap consists of a series of caplets in each of which the payoff between the

floating rate and the cap rate in the standard period is settled. In pricing the cap via

Monte Carlo simulation, a large number of interest rate paths are generated using

pseudorandom numbers according to Equation 6.3 with a time-discretization step

size being 0.01 to 0.05 years. In each path, the forward rateFn(tn) is realized in

each standard period which enable the caplet payoff at timetn+1 to be calculated.

payoffn = principal× τn × max(Fn(tn) − cap rate, 0.0) (6.6)

The amountpayoffn is to be received attn+1, and its value at time zero (t0) is the

amount that would grow topayoffn with the interest rates fromt0 to tn+1. Solving

the value ofpayoffn at t0, thediscount factorfor discountingpayoffn at tn+1 back

to t0 is given by:

discountFactor=
n∏

i=0

1

(1 + Fi(ti))
(6.7)

The payoff of each caplet is discounted back to time zero and summed to form

the value of the cap under the Monte Carlo trial. The average value of the cap in all

the Monte Carlo trials is the price of the cap.

In financial applications, the accuracy requirement on derivative prices is gen-

erally four decimal places (1 in 10000), e.g., if the principal is $100, the answer of

the cap price should be correct to cents.

The entire Monte Carlo simulation is divided into three stages, namely simu-

lation initialization, BGM path generation and post processing. The initialization

stage initializes the volatility vector~σ, reset the Gaussian random number genera-

tors and initializes the Brownian motion generator.

2In general, other derivatives may depend on forward rates in“non-standard periods” which do
not coincide with the “standard periods” of the instrument for calibration. The non-standard forward
rates follows another SDE which is not discussed in this text.

Chapter 6 Monte Carlo Simulation 78

In the second stage, the BGM paths are generated according toequation (6.3).

The pseudocode for the main BGM model is described as:

Step 1: forn = CurrPeriod + 1 to N

Step 2: factor = τnFn/(1.0 + τnFn)

Step 3: ~µn = factor × ~σn

Step 4: ~µn = ~µn + ~µn−1

Step 5: κ = (~µn · ~σn)dt + (
−−→
dW · ~σn)

Step 6: dFn = κ × Fn

Step 7: Fn = Fn + dFn

whereCurrPeriod is the index of the current standard period, i.e.m(t) = CurrPeriod+

1 andN are the number of standard forward rates.

The for-loop (step 1) is the main loop of the BGM model. The computation

consists of one division (step 2), one vector addition (step4) and three vector prod-

uct operations (step 3, step 5) in each iteration of thefor-loop. We use a Taylor

series expansion to implement step 2. In order to maximize parallelism, the vector

operations are implemented as parallel scalar operations.

Finally, post-processing involves pricing the cap according to Equations 6.6 and

6.7 and calculate the mean and standard error of the generated BGM paths on the

PowerPC processor. We discuss the details in section 6.3.5.

6.3.1 Hardware Architecture

The MC architecture implementing the BGM model of this system is shown in Fig-

ure 6.3. There are seven major blocks in the system architecture: Brownian motion

generator, Volatility vector unit, Datapath core (BGM core), Address generation and

control unit, Block RAMs, Cap Price post processor and the processor core. The

Brownian motion generator generates thedW vectors according to equation (6.5)

and is driven by three Gaussian random number generators. The Datapath core is

responsible for the generation of BGM paths and a detailed description is given in

Chapter 6 Monte Carlo Simulation 79

section 6.3.3. The Address generation & control unit and Block RAMs are used for

data storage during the BGM simulation. In order to perform postprocessing (com-

puting the cap price in our example), a module, placed between the BGM core and

the processor to accelerate this computation is added. The final block is the proces-

sor core which is responsible for coordinating the processing between the various

cores as well as postprocessing of the BGM paths for different financial derivatives.

We have used both the Xilinx Microblaze soft processor as well as the PowerPC

processor in the Xilinx Virtex-II Pro for theπ and BGM examples respectively. The

CAST framework was used to implement the BGM path core and other blocks were

implemented using VHDL.

Figure 6.3The system architecture block diagram for BGM-simulation.

int bgm_Simulate_Batches(int NumBatch)

{

 /* Simulate batches */

 for(n=0; n<NumBatch; n++) {

 bgm_GenPath(bgmData);

 }

 /* Resulting mean and standard error */

.

}

R

N

G

R

N

G

R

N

G

BGM CORE

Address

Generate

& Control

Unit

Microprocessor

UART

Interface

Brownian

RS232

BLOCK

RAMs

POST

PROCESSING

...
...
...

Sigma (Volatility Vector)

Chapter 6 Monte Carlo Simulation 80

Figure 6.4Quantization error as a percentage with varying fraction size.

0.001

0.01

0.1

1

10

100

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Fraction Size

E
rr

or
 R

at
e

(%
)

Fixed Point Arithmetic, integer size = 3

Floating Point Arithmetic, exponent size = 8

6.3.2 BGM Number System and Wordlength Determination

A software implementation of the BGM model is made using the CAST simulation

function. Given representative input data, one can determine the quantization er-

ror against a double-precision IEEE software implementation for different fraction

sizes. Figure 6.4 shows how the percentage error changes fortheπ-simulation for

several different number formats.

Contrast to theπ simulation, it is likely that different variables in the BGM

simulation have different precision requirements. Thus inthe BGM simulation,

each operator is allowed to have a different wordlength, anda multi-dimensional

minimization was performed to find a balance between quantization error and circuit

size. A cost function is defined as:

fcost(c1, c2, ...cn) = a × error rate(c1, c2, ..cn) (6.8)

+b × area(c1, c2, ...cn) (6.9)

whereci represents the fraction size of operatori. error rate is the quantization

error of the result if the answer is not correct to 4 decimal digits. In the equation,

area is an estimate of the required logic resources for the given configuration of op-

erators, anda andb are non-negative weighting factors for the error and area terms

Chapter 6 Monte Carlo Simulation 81

Table 6.2Results obtained from optimizing the wordlengths of the arithmetic op-
erators. The pairs (a,b) refer to (integer wordlength, fractional wordlength) and
(exponent wordlength, fractional wordlength) for the fixedand floating-point cases
respectively.

Fraction Size Before Optimization
Arithmetic mul add div acc
Fixed-Point (2, 31) (2, 31) (2, 31) (2, 31)
Floating-Point (8, 28) (8, 28) (8, 28) (8, 28)

Fraction Size After Optimization
Fixed-Point (2, 31) (2, 30) (2, 15) (2, 20)
Floating-Point (3, 22) (3, 30) (3, 15) (3, 15)

respectively. As the BGM application must maintain 4 decimal place accuracy, the

value ofa is typically several orders of magnitude larger thanb.

The Nelder-Mead optimization method [NM65] was used to minimize the frac-

tion size of the numerical representation. The range for each operator during a BGM

simulation is stored in the class and then used to determine an appropriate choice

of integer and exponent size in the number representation. Since many operators

are used in the BGM core, it is computationally intensive to optimize each of their

precisions individually. A faster but perhaps less optimalapproach in which some

variables are constrained to the same fraction size is adopted. Operators are cate-

gorized into 4 groups, namely adders, multipliers, accumulators and dividers. The

optimization routine varies the fraction size of adder, multiplier and accumulator

to find the configuration which can obtain the desired four decimal place precision

using minimal resources. Table 6.2 shows the results obtained.

6.3.3 BGM Core Architecture

The BGM core implements the path generation loop of the BGM model as shown

in Figure 6.5. The figure describes the arithmetic operations of the pipelined archi-

tecture in detail and corresponds to the pseudocode architecture.

Chapter 6 Monte Carlo Simulation 82

Figure 6.5The Primitive Processing Loop Architecture for BGM Core.

X/(1+X)

...

Adder

...

Adder

...

Adder

AdderAdder

Adder

Adder

Initial

Vector Vector

FndW Sigma

dt

...

D

D

D

DDelay Chain

Output

F’n

Fn

FIFO FIFO FIFO

Step 2

Step 3

Step 4

Step 5

Step 7

Step 6

Chapter 6 Monte Carlo Simulation 83

In the first initial step, Brownian motion parameter
−−→
dW , the volatility vector~σ

and the forward rateF are initialized. As
−−→
dW and~σ are vectors, we use a parallel

architecture to implement the vector operations. There aretwo “Vector” blocks in

the second step to convert
−−→
dW and~σ to scalars. The computation ofF/(1.0+ F) is

also performed in this stage. In step 3 and step 4, vector~µ is computed according

to Equation 6.4. FIFOs (First-In First-Out) are used to implement the accumulator

(~µn = ~µn + ~µn−1). The depth of the FIFO is decided by the number of BGM paths

being simulated, as described in the following section.

According to Equation 6.3, the change in the forward ratedFn is computed in

step 5 and step 6. As the BGM core architecture is pipelined, we use a delay chain

to adjust the timing ofFn. The result is obtained in the output stage.

6.3.4 Pipelined Path Generation

The Monte Carlo simulation generates a set of independent random forward rate

paths, and computes their average. As the number of paths arelarge, this results in

a long simulation time.

The architecture of BGM core is organized as a deep pipeline.If only one path

is simulated using the BGM core, data dependencies mean thatthe pipeline must

stall until the output is generated since each iteration of the algorithm depends on

the previous iteration. This would result in the pipeline being mostly idle. A 2-D

data flow arrangement was proposed such that each stage computes a different path

and all stages operate in parallel. The operation can be described as follows,

for (i = StartStep; i < StopStep; i + +) {
if (i == NextResetDateStep) /* Record forward rates */

Output forward rate -F (i);

for (n = 1; n < N ; n + +) {
for (m = 0; m < NumPath; m + +) {

/* Evolve one time step */

Chapter 6 Monte Carlo Simulation 84

bgm evolvestep(i, n, m);

}
}

}

where, bgmevolvestep(·) evolves one step of the simulation according to the pseu-

docode description from step 2 to step 7 in section 6.3.3. Thedata flow is shown in

figure 6.6. After one processing loop, i.e. one BGM simulation step, all the values

Fn of the BGM paths will be updated.F m
n (i) is the forward rate of the model, where

i is the iterative step,m is the index of the path andn is the index of the forward

rate.

6.3.5 Cap Pricing and Post-Processing Implementation

After generating numbers of interest rate paths, we reach the post-processing step

of cap pricing for forward interest rates.

In the Monte Carlo simulation, we use the means and standard errors of the

randomized trial runs to describe the simulation results. These operations run with

program on the PowerPC. The program is described as follows,

/* Simulate batches */

for (k = 0; k < NumBatch; k + +) {
bgm GenPath(bgmData);

SumBatchMean+ = bgmData;

SumSqBatchMean+ = bgmData ∗ bgmData;

}
/* Calculate the resulting mean and standard error */

Mean = SumBatchMean/NumBatch;

SqMean = sqrt((SumSqBatchMean−
SumBatchMean ∗ SumBatchMean/

Chapter 6 Monte Carlo Simulation 85

Figure 6.6The 2-D data flow arrangement for the BGM Simulation.

)1(43F

)1(23

−M
F

)1(13

−M
F

)1(3

M
F

)1(13F

)1(23F

)1(33F

... ...

)1(
4

2F

)1(
2

2

−M
F

)1(12

−M
F

)1(2

M
F

)1(12F

)1(
2

2F

)1(
3

2F

... ...

)1(
4

1F

)1(
2

1

−M
F

)1(11

−M
F

)1(1

M
F

)1(11F

)1(
2

1F

)1(
3

1F

... ...

)1(4
N
F

)1(2−M

N
F

)1(1−M
N
F

)1(M
N
F

)1(1
N
F

)1(2
N
F

)1(3
N
F

... ...

1 Step

)2(43F

)2(23

−M
F

)2(13

−M
F

)2(3

M
F

)2(13F

)2(23F

)2(33F

... ...

)2(42F

)2(
2

2

−M
F

)2(
1

2

−M
F

)2(2

M
F

)2(
1

2F

)2(22F

)2(32F

... ...
)2(41F

)2(
2

1

−M
F

)2(
1

1

−M
F

)2(1

M
F

)2(
1

1F

)2(21F

)2(31F

... ...
…

)2(4
N
F

)2(2−M

N
F

)2(1−M

N
F

)2(M
N
F

)2(1
N
F

)2(2
N
F

)2(3
N
F

... ...

2 Step

...

.

…

M: the number of paths

N: the number of standard forward rates

Chapter 6 Monte Carlo Simulation 86

NumBatch)/(NumBatch − 1.0)/NumBatch);

wherebgm GenPath(·) is the function to read the path data from the hardware

which generates the pricing cap data with BGM core and the post-processing core

andNumBatch is the number of the simulation batches. In each simulation batches,

we generate numbers of paths in parallel with the hardware core.

6.4 Summary

A novel implementation of a FPGA based system for Monte Carlosimulation was

presented. The design used an embedded soft core processor together with a copro-

cessor core in order to achieve high speed with good flexibility. Theπ computing

and BGM model can be implemented in the same architecture by altering the MC

core block which is implemented using the CAST framework.

Using customized low precision floating-point formats, many floating-point op-

erations can be executed in parallel, improving execution speed as compared with

a microprocessor which is essentially serial. In order to explore precision and area

tradeoffs in the datapath of the coprocessor, different designs could be generated

from the same description using CAST. For individual operators in the MC core

block, the performance is evaluated and the configurations are modified in an itera-

tive manner using a built-in search method.

Using this approach an order of magnitude improvement in performance for

the π and BGM problems was achieved over a purely software based approach,

demonstrating the feasibility of applying reconfigurable computing to the problem

of accelerating large scale Monte Carlo simulations in floating-point arithmetic.

Chapter 7

N-Body Simulation

7.1 Introduction

The N-body problem is computationally intensive and involves a large number of

arithmetic operations on numbers with large dynamic range.This together with the

fact that relatively low precision is required makes it a good candidate for hardware

acceleration. Using the CAST tool, an FPGA based processor was developed for

the gravitational N-body problem similar to GRAPE, with theadditional advantages

of being flexible in the choice of arithmetic system and precision.

Besides the bitwidth of individual operators, the number systems were also ex-

plored in this application. Inputs to the N-body problem have large dynamic range

and ax−1.5 function is to be evaluated in the datapath. LNS numbers are suitable

for this class of simulation systems. On the other hand, there is also a large percent-

age of computation based on the add and subtract operators, which require a large

amount of area in LNS. This inspired the idea of mixing different number systems

in a single datapath. The CAST framework allows tradeoffs between the different

designs to be quantified much more easily than with previous approaches.

The remainder of the chapter is organized as follows. In Section 7.2, the N-

body problem is defined. In Section 7.3, the implementation of an FPGA based

coprocessor for this problem is presented. Conclusions aredrawn in Section 7.4.

87

Chapter 7 N-Body Simulation 88

7.2 The N-body Problem

A wide range of physical systems can be studied by modeling them as an N-Body

problem. The N-Body problem is extensively used in various fields of science such

as astrophysics [MT98] and molecular biology [NSE+99]. In the N-body prob-

lem, particles are modeled as points in space and the evolution of the system ofN

particles is computed by solving a differential equation ofthe form:

d2
x

dt2
=

N∑

j=1

F(xi,xj) (7.1)

whereF(xi,xj) represents the force between particlesi andj and is application

dependent. This force is usually the gravity.

The force is computed using the following equation wherexi andxj are the

position vectors of particlesi andj respectively,rij = |xi−xj | andǫ is the softening

constant.

F(xi,xj) =
N∑

j=1

xi − xj

(r2
ij + ǫ2)

3

2

(7.2)

N-Body problems are solved using numerical integration in which the majority

of the computation time is spent on calculatingF(xi,xj). The results after applying

the force on particles are their new positions.

There are usually millions of particles involved in N-body simulation and the

complexity of the force computation isN2 as shown in Equation 7.2. Since the

force calculation part is computational intensive but the algorithm is rather simple,

the computation can be accelerated with hardware assist.

7.3 Coprocessor Implementation

An FPGA based coprocessor handling the force calculation part of the algorithm

was built. The arithmetic core of the processor was generated from a C++ de-

scription using the CAST system. Since the accuracy requirement for different

Chapter 7 N-Body Simulation 89

simulation runs can differ greatly and depends on the sourcedata and the nature

of problem being solved, being able to experiment with different wordlength and

arithmetic systems facilitates better exploration of the design space.

The processor was designed to work together with a host computer, which runs

the NEMO N-body simulation code [NEM]. The host computer handles all com-

putation except the force calculation. Particle positionsare sent to the coprocessor

board from a host processor through the board’s interface. The coprocessor com-

putes the force acting on a particle,i, using Equation 7.2.

The architecture of the implementation is shown in Figure 7.1. The main com-

ponents are the control, particle memory and the force pipeline. The particle mem-

ory stores the predicted position of all particles while theforce pipeline calculates

the force acting on each particle. In each timestep, the predicted particle positions

are written to the particle memory by the host. For each particle i that is to be

advanced in that timestep, the corresponding index is sent to the coprocessor. The

corresponding particle position is then read from the particle memory and stored in

a register. The force pipeline then begins the calculation as the positions of allj par-

ticles are retrieved and fed to the pipeline. The host polls the coprocessor to check

if the calculation has completed and then reads the result from the coprocessor.

The force pipeline is the most critical part of the design. The speed of the

pipeline directly affects the performance of the system. Figure 7.2 shows the dat-

apath of the force pipeline. It is a fairly straightforward implementation of Equa-

tion 7.2 and is generated by the CAST system.

Although our implementation is similar in architecture to that of GRAPE-3 [MT98,

ABLM98], three features were not implemented in our design.Firstly, all the parti-

cles in GRAPE can be of different mass whereas our implementation assumes they

are of the same mass. Secondly, GRAPE-3 calculates the gravitational potential as

well as the gravitational force. In our integration algorithm, gravitational poten-

tial was not used and hence not implemented. Finally, GRAPE-3 has a neighbor

function flag which is raised when two particles are closer than a certain amount.

Chapter 7 N-Body Simulation 90

Figure 7.1Top level block diagram showing the architecture of the coprocessor.

Particle
memory
x (2048 x
32)

Particle
memory
y (2048 x
32)

Particle
memory
z (2048 x
32)

Force Calculation

Control

Fx, Fy, Fz

Xi

Xj

Zi

Xj

Yj

Zj

M
U

X

M
U

X

M
U

X

Host

Acclerator

Figure 7.2Architecture of the force pipeline.

�����
� ��

�����	

���� ����� � ����
���� ����� � ����
���� ����� � ����

Chapter 7 N-Body Simulation 91

7.4 Conclusion

The CAST system was applied to the design of a coprocessor to compute the solu-

tion of the N-body problem. From a structural description ofthe computation to be

performed, a large number of different designs were simulated in C++ and the cor-

responding VHDL code rendered, each implementation havingdifferent tradeoffs

in precision, area and speed. By constraining the design to be of a certain precision,

it was possible to determine the smallest fractional wordlength which could meet

the accuracy criteria for the fixed-point, floating-point, LNS and hybrid implemen-

tations.

Chapter 8

Experimental Results

In this chapter, the experimental results of Monte Carlo BGMmodel simulation and

N-body force pipeline are presented.

8.1 Monte Carlo Simulator

The embedded system consists of the PowerPC 405 core, supporting IBM Core-

Connect bus architecture (including the Processor Local Bus (PLB) and On-chip

Peripherhal Bus (OPB)), the on-chip block RAM, the user logic and other OPB pe-

ripherals (such as UART lite and the Debug module etc). The application program

is stored in the on-chip block RAM.

To implement the design, we used the Xilinx ML310 FPGA development board [Xil04a]

with a Xilinx XC2VP30-6FF896C Virtex-II Pro FPGA [Xil03]. The FPGA has two

embedded hard core PowerPC 405 microprocessors and the board provides an en-

vironment for the FPGA system. The entire MC simulation is implemented on the

FPGA and other features of the board such as the FPGA serial port connection and

standard JTAG connectivity are used.

The methodology described in section 6.3.3 was used for bothfixed and floating-

point implementations for the BGM core. Four BGM cores (corresponding to the

before and after optimization designs of Table 6.2) were implemented and their re-

sulting resource utilization and maximum clock frequencies are shown in Table 8.1.

92

Chapter 8 Experimental Results 93

Table 8.1Optimized Implementation for BGM core

Configuration Fixed-31 Fixed-Opt Savings
Frequency (MHz) 57.97 60.07 -
Slices 2,384 2,552 -7.0%
Multiplier 49 49 0%
Block RAM 116 1 99.1%
Configuration Float-28 Float-Opt Savings
Frequency (MHz) 61.44 61.56 -
Slices 7,041 5,875 16.6%
Multiplier 48 48 0%
Block RAM 29 1 96.6%

The most significant savings are for the block RAMs used in theconstruction of

the divider in which over 96% of the block RAM can be saved in both arithmetic

schemes. After optimization, 16.6% of the slices can be saved for the floating-point

implementation since both the size of the exponent and fraction can be reduced. One

interesting result is the fixed-point optimized implementation requires more logic

resources after optimization. This is because rounding logic is implicitly added to

the implementation when conversion between formats are required. It turns out that

the rounding logic consumes more slices than the eliminatedlogic. However, 99%

of the BlockRAM is saved because of this optimization. The BlockRAM are used

for the lookup tables in the division operator. In addition,even though the fraction

size of the multiplier can be reduced in the floating-point implementation, the design

tools report the same number of primitive multipliers because a primitive multiplier

performs a 17 bit unsigned multiplication and for any fraction size between 20 and

34, the design tool requires 4 multipliers.

According to the analysis of section 6.2.2 and 6.3.2, we synthesize the design of

π-simulation with floating point configuration – 8 bits for exponent, 17 bits for mul-

tiplier fraction, 21 bits for adder fraction and one sign bit, and BGM-simulation with

the optimized fixed point configuration, as shown in Table 6.2. The synthesis re-

sults ofπ-simulation and BGM-simulation with Virtex-II Pro(XC2VP30-6FF896C)

Chapter 8 Experimental Results 94

Table 8.2Synthesis results for theπ-simulation with Virtex-II Pro XC2VP30FF896.

Number of PPC405s 1 out of 2 50%
Number of SLICEs 4,746 out of 13,696 34%
Total Number 4 input LUTs 6,556 out of 27,392 23%
Number of Block RAMs 22 out of 136 16%
Number of MULT18X18s 18 out of 136 13%
Number of DCMs 3 out of 8 62%
Number of JTAGPPCs 1 out of 1 100%
PERIOD analysis for net “CLK” 20ns 50MHz

Table 8.3 Synthesis results for the BGM-simulation using a Virtex-IIPro
XC2VP30FF896.

Number of PPC405s 1 out of 2 50%
Number of SLICEs 13,266 out of 13,696 96%
Number of Block RAMs 74 out of 136 54%
Number of MULT18X18s 58 out of 136 42%
Number of DCMs 4 out of 8 50%
Number of JTAGPPCs 1 out of 1 100%
PERIOD analysis for net “CLK” 20ns 50MHz

are shown in Tables 8.2 and 8.3. The details of the device utilization summary are

described in Table 8.4.

To compute the speedup of the FPGAπ-simulation design over software, we

compare execution time for different numbers of paths between the FPGA design

operating at 50 MHz and a software implementation on an IntelP4 1.5 GHz machine

as shown in Table 8.5. The FPGA-based design achieves a 10+ speedup factor for

Table 8.4Device utilization summary for BGM-core modules

Number of SLICEs 2,775(20%)
Number of Block RAMs 16 (11%)
Number of MULT18X18s 40 (29%)
Number of PPC405s -

Chapter 8 Experimental Results 95

Table 8.5Comparison of Speed-up forπ-simulation

Paths Number 50,000 500,000 5,000,000 50,000,000
FPGA (Sec.) 0.0013 0.0103 0.1003 1.0003
PC (Sec.) 0.010 0.130 1.351 12.947
Speedup 7.7 12.6 13.5 12.9

Table 8.6Comparison of Speed-up for BGM-simulation

Paths Number 50,000 500,000 5,000,000 50,000,000

FPGA (Sec.) 2.63 25.2 242 2400
PC (Sec.) 63 630 6300 63000
Speedup 24.9 25 26 26.2

over 500K paths.

In the BGM-simulation, the hardware BGM core generates fiftypaths in one

simulation batch using the hardware BGM core in a pipelined fashion. Repeated

batches cover the whole simulation. Therefore, number of total paths is,

TotalNumPath = NumPathperBatch × NumBatch (8.1)

whereNumPathperBatch is equal to 50.

The total simulation time is composed of two parts. One is consumed by the

BGM-core simulation of batches and the other is post-processing to calculate the

mean and standard error of the generated BGM paths using the processor in soft-

ware. The total execution time can be calculated as follows,

TotalT ime ≈ th × NumBatch + ts (8.2)

whereth and ts are the time consumed by hardware in each batch and software

respectively. According to our simulations using a50MHz clock,th is 2.42ms and

ts is 2.12ms.

Tables 8.5 and 8.6 show the FPGA-based accelerator’s measured execution time

Chapter 8 Experimental Results 96

on ML310 board compared with a P4 1.5G Hz machine. The FPGA-based accel-

erator can generate one BGM path in63 µs, and nearly a twenty-fold reduction

in execution time was achieved. Parallel cores on larger FPGAs can achieve an

even larger speedup. As there are two PowerPC cores in the FPGA used, it is also

possible to use one PowerPC core for the Monte Carlo simulation and the other to

run embedded Linux. This would enable us to utilize Ethernetconnected clusters of

FPGA boards, providing virtually unlimited scalability since paths can be generated

independently for this type of Monte Carlo simulation.

8.2 N-body Simulator

In this section, results showing the resource utilization and performance of the indi-

vidual operators in the CAST library, along with the precision and performance of

the N-body coprocessor are presented. All of the results were simulated using both

the CAST system in C++ and Synopsys VSS for verifying the generated VHDL.

The target device was a Xilinx Virtex-II XC2V1000FG456-5 for all cases except

those which required more than the 40 block RAMs available onthat device. For

those cases, namely the fixed and floating point implementations with a fraction

size greater than or equal to 22, results for an XC2V4000-FF1152-5 are reported.

Performance measurements are based on the reports from the Xilinx ISE 5.2i devel-

opment tools.

8.2.1 Arithmetic Library

Three measurements were used to evaluate the performance ofthe operators: the

maximum frequency as reported by the Xilinx tools, the logicresource utilization

and the BlockRAM memory utilization.

The exponent wordlength of the floating point implementation and the integer

part of the LNS system were fixed to be 8 bits in width. This configuration is similar

Chapter 8 Experimental Results 97

Figure 8.1 Memory usage ofADD, MUL andx−3/2 (number of Virtex-II 18-Kbit
BlockRAMs).

0

20

40

60

80

100

120

0 5 10 15 20 25

Fraction precison

L
o

o
ku

p
 t

ab
le

 s
iz

e
 (

N
o

. o
f

B
lo

ck
 R

am
)

Fix ^-1.5

floating ^-1.5

to the IEEE 754 single precision standard and can operate without overflow in our

simulations. For all 3 number systems, theSUB operations has similar performance

to theADD operation, and therefore they are not shown in the figure.

The number of BlockRAM memory resources required for thex−3/2 operator

are plotted in Figure 8.1. This is determined by the memory requirements of the

STAM tables for both fixed and floating point implementations. As can be seen in

the figure, since the floating point implementation uses the fixed point STAM for its

significand, the memory requirements are identical. For theLNS implementations,

x−3/2 can be computed by multiplying by -1.5 and no memory resources were used.

The operating frequency and logic utilization are plotted against the number of

fractional bits for different operators and number systemsin Figures 8.2 and 8.3

Chapter 8 Experimental Results 98

Figure 8.2Frequency comparison of theADD, MUL andx−3/2 operators.

0

50

100

150

200

250

300

350

0 5 10 15 20 25

Fraction precison

F
re

q
u

en
cy

 (
M

H
z)

Fix adder
Fix Point multiplier
Fix ^-1.5
Floating Adder
Floating Multiplier
floating ^-1.5
LNS Adder
LNS Multiplier
LNS ^1.5

respectively. These tables can be used to compare differentimplementations, preci-

sions and numbering systems in the CAST arithmetic library,allowing a quantitative

assessment of which approach is most suitable for a given application. Note that the

LNS library [aEL06] has a maximum LNS fractional wordlengthof 13-bits and this

limitation is carried over to CAST.

8.2.2 N-body Coprocessor

Using the CAST system, implementations of the N-body coprocessor with different

fractional wordlengths using the fixed point, floating pointand LNS number sys-

tems were made. The exponent wordlength of the floating pointimplementation

and the integer part of the LNS system were fixed to be 8 bits in width.

In order to show the ability of CAST to deal with several number systems, an

implementation, similar to GRAPE-3 [OME+93] was built. In this hybrid format, a

similar configuration as GRAPE-3 was used and thus a(20, 10)I fixed point format

Chapter 8 Experimental Results 99

Figure 8.3Area utilization of theADD, MUL andx−3/2 operators.

1

10

100

1000

10000

0 5 10 15 20 25

Fraction precison

A
re

a
(s

lic
es

)

Fix adder
Fix multiplier
Fix ^-1.5
Floating Adder
Floating Multiplier
floating ^-1.5
LNS Adder
LNS Multiplier
LNS ^1.5

Chapter 8 Experimental Results 100

was used to represent the position vectors of the particles and calculate the differ-

ence between the position vectors. The difference was then converted to a(15, 6)L

bit LNS format, which was used for all subsequent operationsin calculating the par-

tial force. The partial force was converted to a(28, 28)I fixed point format which

was accumulated to obtain the sum in Equation 7.2.

The implementations were simulated using the CAST system toevaluate their

accuracy. To compare the precision of various implementations, the relative mean

squared errorSr(s), introduced in [ABLM98], was used. The relative mean square

error measures the error in force calculation between a pairof particles and is de-

fined as:

Sr(f) =
|̂f − f |2

f2
(8.3)

wheref is the force computed by the hardware coprocessor andf̂ is the reference

value computed using IEEE double precision floating-point arithmetic. Since the

relative mean square error depends on the distance between the 2 particles, pairs of

particles with varying distancer was generated (ǫ = 0) and the errors computed.

The resulting error function
√

Sr(s) was plotted againstr to obtain the error curves

of Figure 8.6. The average error curve for GRAPE-3 [MT98, ABLM98] is also

shown for comparison. The fixed point implementation suffered from overflow

for small r and underflow for larger due to insufficient dynamic range for this

problem leading to large errors. Thus we do not consider fixedpoint to be a good

representation for this problem.

A comparison of the area utilization for different numerical representations and

fractional wordlengths is given in Figure 8.4. As expected,fixed point has the

smallest area requirements. The LNS system has smaller areathan floating point up

to 8 bits, after which floating point is smaller. The main areaoverhead for the LNS

lying in the addition operations which requires a large number of slices for large

fraction sizes. The hybrid implementation has area betweenfixed and floating.

The reported maximum clock frequency for the different schemes is given in

Figure 8.5. The fixed point implementation has the highest operating frequency and

Chapter 8 Experimental Results 101

Figure 8.4Area comparison of N-body implementations.

1

10

100

1000

10000

100000

0 5 10 15 20 25

Fraction precison

A
re

a
(s

lic
es

)

Fix N-body

Float N-body

LNS N-body

Hybrid

the floating point implementation is the slowest. The LNS andhybrid implementa-

tions achieve operating frequencies between the two.

If comparable accuracy to GRAPE-3 for the entire input rangeis desired, as

mentioned earlier, the fixed point implementation is not suitable. This leaves the

floating point(21, 12)F , LNS (21, 11)L and hybrid implementations as candidates.

By comparing their area and frequency requirements in Figures 8.4 and 8.5, it can be

seen that the hybrid implementation offers a smaller area and higher frequency than

the other two candidates. Thus, for the N-body example presented, based on consid-

erations of precision, and circuit area, the hybrid implementation appears to be the

most suitable implementation scheme for the Xilinx Virtex-II XC2V1000FG456-5

device chosen. If, for example, a different device such as a Virtex device which

does not have dedicated multipliers, were to be used, the tradeoffs may be different,

and the same methodology could be used to aid in making the best choice.

A comparison of area and frequency suggested that the hybridimplementation

was the best solution. Different constraints on precision,area and speed may lead

to different choices, easily identified from the graphs obtained.

Chapter 8 Experimental Results 102

Figure 8.5Performance comparison of N-body implementations.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Fraction precison

F
re

q
u

en
cy

 (
M

H
z)

Fix N-body

Float N-body

LNS N-body

Hybrid

8.3 Summary

From the above results, we see that the datapath generated using CAST framework

can improve performance by quickly explore different design tradeoffs.

The bit width optimization in the BGM simulation requires generating a large

number of datapaths. The built-in search function finds circuits that balance area

and performance while fulfilling the precision constraints. The use of the CAST

system significantly reduces the development time in this case.

In the N-body force pipeline example, the hybrid scheme is difficult to develop

using traditional design techniques. Mixing different number systems in N-body

pipeline is done in the CAST framework with the unified interface and built-in num-

ber system conversion objects.

Chapter 8 Experimental Results 103

Figure 8.6Quantization error for force calculation in the N-body problem.

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03

r

E
rr

o
r

8

16

12

software

GRAPE3

(a) Floating-point quantization error.

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03

r

E
rr

o
r

10

16

23

20

GRAPE3

(b) Fixed-point quantization error.

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03

r

E
rr

o
r

8 11

13 GRAPE3

(c) LNS quantization error.

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E-04 1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03

r

E
rr

or

Hybrid GRAPE3

(d) Hybrid quantization error.

Chapter 9

Conclusion

The CAST system was developed to provide a framework to design and optimize

datapaths which are treated as arithmetic operator networks. The set of unified

arithmetic libraries and associated helper functions madethis framework an ideal

environment of building hardware accelerator for simulation systems on reconfig-

urable platform. Through several application examples of simulation systems, this

thesis demonstrated that the proposed design methodology can be used to optimize

datapaths in design in various levels and achieve significant improvements.

In the N-body force pipeline example, it is shown that the system can optimize

datapaths by maxing different number systems in a same design. This is the highest

level when optimization is performed and the results shows huge improvement of

using single number system. The unified configuration interface of CAST library

components simplifies this optimization process over previous manual methods.

In the parallel multiplier example, the system’s ability tooptimize individual

operators was demonstrated using different arithmetic algorithms. The example

demonstrated that CAST can be used to evaluate performance of arithmetic al-

gorithms on target hardware. This helps users decide on suitable implementation

schemes, subject to given constraints.

The Monte Carlo simulation system shows CAST’s ability to optimize data

paths at the lowest hardware level on a reconfigurable platform. By fine tuning

104

Chapter 9 Conclusion 105

the bit width of each operator in the design, CAST can automatically generate im-

proved datapaths with smaller footprint while maintainingthe required accuracy.

All these achievements are based on the novel idea of capturing both arithmetic

and hardware design expertise in a unified framework and considering different

abstract levels in optimization.

In the future, we would like to enhance the arithmetic library in CAST by adding

more number representations (e.g. redundant and residue number systems), arith-

metic schemes (e.g. online arithmetic, division, square root etc), and incorporate

existing libraries (e.g. the Xilinx LogiCore library, the UCLA Astra library for on-

line arithmetic [EPM02] and the floating-point module generator in [LTM03]) into

the framework.

Bibliography

[ABLM98] E. Athanassoula, A. Bosma, J.-C. Lambert, and J. Makino. Perfor-

mance and accuracy of a GRAPE-3 system for collisionless N-body

simulations. InMonthly Notices of the Royal Astronomical Society,

pages 369–380, Feb 1998.

[aEL06] Aremnaire Project at ENS Lyon. A vhdl library of parametrisable

floating-point and lns operators for fpga. 2006.

[BGM97] A. Brace, D. Ga̧tarek, and M. Musiela. The market model of interest

rate dynamics.Mathematical Finance, 7(2):127–155, April 1997.

[BH98] P. Bellows and B. Hutchings. JHDL - an HDL for reconfigurable sys-

tems. InFCCM ’98: Proceedings of the IEEE Symposium on FPGAs

for Custom Computing Machines, page 175, Washington, DC, USA,

1998. IEEE Computer Society.

[BHW96] Ronen Barzel, John F. Hughes, and Daniel N. Wood. Plausible motion

simulation for computer graphics animation. InComputer Animation

and Simulation, pages 183 – 197, 1996.

[Boo51] A. D. Booth. A signed binary multiplication technique. Quart. J.

Mechanical and Applied Math., 4:235–240, 1951.

[BTLM06] Jacob A. Bower, David B. Thomas, Wayne Luk, and Oskar Mencer.

A reconfigurable simulation framework for financial computation. In

106

IEEE International Conference on Reconfigurable Computingand

FPGA’s (ReConFig), pages 1–9, 2006.

[Cho97] S. Chongwe. Simulation of aerodynamics problem on adistributed

shared-memory machine. InHigh Performance Computing on the In-

formation Superhighway, pages 93–98, 1997.

[CLS02] Wanqiang Chen, Register L.F., and Banerjee S.K. Simulation of quan-

tum effects along the channel of ultrascaled Si-based MOSFETs. IEEE

Transactions on Electron Devices, 49:652 – 657, 2002.

[CM94] C.P. Cowen and S. Monaghan. A reconfigurable Monte-Carlo clus-

tering processor (mccp). InProceedings of the IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM), pages

59–65, 1994.

[DJW03] Long D.G., Luke J.B., and Plant W. Ultra high resolution wind re-

trieval for seawinds. InIEEE International Proceedings of Geoscience

and Remote Sensing Symposium (IGARSS), pages 1264– 1266, 2003.

[ECS94] D. Eastlake, S. Crocker, and J. Schiller. Randomness recommenda-

tions for security.Network Working Group, RFC 1750, 1994.

[EL04] M.D. Ercegovac and T. Lang.Digital Arithmetic. Morgan Kaufmann,

2004.

[EM96] R. Even and B. Mishra. Cafe: a complex adaptive financial environ-

ment. InIEEE/IAFE 1996 Conference on Computational Intelligence

for Financial Engineering, pages 20–25, 1996.

[EPM02] M. Ercegovac, J. Pipan, and R. Mcllhenny. ASTRA: Arith-

metic scripting tool for reconfigurable architectures. 2002.

http://unagi.cs.ucla.edu/Astra.

107

[FD02] Viktor Fischer and Milos Drutarovsky. True random number generator

embedded in reconfigurable hardware. InProceedings of the Crypto-

graphic Hardware and Embedded Systems Workshop (CHES), pages

415–430, 2002.

[Fly01] Michael J. Flynn.Advanced computer arithmetic design. Wiley, 2001.

[FMC84] R.C. Fairfield, R.L. Mortenson, and K.B. Coulthart.An LSI Random

Number Generator (RNG). InAdvances in Cryptography: Proceed-

ings of Crypto 84, pages 203–230. LNCS 0196, Springer-Verlag, 1984.

[Fu95] Michael C. Fu. Pricing of financial derivatives via simulation. InWSC

’95: Proceedings of the 27th conference on Winter simulation, pages

126–132, 1995.

[GAM02] Lienhart G., Kugel A., and R. Manner. Using floating-point arithmetic

on fpgas to accelerate scientific n-body simulations. InProceedings

of the IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 182–191, 2002.

[GBP01] A. Gerosa, R. Bernardini, and S. Pietri. A fully integrated 8-bit,

20MHz, truly random numbers generator, based on a chaotic sys-

tem. InSSMSD. 2001 Southwest Symposium on Mixed-Signal Design,

pages 87–92, 2001.

[GFA+04] M. Gokhale, J. Frigo, C. Ahrens, J.L. Tripp, and R. Minnich. Monte

Carlo radiative heat transfer simulation. InProceedings of the IEEE

Conference on Field-Programmable Logic and Applications (FPL),

pages 95–104, 2004.

108

[GJS03] Liang Ge, S. Casey Jones, and Fotis Sotiropoulos. Numerical simu-

lation of flow in mechanical heart valves: Grid resolution and the as-

sumption of flow symmetry.Journal of Biomechanical Engineering,

125:709 – 718, 2003.

[GM98] J.D. Golic and R. Menicocci. Edit distance correlation attack on the

alternating step generator. InAdvances in Cryptology: Crypto ’97,

pages 499–512, 1998.

[Gun88] C.G. Gunther. Alternating step generators controlled by de bruijn se-

quences. InAdvances in Cryptology: Proceedings of Eurocrypt 87,

pages 5–14, 1988.

[GVH06] Yongfeng Gu, Tom VanCourt, and Martin C. Herbordt. Improved in-

terpolation and system integration for fpga-based molecular dynamics

simulations. InFPL ’06: Proceedings of Field-Programmable Logic

and Applications, pages 1–8, 2006.

[HBH+99] Brad Hutchings, Peter Bellows, Joseph Hawkins, Scott Hemmert,

Brent Nelson, and Mike Rytting. A CAD suite for high-performance

FPGA design. InSeventh Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, pages 12–24, April

1999.

[HGG+05] H.H. Hellmich, M. Geike, P. Griep, P. Mahr, M. Rafanelli,and H. Klar.

Emulation engine for spiking neurons and adaptive synapticweights.

In IEEE International Joint Conference on Neural Networks, pages

3261 – 3266, 2005.

[HLT+02] C. H. Ho, Philip Heng Wai Leong, K. H. Tsoi, Ralf Ludewig, Peter

Zipf, Alberto Garcia Ortiz, and Manfred Glesner. Fly - a modifiable

hardware compiler. InFPL ’02: Proceedings of the Reconfigurable

109

Computing Is Going Mainstream, 12th International Conference on

Field-Programmable Logic and Applications, pages 381–390, Lon-

don, UK, 2002. Springer-Verlag.

[HTY+03] C.H. Ho, K.H. Tsoi, H.C. Yeung, Y.M. Lam, K.H. Lee, P.H.W.Leong,

R Ludewig, P. Zipf, A.G. Ortiz, and M. Glesner. Arbitrary function

approximation in HDLs with application to the N-body problem. In

2003 IEEE International Conference on Field-ProgrammableTech-

nology (FPT), pages 84–91, Dec 2003.

[Hul00] J.C. Hull. Option, Futures, and Other Derivatives. Prentice Hall,

2000.

[IEE85] IEEE.IEEE standard for binary floating-point arithmetic: ANSI/IEEE

std 754-1985. 1985.

[Inc02] Xilinx Inc. Xilinx Core Generator. http://www.xilinx.com/-ipcenter/,

2002.

[Int99] Intel Platform Security Division. The intel ran-

dom number generator. Intel technical brief, 1999.

ftp://download.intel.com/design/security/rng/techbrief.pdf.

[JK99] B. Jun and P. Kocher. The Intel random number gener-

ator. White paper by Cryptographic Research Inc., 1999.

ftp://download.intel.com/design/security/rng/CRIwp.pdf.

[Knu81] D. Knuth. The Art of Computer Programming: Vol. 2, Seminumerical

Algorithms. Addison-Wesley, 1981.

[Kor93] I. Koren. Computer Arithmetic Algorithms. Prentice Hall, 1993.

[Kor02] I. Koren. Computer Arithmetic Algorithms. A.K. Peters, 2nd edition,

2002.

110

[LKM02] G. Lienhart, A. Kugel, and R. Manner. Using floating-point arithmetic

on fpgas to accelerate scientific n-body simulations. InProceedings

of the IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 182–191, 2002.

[LLC+01] P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung, C.M. Kwok,

M.Y. Wong, and K.H. Lee. Pilchard – a reconfigurable computing plat-

form with memory slot interface. InProceedings of the IEEE Sympo-

sium on Field-Programmable Custom Computing Machines (FCCM),

2001.

[LRN+01] X. Le, J. Rasty, A. Neuber, J. Dickens, and M. Kristiansen. Calcula-

tion of air temperature and pressure history during the operation of a

magnetic flux compression generator. InIEEE Conference of Pulsed

Power Plasma Science, pages 224–, 2001.

[LS07] P. L’Ecuyer and R. Simard. Testu01: A c library for empirical testing

of random number generators.to appear on ACM Transactions on

Mathematical Software, 33, 2007.

[LTM03] J. Liang, R. Tessier, and O. Mencer. Floating Point Unit Generation

and Evaluation for FPGAs. InProceedings of the IEEE Symposium

on Field-Programmable Custom Computing Machines (FCCM), pages

185–194, 2003.

[Mac61] O. L. MacSorley. High speed arithmetic in binary computers. Proc.

IRE, 49:67–91, 1961.

[Mak05] Junichiro Makino. Modified simd architecture suitable for single-chip

implementation, 2005.

[Men02] O. Mencer. PAM-Blox II: Design and evaluation of C++mod-

ule generation for computing with FPGAs. InProceedings of the

111

IEEE Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM), pages 67–76, 2002.

[Met93] M. Metzger. Modelling and simulation of transient states in the heat

distribution network. InInternational Conference on Systems, Man

and Cybernetics, pages 136–141, Oct 1993.

[MFK00] Junichiro Makino, Toshiyuki Fukushige, and MasakiKoga. A 1.349

tflops simulation of black holes in a galactic center on GRAPE-6. In

Supercomputing ’00: Proceedings of the 2000 ACM/IEEE conference

on Supercomputing (CDROM), page 43, Washington, DC, USA, 2000.

IEEE Computer Society.

[MLBP03] J.M. McCollum, J.M. Lancaster, D.W. Bouldin, and G.D. Peterson.

Hardware acceleration of pseudo-random number generationfor sim-

ulation applications. InProceedings of the 35th Annual Southeastern

Symposium on System Theory, pages 299–303, March, 2003.

[MMF98] Oskar Mencer, Martin Morf, and Michael J. Flynn. PAM-Blox: High

performance FPGA design for adaptive computing. In KennethL.

Pocek and Jeffrey Arnold, editors,IEEE Symposium on FPGAs for

Custom Computing Machines, pages 167–174, Los Alamitos, CA,

1998. IEEE Computer Society Press.

[MS01] J. Moody and M. Saffell. Learning to trade via direct reinforcement.

IEEE Transactions on Neural Networks, 12:875 – 889, 2001.

[MT98] Junichiro Makino and Makoto Taiji. Scientific Simulation with

Special-Purpose Computers - the GRAPE systems. John Wiley & Sons

Ltd, 1998.

112

[MTES97] J. Makino, M. Taiji, T. Ebisuzaki, and D. Sugimoto.Grape-4: A mas-

sively parallel special-purpose computer for collisionalN-body simu-

lations. InApJ 480, pages 432–446, 1997.

[MvOV97] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 1997.

[NEM] NEMO - A Stellar Dynamics Toolbox. Inhttp://bima.astro.-

umd.edu/nemo/.

[NM65] J. Nelder and R. Mead. A simplex method for function minimization.

Computer, 7:308–313, 1965.

[NSE+99] T. Narumi, R. Susukita, T. Ebisuzaki, G. McNiven, and B. Elmegreen.

Molecular dynamics machine: Special-purpose computer formolecu-

lar dynamics simulations. InMolecular Simulation, pages 401–415,

1999.

[OME+93] S. K. Okumura, J. Makino, T. Ebisuzaki, T. Fukushige, T. Ito, D. Sug-

imoto, E. Hashimoto, K. Tomida, and N. Miyakawa. Highly paral-

lelized special-purpose computer, GRAPE-3. InField Programmable

Logic and Applications, volume 45, pages 329–338, 1993.

[Osk06] Mencer Oskar. ASC: A Stream Compiler for Computing with FPGAs.

IEEE Transactions on Computer-Aided Design, 2006.

[OVL96] Vojin G. Oklobdzija, David Villeger, and Simon S. Liu. A method for

speed optimized partial product reduction and generation of fast par-

allel multipliers using an algorithmic approach.IEEE Trans. Comput.,

45(3):294–306, 1996.

[Pag96] I. Page. Constructing hardware-software systems from a single de-

scription.Journal of VLSI Signal Processing, 12(1):87–107, 1996.

113

[PAL96] A. Postula, D. Abramson, and P. Logothetis. The design of a spe-

cialised processor for the simulation of sintering. InProceedings of

the 22nd EUROMICRO Conference, pages 501–508, 1996.

[Pat00] C. Patterson. High Performance DES Encryption in Virtex FP-

GAs using JBits. InProceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 113–

121, 2000.

[PC00] C.S. Petrie and J.A. Connelly. A noise-based IC random number gen-

erator for applications in cryptography.IEEE Journal of Solid State

Circuits, 47(5):615–621, 2000.

[PDA01] G. Picinbono, H. Delingette, and N. Ayache. Nonlinear and

anisotropic elastic soft tissue models for medical simulation. In IEEE

International Conference on Robotics and Automation (ICRA), pages

1370 – 1375, 2001.

[PG03] Ben Popoola and Paul Gough. Evaluating the performance of space

plasma simulations using fpga’s. InHigh Performance Computing for

Computational Science - VECPAR 2002, pages 169–188, 2003.

[PPvR05] Raoul Pietersz, Antoon Pelsser, and Marcel van Regenmor-

tel. Fast drift approximated pricing in the bgm model.

Finance 0502005, EconWPA, February 2005. available at

http://ideas.repec.org/p/wpa/wuwpfi/0502005.html.

[Pro05] The Grape Project. http://astrogrape.org, 2005.

[Raz96] B. Razavi. A study of phase noise in cmos oscillators. IEEE Journal

of Solid-State Circuits, 31(3):331–343, 1996.

114

[Ruk01] A. Rukhin. A Statistical Test Suit For Random and Pseudorandom

Number Generators for Cryptographic Applications. NIST Special

Publication 800-22, 2001.

[SMOR98] Paul F. Stelling, Charles U. Martel, Vojin G. Oklobdzija, and R. Ravi.

Optimal circuits for parallel multipliers. IEEE Trans. Comput.,

47(3):273–285, 1998.

[SPK01] Toni Stojanovski, Johnny Pil, and Ljupco Kocarev. Chaos-based ran-

dom number generators. Part II: practical realization.IEEE Transac-

tions on Circuits and Systems – I: fundamental Theory and Applica-

tion, 48(3):382–385, March 2001.

[SS97] Michael J. Schulte and James Stine. Symmetric bipartite tables for ac-

curate function approximation. In Tomas Lang, Jean-MichelMuller,

and Naofumi Takagi, editors,Proceedings of the 13th IEEE Sympo-

sium on Computer Arithmetic, pages 175–183, Los Alamitos, CA,

1997. IEEE Computer Society Press.

[SS99a] James E. Stine and Michael J. Schulte. The symmetrictable addition

method for accurate function approximation.Journal of VLSI Signal

Processing, 21:167–177, 1999.

[SS99b] J.E. Stine and M.J. Schulte. The symmetric table addition method for

accurate function approximation. InJournal of VLSI Signal Process-

ing, pages 167–177, 1999.

[SSL01] J. Schulz-Stellenfleth and S. Lehner. Ocean wave imaging using an air-

borne single pass across-track interferometric sar.IEEE Transactions

on Geoscience and Remote Sensing, 39:38 – 45, 2001.

[THYL04] K.H. Tsoi, C.H. Ho, H.C. Yeung, and P.H.W. Leong. Anarithmetic

library and its application to the N-body problem. InProceedings

115

of the IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 68–78, 2004.

[TL05] K.H. Tsoi and P.H.W. Leong. Mullet - a parallel multiplier generator.

In Proceedings of the IEEE Conference on Field-Programmable Logic

and Applications (FPL), pages 691–694, 2005.

[TLL03] K.H. Tsoi, K.H. Leung, and P.H.W. Leong. Compact FPGA-based

true and pseudo random number generators. InProceedings of the

IEEE Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM), pages 51–61, 2003.

[TLL07] K.H. Tsoi, Ka Ho Leung, and Philip H.W. Leong. A high performance

physical random number generator.IEE Proc. Computers & Digital

Techniques, 2007. Accepted for publication, March 2007.

[TTJD91] Ito T., Ebisuzaki T., Makino J., and Sugimoto D. A special-purpose

computer for gravitational many-body systems: Grape-2. InPASJ 43,

pages 547–555, 1991.

[U.S94] U.S. Department of Commerce.Security Requirements for Crypto-

graphic Modules. Federal Information Processing Standards Publica-

tion FIPS 140-1, 1994.

[WF82] Shlomo Waser and Michael J. Flynn.Introduction to arithmetic for

digital systems designers. Holt, Rinehart and Winston, 1982.

[Xil00a] Xilinx Inc. Virtex 2.5V field programmable gate arrays, 2000.

[Xil00b] Xilinx, Inc. Xilinx Coregen Reference Guide, 2000. Version 3.1i.

[Xil02] Xilinx Inc. Virtex-E Extended Memory: Detailed Functional Descrip-

tion, 2002.

116

[Xil03] Xilinx Inc. Virtex-II ProTM Platform FPGAs: Complete Data Sheet,

Oct. 2003. Advance Product Specification, DS083.

[Xil04a] Xilinx Inc. ML310 Development Platform, 2004.

[Xil04b] Xilinx, Inc. Virtex-II Platform FPGAs: Complete Data Sheet, 2004.

Version 3.3.

[YJ00] Wen-Chang Yeh and Chein-Wei Jen. High-speed booth encoded paral-

lel multiplier design.IEEE Transactions on Computers, 49:692–701,

2000.

[YOFA04a] M. Yoshimi, Y. Osana, T. Fukushima, and H. Amano. Stochastic sim-

ulation for biochemical reactions on fpga. InProceedings of the IEEE

Conference on Field-Programmable Logic and Applications (FPL),

pages 105–114, 2004.

[YOFA04b] M. Yoshimi, Y. Osana, T. Fukushima, and H. Amano. Stochastic sim-

ulation for biochemical reactions on fpga. InProceedings of the IEEE

Conference on Field-Programmable Logic and Applications (FPL),

pages 105–114, 2004.

[ZHF+07] Ye Zhao, Yiping Han, Zhe Fan, Feng Qiu, Yu-Chuan Kuo, Kaufman

A.E., and Mueller K. Visual simulation of heat shimmering and mi-

rage. IEEE Transactions on Visualization and Computer Graphics,

13:179–189, 2007.

[ZLH+05] G. L. Zhang, P. H. W. Leong, C. H. Ho, K. H. Tsoi, C. C. C. Cheung,

D-U. Lee, R. C. C. Cheung, and W. Luk. Reconfigurable acceleration

for Monte Carlo based financial simulation. InProceedings of the

IEEE International Conference on Field-Programmable Technology

(FPT), pages 215–222, 2005.

117

[ZYR91] K. Zheng, C.H. Yeng, and T.R.N. Rao. An improved linear syndrome

algorithm in cryptanalysis with applications. InAdvances in Cryptol-

ogy: Crypto ’90, volume LNCS 537, pages 34–47, 1991.

118

Publications

Journals

• K.H. Tsoi, Ka Ho Leung, and Philip H.W. Leong. A high performance phys-

ical random number generator. IEE Proc. Computers & DigitalTechniques,

2007. Accepted for publication, March 2007.

Conference Papers

• K.H. Tsoi and P.H.W. Leong. Mullet - a parallel multiplier generator. In

Proc. International Workshop on Field Programmable Logic and Applications

(FPL), pages 691-694, 2005.

• G. L. Zhang, P. H. W. Leong, C. H. Ho, K. H. Tsoi, C. C. C. Cheung,D-U.

Lee, R. C. C. Cheung, and W. Luk. Reconfigurable accelerationfor monte

carlo based financial simulation. In Proc. International Conference on Field

Programmable Technology (FPT), pages 215-222, 2005.

• K.H. Tsoi, C.H. Ho, H.C. Yeung, and P.H.W. Leong. An arithmetic library

and its application to the N-body problem. In Proc. IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM), pages 68-78,

2004.

• K.H. Tsoi, K.H. Leung, and P.H.W. Leong. Compact FPGA-basedtrue and

119

pseudo random number generators. In Proc. IEEE Symposium onField-

Programmable Custom Computing Machines (FCCM), pages 51-61, 2003.

120

