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Abstract

Computer arithmetic is one of the more important topics within computer science

and engineering. The earliest implementations of computer systems were designed

to perform arithmetic operations and most if not all digital systems will be required

to perform some sort of arithmetic as part of their normal operations. This reliance

on the arithmetic operations of computers means the accurate representation of

real numbers within digital systems is vital, and an understanding of how these

systems are implemented and their possible drawbacks is essential in order to design

and implement modern high performance systems. At present the most widely

implemented system for computer arithmetic is the IEEE754 Floating Point system,

while this system is deemed to the be the best available implementation it has

several features that can result in serious errors of computation if not implemented

correctly. Lack of understanding of these errors and their effects has lead to real

world disasters in the past on several occasions. Systems for the detection of these

errors are highly important and fast, efficient and easy to use implementations of

these detection systems is a high priority. Detection of floating point rounding

errors normally requires run-time analysis in order to be effective. Several systems

have been proposed for the analysis of floating point arithmetic including Interval

Arithmetic, Affine Arithmetic and Monte Carlo Arithmetic. While these systems have

been well studied using theoretical and software based approaches, implementation

of systems that can be applied to real world situations has been limited due to issues

with implementation, performance and scalability. The majority of implementations

have been software based and have not taken advantage of the performance gains
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associated with hardware accelerated computer arithmetic systems. This is especially

problematic when it is considered that systems requiring high accuracy will often

require high performance. The aim of this thesis and associated research is to increase

understanding of error and error analysis methods through the development of easy

to use and easy to understand implementations of these techniques.
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Chapter 1

Introduction

1.1 Motivation & Aims

Computer arithmetic is an umbrella term for the systems and techniques used to

perform arithmetic operations in digital systems. Computer arithmetic systems

have evolved into sophisticated real number formats such as floating point (FP)

arithmetic. During this evolution they have become an integral part of modern soci-

ety and the number of commercial, industrial and scientific applications requiring

computer arithmetic has grown significantly. Due to the requirement to perform

large numbers of calculations at high speed these arithmetic systems have evolved

to the point where performance of billions of operations a second is easily obtain-

able by the average user, and modern supercomputers have achieved petascale

performance [65, 140]. The earliest innovations in computer arithmetic involved the

development of basic binary arithmetic operations, these simple implementations

of boolean algebra allowed for the development of integer arithmetic systems that

allowed digital systems to perform simple mathematical operations such as add and

subtract on whole numbers. A major breakthrough in the development of computer

arithmetic was the invention of methods for handling real numbers, the most widely

implemented of which is FP arithmetic. FP arithmetic uses sign-magnitude repres-

entation, where a number is represented using a sign bit s, an exponent field e, and a
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significand m, (also known as a mantissa). Using this representation the true value

is (−1)s.m.βe where β is the radix of the storage number system, (the most common

of which is binary with a radix β = 2).

In developing real number systems a fundamental issue is raised in representing

numbers that require high levels of precision and the accuracy with which these

numbers can be processed. The precision of a number system is defined as the

number of base-β digits used to represent the fractional part of a number. Typical

notations will use the term p to represent the precision of a number system, in fixed

point systems p represents the number of digits used to store the fraction part of

the number, and in FP systems p represents the number of digits used to store the

significand. By bounding the precision of these number system to a finite quantity,

the number of unique representations achievable by that number system is also

bounded. In a number system using a total of n digits for storage, a total of βn

unique representations are possible. When this metric is applied to the infinite set of

real numbers, it is obvious that some numbers are representable, and some are not.

This leads to the concept of Exact versus Inexact values, where exact values are those

that can be represented exactly by a number system, while inexact values cannot

be represented and must be rounded to an appropriate exact value. The difference

between exact and inexact values and the subsequent requirement for rounding leads

to rounding error within computer arithmetic operations. This can compound and

transform results of operations in ways that can lead to significant error in the results.

The field of error analysis has grown out of a desire to measure the effects of

rounding error on computer arithmetic calculations and to develop better methods

for performing these operations. Much research has been conducted in the field

for a number of decades, with seminal work being published as early as 1959 by

computer scientists and numerical analysts such as Carr [18], Wilkinson [168, 169],

Goldberg [64] and Kahan [92]. This has lead to the development of practical analytic
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techniques for measuring rounding error in individual applications and software

and allowed developers to take steps to predict and avoid real world problems that

can result from arithmetic error. These techniques are used in a variety of scientific,

commercial and industrial applications such as financial engineering [63], analogue

circuit design [44], development of safety critical software as used in avionics [38, 39]

and medicine [146]. Techniques for error analysis are broadly split into static pro-

gram analysis, techniques that analyse an abstract model of an algorithm without

the need for execution, and dynamic program analysis, which performs analysis on

the results of an execution.

While the field of error analysis is well studied the application of error analysis

has been limited thus far, with applications generally being found in high level

industrial and scientific fields and in safety critical software. One of the primary

reasons for this limited implementation is that error analysis techniques tend to be

highly complex and understanding of error analysis theory tends to be limited to

specialists in the fields of computer architecture, computer arithmetic and numerical

analysis. Dynamic error analysis techniques can require significant changes to

existing source code and due to the requirement for extended precision or changes

to memory structures these systems are often implemented in software rather than

hardware impacting performance. Static analysis techniques are also difficult to

implement due to their requirement for in depth understanding of the mathematical

models involved, and do not scale well beyond small sub-routines [95]. In order

to address these issues we have endeavored to develop automated methods that

simplify the implementation of dynamic error analysis methods and aim to achieve

the following:

• Develop methods to allow unsophisticated users to understand rounding error

and required precision level.

• Automate the application of Monte Carlo arithmetic (MCA) analysis.
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• Reduce the computational requirements of error analysis techniques.

1.2 Contributions

In order to achieve these goals methods for automating the application of MCA have

been investigated and the contributions of the work include the following:

• A novel MCA co-processor architecture using standard FP cores [58].

• The first complete hardware (HW) accelerated implementation of MCA for

run-time error analysis [58].

• An open source MCA implementation capable of performing variable precision

MCA and supporting both single and double precision FP formats [57].

• An investigation into the application of variance reduction techniques to MCA

in order to improve performance.

1.3 Organization of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 provides a review of

existing work on computer arithmetic and error analysis, and review of Monte Carlo

method (MCM)s and MCA is presented in Chapter 3. Work conducted on the Monte

Carlo arithmetic library (MCALIB) is presented in Chapter 4 and work conducted

on a field programmable gate array (FPGA) based MCA floating point unit (FPU)

including the system architecture, testing procedure and results is presented in

Chapter 5. Chapter 6 presents work on the application of variance reduction methods

to MCA, and finally conclusions are drawn in Chapter 7.



Chapter 2

Background

2.1 Introduction

Computer arithmetic is one of the more important, and yet under-appreciated,

topics within computer science and engineering. Some of the earliest implement-

ations of computer systems, such as the electronic numerical integrator and com-

puter (ENIAC), electronic discrete variable automatic computer (EDVAC) and

electronic delay storage automatic calculator (EDSAC), were designed solely to

perform mathematical calculations [149], and the ability to perform accurate and

efficient mathematical operations is a fundamental requirement of any modern sys-

tem. However, computer arithmetic systems are often assumed to be a perfectly

accurate and fail-safe component by both users and developers. Implementations of

computer arithmetic systems have progressed from simple adders and subtracters

capable of performing several operations a minute [148], to modern multi-core pro-

cessors capable of performing hundreds of billions of floating point operations per

second (FLOPS) and super-computers capable of even higher performance.
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2.2 Computer Arithmetic

2.2.1 Binary Number System & Integer Arithmetic

The binary number system is a base-2 system that represents numeric values using

two values, 0 and 1, or more formally:

The binary (base-2) number system is a positional notation system with a

radix B = 2

The binary number system is of particular use in the field of computing due

to the use of logic gates to implement digital logic and circuity, and the binary

number system has become the standard for the representation of digital logic and

computer arithmetic. The underlying theory of boolean logic and the original use of

binary for it’s representation was laid out by Claude E. Shannon in 1938 in his masters

thesis and the associated journal article [156], this paper has since become one of the

foundations of practical digital circuit design.

In terms of computer arithmetic, the binary number system is used to represent

decimal values in a way that can be stored in a computer system, an encoding sys-

tem referred to as binary coded decimal (BCD). Using this representation decimal

values are converted to binary and vice-versa, and basic operators such as addition

and subtraction can be implemented using digital logic. An n-bit binary value is

converted to decimal as follows [117]:

x =
n−1

∑
i=0

bi2i (2.1)

where bi represents a non-zero bit in place i. This representation is the most basic

form of binary numerical representation and is used to implement integer arithmetic,

as the system is only able to represent integer values in this form. Using this format

the range of values representable by an n-bit number is [0, 2n − 1].
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Input Values Output Values Decimal Result
a b co ro r
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 0 2

Table 2.1: Integer Arithmetic - Half adder truth table

2.2.2 Basic Operations

Basic operators for use in binary integer arithmetic are built from fundamental

boolean operations, and as such the an operation on an n-bit binary value is built by

connecting together logic designed to perform the operation on 1-bit values. The

most basic binary operation is binary addition, and when performed on 1-bit values

must produce the following results:

0 + 0 = 0 (2.2)

0 + 1 = 1 (2.3)

1 + 0 = 1 (2.4)

1 + 1 = 10 (2.5)

The final operation listed above introduces the idea of a carry bit. In this case

the result of a 1-bit operation has produced a 2-bit result, i.e. the operation has

overflowed and the precision level of the operation, (one in this case), is no longer

sufficient to represent the result [117]. In this case the result of the operation 1 + 1

will be 0, with a carry out value of 1. A 1-bit binary adder unit with a carry out signal

is referred to as a Half Adder [70] and is implemented according to the truth table

shown in table 2.1, and the following boolean arithmetic:

ro = a⊕ b (2.6)

co = a • b (2.7)
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Input Values Output Values Decimal Result
a b ci co ro r
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 2
1 0 0 0 1 1
1 0 1 1 0 2
1 1 0 1 0 2
1 1 1 1 1 3

Table 2.2: Integer Arithmetic - Full adder truth table

where a and b are 1-bit input signals, ro is the result bit, co is the carry bit and •, ⊕

represent the boolean operations AND and XOR respectively. The implementation

of a carry out signal leads to the corresponding implementation of a carry in signal,

allowing for an addition operation to be implemented that accounts for a carry

signal that has propagated through a chain of adder modules. A 1-bit adder unit

that implements both carry in and carry out signals is called a Full Adder [70] and

is implemented according to the truth table in table 2.2, and the following boolean

logic:

ro = (a⊕ b)⊕ ci (2.8)

co = (a • b) + (ci • (a⊕ b)) (2.9)

where a and b are 1-bit input signals, ro is the result signal, co and ci are the carry out

and carry in signals, and + represents the boolean OR operation. An n-bit binary

adder is implemented by connecting n full adders together, linking the carry out

signal of adder n to the carry in signal of adder n + 1, with the carry in signal of

the first adder being locked to 0 and the carry out signal of the final adder used

to indicate overflow. This set-up is referred to as a Ripple Carry Adder [11] and is a

fundamental building block in most arithmetic systems. Although the ripple carry

adder is simple to implement the design leads to a high critical path delay as each

full adder in the chain must wait for the carry bit to be calculated by the previous ad-
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der. The delay leads to poor performance and as such alternate methods for integer

arithmetic are often used. In the case of carry look-ahead adders [11] the carry bit is

calculated before the sum bit reducing the wait time in larger adder chains. In the

case of carry-select and carry-bypass adders multiple additions are performed with

each addition making different assumptions about the behavior of the carry bits, the

results are then multiplexed based on the actual behavior of the carry bits to produce

the correct result [10, 71]. While these methods provide improved performance over

the standard ripple-carry method, they are more costly in terms of area use. Binary

subtraction is implemented using the same methods as listed is this section, but

negating one of the operands by finding the radix complement of the operand. The

theory and methods of finding an operands complement are discussed in the next

section.

Binary multiplication is a more complex operation to implement, especially in a

way that provides high performance. The basic algorithm for performing binary

multiplication involves adding together a set of partial products in a similar fashion

to decimal multiplication. To multiply two n-digit numbers a and b together a total

of n partial products are calculated by shifting the multiplicand a to the left i places

and multiplying by the ith digit of the multiplier b, the n partial products are then

summed to find the final product;

a · b =
n

∑
i=0

(a� i) · (bi) (2.10)

where � represents the shift left logical (SLL) operation. This method is shown

below where the product of 5 (binary value 101) and 7 (binary value 111) is calculated:

111 · 101 = ((111� 2) · 1) + ((111� 1) · 0) + ((111� 0) · 1) (2.11)

= 011100 + 000000 + 000111 (2.12)

= 100011 (2.13)
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The result of multiplying two n-bit numbers will produce a result with up to 2n-bits,

and implementations often require a set of two registers, (high and low result re-

gisters), to store the result of the operation. The majority of computer arithmetic

systems did not implement multiplication instructions until the late 1970s [35],

relying instead on shift-accumulate routines performed in software. Early imple-

mentations of multiplier circuits used a set of shifters coupled with an accumulator

to sum one partial product per cycle. Modern implementations of multipliers use

methods such as the Baugh-Wooley algorithm [9], Wallace Trees [165] or Dadda

multipliers [32] to perform the required addition operations within one cycle.

The final fundamental operation is binary division, where given a dividend and a

divisor the operation finds the whole number quotient and the remainder:

N = Q · D + R (2.14)

where N is the dividend (numerator), Q is the quotient, D is the divisor (denom-

inator) and R is the remainder. As whole number division produces two whole

number results, two separate instructions are typically implemented, the divide

instruction, (/), returns the quotient, while the modulo instruction, (%), returns the

remainder:

Q = N/D (2.15)

R = N%D (2.16)

Algorithms for division are divided into two categories, slow algorithms which

perform an n-digit division in n steps, (where n is the number of digits in the

quotient), and fast division algorithms, which reduce the number of steps required

to find the results. The most common slow division methods are the restoring and

non-restoring division methods, both of which are based on long division methods
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and implement the following standard recurrence equation:

Pj+1 = (R · Pj)− (Qn−(j+1) · D) (2.17)

where Pj is the partial remainder, and Qn−(j+1) is the digit of the quotient in position

n − (j + 1) indexed from least significant bit (LSB) to most significant bit (MSB).

Fast algorithms do not typically implement integer division but rather real number

division and as such are discussed in later sections on fixed and floating point

operators.

2.2.3 Signed Representation and Complement Operations

A significant characteristic of any number system is the way in which that system

represents negative values. A basic binary representation using an n-bit value will

only be able to represent positive integers, and as detailed in previous sections

can represent 2n unique values with a range of [0, 2n − 1]. To perform real world

calculations a number system must represent both positive and negative values, and

because standard numeric sign operators, (+ and − symbols), are not available sign

indicators must be implemented using binary digits [79]. Two basic implementations

of signed representations have been developed, sign magnitude representation and

the method of complements. Signed magnitude representation requires a single bit

of the value (typically the MSB) to be dedicated as the sign bit of the value, with

negative values indicated by a sign value of 1 and positive values indicated by a sign

value of 0. For an n-bit signed value there will be 1 sign bit followed by n− 1 value

bits. This results in 2n unique values with a range of [−2n−1 − 1, 2n−1 − 1] including

both positive and negative zero values [130].

The alternative to signed representation is the method of complements, a method

for signed representation that also allows subtraction operations to be performed

using addition operators [102]. The method of complements is broken down into
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two representations, the radix complement and the diminished radix complement.

The radix complement x̂ of a base-β number x is defined as follows:

x̂ = βn − x (2.18)

and the diminished radix complement is defined as:

x̂ = (βn − 1)− x (2.19)

For the purposes of binary integer arithmetic the radix complement of a binary

number is the two’s complement, and the diminished radix complement is the one’s

complement. Finding the two’s complement of a binary number is simplified by first

determining the one’s complement then adding 1 to the result. As the value βn − 1

corresponds to the value βn repeated n times, as such finding the diminished radix

complement is done by subtracting the value βn from each digit, in the case of one’s

complement this can be done by switching the values of each digit from 0 to 1 and

vice-versa, adding 1 to the result produces the two’s complement form, for example

negating the value 0101, (decimal 5), as shown below:

x = 0101 (2.20)

complement1(x) = 1010 (2.21)

complement2(x) = 1011 (2.22)

where complement1 and complement2 represent the one’s and two’s complement

operations respectively. Using this system a positive value will be indicated by a zero

in the MSB, and negatives a one in the MSB [101]. Using the method of complements

binary subtraction can be performed by finding the negative value of a number and

performing a binary addition to calculate the results. Using the previous example of
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0101, (decimal 5), we can calculate 10− 5 as follows:

x = 10− 5 (2.23)

= 10 + (−5) (2.24)

= 1010 + 1011 (2.25)

= 10101 (2.26)

The result of the addition operation corresponds to the result of calculating x + (βn−

y), in order to find the correct result the βn term must be removed corresponding to

x + (βn− y)− βn = x− y. If it is assumed that x ≥ y, the the result of the subtraction

is always greater than or equal to βn, and truncating the leading one of the result is

equivalent to subtracting βn. Removing the leading one from the last stage of the

previous example produces the correct result 0101.

At present arithmetic systems will use either two’s complement or sign magnitude

representation to represent negative values. Two’s complement is preferred for in-

teger arithmetic due to it’s simplicity, (no changes are required to standard arithmetic

units), and the systems lack of a value for −0. While sign magnitude is preferred for

use in more complex arithmetic systems such as floating point (FP) arithmetic.

2.3 Fixed Point Arithmetic

Fixed point arithmetic is a number system for representing real numbers (x ∈ R)

containing both a whole and fractional part, as opposed to binary integers. Fixed

point is one of the earliest attempts to find a suitable implementation of real number

arithmetic for computer systems. During the design of early computer systems some

of the earliest implementations of computer arithmetic were developed. During

this time designers considered the benefits of different types of arithmetic systems,

considering binary and decimal arithmetic systems, and fixed v. floating point
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systems. As computer systems have further developed FP has become the default

arithmetic system and fixed point arithmetic is limited to systems were floating

point unit (FPU)s are not available, in applications were minimizing computational

complexity is paramount or in digital signal processing/processor (DSP) systems

were the range is fixed.

2.3.1 Format and Basic Notation

Fixed point numbers are denoted as such as the whole and fractional parts of the

format are fixed for a particular format or implementation. For a given implement-

ation of an n-bit fixed point number system the whole and fractional parts of the

number are designated as a integer bits and b fractional bits such that a = n− b. Like

FP numbers, fixed point numbers are stored as n-bit binary words and conversion to

decimal representation can be performed using the formats scaling factor, given as

1
2b for binary systems with radix β = 2;

x = x̂ · 2−b (2.27)

The decision of what value to use for the scaling factor is an extremely important one

to make during the design of a fixed point number system as this value determines

the range of values that can be represented by the system. The range of an unsigned

fixed point number U(a, b) is given as;

0 ≤ x ≤ 2a − 2−b (2.28)

Using signed representation an n-bit signed binary Fixed Point value U(s, a, b)

represents a real value with a sign s ∈ {0, 1}, using a integer bits and b fractional

bits where a, b ∈ Z, b 6= 0 and a + b = n− 1. The value can be converted to decimal
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form using the following [178]:

x = (−1)s

[
a+b−1

∑
i=0

ui

]
2−b (2.29)

and the range of a signed fixed point system can be calculated as follows:

−2a ≤x ≤ 2a − 2−b (2.30)

2.3.2 Basic Operators

Basic operations for fixed point arithmetic (addition, subtraction, multiplication and

division) are performed using standard binary arithmetic (e.g. ripple carry adders

for addition) and do not required extra logic in order to perform the operations,

however, several rules must be considered in order to ensure that the operands and

the operation are compatible and the result is valid.

1. Addition and Subtraction: In order to perform addition/subtraction of two

fixed point values those values must be scaled for the result to be valid, i.e both

numbers must use the same scaling factor b and format (signed v. unsigned).

This concept is defined more formally by stating that an operation on two fixed

point values X(s, a, b)±Y(s, c, d) will produce a valid result if a = c and b = d.

The resulting value can overflow (carry) requiring a format R(s, a + 1, b) to

handle all possible results, the range of possible results is calculated by:

x = X(s, a, b)±Y(s, a, b) (2.31)

x ∈
[
−2a+1, 2a+1 − 2−b

]
(2.32)

The increase in precision required due to a possible carry will result in n+ 1 bits

being required to add two n bit values, as in standard binary arithmetic. Issues

from overflow and loss of precision are covered in more detail in section 2.3.3.

In the event that the two operands have different scaling factors one value must
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be scaled, (aligning of the decimal point), in order to perform the operation

correctly. Given two fixed point values x ∈ U(s, a, b) and y ∈ U(s, c, d) the

value x may be scaled by multiplying by a scaling factor 2b

2d , and alternatively

y may be scaled by multiplying by 2d

2b . In practise this multiplication my be

performed using a shift operation to shift the value x � b− d or shifting the

value y� d− b.

2. Multiplication: Fixed point multiplication operations are performed using

standard binary multiplication techniques. For an operation X(s, a, b) ·Y(s, c, d)

that multiplies two n-bit numbers the result will contain up to 2n bits, with the

possibility of overflow occurring requiring 2n + 1 bits to represent all possible

results. The range of possible results is calculated as follows:

x = X(s, a, b) ·Y(s, c, d) (2.33)

x ∈
[
−2a+c+1, 2a+c+1 − 2−(b+d)

]
(2.34)

In the case of multiplication the increase in precision from the operation affects

both the integer part and the fraction part of the number, doubling the length

of both values. This is problematic as the value must be rounded to reduce

the scaling factor to the original level in order to use the result in further

operations. As fixed point arithmetic is not widely implemented in modern

computer systems or programming languages no standard is available with

definitions for rounding methods and the methods used will vary from system

to system.

3. Division: As in the case of multiplication signed fixed point division is per-

formed using standard binary division techniques and the resulting value will

contain twice the number of bits as the operands. The range of possible results



2.3. Fixed Point Arithmetic 17

is calculated as follows:

x =
X(s, a, b)
Y(s, c, d)

(2.35)

x ∈
[
−2a+c+1, 2a+c+1 − 2−(b+d)

]
(2.36)

As the result of the division operation will also contain twice the number of

bits as the original operands the result must be rounded in order to conform

with the original fixed point format. Fixed point division techniques can be

performed using slow division techniques as discussed in section 2.2.2 or

using fast division techniques. The most common technique in use utilises

the Newton-Raphson method, an iterative method for finding the roots of

a real-valued function [180]. The basic method for finding the solution to a

non-linear function f (x) = 0 using the Newton-Raphson method requires

finding an initial estimate for the solution x0 then refining that solution using

the following iterative process:

xi+1 = xi −
f (xi)

f ′(xi)
(2.37)

The iterative process is repeated until the result agrees with the previous result

to a pre-determined accuracy level, xi+1 ≈ xi, or until a maximum number

of iterations is reached. To apply the method to division to find the result of
y
z = y · 1

z the function f (x) = 1
x − z is used to find the reciprocal at the zero of

the function x = 1
z , applying the formula for Newton-Raphson the following

equation is found:

xi+1 = xi −
f (xi)

f ′(xi)
(2.38)

= xi −
1
xi
− z

− 1
x2

i

(2.39)

= xi + xi(1− zxi) (2.40)
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Using this formula the result can be calculated from the initial estimate using

only addition and multiplication operations. Alternative fast division methods

include Goldschmidt division [66], an iterative method that performs division

by multiplying the dividend and the divisor by a series of common factors

Fi so that the divisor, D, converges to 1, and the dividend, N converges to

the solution, Q. The iterative process is repeated until the solution is suitably

accurate, or a maximum number of iterations, k, is reached;

Q =
N
D

F1

F1

F...

F...

Fk

Fk
(2.41)

The iterative process is performed as follows:

• Determine a value for the scaling factor Fi+1 = 2− Di

• Multiply the system by the scaling factor to determine the value of the

next iteration, Ni+1
Di+1

= Ni
Di

Fi+1
Fi+1

• Checking for convergence; either Di+1 = 1 or i = k

2.3.3 Overflow and Precision Loss

As stated in the previous sub-section operations performed using fixed point arith-

metic will often result in an increase in the number of bits required to represent

the resulting value. This will result in both overflow, in which case the result is

not representable in the current format, or loss of precision, where the result can be

represented but some information will be lost. In the case of signed addition a one-bit

carry can occur, as the MSB is reserved for the sign bit the carry cannot be included

in the result and overflow will occur. In FP arithmetic this result could be shifted to

re-align the value and the exponent modified, but in fixed point this value cannot be

represented and the result will be incorrect. The handling of overflow exceptions

in fixed point is limited to providing overflow flags to indicate an exception has

occurred and the result cannot be used. Multiplication and division operations can

result in not only an increase in the number of bits required to represent the integer
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part of the number, a, but also an increase in the number of bits required to represent

the fractional part, b. If value of b for the result is large than value for b defined for

the result, br > b, then the result is either rounded or truncated, this will result in a

loss of precision measurable using the absolute error form. Given a rounded result,

x̂, of an exact value, x, the absolute error ε is defined as follows:

ε = |x− x̂| (2.42)

≤ 2−br (2.43)

If the result contains a value for a that is larger than the value for a defined for

the system, (ar > a) then the result is not representable using the current format.

Some fixed point systems handle overflow by forcing results beyond the range of

the system to default to the largest representable value, (either positive or negative

depending on the operation and sign of the operands), a technique referred to as

saturation.

2.4 Floating Point Arithmetic

FP arithmetic is the most widely implemented system for the approximation of real

numbers in modern computer systems [22, 53, 64, 65, 94, 95, 125, 130]. The first

modern example of floating point arithmetic was implemented by Konrad Zuse

for the Z1 mechanical computer [130], completed in 1938. The Z1 was designed as

a FP adder and subtracter, with control logic allowing for the implementation of

multiplication and division [148]. The system used a 22-bit FP representation and

was capable of performing one addition operation every five seconds.

FP systems are so named as the radix point, (sometimes referred to as the decimal

or binary point), can be shifted relative to the significant digits of the number. The

position of the radix, the significant digits of the number and the sign are stored

using sign, exponent and significand values in a similar fashion to scientific notation.
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In it’s simplest form a FP number F(s, m, β, e) can be expressed in the following

form:

x = (−1)smβe (2.44)

where s ∈ {0, 1} is the sign, β the radix (base) of the floating point system, m is

the significand (significand) such that |m| < β and e is the exponent [130]. A more

formal definition of a FP system will also require definitions for the following values:

1. Precision p, the number of significant digits in the significand.

2. Maximum and minimum exponent values, emin and emax.

3. The exponent offset eo

The values of emax and emin denote the maximum and minimum possible values

of the systems exponent and are used to differentiate between zero, normalized,

sub-normal and infinite numbers. The exponent offset is used to adjust the unsigned

exponent value to allow for negative exponent values such that;

x = (−1)smβe−eo (2.45)

= (−1)smβeb (2.46)

where e is the stored exponent value and eb = e− eo is the biased exponent value.

The value of the exponent offset depends on the number of bits reserved for the

exponent, w;

eo =
w−2

∑
i=0

βi (2.47)

The precision of a number system is an important concept in computer arithmetic

as the storage capabilities of real-world computer systems limit the representation

of numerical values to a finite subset of real numbers F ⊂ R. In FP systems the

precision value p refers to the length or number of bits of the significand, for example,
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the FP representation used by the Zuse Z1 contained one sign bit, seven exponent

bits and a fourteen bit significand, resulting in a precision p = 14 [148]. Number

systems with a higher value for p will have a higher accuracy during computation

as the system is able to represent a larger number of real numbers x ∈ R.

2.4.1 Normalized Values

In practice a majority of FP formats will use a normalized significand [65, 130]. Using

normalized values the significand is aligned so that the leading non-zero digit is

stored immediately to the left of the radix point as the MSB followed by p − 1

digits after the radix point such that 1 ≤ m < β. This results in the following two

properties:

1. Representable numbers x ∈ F have a unique floating point representation as the

minimum value for e that is greater than or equal to emin must be determined

for a given value [130].

2. The precision of radix-2 (binary) systems can be extended by assuming a value

for the MSB of the significand under specific conditions [94].

In the case of a binary normalized significand the MSB has an assumed value of one

and is not stored. Using the above definitions a binary normalized FP number x ∈ F

can be defined as:

x = (−1)s

[
1 +

p−1

∑
i=1

m−iβ
−i

]
βeb (2.48)

where s ∈ {0, 1} is the sign, p > 2 is the precision, 1 ≤ 1.m < β is the normalized

significand, β = 2 is the radix and emin ≥ eb ≤ emax is the biased exponent. Al-

ternatively subnormal numbers will be indicated by e = emin − 1 and will have a

significand value 0 ≤ m < 1 and can be defined by the following:

x = (−1)s

[
p−1

∑
i=1

m−iβ
−i

]
βemin (2.49)
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Figure 2.1: Normal & Subnormal Numbers

Note that although an exponent value e = emin − 1 is used to represent subnor-

mal values, the resulting value is calculated using e = emin. Subnormal values are

considered the most difficult type of FP value to implement and as such some imple-

mentations of FP number systems do not include subnormal values or alternatively

will implement these values using software (SW) methods [94, 130]. The benefit of

subnormal numbers is the ability to represent otherwise non-representable values

between zero and the smallest normal value (x = βemin ). In a system that contains

only normalized values any value smaller than βemin must be rounded, either to βemin

or alternatively flushed to zero, resulting in a loss of significance of p digits referred

to as underflow, and a large gap between zero and x = βemin , (commonly referred to

as the zero gap). Subnormal numbers fill the zero gap and allow for representation of

these values using leading zeroes in the significand, use of subnormal representation

is therefore known as gradual underflow [94]. Figure 2.1 shows how the range of

possible values will differ within a system when subnormal numbers are used as

opposed to a system that only uses normalized numbers.

2.4.2 Exact & Inexact Values

An important concept within FP arithmetic is the distinction between Exact and

Inexact values. As FP arithmetic is a real-world application used by systems with

finite performance and memory resources, the system is limited to a finite precision

and therefore is not able to represent every possible value within the infinite set of
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real numbers, R. Instead the set of FP numbers F is a finite subset of real numbers

F ⊂ R. Real numbers that are representable in FP format are referred to as exact

values while inexact values refer to real numbers that cannot be represented and

are instead rounded to the nearest exact value (nearest value determined by the

rounding scheme) [53, 65, 130]. An inexact value can be thought of as a value

that falls between two exact values, or, is a value that differs from an exact value

by less than the unit in the last place (ULP). The ULP is a measurement of the

smallest possible representable FP value available for a given exponent value, or

more formally [130]:

The ulp(x) is the gap between the two FP numbers nearest to x

The ULP is calculated by:

ulp(x) = βmax(e,emin)−p+1 (2.50)

The value ULP is often used in reference to FP error, which is the difference between

a real value x ∈ R and it’s FP representation x̂ ∈ F. In the case of an inexact value

the maximum possible error will be one ulp(x̂):

|x̂− x| ≤ ulp(x̂) (2.51)

The concept of ULP is closely tied to approximation error, a measure of the discrepancy

between an exact value and it’s approximation, defined by both the absolute error:

ε = |x̂− x| (2.52)
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and the relative error, (assuming x 6= 0):

δ =
ε

|x| (2.53)

=

∣∣∣∣ x̂− x
x

∣∣∣∣ (2.54)

In the case of a correctly rounded FP format, the absolute and relative errors are

limited as follows:

ε ≤ ulp(x̂) (2.55)

δ ≤ β−p (2.56)

2.4.3 Rounding

Due to the existence of inexact values methods must be made available to identify

these values and convert them to values that can be represented by the system. This

requires methods for rounding to be implemented as part of a FP system. Until the

implementation of the Institute of Electrical and Electronic Engineers (IEEE) standard

for FP arithmetic there was no available standard for FP rounding and methods

for rounding varied from system to system. The implementation of the IEEE FP

standard called for rounding of FP operations to be standardized by implementing a

set of rounding modes that controlled both the precision and direction of rounding.

In his original paper on the proposed IEEE standard [93], Kahan stated that FP

rounding could be standardized according to a very simple model:

The rounded result will be one of the neighbours of the infinitely precise

true result, depending on the direction of rounding

According to this model if the result of a FP operation is inexact, then the rounded

result must be one of the two exact values closest to the un-rounded value. Stated

more formally, the rounded approximation x̂ ∈ F of an exact value x ∈ R must be



2.4. Floating Point Arithmetic 25

within one ULP for single-direction rounding, (round up/down, round to zero or

round to ±∞);

x− ulp(x) ≤ x̂ ≤ x + ulp(x) (2.57)

Or within half a ULP for multi-direction rounding, (round to nearest even/odd);

x− 1
2

ulp(x) ≤ x̂ ≤ x +
1
2

ulp(x) (2.58)

A full description of rounding methods implemented by the IEEE-754 standard is

available in Section 2.5.3.

2.4.4 Overflow & Underflow

Overflow and underflow are exceptions that occur when the result is a value that is

either too large or too small to be represented in FP format [65, 130]. Specifically:

1. Overflow will occur when the exponent of the result is larger than the max-

imum exponent of the system, e > emax.

2. Underflow will occur when the exponent of the result is less than the minimum

exponent of the system, e < emin. In this case the result is typically flushed to

zero.

When these exceptions occur they are handled by assigning special values to the

results, usually values representing infinity and zero for overflow and underflow

respectively, and setting exception flags to indicate the exceptions have occurred.

The specific values assigned and their formats vary from system to system with

standard formats and exception behaviour being defined for the IEEE-754 standard

(detailed in section 2.5.2). The introduction of subnormal values allows for gradual

underflow to occur. In this case a value that would normally underflow to zero will

instead be rounded to the nearest subnormal value [93, 94].
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Format β p emin emax range width
binary16 2 11 -14 15 ≈ 10±5 16-bits
binary32 2 24 -126 127 ≈ 10±38 32-bits
binary64 2 53 -1022 1023 ≈ 10±308 64-bits
binary128 2 113 -16382 16383 ≈ 10±4932 128-bits

Table 2.3: IEEE-754 Binary Formats.

2.5 IEEE-754 Floating Point Standard

In 1979 Kahan proposed a standard implementation of FP arithmetic [94] that even-

tually became the first IEEE-754 standard. The standard now has three versions, the

first, the IEEE-754:1985 standard [50] implemented binary FP arithmetic only and

in 1987 was augmented with IEEE-854:1987, which implemented both binary and

decimal formats of FP arithmetic [51]. The current standard is the IEEE-754:2008

standard which implements three decimal and four binary formats and is considered

the default standard for performing floating point arithmetic [52]. The basic para-

meters for each binary format are provided in table 2.3. Binary IEEE-754 numbers

X ∈ F(β, p, emin, emax) implemented by the system can be either normal or subnormal

values. Normalized values are of the form:

x = (−1)s

[
1 +

p−1

∑
i=1

m−i2−i

]
2eb (2.59)

and subnormal values take the form:

x = (−1)s

[
p−1

∑
i=1

m−i2−i

]
2emin (2.60)

For all cases s ∈ {0, 1} is the sign, and p ≥ 2 is the precision of the system. In the case

of normal numbers 1 ≤ m < 2 is the significand, e is the exponent and eb = e− eo is

the biased exponent where emin ≤ eb ≤ emax. Subnormal numbers are indicated by

a biased exponent value eb = emin − 1 and significand 0 ≤ m < 1. For all cases the

sign, exponent and significand values are stored in the format shown in figure 2.2.
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Sign Exponent Significand

w bits p− 1 bits

Figure 2.2: IEEE-754 Encoding Format

2.5.1 Basic Operators

The IEEE-754 standard defines a number of operators that can be used for FP arith-

metic, including definitions for operations such as comparison and conversion,

however this section will focus on the arithmetic operations listed in the standard,

add, subtract, multiply, divide, fused multiply add (FMA) and square root. This

following section outlines the basic procedure for performing these operations using

FP arithmetic. In the case of either addition or subtraction the operation is performed

according to the following formula;

r = x± y (2.61)

=
[
(−1)sx mx ± (−1)sy(

my

2ex−ey
)
]

2ex (2.62)

which can be implemented in the following steps:

1. Align significand values: If the exponent values ex and ey are not equal then

the significand must be aligned before the fixed point addition operation can

be performed. This is done by calculating the difference of the exponent values

ex − ey then shifting the value my by this value:

my = my � ex − ey (2.63)

2. Add significand values: The value of the significand of the result mr is cal-

culated using fixed point addition methods. The type of FP operation begin

performed and the value of the input sign bits determines whether the signi-
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Operation Sx Sy Result
Add 0 0 mr = mx + my
Add 0 1 mr = mx −my
Add 1 0 mr = my −mx
Add 1 1 mr = −(mx + my)
Subtract 0 0 mr = mx −my
Subtract 0 1 mr = mx + my
Subtract 1 0 mr = −(mx + my)
Subtract 1 1 mr = my −mx

Table 2.4: Fixed point operations on significand values for addition/subtraction

ficand values are summed or subtracted, the truth table shown in Table 2.4

details the boolean logic required to determine the fixed point operation used.

mr = mx ±my (2.64)

If the mr is negative sr is set to one and the two’s complement of mr found.

3. Normalize: The number of leading zeroes λr of mr is determined and mr

shifted by this amount. The exponent value er is also calculated at this point. If

the leading zero is behind the radix point λr is negative (left shift), and if the

leading zero is to the left of the radix point (either the MSB or the carry bit are

high) λr is positive (right shift).

mr = mr � λr (2.65)

er = er + λr (2.66)

4. Perform rounding and renormalize if necessary.
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Multiplication and division operations are performed as follows:

r = x · y (2.67)

= (−1)sx⊕sy(mx ·my)2(ex+ey) (2.68)

r = x/y (2.69)

= (−1)sx⊕sy

(
mx

my

)
2(ex−ey) (2.70)

both multiplication and division can be implemented using the following steps:

1. Calculate the sign value of the result sr:

sr = sx ⊕ sy (2.71)

2. Calculate the value of the significand mr using fixed point arithmetic:

mr =

 mx ·my multiply

mx/my divide
(2.72)

The exponent value er is also calculated at this point using fixed point arith-

metic:

er =

 ex + ey multiply

ex − ey divide
(2.73)

3. Normalize: the number of leading zeroes λr is determined and the significand

of the result shifted into the correct position, the exponent of the result is also

adjusted:

mr = mr � λr (2.74)

er = er + λr (2.75)
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4. Perform rounding and renormalize if necessary.

The FMA operation implements a multiply and accumulate operation with a single

rounding stage. Using the equations for addition, r = x + y, and multiplication,

r = x · y, given previously the FMA operation r = x + (y · z) can be defined by

substituting the equation for multiplication into the second term of the equation for

addition;

r = x + (y · z) (2.76)

=

[
(−1)sx ·mx + (−1)sy⊕sz ·

my ·mz

2ex−(ey+ez)

]
· 2ex (2.77)

which can be implemented as follows;

1. As in the case of multiplication, calculate the sign, significand and exponent of

the result of the multiply stage:

sm = sy ⊕ sz (2.78)

em = ey + ez (2.79)

mm = my ·mz (2.80)

2. Instead of performing normalization and rounding the results of the multiplic-

ation operation are now used for the addition stage. As in the case of standard

addition, the significands must first be aligned:

my ·mz = (my ·mz)� ex − (ey + ez) (2.81)

mm = mm � ex − em (2.82)

3. Determine the value of the result significand, mr, using fixed point addition
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methods with the sign and operation determined as in standard addition:

mr = mx ± (my ·mz) (2.83)

= mx ±mm (2.84)

4. Normalize: The number of leading zeroes, λr, in the result significand is

determined, and the result exponent and significand are adjusted as follows:

mr = mr � λr (2.85)

er = er + λr (2.86)

5. Perform rounding and re-normalize if necessary.

The final operation detailed in this section is the FP square root operation x =
√

a,

where a is a positive real number; {a ∈ R : a ≥ 0}. Typically this operation is

implemented using iterative techniques, one of the most common being the Newton-

Raphson Method. As in the case for fixed point division an algorithm will implement

the general form of the Newton-Raphson method as shown in Equation 2.37 resulting

in two possible derivations of the algorithm. The naive implementation utilizes

the simplest form of the base function, f (x) = x2 − a, resulting in the following

expansion of the general form;

xn+1 = xn −
x2

n − a
2xn

(2.87)

=
1
2
·
(

xn +
a

xn

)
(2.88)

In the general case Newton-Raphson provides a fast method for computing square

roots, and using this implementation the iterative result, xn will converge to
√

a

in O(log(p)) iterations assuming the initial estimate is greater than zero x0 > 0,

however this implementation requires a divide operation be performed at each stage.

As the division operation is expensive in and of itself the naive implementation is
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not ideal and can be improved by modifying the base function so that the resulting

algorithm determines the reciprocal square root, x = 1√
a . Once the reciprocal is

determined the square root may be calculated using a single multiplication operation,
√

a = a ·
(

1√
a

)
. Using this method the base function is set to f (x) = 1

x2 − a resulting

in the following expansion of the general form:

xn+1 = xn −
x−2

n − a
−2x−3 (2.89)

=
xn

2
·
(
3− ax2

n
)

(2.90)

Although this version also contains a division operation, it is division by two which

can be performed using a right shift operation in binary systems, or by multiplying

by one half. Further performance improvements can be made by using a FMA

operation to perform the calculation of 3 − ax2
n. Using this implementation the

system will converge to the solution 1√
a in quadratic time, however this requires the

initial estimate x0 to be a close approximation of the final solution, obtainable using

a look-up table or polynomial approximation techniques. The Newton-Raphson

reciprocal square root method is also used for the implementation of the Fast Inverse

Square Root method, an algorithm originally developed for 3D graphics processing

in game development and first appearing in the source code for Quake III [116].

Using this method the performance of the Newton-Raphson method is improved

by determining a better approximation of the solution for the initial value, x0, using

what is now known as the Magic Number [116]. An alternative to the Newton-

Raphson method is the Goldschmidt algorithm for simultaneous calculation of the

square root and the reciprocal square root [119]. Using Goldschmidt’s algorithm

to find the square root and reciprocal square root,
√

a and 1√
a an initial estimate is



2.5. IEEE-754 Floating Point Standard 33

calculated;

b0 = a (2.91)

Y0 ≈
√

a (2.92)

y0 = Y0 (2.93)

x0 = a · y0 (2.94)

The approximate estimate for the value of Y0 is typically determined using a lookup

table. Having determined the initial estimates the iterative method is performed as

follows;

bi+1 = bi ·Y2
i (2.95)

Yi+1 =
1
2
(3− bi) (2.96)

yi+1 = yi ·Yi+1 (2.97)

xi+1 = xi ·Yi+1 (2.98)

until the value bi converges to 1 or a maximum number of iterations is reached,

the values of the square root and reciprocal square root are found from xi and yi

respectively:

√
a = lim

i→∞
xi (2.99)

1√
a
= lim

i→∞
yi (2.100)

2.5.2 Special Values

The standard defines a set of values that are used when the result of a computation

cannot be formatted as either a normal or subnormal value. The special values will

normally result from an exception and ideally will not form the result of a standard

computation. The values fall into three basic categories; zeroes, infinities and not

a number (NaN). The types of special value and their basic formats are shown
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Type Value s e m
Positive Zero +0 0 emin − 1 0
Negative Zero −0 1 emin − 1 0
Positive Infinite +∞ 0 emax + 1 0
Negative Infinite −∞ 1 emax + 1 0
Not a Number NaN 0 emax + 1 > 0

Table 2.5: IEEE-754 Special Value Formats.

in table 2.5. The NaN type contains two possible NaN formats. The quiet not a

number (qNaN) and the signaling not a number (sNaN). A sNaN value will not

result from an arithmetic operation but instead will trigger an invalid operation

exception when used as an operand, alternatively a qNaN value can propagate

through an operation and be returned as a result whenever an invalid operation

occurs. The MSB of the significand is used as a flag to indicate whether the NaN

value is a qNaN or a sNaN.

2.5.3 Rounding

The IEEE-754 standard defines a set of rounding modes that can be used to map

an exact value to the best exact approximation. The standard defines a set of five

rounding modes with each mode containing rules for the direction and precision of

the mode. The five are defined as follows:

1. Round to +∞: Also referred to as round up, the rounded value of x will be

the smallest possible FP value that is greater than or equal to x:

RU(x) ≥ x (2.101)

2. Round to −∞: Also referred to as round down, the rounded value of x will be

the largest possible FP value that is less than or equal to x:

RD(x) ≤ x (2.102)



2.5. IEEE-754 Floating Point Standard 35

3. Round to 0: The rounded value of x will be the nearest FP value that is less

than or equal to x:

RZ(x) =

 RD(x) x > 0

RU(x) x < 0
(2.103)

4. Round to Nearest (odd): The rounded value of x is the nearest FP value. If x

is exactly halfway between two FP values, the result will be the nearest odd

value.

5. Round to Nearest (even): The default rounding mode for IEEE-754. The

rounded value of x will be the nearest FP value, or the nearest even FP value if

x is exactly halfway between two FP values.

In practice rounding is implemented by appending a set round bits to the end of the

significand during the operation, effectively extending the precision of the fixed

point operations that make up the overall FP operation. For IEEE-754 a total of

three rounding bits are used, referred to as the guard, round and sticky bits, which

are appended to the significand in that order. During normalization or significand

alignment any bits shifted off the right of the significand will be passed through the

round bits. The sticky bit has a special function in that it will "stick" to a high value

once a high bit is shifted to it’s position effectively acting as an indicator bit for any

information lost during the shift. During rounding the round bits and the round

mode are used to determine how a value will be rounded as shown in table 2.6. The

trunc() operation indicates that the round bits are simply truncated from the significand,

effectively subtracting them from the final value.

2.5.4 Exceptions

The IEEE-754:2008 standard defines a set of five exceptions that must be handled by

a compliant system. Each exception defines both default exception handling and

alternate handling, with each definition detailing default values and the status flags



36 Chapter 2. Background

Rounding Bits Rounding Mode
Guard Round Sticky Round Down Round Up Round Nearest
X 0 0 trunc(x) trunc(x) trunc(x)
X 0 1 trunc(x) x + 2−p trunc(x)
X 1 0 trunc(x) x + 2−p trunc(x) or x + 2−p

X 1 1 trunc(x) x + 2−p x + 2−p

Table 2.6: IEEE-754 Rounding Operations.

that will be raised. The exceptions are designed so that an exception can be detected

and handled without interrupting program execution. The five exceptions and their

default behaviour are defined as follows [52]:

1. Inexact: If the result of the operation is inexact, that is the result differs from

the result computed using infinite exponent range and precision, and inexact

exception will occur. This will result in the inexact status flag being raised, the

result returned will be the rounded result.

2. Invalid Operation: The invalid operation will occur when an operation occurs

that has no definable result, such as and operation on a NaN, divide by zero or

adding/multiplying infinities. When an invalid operation occurs the invalid

status flag is raised and the result will be set to a quiet NaN value providing

diagnostic information.

3. Divide by Zero: The divide by zero exception will only occur if an infinite

result is defined for finite operands. The exception results in the divide by zero

status flag being set and the result being set to infinity. The sign of the result is

set depending on the sign of the operands.

4. Overflow: An overflow exception will occur when the magnitude of the roun-

ded result is larger then the magnitude of the formats largest finite number. In

the case of an overflow exception the overflow status flag is set, the result of

the operation will depend on the rounding mode and the sign of the operand:

(a) Round to Nearest (Even/Odd) - All results set to infinity with the sign of
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the intermediate result.

(b) Round to Zero - All results set to the largest finite result with the sign of

the intermediate result.

(c) Round Up - Negative results set to the largest finite result with negative

sign, positive results set to positive infinity.

(d) Round Down - Positive results set to the largest finite result with positive

sign, negative results set to negative infinity.

5. Underflow: An underflow exception will occur when the result is a subnormal

value, that is when the result that would be computed given infinite exponent

range and precision falls within the range −βemin ≤ x ≤ βemin . The default

handling of an underflow exception will deliver a rounded result. If the result

is inexact both the inexact and the underflow exception will be raised, if the

result is exact, (exact underflow, no rounding required), no flag is raised.

2.6 Error Analysis

Most number systems are limited to a finite precision due to the limits on memory

and performance that exist in all real world computer systems. This limitation on

precision means that not all real numbers are representable, in fact the gap between

any two FP values will contain an infinite set of real numbers that cannot be repres-

ented. In practice the FP number system provides the best available approximation

of a number system for use in computer arithmetic and will usually provide results

that are accurate enough for the task at hand, however, certain factors such as errors

of measurement or estimation, quantization error or errors propagated from earlier

parts of a computation can result in inaccurate results. Several systems have been

developed for the detection and analyses of errors FP computations, including

interval arithmetic (IA), affine arithmetic (AA) and Monte Carlo arithmetic (MCA).

This dissertation focuses on errors that can occur in FP arithmetic, (specifically
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the IEEE-754:2008 standard), as these are the most common types of error due to

the widespread implementation of FP. The following section provides a description

of the types of arithmetic error that are most likely to affect a FP computation, the

factors that can lead to these types of error, the effects that these errors can have on

a computation and the methods used to measure and analyse arithmetic error and

stability.

2.6.1 Arithmetic Error

Errors resulting from FP computations are often overlooked, due to the fact that the

error is either to small to notice, appeared then disappeared to quickly to be noticed,

or due to the simple fact that the computation was not important enough to warrant

error analysis [93]. The widespread implementation of FP systems means that errors

with serious consequences can occur, and have occurred in the past. Some of the

more infamous examples include Intel’s floating point division (FDIV) bug, which

caused errors in FP division operations and cost the company hundreds of millions

of dollars in recall costs [65, 139], and the explosion of a 7 billion dollar Ariane 5

unmanned rocket launched by the European Space Agency, an explosion caused

by errors in the conversion of a 64-bit FP value to a 16-bit signed integer [104, 139].

Errors due to round-off and precision are not limited to FP arithmetic. In 1991 during

the first Gulf War a rounding fault existed in the fixed point system used for guidance

in the Patriot Missile system. This fault eventually led to the miscalculation of the

trajectory of an incoming Scud Missile that killed 28 U.S soldiers at a base in Dahran,

Saudi Arabia [139, 157].

2.6.2 Numerical Stability

The property of numeric stability is a desirable property of any algorithm or arith-

metic system. A measure of numeric stability is essentially a measure of the accuracy

of a given algorithm, in many cases a problem can be evaluated in one of several

different ways each performing the same task but with the possibility that each
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method will yield different results due to finite precision, rounding or quantization

errors. Numeric stability is used to determine the level to which the results of an

implementation agree with each other or with an ideal result, and can be applied to

a number system, an individual representation of a real value or to an algorithm.

Two of the most basic measures of numeric stability are relative error and significant

figures. As explained in Section 2.4.2 the relative error of a value measures the dif-

ference between the representation X, and the corresponding real value (calculated

using infinite precision) x [65, 81, 130]:

δ =
|x− X|

x
(2.104)

Significant figures are defined as the figures of a number which give meaning to its

precision and are defined as the first non-zero digit and subsequent trailing digits

(including zeroes), i.e. in a five digit decimal number system with two whole and

three fraction digits, the value 00.005 has one significant figure while the value 01.050

has four significant figures. Measurement of stability using significant figures is

preformed by determining to what level the significant figures agree, two algorithms

attempting to solve the same problem may produce the values 13.051 and 13.052,

these results can be said to agree to four significant figures. Two values may agree to

a high number of significant figures while still having substantially different relative

errors, making one answer more accurate than the other despite the agreement in

terms of significant figures. For this reason relative error and significant figures are

often combined when used to measure the stability of an algorithm [81, 139].

A more formal definition of numeric stability is separated into definitions for for-

ward, backward and mixed stability. Using these definitions the errors affecting

a function f (x) can be separated into these three categories and analysed appro-

priately. If the function y = f (x) is a function for mapping data x to the solution
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y then the result of the function as performed using some finite precision system

will be an approximation of the result, ŷ. Computing the result of this function will

also involve converting the value x to its finite precision representation, x̂. Both

operations will result in the possibility of error begin included in the result. The

conversion of the value x is modelled by x̂ = x(1 + δ) and the calculation of the final

result is modelled by ŷ = f (x(1+ δ)) [81, 139]. The error value in x̂ represents errors

in measurement, quantization or errors propagated forward from earlier calculations

and is referred to as the forward error of the system, alternatively the relative error in

ŷ represents errors due to rounding and is referred to as backward error. Measurement

and analysis of the backward error of an algorithm is referred as backward error

analysis and is used to determine if a function is backward stable and determine its

sensitivity to input perturbations. A function can be said to be backward stable if the

function produces a correct value ŷ = x(1 + δ) for small perturbations of δ, i.e. the

function is not affected by small changes to the forward error of the inputs [81, 139].

2.6.3 Round-off Error

FP arithmetic can be defined as a type of rounded arithmetic, that is, not all possible

possible real values R can be represented and instead are approximated by FP values

F. This leads to the concept of exact and inexact values as discussed in section 2.4.2.

A more formal definition of this concept given in [64, 81, 139, 141] states that the

accuracy of the rounded approximation F(x) of a value x is given by:

F(x) = x(1 + δ) (2.105)

δ ≤ ε (2.106)

Where ε = 1
2 β1−p is the machine epsilon of the system. From this equation it can

be seen that all inexact values will contain an error in their approximation. Round-

off error can be defined as a type of backward error, as it is introduced during an

operation, however, round-off error will normally include errors taken from the
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inputs to the operation, and as such a function including both rounding (backward)

error and forward error can be defined as follows [64, 81, 139]:

ŷ + ∆ = f (x(1 + δ)) (2.107)

where ∆ ≤ ulp(ŷ) and δ ≤ ulp(x̂). In this model the final value for the result

contains values for both the forward and backward error to represent the rounding

error in the operation, a situation referred to as mixed forward-backward error [81].

2.6.4 Catastrophic Cancellation

Cancellation is an phenomenon that will occur when two nearly equal values are

subtracted leaving a large number of zeroes after the radix point, in floating point

arithmetic this situation cannot occur when dealing with normalized values and

as a result catastrophic cancellation can occur. If one or more non-exact numbers

are subtracted, a loss of significant digits can occur due to normalization of the

result [64, 65, 81, 92]. This phenomena is called Catastrophic Cancellation and is one

of the major causes of loss of significance. Consider the solution to the equation

x2 + 444x + 1 = 0 (2.108)

using the quadratic formula

r =

(
−b±

√
b2 − 4ac

)
2a

(2.109)

IEEE-754 single precision format uses a 24-bit binary significand giving it a precision

value p = 24, equivalent to log10(224) ≈ 7.225 decimal digits. In most cases the
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answer will be accurate to 7 decimal places, but in this example the exact result is:

r1 = −222±
√

49283 (2.110)

= −0.00225226368 (2.111)

whereas IEEE-754 arithmetic gives r1 = 0.000000000. This has a 100% relative

error due to catastrophic cancellation. A better insight to the effects of catastrophic

cancellation can be seen by considering the equation x̂ = â− b̂ where â = a(a + δa)

and b̂ = b(1 + δb), in this situation the relative error of the function is given by [81]:

∣∣∣∣ x− x̂
x

∣∣∣∣ = ∣∣∣∣−aδa − bδb

a− b

∣∣∣∣ ≤ max(|δa|, |δb|)
|a|+ |b|

a− b
(2.112)

This shows that the relative error is large when |a− b| � |a|+ |b|, i.e. when cata-

strophic cancellation occurs it will magnify errors already present in the operands.

2.6.5 Static & Dynamic Error Analysis Methods

The design of numerically stable algorithms must ensure that the issues reviewed

do not adversely contribute to the accuracy of the solution. In the design of numeric

libraries, analysts use techniques such as forward and backward error analysis to

quantify the propagation of errors and understand their effect on the stability and

accuracy of the algorithms [168]. Unfortunately, these techniques cannot be applied

to arbitrary programs, require manual analysis and considerable expertise, and do

not scale beyond small subroutines.

One of the primary questions in the study of numeric analysis is not how to develop

the best techniques or systems, but how to get the best techniques and systems into

the hands of the developers working with real world problems. Aside from the

practical considerations of ease of understanding, implementation and use, there

exists the question of what developers need or want in a numeric analysis tool. One
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of the best assessments of numeric analysis techniques and the current state of the art

is presented in [95]. Kahan notes a significant problem in encouraging the adoption

of numeric analysis techniques; the average developer is not interested in these

techniques until after something has gone wrong, at which point analysis is often

required for “...an assignment of blame and the task of relieving the distress, if possible.” It

is for this reason, among others, that developers often search for what Kahan calls

mindless assessments of round-off error, essentially systems that allow for a fire

and forget approach rather than an in-depth analysis of the inner numeric workings

of a piece of software. When viewed through this lens, the question of how to

design systems that will be eagerly adopted by developers becomes a philosophical

difference between two approaches to numeric analysis:

• How many significant digits are available in the results, or, how accurate is my

program?

• What is the worst case bound on the absolute/relative error, or, how badly

could my program fail?

What Kahan refers to as mindless assessments of round-off error often focus on

the second approach, as this is the question that developers want answered after

something has gone wrong (in which case the question often becomes how badly

did my program fail?). The remainder of this chapter presents an overview of error

analysis methods and the current state of the art.

Error analysis methods for software are divided into two types, dynamic, which

analyses the results of program execution for a specific input set, and static, which

is performed without the need for execution. While these analysis types are in-

tended to be complimentary and may be used to validate each others’ results, key

differences exist. Dynamic analysis provides a higher level of flexibility and can

even be performed without access to the source code in the case of automated tools,

but more often requires significant modifications to the source code, and due to its
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data dependency must be performed using an adequate set of inputs to produce

meaningful results. Conversely, by limiting analysis to individual executions of

a system, dynamic analysis methods are efficient, as system properties need only

be checked along a single execution path. Furthermore, testing is conducted using

actual operations performed by the system rather than mathematical abstractions

allowing for more precise analysis. This also avoids compatibility issues being intro-

duced from differences in arithmetic format, compilers or system architecture [124].

Static analysis avoids the data dependency issue by abstracting the possible states

and operators of tested software, leading to a mathematical formulation that allows

all possible states of a system to be tested. An overly rigorous definition will result

in a complex analysis that does not scale to large systems. Automated tools for

static analysis provide the ability to pinpoint the exact locations of errors in software,

often at an earlier stage in the software development life cycle (SDLC), however

automated tools only support certain languages and static analysis becomes time-

consuming when performed manually.

Static analysis techniques typically use formal methods, whereby software is ana-

lysed using mathematical techniques based on formal semantics of the programming

language used. These techniques include denotational semantics, axiomatic se-

mantics, operational semantics and abstract interpretation. Methods used for static

analysis include three basic types:

1. Model or Property Checking

2. Data Flow Analysis

3. Abstract Interpretation

Model or property checking requires the creation of formal models for both the

system and its specification. Model checking may then be used to determine if the

system model meets all requirements of the specification model [103]. In order to

perform model checking algorithmically, it is limited to finite state systems and is
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typically used for the analysis of hardware (HW) systems as the undecidability of

SW limits it’s effectiveness. Due to this limitation model checking is often used for

analysis of SW and HW systems modelled as a finite state machine (FSM). Data flow

analysis is a technique for generating possible sets of values for nodes in a program’s

control flow graph (CFG), this is typically accomplished using an iterative approach

that determines values for the in-states and out-states at each node in the CFG until

the complete system stabilizes [29, 99]. Finally abstract interpretation creates partial

abstractions of operations and variables in order to create a computable semantic

interpretation. It is viewed as a partial execution technique for static analysis [30, 31].

The semantics created for abstract interpretation are defined as monotonic functions

that relate elements of the system across ordered sets.

Systems available for static analysis of rounding errors include Fluctuat [68], As-

tree [12] and Polyspace [41]. Fluctuat performs abstract interpretation using an

abstract domain based on AA for analysis of FP error. This tool is now being used by

Airbus to automate accuracy analysis of control software [38]. Astree is based on IA

methods and is designed for safety critical analysis, including FP error analysis [12].

This software is also being used by Airbus for automated software analysis [39].

Polyspace is used to locate potential run-time errors including arithmetic overflow,

divide by zero and buffer overrun, the software is now supplied by MathWorks and

is used in several industrial applications.

Several systems have been developed for performing dynamic analysis of FP SW.

IA [126, 137] is a system for producing error bounds on rounding and measurement

errors of an algorithm, as opposed to an exact result, this allows numerical methods

to be developed that produce reliable result bounds for systems that would other-

wise produce inconsistent results. Using IA. an input value is defined as a range of
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real values, rather than a single value [77, 78, 126]:

x = [a, b] (2.113)

= {x ∈ R : a ≤ x ≤ b} (2.114)

The use of an interval as opposed to a single value removes issues with inexact values

and round-off error. Rather than attempting to find the nearest approximation of an

inexact value, an interval consisting of two exact values that can be said to contain the

inexact value is found. The use of intervals of this type requires redefinition of basic

operators. Using IA where the interval of a value x ∈ R = [a, b] and y ∈ R = [c, d]

the following basic operators are defined [19, 126, 161]:

x + y = [a + c, b + d] (2.115)

x− y = [a− d, b− c] (2.116)

x · y = [min(a · c, a · d, b · c, b · d), max(a · c, a · d, b · c, b · d)] (2.117)

x
y
=

[
min

(
a
c

,
a
d

,
b
c

,
b
d

)
, max

(
a
c

,
a
d

,
b
c

,
b
d

)]
(2.118)

The use of IA requires the selection of appropriate error bounds in order for the

system to produce usable results. If the error bounds selected are too narrow, then

the final interval could be a range that does not contain all possible results of the

system, alternatively if the error bounds selected are too wide then the final interval

result will be overly pessimistic and essentially unusable. In the case of FP arithmetic

intervals are selected in order to include error bounds that account for rounding

error and finite precision in the operands [19, 181]. If the function F(x) is defined

as a conversion function designed to convert a real value x to a FP representation x̂

then the result will be an exact FP value plus a possible error:

x = F(x) + δ (2.119)

= x̂ + δ (2.120)
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Where 0 ≤ δ ≤ ulp(x̂) is the round-off error of the conversion function. Using IA

this conversion function can instead produce an interval that represents the round-

off error of the function and contains the inexact value x within the error bounds of

the interval [19, 145]:

x = x̂ + δ (2.121)

= [x|x̂− ulp(x̂), x|x̂ + ulp(x̂)] (2.122)

= [RD(x), RU(x)] (2.123)

where RD(x) and RU(x) are the round down and round up operations. Using this

logic it is assumed that if x is an inexact value then the interval of x will b the two

exact FP values nearest to x. Alternatively if the value is exact then a degenerative

interval will occur. One significant drawback of IA is operations that result in

pessimistic, or overly wide error bounds, as an interval is designed to bound all

possible outcomes of an operation an ideal result will be the maximum and minimum

possible exact values, an overly wide interval will contain values that are not possible

and indicate a higher level of instability within the operation [95, 181]. This effect

is will often occur due to a dependency issue within IA. Variables used within

an interval operation are assumed to vary independently of one another over the

full range of the interval, however this may not always be the case, if there are

any constraints between the given intervals then not all available results within

the interval range will be valid. If this issue occurs then the resulting interval will

be much wider than expected. Several schemes have been developed to try and

avoid these types of errors. One such method is to combine interval arithmetic with

rounded arithmetic during fixed point calculations of significand values. A second

method is to redefine the basic operations to perform inner interval arithmetic (IIA).

Using IIA results with tighter error bounds can be obtained, the system redefines
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the basic operators as follows:

[x1, x2] + [y1, y2] = [x1 + y2, x2 + y1] (2.124)

[x1, x2]− [y1, y2] = [x1 − y1, x2 − y2] (2.125)

[x1, x2] · [y1, y2] =


[min(x) ·max(y), max(x) ·min(y)] : 0 6∈ [x1, x2], 0 6∈ [y1, y2]

max(y) · [x1, x2] : 0 ∈ [x1, x2], 0 6∈ [y1, y2]

[max(x1y2, x2y1), min(x1y1, x2y2)] : 0 ∈ [x1, x2], 0 ∈ [y1, y2]

(2.126)

[x1, x2]

[y1, y2]
=


[(

min(x)
min(y)

)
,
(

max(x)
max(y)

)]
: 0 6∈ [x1, x2], 0 6∈ [y1, y2](

1
max(y)

)
· [x1, x2] : 0 ∈ [x1, y2], 0 6∈ [y1, y2]

(2.127)

where max(x) = max(|x1|, |x2|) and min(x) = min(|x1|, |x2|) [181]. The equations

for IIA solve the dependency issue of standard IA by treating equal intervals as the

same variable and will result in degenerative intervals in the situations mentioned

previously. Although this system will result in tighter error bounds if the system

is not used carefully it can have the opposite problem to IA, the resulting error

bounds will be too narrow and not contain all possible results of the system being

tested, i.e. in certain situations an IIA system will produce results that do not have

guaranteed enclosure. A solution to this issue proposes a system of random interval

arithmetic (RIA) [181], where an operation will be evaluated using either standard IA

or IIA with a random variable determining which system is used for an individual

operation. Using RIA standard IA operations can be combined with IIA result in

tighter error bounds if the operands being used are monotonic, that is if operands x

and y are related by x ≥ y then the results of the operation must adhere to the same

relationship f (x) ≥ f (y). Using this system operations are repeated analysed and

results treated statistically. Results for the average center and range of the resulting

intervals are obtained, then the average and standard deviation used to determine

an approximate interval for the system [181].
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AA [6, 36, 85] is an extension of IA that is designed to eliminate dependency prob-

lems within IA. The key difference between IA and AA is the representation of

values. Rather than using intervals, AA represents values in affine form, x̂, which is

represented as a first order polynomial:

x̂ = x0 + x1ε1 + x2ε2 + x3ε3 + ... + xnεn (2.128)

where the values xi are real coefficients and the values εi are unknown variables

in the range [−1, 1]. The real coefficient x0 is referred to as the central value while

xi values are referred to as partial deviations, the values εi are referred to as noise

symbols. The affine form can be converted to interval form using the following

equations:

x̂ = [x + ξ, x− ξ] (2.129)

ξ =
n

∑
i=1
|xi| (2.130)

The affine form of a value allows for not only the interval of a value to be stored

but also relationships to other values, the noise symbols are used to represent error

within the values, with each noise symbol representing a different source of error

and the partial deviation values determining what level each noise symbol affects

the value. As relationships to other variables are stored the dependency issue that

normally affects interval based operations can be eliminated, however, AA opera-

tions are more complex in terms of performance requirements and storage.
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Using AA basic operators are defined as follows [48]:

x̂± ŷ = (x0 ± y0) + (x1 ± y1)ε1 + ... + (xn ± yn)εn (2.131)

x̂± α = (x0 ± α) + x1ε1 + ... + xnεn (2.132)

x̂α = x0α + x1ε1α + ... + xnεnα (2.133)

where α is a real value α ∈ R. Multiplication is a more difficult operation to

implement but can be represented by the following:

x̂ · ŷ =

(
x0 +

n

∑
i=1

xiεi

)(
y0 +

n

∑
i=1

yiεi

)
(2.134)

= x0y0 +
n

∑
i=1

(x0yi + y0xi)εi +

(
n

∑
i=1

xiεi

)(
n

∑
i=1

yiεi

)
(2.135)

Implementation of AA requires increase levels of memory and performance re-

sources to complete operations. Implementations will store affine forms using a

combination of BCD and FP variables to represent individual values, typically an

affine form using n noise symbols will store the value x0 in FP format, the value n

in integer form, followed by n sets of a FP value xi, (the partial derivation) and an

integer i representing which noise symbol εi to use at that point. This storage format

therefore requires 2n + 2 words to store an affine form to n noise symbols [115].

Several publications have implemented systems for modelling FP error using AA

using the following specialized case of an affine form to represent FP values and

their associated errors [48, 85]:

x̂ = x0 + x1ε1 + max(|x|)β−qδ1 (2.136)

where ε1 ∈ [−1, 1] is the variation symbol representing variations in the input,

δ1 ∈ [−1, 1] is the error symbol representing errors in rounding/quantization and

max(|x|)β−q is the error bound the value x. Using this form operations are performed
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using the following basic format:

r̂ = (x ◦ y) + max(|z|)β−qδ (2.137)

= r0 + ∑ viεi + ∑ wiδi (2.138)

Using these affine forms errors in FP arithmetic can be tracked during execution and

can provide more accurate estimations of the error bounds of FP systems than IA

systems, however, as in IA the accuracy and efficiency of the system will decrease as

the number of operations chained together increases [48]. AA is also more complex

to implement as a hardware solution due to the increased requirements in terms of

memory and performance, at present the majority of implementations are software

based solutions.

The contrôle et estemation stochastique des aarondis calculs (CESTAC) technique [164]

is an implementation of the probabilistic approach similar to MCA. Using CESTAC

an execution is repeated N times with the rounding method of FP operations ran-

domized by rounding the result up or down with 50% probability. Using this method

the least significant bit of the result significand is perturbed at each arithmetic stage

creating a set of N results RN . As in MCA statistical analysis of the result set can be

used to determine the accuracy of the algorithm used.

Several SW-based implementations of these methods have been published including

control of accuracy and debugging for numerical applications (CADNA) [8, 88], an

implementation of the CESTAC method that also uses the multiple precision float-

ing point reliably (MPFR) library for mixed precision implementation. Several SW

libraries for IA are available including extensions for scientific computation (XSC),

Gaol and a C++ template class available as part of the Boost library [15, 67, 100]. Sun

Micro-systems has also provided support for IA as part of their C/C++ compiler lib-

rary [166]. IA has also been implemented as part of Gappa [34], a formal verification
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tool for fixed and FP arithmetic. Gappa utilizes forward error analysis in addition to

IA and requires a bounded input in order to perform its analysis. Using this tool,

bounds on the outputs of an algorithm are determined in addition to proofs on these

bounds that may be checked via a proof assistant [130]. In order to maintain reas-

onable performance, a limited number of HW implementations of IA [4, 154, 160]

and CESTAC [21] can be found in the literature. A SW implementation of MCA has

been published by Parker [142] along with a set of test cases, however this imple-

mentation cannot be applied to existing source without significant modifications. A

field programmable gate array (FPGA)-based implementation of MCA addition and

multiplication with an area penalty of less than 22% over IEEE-754 was published

by Yeung et. al. [179].

A separate class of analysis techniques have also been developed for bit width

optimisation of arithmetic operators. While primarily aimed at fixed point imple-

mentations for DSP and FPGA systems, most are applicable to both fixed and FP

formats. The multiple word length paradigm (MWLP) [26] is an analysis technique

that uses perturbation and scaling analysis for fixed point arithmetic to perform

error constrained word length optimization. The system uses user defined error

constraints on signal to noise ratio (SNR) in order to optimize FPGA based DSP sys-

tems for area use, speed or power consumption. This system has been implemented

for linear [27, 28] and non-linear [25] DSP systems and is the basis for Right-Size, a

word-length optimization system for adaptive filters [24]. Bit width optimization

methods have also been developed using static analysis techniques including AA

and adaptive simulated annealing (ASA) [108]. These are designed to use range and

precision analysis of fixed point implementations in order to guarantee the absolute

error bounds of the system, and have been implemented in the tool MiniBit [109].

This type of analysis has also been expanded to the analysis of FP applications using

Automatic Differentiation [59]. Mixed analysis methods for both fixed and FP sys-

tems have also been developed using mixed precision analysis for optimizing word
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lengths for speed, power consumption and area use in FPGA systems [60]. Mixed

analysis tools are also available in the form of MiniBit+ [138], and the BitSize tool [61].

Finally FP analysis systems have been developed using profiling techniques based

on tools such as Valgrind. Using these tools, FPGA-based arithmetic systems for

DSP implementation may be optimized for speed, power consumption and area

use. They perform mixed precision analysis of FP operations in order to identify

operations that may be optimized by reducing the precision of the FP operations, or

replacing FP operators with fixed point or dual fixed point operators [16]. This type

of analysis has implemented as part of the FloatWatch tool [17].

2.7 Summary

FP arithmetic is one of the most widely implemented systems for computer arith-

metic and represents the best solution for situations requiring flexibility in both

precision and range. The industry standard implementation of FP arithmetic is the

IEEE 754 implementation and implementations of this standard are widely used in a

variety of applications mostly without issue. However, due to certain characteristics

of the number system, namely issues with finite precision limitations and cancella-

tion occurring during the normalization stage rounding errors are un-avoidable. In

an ideal case the error in any result will be limited by the ULP or machine epsilon of

the particular implementation in use, resulting in a bound on relative error limited

by the precision of the FP format:

δ ≤ β−p (2.139)

In the general case it can be assumed that rounding error will be limited by this in-

equality, however, under certain conditions rounding error can become significantly

larger. In some cases many times larger than the original result creating relative error

rates in excess of 100%. Of particular concern in this work is the issue of catastrophic

cancellation, a phenomenon that will occur when subtracting two similar values
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resulting in a high number of significant digits shifted off of the significand during

the normalization stage of an operation. The scale and consequences of FP error is

varied, and arguments have been made that given the widespread application of FP

arithmetic the vast majority of errors appear and disappear without being noticed

and without significant consequences. Yet major errors have occurred in critical

applications and the consequences at times have been severe, the need for accurate

and easy to use error analysis tools is readily apparent and the goal of numeric

analysts should be the development of these tools as part of the SDLC. A number

of numeric analysis tools have been developed, including methods for performing

static analysis, dynamic analysis and bit-width optimization. In this work the focus

is on dynamic methods for run-time probabilistic analysis of rounding errors and in

particular the application of Monte Carlo Methods to analysis of floating point arith-

metic, a method developed by D.S. Parker known as MCA. This analysis method is

detailed in the next chapter.
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Monte Carlo Arithmetic (MCA)

3.1 Introduction

Monte Carlo arithmetic (MCA) is an application of the Monte Carlo method (MCM)

to numerical analysis of floating point (FP) arithmetic. MCMs are a class of probabil-

istic algorithms used to obtain results for problems where it is difficult or impossible

to solve the problem using deterministic methods. Using MCMs repeated simula-

tions using random sampling are performed to obtain a distribution of results that

may be analyzed using statistical methods. The MCM was originally developed

for use in particle physics experiments and is based on methods for statistical

sampling [121–123]. MCA was originally developed by D.S. Parker [141] and is an

extension of floating point arithmetic designed to simulate inexactness in floating

point variables and operations using random perturbation of the input and output

operands. This has the effect of turning error analysis of a program or algorithm into

a statistical problem that can be analyzed using standard statistical methods.
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3.2 Monte Carlo Methods

3.2.1 History and Development

The development of the modern MCM has been made possible only in the 20th

century with the advent of the digital computer. Previously, analysis methods of

this type were known as Statistical Sampling. Statistical sampling methods have

been in use for several centuries. One of the earliest problems in statistical sampling

to be solved using integral geometry was posed by Georges-Louis Leclerc, Comte

de Buffon, in 1777, now known as Buffon’s Needles [23, 80]. The transition from

statistical sampling to MCM occurred in 1945 at Los Alamos Laboratory during

the Manhattan project. As part of the development of nuclear weapons, one of

the earliest electronic computers, the electronic numerical integrator and computer

(ENIAC) was developed. At this point in time Statistical Sampling methods were no

longer in widespread use, primarily due to the large number of tedious calculations

required, however, with the development of the computer, mathematicians John von

Neumann, Stanislav Ulam and Nicholas Metropolis realized that statistical sampling

methods could be re-invented and modernized using the computer to perform the

required calculations. The original experiments devised using the new technique

were intended so solve the problem of neutron diffusion in fissionable material.

This class of problem involved assigning values to variables describing neutron

position, velocity, impact position and impact type according to the probabilities

assigned to each variable. The continued development of the MCM was a major

driver behind the development of pseudo-random number generators, allowing for

a significant increase in the efficiency and performance of the simulations conducted.

Further development has lead to the creation of Markov chain Monte Carlo method

(MCMCM) and quasi-Monte Carlo method (qMCM), with these techniques being

used in a number of different fields.
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3.2.2 Definition and Implementation

The definition of a MCM varies, but in the general case a MCM is any algorithm

where a numeric solution is estimated based on the results of repeated sampling. The

experiments are defined and implemented according to the following methodology;

• Define a suitable input domain.

• Generate random inputs from a suitable probability density function (PDF)

over the input domain.

• Perform necessary calculation on the inputs.

• Aggregate results

The most common implementations of this method are to define the MCM explicitly

as the solution to an integral, (Monte Carlo as Quadrature), or to design a simulation-

based approach to estimate the solution, (Monte Carlo as Simulation).

Given a continuous function with a single variable z(x), dependent on a random

variable x, the mean or expected value of z(x) is given by:

〈z〉 =
∫
[0,1)s

z(x) f (x)dx (3.1)

where x ∈ [0, 1)s and f (x)dx is the probability that x has a value within dx about

x. Monte Carlo methods are used when integrals of this type may not be evaluated

analytically and instead an estimate for 〈z〉 is required. Applying a quadrature

scheme an estimate for the value of 〈z〉 is found by summing a set of weighted

evaluations of the integrand:

〈z〉 ≈
N

∑
i=1

wiz(xi) f (xi) (3.2)

where wi are the weights and xi are the nodes or abscissas of the quadrature scheme.

Applying a basic Monte Carlo approach a set of N abscissas are generated according
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to the PDF f (x) which are used to determine the value of the sample mean:

z ≡ 1
N

N

∑
i=1

z(xi) (3.3)

which, (according to the central limit theorem), approximates the solution to 〈z〉

given a suitable sample size N:

lim
N→∞

z = 〈z〉 (3.4)

In the case of a basic Monte Carlo approach the weight values are set such that

wi =
1

N f (xi)
and the PDF is not included in z [46].

3.2.3 Sampling Methods

The concept of convergence is an important metric used to determine performance

and accuracy of a MCM estimator. As such reducing the effort required to obtain

a strong result is a high priority when developing MCMs. Given an integral as in

equation 3.1 and an MCM estimator as in equation 3.3:

〈z〉 =
∫
[0,1)s

z(x) f (x)dx ≈ z =
1
N

N

∑
i=1

z(xi) (3.5)

the standard deviation of the sample mean z is given by:

s(z) =
1√

N − 1

√
z2 − z2 (3.6)

As the values z2 and z2 must always be positive, variance reduction methods are

typically aimed at minimizing the value of z2 − z2 [46]. Some of the most widely

used methods are modified sampling methods - used to the bias the sampling of

the MCM experiments by modifying the sampling PDF. These types of the methods

include Importance Sampling, Stratified Sampling and Correlated Sampling with Antithetic
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Variates, each of which is discussed in brief in this section.

Importance Sampling

Given the standard MCM estimator given in equation 3.5 consider a system in which

the values of z(x) of interest to the result are distributed over a small sub-region

of the overall volume. In this scenario, the PDF f (x) sampling uniformly over

the region will produce many results that are not of interest and in fact can be

discarded. Given the modern implementation of MCMs as computer simulations

this corresponds to a potentially waste of computational resources, alternatively, the

efficiency of the system can be greatly improved by sampling only over a sub-region

of interest. This is achieved by defining an arbitrary PDF f ∗(x) and adjusting the

expected value:

〈z〉 =
∫
[0,1)s

z(x) f (x)
f ∗(x)

f ∗(x)dx (3.7)

=
∫
[0,1)s

z∗(x) f ∗(x)dx (3.8)

= 〈z∗〉 (3.9)

where z∗(x) = z(x)W(x) and W(x) = f (x)
f ∗(x) is a weight function used to remove

bias introduced by sampling from f ∗(x). The sample mean of the estimator is now

calculated as follows:

〈z〉 = 〈z∗〉 (3.10)

≈ z∗ =
1
N

N

∑
i=1

z(xi)W(xi) (3.11)

where xi are sampled from f ∗(x). The variance of z∗ is given by:

σ2(z∗) = 〈z∗2〉 − 〈z∗〉2 (3.12)

= 〈z∗2〉 − 〈z〉2 (3.13)



60 Chapter 3. Monte Carlo Arithmetic (MCA)

Note that 〈z∗〉2 = 〈z〉2, but 〈z∗2〉 6= 〈z2〉:

〈z∗2〉 =
∫
[0,1)s

z∗2(x) f ∗(x)dx (3.14)

=
∫
[0,1)s

z2(x)W2(x) f ∗(x)dx (3.15)

=
∫
[0,1)s

z2(x)
f 2(x)
f ∗(x)

dx (3.16)

=
∫
[0,1)s

z2(x)
f (x)
f ∗(x)

f (x)dx (3.17)

=
∫
[0,1)s

z2(x)W(x) f (x)dx 6=
∫
[0,1)s

z2(x) f (x)dx (3.18)

Given the inequality in 3.18 the variance of the expected result can be reduced by

implementing a weight function W(x) < 1 for regions of z(x) that affect the the

expected value [46].

Stratified Sampling

Stratified sampling is an implementation of Systematic Sampling. Using these

methods the integral region is divided into a set of sub-regions, and the variance of

the final estimator may be reduced by determining how many samples to take from

each sub-region. In the case of Stratified Sampling, the number of samples taken

from each region is proportional to the variance of the integral over that sub-region

- more samples will be taken from sub-regions with higher variance. Given the

integral z over a volume V = [0, 1)s, a stratified sampling method defines a set of M

sub-regions over V such that:

〈z〉 =
M

∑
m=1

∫
VM

z(x) f (x)dx (3.19)

The probability of a sample xi from PDF f (x) landing in a sub-region VM is defined

as pm =
∫

VM
f (x)dx where ∑M

m=1 pm = 1, with this definition, a set of PDFs for each
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sub-region may be defined:

fm(x) =


f (x)
pm

if x ∈ Vm

0 otherwise
(3.20)

Using these PDFs the expected value is now defined as:

〈z〉 =
M

∑
m=1

pm

∫
VM

z(x) fm(x)dx (3.21)

and the sample mean of the estimator as:

z =
M

∑
m=1

pmzm (3.22)

where:

zm =
1

Nm

M

∑
i=1

z(xi) (3.23)

and the number of samples taken from each region Nm is proportional to σ2(z) so

long as ∑M
m=1 Nm = N:

Nm =
pmσm(z)

∑M
m=1 pmσm(z)

N (3.24)

Compared with simplified random sampling, stratified sampling is known to reduce

the variance of the estimated value in most cases, however if the variance of z is

constant across V then there will be no improvement. Furthermore the method

requires that the variance of z in each sub-region be known in advance in order to

determine the number of samples to draw from each. Alternatively, if the variance is

unknown a preliminary series of trials may be performed in order to estimate the

sample variance of z, and this value may be used to determine Nm [46].
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Correlated Sampling with Antithetic Variates

Correlated sampling methods are used when performing a Monte Carlo simulation

comparing two almost equal scenarios. Using correlated sampling, instead of per-

forming two independent simulations, each simulation is performed using the same

random number sequence and the difference is calculated to determine the final

result. By using the same random numbers the two simulations are highly correlated

reducing the variance in the final result. Given a system 〈∆z〉 = 〈z1〉 − 〈z2〉 where:

〈z1〉 =
∫

V
z1(x) f1(x)dx (3.25)

〈z2〉 =
∫

V
z2(x) f2(y)dx (3.26)

the estimator of the result is given by:

∆z = z1 − z2 (3.27)

=
1
N

N

∑
i=1

z1(xi)−
1
N

N

∑
i=1

z2(yi) (3.28)

the variance of the result is given by:

σ2(〈∆z〉) = σ2(〈z1〉) + σ2(〈z2〉)− 2 cov(z1, z2) (3.29)

If z1 and z2 are calculated independently then cov(z1, z2) = 0, but if the random

variables x and y are positively correlated then cov(z1, z2) > 0 reducing the variance

in the final estimator. Antithetic variates are a special case of correlated sampling

where the simulations used for the calculation of the sample mean are performed

with two simulation paths, the first using the set of random numbers X1 = x1, ..., xn

and the second using X2 = −x1, ...,−xn, thus creating the antithetic path. Performing

a simulation of 〈z〉 using these two paths to implement the two estimators z1 and z2
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allows for the final estimator to be found using

z =
z1 + z2

2
(3.30)

The estimators z1 and z2 are calculated using the standard method for MCMs:

z1(x) =
1
N

N

∑
i=1

z(xi) (3.31)

z2(x) =
1
N

N

∑
i=1

z(1− xi) (3.32)

Substituting these two equations into 3.30 gives the following:

z =
1

2N

N

∑
i=1

[z(xi) + z(1− xi)] (3.33)

The variance in the result is given by:

σ2(z) =
1
4
[
σ2(z1) + σ2(z2) + 2 cov(z1, z2)

]
(3.34)

As is the case for standard correlated sampling methods, a strong negative correlation

between the estimators z1 and z2 will reduce the variance in the result estimator [46].

3.3 Quasi Monte Carlo Methods

3.3.1 Definition

A qMCM [72, 151, 167] is a special class of MCM that uses a low discrenpancy

sequence (LDS) to generate the random number sequences used for the simulation

as opposed to a pseudo-random number sequence. qMCMs are preferred over

standard MCMs in certain situations due to the fast convergence property of the

method [33, 133]. This fast convergence is achieved using a LDS, defined as a

sequence with significantly lower discrepancy than that of a typical random number

set [106]. The benefit of lower discrepancy is the higher degree of distribution in
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finite random number sets with small sizes, pseudo-random numbers will achieve

uniform distribution as the set size, n, approaches infinity. This, in conjunction with

the central limit theorem, allows for a suitable estimator, z, of an expected value, 〈z〉,

to be found as part of a Monte Carlo Simulation, given a suitable number of trials,

N:

z =
1
N

N

∑
i=1

z(xi) (3.35)

lim
N→∞

z = 〈z〉 (3.36)

where the inputs xi are generated by a suitable random number generator. When

using pseudo-random number generators equi-distribution of the random number

sequence is achieved as N → ∞. Alternatively a LDS can be designed to achieve

equi-distribution for finite values of N. This reduces the variance in the estimator

and as such improves the convergence rate of the estimated result to the true result.

These types of sequences are used when the aim is not to create a truly random

sequence of numbers, but to create an approximately even distribution of values

throughout the input space of the simulation. In certain circumstances and with

careful choice of sequence type the faster convergence properties of a qMCM are

useful for simulations where the ability to perform the simulation using smaller

sample sizes is a priority [33, 83].

3.3.2 Measuring Discrepancy

The measurement of order in a random number sequence is referred to as the discrep-

ancy of the number sequence, this measurement is closely tied to the distribution,

or more accurately the equi-distribution, of a number sequence [2, 42]. A bounded

sequence, is this particular case a bounded random number sequence, can be said

to be equi-distributed over a particular interval if the number of values within that

interval is proportional to the length of the interval. More formally, a bounded se-

quence {x1, x2, ..., xN} is equi-distributed over the interval [a, b] if for any subinterval
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[c, d] the following applies [2]:

lim
N→∞

|{x1, x2, ..., xN} ∩ [c, d]|
N

=
d− c
b− a

(3.37)

The above equation can be modified to calculate the discrepancy of a sequence:

D([c, d]; N) = lim sup
a≤c≤d≤b

∣∣∣∣ |{x1, x2, ..., xN} ∩ [c, d]|
N

− d− c
b− a

∣∣∣∣ (3.38)

From the above equation it can be seen that it relates to equation 3.37 in that a

sequence can be defined as equi-distributed if D → 0 as N → ∞, it can then be

stated that to obtain a low discrepancy sequence across the range [a, b] then the

value of D for this sequence should be minimized. In order to obtain a more general

measurement of discrepancy the star discrepancy of a sequence can be calculated:

D∗(N) = max
[c,d]
|D([c, d]; N)| (3.39)

The star discrepancy determines the region of maximum discrepancy, or minimum

equi-distribution, across the entire sequence, as opposed to D(N) which measures the

discrepancy of a specific region. These formulas can essentially be seen as breaking

the sequence up into smaller and smaller subregions and measuring the ratio of the

number of points in the subregion to the relative range of the subregion.
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(b) QRNG - Two-dimension Sobol Sequence at
N = 100 iterations
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(c) PRNG - Two-dimension SFMT at N = 1000
iterations
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N = 1000 iterations

Figure 3.1: Comparison of Pseudo-Random and Quasi-Random Number Sequence in 2 Dimensions
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3.3.3 Pseudo-Random v. Quasi-Random

Semantically a LDS is differentiated from a pseudo-random sequence using the

term quasi-random sequence, leading to the distinction between a MCM and a

qMCM. Pseudo-random sequences are by definition not truly random sequences,

as it is difficult to recreate true randomness within a digital system. Some elements

of determinism will normally be required to produce a sequence of real numbers.

For this reason random number generators are designed to produce a sequence of

values based on one or more seed values that determine the sequence, i.e. the sequence

generated will always be the same for a particular seed value but will appear random.

In order to increase the random properties of a sequence the seed value can be based

on values like time, date or the value of an arbitrarily selected register. A pseudo-

random sequence, due to its random nature, does not maintain an even distribution

of random values, the distribution of values simply becomes more equi-distributed

as more values are produced. Alternatively the goal of a quasi-random generator is to

ensure that equi-distribution is achieved from the smallest n-value possible, this has

the effect of making the sequence much less random, but ensuring an even spread of

values at all times [3, 42]. This is achieved by generating new values that are as far

away from the other values in the sequence as possible, thus avoiding clustering of

values within the sequence and maintaining equi-distribution of the sequence. The

difference between pseudo-random and quasi-random sequences is visible when

plotted using two-dimensional sequences, as shown in figure 3.1. These plots have

been made using random number generators available in R, the pseudo-random

sequence is generated using a single instruction multiple data (SIMD)-orientated fast

Mersenne twister [120, 152], and the quasi-random sequence is generated using a

Sobol sequence [13, 158]. Both random number generators are available as part of the

R package randtoolbox [47]. In these figures are set of two-dimensional random

number sequences are plotted for N = 100 iterations in figures 3.1(a) and 3.1(b), then

N = 1000 iterations in figures 3.1(c) and 3.1(d). In the pseudo-random sequences

shown on the left of the figure, areas with proportionally less points than others are
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visible, indicating a low level of equi-distribution and high discrepancy within the

sequence. Comparing the N = 100 and N = 1000 cases it can be seen that the level

of equi-distribution increases with N. The quasi-random sequences shown on the

right side of the figure show a high level of order and equal distribution of points

for both N = 100 and N = 1000 iterations.

3.3.4 Effect on Rate of Convergence

The overall benefit of qMCM is the fast convergence rate of the simulation. The

approximation error of a Monte Carlo estimation is given by:

ε = |〈z〉 − z| (3.40)

=

∣∣∣∣∣
∫
[0,1)s

z(x) f (x)dx− 1
N

N

∑
i=1

z(xi)

∣∣∣∣∣ (3.41)

In the case of standard MCMs the upper bound of this error is known to be pro-

portional to 1√
N

, whereas in the case of qMCMs the error is proportional to the

discrepancy of the input sequence X = {x1, ..., xi} and is bounded by:

|ε| ≤ V(z)DN (3.42)

where V(z) is the Hardy-Krause variation of the function z and DN is the discrepancy

of the random number set. This may be used to show that the approximation error in

a quasi-Monte Carlo simulation is proportional to log(N)s

N , where s is the number of

dimensions in the random number space. Although it is only possible to determine

the upper bound of the approximation error, (i.e. the worst case convergence rate

of the method), in practice qMCM will converge significantly faster than standard

MCMs and in fact can achieve a convergence rate near to 1
N [7].
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3.3.5 Randomized Quasi-Monte Carlo Methods

There are several limitations that must be considered in order to justify the use of

qMCMs. In addition to the fact that only the upper bound on the approximation

error is known, for many functions V(z) = ∞ and both V(z) and DN can be difficult

to compute. In addition, to ensure that the convergence rate is significantly lower,

i.e:

O
(

log(N)s

N

)
� O

(
1√
N

)
(3.43)

the total number of dimensions must be small and the total number of samples

required increases significantly with s. These limitations on qMCMs can be mitigated

using an extension known as the randomized quasi-Monte Carlo method (RqMCM).

The qMCM can be seen as a deterministic method rather than random due to the

use of LDSs, leading to the inability to determine the variance and making the upper

bound on the approximation error difficult to estimate. Randomizing the method

allows for the variance and error to be calculated in order to asses the effectiveness

of qMCMs. However, several conditions must hold in order to guarantee that the

estimated result is an unbiased estimation of the true result, and that the desirable

properties of the original qMCM are maintained. Given the following definitions for

an expected value and the sample mean of it’s estimator:

〈z〉 =
∫
[0,1)s

z(x) f (x)dx (3.44)

z =
1
N

N

∑
i=1

z(xi) (3.45)

lim
N→∞

z = 〈z〉 (3.46)

the LDS XN = x1, ..., xN ∈ [0, 1)s may be randomized in order to form the sequence

X̃N . This new sequence will be uniformly distributed over [0, 1)s, while still main-

taining the equi-distribution, (low discrepancy) of the sequence XN . This guarantees



70 Chapter 3. Monte Carlo Arithmetic (MCA)

that z is an unbiased estimator of 〈z〉 and allows the variance may now be estim-

ated and compared with standard Monte Carlo methods [110, 111]. The simplest

form of randomization that is applicable to LDSs [128, 163] is a randomly shifted

estimator [107]. This type of sequence is formed by taking YN a s dimension random

vector uniformly distributed over [0, 1)s and adding it to the original LDS, XN , and

applying a modulo one operation to form the result vector. Thus the expected value

of the integral 〈z〉 is calculated as follows:

z =
1
N

N

∑
i=1

z((xi + yi) mod 1) (3.47)

Other types of randomization include B-ary Digital Shifts, Scrambling and Random

Linear Scrambling [107].

3.4 Monte Carlo Arithmetic

MCA [141] is an application of the MCM to error analysis in FP arithmetic that

allows for the sensitivity to rounding error of a FP operation or series of operations

to be measured. MCA tracks rounding errors at run-time by applying randomization

to input and output operands forcing the results of FP operations to behave like

random variables. This turns an execution into trials of a Monte Carlo simulation

allowing statistics on the effects of rounding error to be obtained over a number of

executions. Statistical measurements are then used to analyse the results, sensitivity

to rounding error is suspected if a high level of variance is observed between trials.

As an example, consider again the polynomial presented in Section 2.6.4:

x2 + 444x + 1 = 0 (3.48)

solved with the quadratic formula to determine the roots r1 and r2. To perform a

MCA simulation on the formula a set of N executions is performed, replacing the

original Institute of Electrical and Electronic Engineers (IEEE)754 FP operations with
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Figure 3.2: Distribution of results for non-stable system

MCA operations, randomizing the input and output operands at each step in the

execution. Due to the instability of the result a large number of the digits in the result

are randomized, creating a large variance in the results of the simulation, as shown

in Figure 3.2. By contrast, simulating the solution to a more stable result, such as the

solution to the following polynomial:

x2 + 1 = 0 (3.49)

produces a set of results with significantly lower variance. The sample mean and

variance for both solutions is detailed in Table 3.1 and compared with the results

obtained using standard IEEE754 FP operations.
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x2 − 1
r1 r2

Known Result 1 -1
Sample Mean 1 -1
Sample Variance 1.7736× 10−07 1.7856× 10−07

x2 + 444x + 1
Known Result -0.00225226368 -443.997747736
Sample Mean -0.002252174 -443.9977
Sample Variance 1.8620× 10−05 6.6117× 10−05

Table 3.1: Monte Carlo Arithmetic - Example results for systems sensitive and in-sensitive to rounding
error

3.4.1 Modelling Inexact Values

The finite precision requirements of computer arithmetic systems results in the

inevitability of inexact values within the results of a computation. As these values

must be rounded to the nearest exact value, this leads to the inevitability of rounding

error. Although some standards, such as IEEE754, have an exception flag to indicate

inexactness in a value, this flag is is ignored in most cases. Floating point standards

do not allow for information on inexactness to be tracked throughout a computation,

and a such rounding an inexact value results in the loss of information on the

inexact nature of that value. This essentially forces floating point operators to treat

all operands as exact values. Using MCA inexactness in floating point variables

is simulated using a random variable, allowing the effects of rounding error and

inexactness to propagate through a floating point computation. By controlling the

way in which random perturbations are applied to operands the results of arithmetic

operations are randomized in a deterministic fashion and repeated evaluations will

produce differing results. This turns each execution into a trial of a Monte Carlo

simulation and the results may now be evaluated statistically. Using MCA the

inexactness of a FP operand is modelled using the inexact function [141, p. 32]. If

x is a non-zero FP value of the form given in Equation 2.44 the inexact function is
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defined as follows:

inexact(x, t, ξ) = x + βex−tξ (3.50)

= (−1)sx(mx + β−tξ)βex (3.51)

where x ∈ R, t is a positive integer representing the desired precision, ξ is a uni-

formly distributed random variable in the range [− 1
2 , 1

2 ), (ξ ∈ U[− 1
2 , 1

2 )) and mx, ex

are the mantissa and exponent of x. It is assumed that 0 < t ≤ p. An operation

◦ ∈ {+,−,×,÷} is implemented as [141, p. 38]:

x ◦ y = round(inexact(inexact(x) ◦ inexact(y))) (3.52)

Using the methods shown in the previous equation a random perturbation is applied

to both the incoming operands and the result of the operation. Randomization

of inputs is referred to as precision bounding, while randomization of the output is

referred to as random rounding, these two techniques are discussed in the next two

sections.

3.4.2 Precision Bounding

Precision bounding of an operation during MCA is used for the detection of cata-

strophic cancellation [141, 143, 179], which occurs when subtracting two similar

operands, (i.e when the result of the operation has a smaller exponent value than

either operand). This type of subtraction will result in a high number of leading

zeroes in the mantissa before normalization is performed, and after normalization a

high number of zeroes will be inserted during the right shift operation. As these are

assumed zeroes they cannot be seen as significant digits causing a loss of accuracy

in the result. The application of precision bounding will insert random digits behind

the significant digits of the result during the operation, applying randomization

during the normalization stage. This has the effect of applying one random digit
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for every significant digit lost during normalization, if a high number of significant

digits are lost then the amount of randomization applied will be larger, this allows

for catastrophic cancellation to be detected by measuring the relative standard devi-

ation of the results of a Monte Carlo Simulation. The value of t is used to determine

the level of random perturbations applied to the operation, and is referred to as the

virtual precision of the operation. In the case of precision bounding the value of t will

determine the level of significant digits to which a randomized operand agrees with

the original value, i.e. a precision bounded operand:

x = x± β−tξ (3.53)

will be equal to the original value x to t digits. In the case of IEEE754 single precision

arithmetic p = 24 and subsequently 0 ≥ t ≤ 24. If t is set to 24 and an operand

is precision bounded, then that operands new value will be equal to the original

value up to 24 digits, if t is set to 12 then the values will only be equal to 12 digits,

effectively multiplying the random perturbation applied by 212. Precision bounding

of an operand can be applied in one of several ways. The first method is to extend

the precision of the incoming operands by doubling the length of the mantissa to

2p, then applying random digits behind the original mantissa using fixed point

arithmetic, effectively performing the operation shown in equation 3.53. The second

method is to modify the shift module used during the operation to place random

digits onto the mantissa as the shift operation is performed. Both of these methods

require modifications to the internal structure of the FPU.

3.4.3 Random Rounding

Random rounding is characterized as the precision bounding of a floating point

output, used to eliminate round-off error in an operation by modelling forward error

and ensuring zero rounding bias over a set of operations [141, 143]. The operation is
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performed in terms of the inexact function as follows:

x ◦ y = round(inexact(x ◦ y)) (3.54)

= round(x ◦ y± ξ) (3.55)

This equation can be simplified by substituting the operation values x ◦ y for the

un-rounded and un-normalized result of this operation and determining a value for

the rounding error ξ for each operation, as shown below:

x± y = round(x± y + ξβex−t) (3.56)

x ∗ y = round(x ∗ y + ξβex+ey−t) (3.57)

x
y
= round(

x
y
+ ξβex−ey−t) (3.58)

where ξ is a uniformly distributed random value ξ ∈ U[− 1
2 , 1

2 ). Performing random

rounding, or precision bounding of results, will model errors within the operator

known as forward error, as opposed to precision bounding of inputs which models

error in the operands or the representation (precision) of floating point values, known

as backward error. The application of random rounding will force the rounding of an

operation to have zero round-off bias over a set of operations, as the round-off errors

become random and un-correlated. By forcing round-off error to be randomized

the expected error from round-off can be eliminated by averaging the results of n

trials. This effect also has the benefit of providing evidence to the benefit of MCA.

Studies in the past including [81, 96] have stated that statistical analyses of round-off

error in computer arithmetic are unfounded when they assume rounding errors are

random. When considering functions that are sensitive to input perturbation using

standard IEEE754 arithmetic, rounding errors are often non-random and correlated.

An example presented in both [96, 141] demonstrates this effect using the following

example where two forms of the same function, (rational polynomial vs. continuous
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fraction) are compared to determine their sensitivity to small input perturbations:

c f (x) = 4− 3 · (x− 2) · ((x− 5)2 + 4)
x + (x− 2)2 · ((x− 5)2 + 3)

(3.59)

rp(x) =
622− x · (751− x · (324− x · (59− 4x)))
112− x · (151− x · (72− x · (14− x)))

(3.60)

The value of rp(u)− c f (x) is calculated for x = 1.60631924, u = x, x + ε, ..., x + 300ε

and ε = 2−53. Results obtained using standard IEEE754 double precision operators

are shown in Figure 3.3(a) where it can be seen that the rounding errors in the

function do not behave like random variables. When the results are re-run using

MCA with a virtual precision of t = 24, the rounding errors are now randomized as

can be seen in Figure 3.3(b).
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Figure 3.3: Distribution of results for operations sensitive to input perturbation - MCA v. IEEE double precision [96, 141].
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3.4.4 Virtual Precision t

An important concept within MCA is the virtual precision or t value of an operation.

This value determines the level of random perturbation applied to an input or

result, and may be used to determine the minimum precision required to perform

an operation to a specified level of accuracy [141, 143]. The value of t as used in the

inexact function:

inexact(x) = x± βex−tξ (3.61)

will determine the size of the random value relative to the original operands by

determining the level to which the random value ξ is shifted to the right. When

t = p, the ξ value is shifted a total of p places, i.e. it will be appended to the end

of the mantissa mx. This will also result in p significant digits in the value x, i.e

inexact(x) = x to p digits. By varying the value t the number of significant digits

in the operand will also be varied and subsequently the accuracy of the operation

is controlled, this feature results in variable precision MCA and can be used to

determine the minimum precision p required to perform an operation accurately.

This type of testing is performed by obtaining a set of results for increasing values of t,

starting with t = 0 and increasing until t = p. At each t value n samples are obtained

and analysis of the results is performed to determine the sensitivity to rounding error

and the number of stable significant figures in the results. Using variable precision

MCA an algorithm can be tested to determine a required precision that is tailored to

not only the specific algorithm, but using field programmable gate array (FPGA) and

hardware acceleration techniques tailored to the specific hardware configuration.

This is of particular use in the field of application specific integrated circuit (ASIC)

design as high efficiency is required due to limitations on area and performance,

the ability to reduce floating point format sizes by determining minimum required

precision allows for the most efficient format to be determine for the specific design

being implemented.
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3.5 Summary

MCA is an implementation of the MCM applied as an extension to FP arithmetic.

The MCM is itself a development of Statistical Sampling methods made possible

with modern computer systems. Using a MCM the expected value, 〈z〉, of a function

z(x) may be approximated by performing a series of trials with a randomized input

and determining the sample mean z:

〈z〉 =
∫
[0,1]s

z(x) f (x)dx (3.62)

z =
1
N

N

∑
i=1

z(xi) (3.63)

lim
N→∞

z = 〈z〉 (3.64)

The application of the MCM to the issue of FP error analysis is intended to model

inexactness in FP values and determine the effect of mixed forward/backward

error on the results of FP operations. As such the function to be approximated by

simulation is based on the error model presented in Section 2.6.1:

ẑ = f (x̂, ŷ) (3.65)

z(1 + δz) = (x(1 + δx) ◦ y(1 + δy)) (3.66)

(3.67)

where x̂, ŷ and ẑ are the rounded approximations of the exact values x, y and z and

◦ ∈ {+,−,×,÷} a FP operation. The approximation (forward) errors in x̂ and ŷ are

represented by the values δx and δy, and the rounding (backward) error in the result

is represented by δz. Using variable precision MCA this model is implemented for

the purposes of Monte Carlo as Simulation using the inexact function:

inexact(x, t, ξ) = x + βex−tξ (3.68)
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The sample mean z is determined after a set of N trials where an individual result of

a FP operation is determined as follows:

zi = round(inexact(inexact(x) ◦ inexact(y))) (3.69)

The application of the inexact function to the inputs x and y is referred to as precision

bounding and models the forward error in the values x̂ and ŷ respectively, while

application of the inexact function to the result is referred to as random rounding and

models the backward error in the operation due to rounding. By re-implementing

the basic FP operations the effects of inexactness and rounding error on mathemat-

ical software may now be modelled. Repeated executions will in turn generate a

set of Monte Carlo simulations that may now be analysed using standard statistical

methods, in particular, measuring the variance in a set of results may determine

the sensitivity to rounding error and the number of stable significant figures in the

results.

One of the primary drawbacks of the MCM is the requirement for repeated execu-

tions, in the case of MCA results from Parker and experimental results presented in

the following chapters demonstrates that sample sizes in the order of 100 executions

are typically required. When applied to FP arithmetic and associated mathematical

software, an area where speed is typically a key performance metric, the reduction

in performance is a significant factor. At present a number of variance reduction

schemes designed to improve the rate of convergence of Monte Carlo results have

been developed and applied to standard implementations of the MCM however

these have not yet been applied to MCA.



Chapter 4

MCALIB - A Tool for Automated

Rounding Error Analysis

4.1 Introduction

Despite the advantages offered by Monte Carlo arithmetic (MCA) and similar tech-

niques, tools for rounding error analysis are not in common usage. It is believed that

one of the major barriers is that source code needs to be modified so that custom

libraries are called to execute the arithmetic operations. In this work, the use of

source to source compilation, supported by mixed precision libraries, is advocated.

The approach allows for the implementation of a general purpose floating point (FP)

analysis tool that can be applied to arbitrary programs without significant changes

to the source code, a technique that we refer to as Monte Carlo programming (MCP).

The implementation provides opportunities for wider adoption of runtime error

analysis, and allows developers to test both the accuracy of algorithms and the

suitability of different FP formats for a particular implementation. Although our

tool is designed to be used with MCA, the same approach could be used in conjunc-

tion with other rounding analysis techniques. MCP can be used for the simplified

implementation of several data analysis schemes, such as sensitivity analysis to

measure the effect of uncertainty in input data or arithmetic operations. The ef-
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fect of missing data, dirty data and inexact data can also be measured. An open

source implementation of Monte Carlo arithmetic library (MCALIB), including C

intermediate language (CIL) libraries and documentation, is available via github

from https://github.com/mfrechtling/mcalib.git. The remainder of this chapter is

organized as follows. The implementation of the library is detailed in Section 4.2.

Methods for interpreting the results of MCA analysis are provided in Section 4.3.

Section 4.4 describes test cases and methods. Results are presented in Section 4.5,

and finally, conclusions are drawn in Section 4.6.

4.2 MCALIB Implementation

4.2.1 Source-to-Source Compilation

Source-to-source compilation provides an effective tool for automated code trans-

formations [54], and when paired with error analysis techniques allows for the

implementation of automated software (SW) verification [87, 132]. The CIL [131] is a

high level language representation, including a set of tools for analysis and source-

to-source compilation of C programs. The CIL compiler cilly is implemented as a

Perl script that performs translations to C code as defined in a set of OCaml modules

provided as part of the CIL library. For the purposes of MCALIB, CIL has been

used for transforming C FP operations into calls to the MCALIB library. This has

been done by first lowering the source code to a single statement assignment form,

then converting FP operations to use MCALIB library functions. As an example the

following single precision multiplication operation:

a = b * c;

would be redefined to the following function call:

a = _floatmul(b, c);

where float _floatmul(float a, float b) is the MCALIB function for hand-

ling single precision MCA multiplication. This process will result in all supported
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Input: Precision p FP operands x f and y f
Output: Precision p FP result r f

x = extend(x f , p + t);
y = extend(y f , p + t);
r = extend(0.0, p + t);
x = inexact(x);
y = inexact(y);
r = mpfr_op(x, y);
r = inexact(r);
r f = round(r, p);
return r f

ALGORITHM 1: MCA Binary Operation

FP operations being replaced with function calls to the MCALIB library. It is im-

portant to note that although operations are done in a higher precision, the storage

requirements of the FP variables remain unchanged. This avoids portability issues

associated with pointers and dynamic memory allocation.

4.2.2 Library Implementation using MPFR

MCA has been implemented within MCALIB as a set of library functions for arith-

metic and comparison operations. One of the main difficulties with implementing

MCA is the need to extend the precision of the FP format being tested in order to

simulate infinite precision. The precision level must include p machine bits and t

virtual bits, a total precision requirement of W = p + t, where W is the working

precision of the MCA operation. The MCALIB library also implements variable

precision MCA, allowing the virtual precision to vary between 0 ≤ t ≤ p at runtime.

To achieve this functionality the mixed precision library multiple precision floating

point reliably (MPFR) [55] is used for mixed precision arithmetic in MCALIB.

For MCA functions, FP values are converted to mpfr_t type variables. The mpfr_t

type is a struct containing an arbitrary precision significand and a fixed precision

exponent. The precision of the significand of any MPFR variable may be set inde-

pendently at runtime to any value between MPFR_PREC_MIN and MPFR_PREC_MAX,
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Input: Precision p + t MPFR_T variable x
Output: Precision p + t MPFR_T variable x (w. random perturbation applied)
if x == 0 then

return x;
else

ξ f = (rand()/RAND_MAX) - 0.5;
ξ = extend(ξ f , p + t);
ξ = mpfr_mul(pow(2, ex - (t - 1)), ξ);
x = mpfr_add(x, ξ);
return x;

end
ALGORITHM 2: MCA Inexact Operation

i.e. 2 and 256 respectively. For the purposes of MCALIB, the maximum precision

required is Wmax = p + tmax, which evaluates to 106 when using double precision

operators, and the minimum required precision is Wmin = p + 0, which evaluates

to 24 when using single precision operators. Rounding in MPFR adheres to the C

implementation of the Institute of Electrical and Electronic Engineers (IEEE)-754

standard and the default rounding mode round to nearest even is used for MCALIB.

The function for implementing MCA as per Equation 3.52 is shown in Algorithm 1.

The FP operands are first converted to mpfr_t with precision W, and the result

variable is initialized with the same precision. The random perturbation ξ is ap-

plied to the input operands using the inexact function shown in Algorithm 2. The

arithmetic operation is then performed using an MPFR operation, rounded to W

bits. Random rounding is then applied to the result using the inexact function, and

the final result is then converted to its original format by rounding to p bits. MPFR

implements correct rounding according to the IEEE-754 standard with rounding

error δ(x) ≤ ε. Rounding error will occur both during the MPFR operation, δW , and

when rounding to the original precision, δp. In order to implement correct rounding

while simulating infinite precision during the MCA operation we must ensure that

δW ≤ 1
2 δp. The worst case scenario will occur when t = 1, as when t = 0 the initial

MPFR rounding stage will round to the original precision with δW ≤ ε resulting in
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MCALIB Control Symbols & Functions
Symbol Symbol Value Function
MCALIB_IEEE 0 Disable MCA.
MCALIB_MCA 1 Enable MCA.
MCALIB_PB 2 Enable precision bounding only.
MCALIB_RR 3 Enable random rounding only.

Table 4.1: Name, values and function of MCALIB control symbols for parameter MCALIB_OP_TYPE

an exact value and δp = 0. When t = 1 the rounding error in the MPFR operation

will be limited as follows, assuming the general case δ ≤ 2−p:

δW ≤ 2−(p+t) (4.1)

≤ 1
2

2−p, t ≥ 1 (4.2)

≤ 1
2

δp (4.3)

MCALIB implements the four basic arithmetic operations, {+,−,×,÷}, unary

minus, and the set of comparison operators, {==, ! =,<,>,≤,≥} for single and

double precision formats. Comparison operators are implemented without using

the inexact function in order to avoid changes to the branching behaviour of tested

programs, and as such the comparison operators are implemented using extended

precision MPFR operators only. The library includes two global parameters for

controlling an MCA execution. The integer MCALIB_T sets the virtual precision,

t, of MCA operations while the integer MCALIB_OP_TYPE allows the application

of MCA to be controlled using a set of pre-processor symbols defined as part of

the MCALIB library. These symbols, their values and their functions are shown in

Table 4.1. Both parameters can be modified at runtime.

4.2.3 MCALIB Features & Workflow

MCALIB has been designed to facilitate the following analyses;

• Detection and quantitative analysis of sensitivity to rounding error.

• Analysis of individual algorithms to determine if single or double precision
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FP arithmetic is required.

• Optimization of individual algorithms for precision.

• Comparison of algorithms to determine the most suitable implementation.

Each of these features is implemented by applying MCALIB to a problem according

to the following MCALIB workflow as described below.

Algorithm Analysis

MCA is applied by first analysing the algorithm to be tested in order to determine

the following:

• Where should MCA be enabled, i.e. which values are exact and which are not?

• What outputs are of interest, i.e. how is accuracy in this algorithm defined?

These questions are of high importance as they will have a significant impact on

the results if not answered correctly. Although MCALIB provides an automated

implementation of MCA, it is still a naive implementation, i.e. the system does not

understand the difference between exact and inexact values and must be informed

of this difference by the developer. Using MCALIB, all FP operations are re-written

as function calls to the MCALIB library. Determining which inputs and outputs are

to be treated as exact or inexact is a decision left to the developer, and is achieved

by enabling or disabling precision bounding and random rounding individually

as described below. Determining what outputs are of interest is a question of

determining which variables determine the overall stability of an algorithm.

Source Code Modification

Having determined the above, the second stage of the workflow involves modifying

the source code. Implementation is a simple process and very few modifications are

required. Developers need to add the MCALIB header file mcalib.h and modify

their compilation process to utilize the cilly compiler and include the MCALIB
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library file libmcalib.a. MCA can be enabled or disabled where appropriate

by setting the value of the control parameter MCALIB_OP_TYPE and the virtual

precision can be set using the parameter MCALIB_T.

Data Collection

Once the original source code has been correctly modified the third stage of the

MCALIB workflow is collection of data. In order to do this the following steps are

required:

• Determine the input domain to be tested.

• Execute the required number of trials and collect data from the watched out-

put(s).

As stated previously, MCALIB is a naive implementation of MCA and as such

decisions regarding the input domain are left to the developer. This is an important

step, as MCA performs a dynamic error analysis and results are only relevant to

the input domain tested. For example, if testing a summation algorithm using

uniformly distributed inputs, x ∈ U[−1, 1], the results of MCALIB analysis will only
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be relevant for this domain. Once the input domain has been determined the trials

must be executed and the output data collected. An important consideration for

Monte Carlo methods is the number of trials to be performed, this number being

directly affected by the sampling methodology in use. For the purposes of MCALIB,

simplified random sampling has been implemented and it is recommended that a

minimum of 100 trials be performed for any experiments. Decreasing the number of

trials performed may have adverse effects on the results of analysis using techniques

as shown in Section 4.3. As can be seen in Figures 4.1 and 4.2, decreasing the number

of trials will adversely affect the results. The standard deviation and the calculated

value of K do not converge until approximately N = 50. The recommended number

of samples is based on experimental results presented in this chapter, worst case

sample size considerations [75, Chapter 3], and experimental data presented in [141].

While the recommend number of samples may appear high, it is believed that this

figure can be reduced using techniques such as quasi-Monte Carlo Simulation. This

will be the subject of future research.

Results Analysis

Having performed the required number of experiments and collected the relevant

output data, the next stage of the MCALIB workflow is results analysis. Using

the methods described in the next section, results of MCA trials may be analysed

to determine the total number of digits lost to rounding error and the minimum

precision required in order to avoid a total loss of significance. If no valid results are

available then the virtual precision range should be widened, particularly at the top

end, to collect more data at more stable precision values. If the normality tests fail

consistently, the developer should return to step 1 to re-analyse the algorithm and

ensure that the input domain and outputs are being monitored correctly.
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4.3 Analysis of MCA Results

In previous publications [141] the analysis of MCA results has been limited to

determining the number of significant digits, and pass/fail analysis performed by

comparing the mean and standard deviation of MCA results. We feel that this

approach can be expanded and more formally defined in order to provide a more

rigorous definition of sensitivity to rounding error in MCA results, allowing analysts

to draw more meaningful conclusions from the results of MCA analysis. In this

chapter sensitivity to rounding error is defined using two measurements:

• The number of base-2 significant digits lost due to rounding error, K

• The minimum precision required to avoid an unexpected loss of significance,

tmin

We must first address the ideal case for error in MCA. If relative error is defined as

in Section 2.4.2 then it has been noted that the relative error is limited by δ ≤ 2−p for

binary FP systems [65, 81, 168]. From [141, page 19], the definition of relative error

is used to determine the expected number of significant binary digits available from

a p-digit FP system:

δ ≤ 2−p (4.4)

p ≥ − log2(δ) (4.5)

These definitions may be adapted for MCA by replacing the precision of the FP

system, p, with the virtual precision, t, of an MCA operation. Thus the relative error

δ in a MCA operation for a virtual precision t is given by δ ≤ 2−t, and the expected

number of significant binary digits in a t-digit MCA operation is at least t. Using

this definition a proof has been provided [141, page 23] giving the total significant

binary digits in a set of MCA results:

s′ = log2
µ

σ
(4.6)
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Where µ is the mean and σ the standard deviation of the MCA results. Using the

definitions in this section the total number of significant digits lost in a MCA result

set, K, may be defined as follows:

K = t− s′ (4.7)

= t− log2(
µ

σ
) (4.8)

= log2(Θ) + t (4.9)

Where Θ = σ
µ → µ 6= 0 is the relative standard deviation (RSD) of the MCA results.

As noted by Sterbenz, [159, Chapter 7], in an ideal case a linear relationship ex-

ists between the precision of a FP system, p, and significant figures in the output.

Using MCA, this linear relationship exists between t and log(Θ). We identify the

point of departure as when the algorithm being analysed is affected in a non-linear

way by rounding error. We propose that the breakaway point in the linear model

represents tmin; the minimum precision required to avoid an unexpected loss of

significance in the results. In order to determine the the best fit of the relative error

model results below, outliers are not used in the calculation of K.

4.3.1 Linear Regression Analysis

In order to determine the value of tmin and K, a linear regression with a log trans-

formed variable is used, with log(Θ) as the dependent variable and t as the explor-

atory variable in the following form:

log10(Θ) = log10(2
K−t) (4.10)

= − log10(2)t + log10(2)K (4.11)

= mt + c (4.12)
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where m = − log10(2) = −0.30103 is the slope and c is the intercept such that K =

log2(10c). Due to the requirement of detecting outlying results, robust regression

methods are used to evaluate the linear model. The example presented in [56]

performs robust regression using M-Estimation through the iteratively re-weighted

least squares (IRLS) approach for 2-D optimization. While this approach is ideal for

MCA analysis due to it’s insensitivity to outliers, the approach can be simplified to a

1-D optimization problem as the slope of the linear model is already known. Given a

set of MCA results for virtual precision values t ∈ [1, tmax] a summary set is created

by calculating Θ at each t value. It should be noted that while the samples used to

calculate an individual value for Θ are independent and identically distributed (IID),

the complete sample set is not in general identically distributed. Given these inputs

the intercept c is calculated by minimizing the following objective function using

Brent’s method [14] for single variable optimization;

f (x) =
tmax

∑
i=1

γtmax−iρH(ei) (4.13)

where ei = Θi− (mti + c) is the residual error, c ∈ [(Θtmax −mtmax)± 2m] is the initial

search space for the intercept, γ = 0.75 and ρH(e) is the Huber loss function [84];

ρH(e) =


1
2 e2, for |e| ≤ k

k|e| − 1
2 k2, for |e| > k

(4.14)

where k = 1.345σ and σ is the standard deviation of the residual error set, e. Having

determined the linear model, the outlying values of Θ are found by calculating a set

of predicted values Pt = mt + c and comparing these with the values for Θ obtained

via MCA. If a value Θt differs from its equivalent predicted value, Pt, by more than

half a binary digit it is classed as an outlier. The breakaway point, tB is calculated by

finding the highest t value where |Pt −Θt| > log10(2
0.5). The value of tmin is then

set to tB + 1.
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4.3.2 Assumption of Normality and Conditions on Results

In order to perform analysis using the statistical methods listed in this chapter the

input data set is typically assumed to be normally distributed, however, in the case

of MCA no assumption of normality is made. This is explicitly stated by Parker [141,

p. 49] and is intended to allow for open-ended statistical testing of MCA results. In

order to provide a strong estimate on the result of K and tmin the normality of the

sample set must first be verified for each value of t. This is determined on the raw

MCA data at each t step, requiring a total of tmax − tmin tests. This is done using the

Anderson-Darling test to assess the goodness of fit of the frequency distribution of

results to a normal distribution. If the test fails, warnings are provided on the plotted

output of the calculation, and the result sets that have failed the test are removed and

not used for the calculation of K or tmin. The calculation of K and tmin must be done

in conjunction with bounds on the input space of the function or algorithm under

investigation, i.e. the results of the linear regression do not provide a guarantee of

the error in an algorithm in the general case, but rather an estimate of the accuracy

of the algorithm under the specific conditions tested using MCALIB.

4.4 Testing & Case Studies

Testing is performed by varying the virtual precision, 1 ≤ t ≤ p, and performing

N executions at each t value. For the tests conducted in this chapter, unless stated

otherwise, we use t values from 1 to 53 and number of trials at each t value N = 100.

In this section we describe the programs used to test MCALIB.

4.4.1 Chebyshev Polynomials

Chebyshev polynomials [147] are a series of orthogonal polynomials typically used

in approximation theory. In this case we have used Chebyshev polynomials of the
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first kind, defined as follows:

T0(z) = 1 (4.15)

T1(z) = z (4.16)

Tn+1(z) = 2zTn(z)− Tn−1(z) (4.17)

Polynomials of the first kind can be represented as unique polynomials satisfying

the following trigonometric definition:

Tn(z) = cos(n cos−1(z)) (4.18)

In particular the T20(z) polynomial:

T20(z) = cos(20 cos−1(z)) (4.19)

= 524288z20 − 2621440z18 + 5570560z16

− 6553600z14 + 4659200z12 − 2050048z10

+ 549120z8 − 84480z6 + 6600z4

− 200z2 + 1 (4.20)

has been analysed by both Wilkinson [168] and Parker [141], who note that due to

catastrophic cancellation occurring among the coefficients of the expanded series,

the polynomial becomes ill-conditioned at the roots near z = ±1.

4.4.2 Summation Algorithm

FP summation is a widely used operation that sums a sequence of n FP values:

s =
n

∑
i=1

xi, for n ≥ 3 (4.21)

Due to its widespread use in algebraic operations, the accuracy of summation has

been analysed in various publications and it has been shown that the relative error
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Input: Vector X[1...n]
Output: Sum s of vector X
nmax = 1;
if n ≤ nmax then

s = X[1];
for i = 2 to n do

s = s + X[i];
end

else
m = floor(n / 2);
s = pw(X[1...m]) + pw(X[m + 1...n]);

end
return s

ALGORITHM 3: Pairwise Summation Algorithm

Input: Vector X[1...n]
Output: Sum s of vector X
s = 0.0;
c = 0.0;
for i = 1 to n do

y = X[i]− c;
t = s + y;
c = (t− s)− y;
s = t;

end
Return s

ALGORITHM 4: Kahan Summation Algorithm

of the Naive summation algorithm grows with order O(εn) [82, 113, 118]. For this

chapter the Naive approach is compared with two alternative summation algorithms,

the Pairwise [82] and Kahan [91] summation algorithms, shown in Algorithms 3

and 4. Both of these algorithms have been shown to reduce numeric instability. In

the case of Pairwise summation this is done using a divide and conquer strategy

that reduces the relative error to order O(ε log n) while not increasing the number

of arithmetic operations used. Kahan summation uses a compensated sum to track

round-off error during summation and reduces relative error to order O(ε), but

significantly increases the required number of arithmetic operations.

The Naive, Kahan and Pairwise sum methods are compared using a set of sample
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values generated using the following [153]:

xi = 10−p (4.22)

p =
⌈
log10(9i + 1)− 1

⌉
(4.23)

for 1 ≤ i ≤ 1111.

4.4.3 Linear Algebra

Linear algebra subroutines are widely used in computer science and engineering,

and accurate implementation of these algorithms is essential. Their implementa-

tion necessitates a large number of numeric operations and MCA is well suited for

analysis of the potential effects of rounding error. For the purposes of this chapter

we have tested two implementations for determining the solution to a dense n× n

system of linear equations Ax = b.

The implementations used for testing are the linear equations software package

(LINPACK) benchmark [43], a tool which uses Gaussian Elimination with partial

pivoting as an example of a general engineering problem in order to test a systems

peak performance in terms of floating point operations per second (FLOPS), and

a standard implementation of LU decomposition with back substitution from Nu-

merical Recipes [144]. Precision testing and error analysis have been performed

using the array size n = 100 and the value of A and b set using the matgen method

provided as part of the LINPACK implementation used in this test case [162]. Stat-

istical measurements were performed using the Euclidean, (L2), norm of the result

vector x[n], defined as follows:

||x|| :=
√

x2
1 + ... + x2

n (4.24)
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4.4.4 L-BFGS Optimization

limited memory BFGS (L-BFGS) optimization [114] is an implementation of quasi-

Newton optimization using the Broyden, Fletcher, Goldfarb, Shanno (BFGS) update

method for approximation of the Hessian Matrix. L-BFGS stores a finite number

of vectors to represent the approximation, unlike the original BFGS method which

stores a dense n× n approximation. An important part of this algorithm is the line

search method, used to determine the local minimum x∗ of an objective function

f : Rn → R. The objective function used for testing in this chapter is the Rosen-

brock function [150], a well known convex function used for performance testing

of optimization systems. This function has been provided as part of the L-BFGS

implementation used for this paper [114], and is implemented for 10 dimensions

using:

f (x) =
10

∑
i=1

[(1− xi)
2 + 100(xi+1 − x2

i )
2], ∀x ∈ Rn (4.25)

with the input vector x defined as follows;

x[i] =


1.2 if i is odd

10 if i is even
(4.26)

for i ∈ [1, 10]. The L-BFGS implementation used for testing provides a choice

between four different line search methods, Moore-Thuente, Armijo, Wolfe and

Strong Wolfe [40, 127] methods. Testing has been conducted for all four line search

methods and statistical measurements are again performed using the Euclidean

norm of the result vector.
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Figure 4.3: Chebyshev Polynomial - Sensitivity
to rounding error at z = 1.0
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Figure 4.4: Chebyshev Polynomial - Comparison
of results for z = 0.0 and z = 1.0

Results - Chebyshev Polynomial
Input - z Min. Req. Precision - tmin Sig. Fig. Lost - K
0.0 5 0.5
0.2 5 5.4
0.4 11 11.5
0.6 13 15.2
0.8 18 20.0
1.0 19 24.0

Table 4.2: Full Analysis of Chebyshev Polynomial

4.5 Results

In this section we present results of MCA analysis of several sample algorithms.

Throughout this section results of MCA analysis are presented using plots generated

via methods described in Section 4.3. The plots shown in Figures 4.3, 4.6, 4.8, and 4.10

provide detail on the results of the linear regression analysis. These compare the

linear model with the ideal error case, (δ = 2−t), the experimental MCA results

which were classified as outliers are clearly marked, as well as a plot of the absolute

mean, |µ| to allow the mean to be checked in case it approaches zero. The plots are

designed to provide a method for quick visual inspection of the MCA results. Inside

the legend the magnitude of K, indicated by the distance between the linear model
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Figure 4.5: Chebyshev Polynomial - Comparison of single (t = 24) and optimized (t = 49) precision.

Results - Chebyshev Polynomial
Type t µ Θ

Single 24 0.9985 1.2119e+00
Optimized 49 1.0000 3.4492e-08

Table 4.3: Comparison of Single and Optimized Precision Results for Chebyshev Polynomial (using
z = 1.0)

and the ideal case, and the value of tmin, indicated by the position of the outlying data

points, are given. The second type of plot presented, (Figures 4.4, 4.7, 4.9, and 4.11),

is designed to provide a comparison of the different algorithms being tested. These

plots compare the linear models generated through analysis of the MCALIB results

with the ideal error case.

4.5.1 Error Detection and Optimization of Sample Algorithms

One of the primary functions of MCA is to detect sensitivity to rounding error within

tested algorithms, indicated by a large variance in the results of repeated executions.
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Figure 4.6: L-BFGS Optimization - Analysis of
More-Thuente line search method
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Figure 4.7: L-BFGS Optimization - Comparison
of More-Thuente & Wolfe line search methods

Analysis of L-BFGS Optimization
Search Type Min. Req. Precision - tmin Sig. Fig. Lost - K
More-Thuente 48 8.7
Wolfe 19 8.9
Str. Wolfe 36 8.8
Armijo 53 8.9

Table 4.4: Analysis of Line Search Methods for L-BFGS Optimization

Using the relative error model and the methods detailed in Section 4.3, it is possible

to determine the overall sensitivity of tested algorithms to rounding error and to

optimize these algorithms by determining their minimum precision requirements.

For the Chebyshev Polynomial, testing has been conducted using input values for

z between 0 and 1 in steps of 0.2, conducting N = 100 executions for all t values

between 1 and 53 at each z step. Results for all cases are shown in Table 4.2, results

for the worst case z = 1 are detailed in Figure 4.3 and results for the z = 0.0 and

z = 1.0 cases are compared in Figure 4.4. Initially at z = 0 the sensitivity to rounding

error is negligible, as evidenced by a low value for tmin and less than 1 significant

figure lost to rounding error. As z is increased to approach the root at z = 1, the

number of significant figures decreases until at the worst case point, z = 1, 24
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Analysis of Summation Algorithms
Algorithm Type Min. Req. Precision - tmin Sig. Fig. Lost - K
Naive 7 7
Kahan 7 7
Pairwise 1 1.6

Table 4.5: Summation Algorithm Results - Naive, Kahan & Pairwise

significant figures are lost to rounding error. At this point the minimum precision

required to avoid an unexpected loss of significance in the results has risen to 19

bits. Having quantified the sensitivity to rounding error for input values between 0

and 1, it is possible to use the values for K and tmin to optimize this algorithm and

determine the precision level required to achieve results normally expected from

single precision FP operators. Previously this was often achieved by simply switch-

ing to double precision FP operators. MCALIB allows for the effects of rounding

error to be quantified, and for this information to be used to determine a required

precision level. This can be done by simply adding the expected number of digits

lost to the required precision level, 24 in this case, and ensuring the resulting value

is greater than or equal to tmin. Table 4.2 shows that a precision of at least 19 bits is

required, and due to the expected loss of significant figures for the worst case input,

K = 24.02, a precision of dp + Ke = 49 is required. The results of comparison testing

between t values of 24 (single precision), and 49, (optimized precision), are shown in

Table 4.3. These results have been produced using the worst case input, z = 1. It can

be seen that the relative standard deviation is 108 times lower for the optimized case,

and is the same order of magnitude as the maximum relative error expected from

single precision arithmetic, (δ = 2−24 ≈ 6× 10−8). Figure 4.5 plots the results of the

Chebyshev polynomial for both single (t = 24) and optimized (t = 49) precision

calculated using MCALIB. From this plot the difference between the two precision

levels can be seen. A precision level of 49 results in a smooth curve, while using a

level of 24 results in a random spread of points.
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Figure 4.8: Summation Algorithm - Analysis of
Pairwise Summation Method
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Figure 4.9: Summation Algorithm - Comparison
of Results for Pairwise and Naive Algorithms

4.5.2 Comparison of Single and Double Precision Floating Point

Formats

A simpler form of error analysis that may be performed with MCALIB is the com-

parison of single and double FP operators. In this case an individual algorithm may

be tested in order to determine if the single precision FP format is sufficient for the

given input domain, or if double precision type operators are required. This type of

analysis has been used to determine the sensitivity to rounding error of different line

search algorithms as used in L-BFGS optimization of the n-dimension Rosenbrock

function, allowing for both the comparison of line search methods and the selection

of single or double precision operators for the tested input domain. The results of

error analysis for all four line search methods are shown in Table 4.4. The results

of testing the More-Thuente line search are plotted in Figure 4.6, and results for the

More-Thuente and Wolfe line search methods are compared in Figure 4.7. From the

results table it can be seen that all four line search methods lose approximately nine

significant figures to rounding. This result coupled with the results for tmin indicates

that single precision FP operators are insufficient for that algorithm, however, it can

be seen from the warning on the bottom left of Figure 4.6, a total of 47 data points
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Figure 4.10: Analysis of LINPACK benchmark
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Figure 4.11: Comparison of Linear Solvers

Comparison of Linear Solvers
Algorithm Type Min. Req. Precision - tmin Sig. Fig. Lost - K
LU Decomp. w. Back Sub. 17 7.1
LINPACK 17 7.3

Table 4.6: Linear Solvers - Comparison of LINPACK and LU Decomposition with Back Substitution

have been rejected due to non-normality of the data set. This is most likely caused

by the iterative nature of the algorithm under investigation, and the fact that the

optimization process is attempting to find a solution within an error bound of 2−53.

Given that the virtual precision of the MCA operators is varied between 1 and 53

the error analysis method is having an adverse affect on the accuracy of the solution.

For the purposes of demonstration the non-normal data points have been forcefully

included in the results analysis, but in practice these results are not viable and the

experimental conclusions should be rejected. As such, while these results indicate

the possibility that single precision FP is not suitable for the tested input domain,

further analysis is required.

4.5.3 Comparison of Algorithm Implementations

In addition to performing an analysis of individual algorithms demonstrated in

the previous section, MCALIB can be used to compare competing algorithms or
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implementations in order to determine the best approach. The first set of algorithms

tested are algorithms for FP summation, including the Naive, Kahan and Pairwise

algorithms. The results of analysis for all three algorithms are shown in Table 4.5, the

results of analysis of the Pairwise method are detailed in Figure 4.8 and the results

for the Pairwise and Naive methods are compared in Figure 4.9. From these results

it can be seen that all three algorithms demonstrate low sensitivity to rounding error.

The Pairwise method demonstrates significantly lower sensitivity to rounding errors

when compared with the alternative methods. This is evident in the lower value for

tmin, with a result of 1 for the Pairwise algorithm versus 7 for the Kahan and Naive

methods. The Pairwise method is also losing less than 2 significant digits to rounding

error, compared with the 7 significant digits lost for the Naive and Kahan methods.

While all three methods demonstrate low sensitivity to rounding error and may be

analysed using single precision operators, the Pairwise method provides the best

approach for FP summation for the tested input domain, (as detailed in Section 4.4.2).

This same type of analysis has also been used to compare a linear solver from

Numerical Recipes [144] with the one in the LINPACK benchmark [43]. The results

for analysis of the two algorithms are shown in Table 4.6, the results of analysis of

the LINPACK benchmark are detailed in Figure 4.10 and results for both implement-

ations are compared in Figure 4.11. As was the case with the summation algorithms,

both algorithms show a low level of sensitivity to rounding error and the result for

tmin for both methods indicates that single precision formats are suitable for use with

the tested input domain.

The error analysis results also clearly indicate a similar level of sensitivity to round-

ing error available in both algorithms, this being demonstrated by the approximately

seven significant figures lost to rounding error in both cases. The overall effect of

rounding error on the results for the LINPACK benchmark can be seen in Figure 4.10.

As the virtual precision is increased beyond t = 17 the relative standard deviation
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decreases exponentially, forming a linear relationship with the virtual precision.

These results can also be produced using single precision FP operators if necessary.

However, the values for tmin and K indicate that the algorithm becomes highly

sensitive to rounding error if the precision is decreased below 17. Furthermore if

the required significance of the results must be equivalent to single precision FP,

a precision of dp + Ke = 32 is recommended when using these algorithms on the

tested input domain.

4.6 Summary

The MCP approach presented in this chapter allows users to gain en empirical sense

of the effects of rounding on the output of a program for a given input. Its applica-

tion is facilitated by MCALIB, an open source tool which applies source-to-source

compilation to rewrite FP operators to call our MCA library. Furthermore, analysis

techniques for better interpretation of MCA results have been presented. Using this

methodology sensitivity to rounding error is quantified with two measurements:

• K - the number of significant figures lost to rounding error.

• tmin - the minimum precision required to avoid total loss of significance.

Both values are measured via analysis of the linear relationship between the RSD and

virtual precision of a set of MCA results and are determined with a novel approach

utilizing robust linear regression methods. The analysis technique expands the use

of MCA and further demonstrate the benefit of this type of analysis for evaluating

FP SW. Further work in this area will focus on investigating the use of quasi Monte

Carlo techniques to reduce the required number of trials, and the use of MCA

analysis to facilitate mixed precision implementations.



Chapter 5

FPGA-based Floating Point Unit

for Rounding Error Analysis

5.1 Introduction

Monte Carlo arithmetic (MCA) is typically performed using software (SW) routines

and as such its implementation involves a drastic reduction in performance. field

programmable gate array (FPGA)s offer a platform in which hardware (HW) ac-

celeration can be applied to arbitrary algorithms. In this chapter we describe a

processor/co-processor system capable of performing virtual precision MCA for

single precision floating point (FP) operators using a Xilinx Zynq system on a

chip (SoC) for implementation and testing [176, 177]. After performing initial testing

of the co-processor system using the linear equations software package (LINPACK)

benchmark to determine system performance, the co-processor has been customized

using high level synthesis (HLS) methods in order to improve system performance

for the specific case of the LINPACK benchmark. The chapter is organized as fol-

lows; in Section 5.2 the system implementation - including implementation of MCA

operators, the Zynq platform, HW/SW co-design and co-processor implementation

is detailed. Section 5.3 presents initial results of testing the co-processor implement-

ation including performance and system logic utilization. The customization of
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the co-processor along with revised results is presented in Section 5.4, and finally

conclusions are presented in Section 5.5.

5.2 System Implementation

The MCA floating point unit (FPU) is implemented as an FPGA co-processor using

a Xilinx Zynq Z-7020 SoC. The platform contains both an ARM Cortex-A9 MP-

Core Processor, referred to as the processing system (PS), and an Artix 7 FPGA,

referred to as the programmable logic (PL) [37], this architecture is detailed in

Figure 5.1. The combination of the processor core and the FPGA fabric within a

single device allows for simplified implementation of a combination Processor/Co-

Processor system. In the case of the MCA FPU, SW executed on the ARM pro-

cessor handles control and data input/output (IO) with all FP operations passed

to the co-processor via an advanced extensible interface (AXI) Lite bus. The MCA

FPU core was developed using the high-level C-to-RTL design SW Vivado HLS

(http://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html).

Using Vivado, the MCA FPU is described using standard C statements and during

synthesis and implementation, FP operations are translated into a set of FP modules

based on the Institute of Electrical and Electronic Engineers (IEEE)-754 FP library.

5.2.1 MCA Operator Implementation

The MCA FPU is able to perform five arithmetic operations; add, subtract, multiply,

divide and unary negative. The arithmetic operations are implemented by coupling

Xilinx LogiCORE FP operators [172] with control logic, a configuration register, a

set of random number generators and a set of perturbation modules implementing

the inexact function. The basic architecture and data-flow of the co-processor is

shown in Figure 5.2. In order to implement MCA functionality the precision of the

FP operations must be extended in order to accommodate the random number to be

appended to the significand. As it is not feasible to modify the internal structure of
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Figure 5.1: Zynq SoC architecture block diagram [86]

the Xilinx LogiCORE, double precision FP cores are used and the virtual precision of

the MCA operations is limited to 0 ≤ t ≤ p, where p = 24 is the precision of single

precision FP operations. Thus the double precision operators are used for MCA

of single precision operators. Random numbers are generated using maximally

equi-distributed combined Tausworthe generator (MECTG) [105]. The configuration

information contains both an opcode defining which operation is to be performed

and the value of the virtual precision, t. The configuration register is a 32-bit register,

with the most significant 16 bits reserved for the opcode, and the least significant

16-bits reserved for the virtual precision. IO transfer to and from the co-processor is

handled using an AXI4 Lite interface [175]. Using this interface the 3 FP operands

and the configuration information are stored as registers within the co-processor

architecture and can be read and write as needed.
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Figure 5.2: Procedure for MCA FPU operations

MCA operations are performed in terms of the inexact function as detailed in Equa-

tions 3.50 and 3.52 in Section 3.4.1;

r = x ◦ y (5.1)

= round(inexact(inexact(x) ◦ inexact(y))) (5.2)

where ◦ represents an arithmetic operation {×,+,−,÷}. For the purposes of the

co-processor implementation, the unary negative operator is implemented using a

subtraction operation where an input x is negated to form the result r by:

r = 0− x (5.3)
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This implementation may be used without performance penalty as the FP value 0

is considered to be exact under MCA and the inexact function is not applied, fur-

thermore the constant value is not transferred over the bus interface. An individual

MCA operation is performed according to the flowchart in Figure 5.2 as follows:

1. The FP inputs x and y are separated into individual sign, exponent and sig-

nificand components labeled sx, ex, mx and sy, ey, my respectively. Rounding

up from single to double precision format is performed, (if necessary) in SW

executed by the PS due to the 64-bit bus width. The values are separated using

the following bitwise operations:

s = (x � 63) (5.4)

e = (x � 52) & 0x7ff (5.5)

m = (e == 0) ? (x & (252 − 1)) : (x & (252 − 1)) || (252) (5.6)

2. Two random values ξx and ξy are generated by the MECTGs. Each value must

be in the range [0, 1
2 ) and will be either added or subtracted to the FP operand

with a 50% probability. As such each value is input to the inexact function as a

24-bit signed fixed point value giving a total range of (− 1
2 , 1

2 ).

3. The input operands x and y are perturbed using the inexact function:

x′ = inexact(x, ξx, t) (5.7)

y′ = inexact(y, ξy, t) (5.8)

The inexact function is performed by first aligning the value ξ with significand

and then shifting the random value to the right by t digits. As the significand

is being stored as a normalized fixed point value, this would normally only

require shifting the value of ξ right by t + 1 places, however the extended

precision must be accounted for and furthermore, as single precision function-

ality is being simulated using double precision FP operators, the extra five
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bits in the signifcand must also be accounted for - (Note: only five bits are

considered extra as MCA requires the precision to be extended to up to 2p, as

such 53− (2 ∗ 24) = 5). All together this results in a right shift of t + 1− 24− 5

or ξ = ξ � (28− t). Having aligned and shifted the random value it may

now be added/subtracted to the significand using fixed point operators. If the

results of the operation is negative the sign of the FP value is adjusted and the

significand set to a positive value. Once this operation has been performed the

new value of the signficand must be correctly normalized and the exponent of

the original FP adjusted accordingly. There a four possible scenarios for the

normalization stage:

(a) The significand is already normalized: In which case, no further action

is taken.

(b) The significand is equal to zero: In which case, the sign and exponent

are set to zero in order to correctly encode FP +0.

(c) The significand is too large: If the significand is too large, (i.e. m >= 253),

then it must be shifted to the right and the value of the exponent increased

accordingly. Due to the range of the inputs to the fixed point operation

the range of possible outputs is limited by 0 ≤ m ≤ 254 − 1 and as such

the largest right shift and adjustment that will be required is one. Firstly

the exponent must be checked to determine if e = emax in which case

overflow has occurred, the value of the result is ±∞ and no further action

is required. If e < emax then the exponent and significand are adjusted as

follows:

e = e + 1 (5.9)

m = m� 1 (5.10)

(d) The significand is too small: The significand is deemed too small when

in the range 0 ≤ m ≤ 252 − 1. In this case the significand must be shifted
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to the left and the exponent adjusted accordingly. The size of the shift is

determined by the number of leading zeros, λ, and due to range of pos-

sible values of the significand the number of leading zeros is in the range

1 ≤ λ ≤ 24. The number of leading zeros is determined using a leading

zero detector (LZD) optimized for very large scale integration (VLSI) sys-

tems that determines the number of leading zeros in log(n) stages [136].

Once the number of leading zeros is determined the significand is shifted

to the left by λ places and the exponent decreased, unless the number

of leading zeros is greater than the value of the exponent, in which case

gradual underflow is occurring and the exponent is set to zero:

m = m� λ (5.11)

e =


0 if e < λ

e− λ if e ≥ λ

(5.12)

4. Once the perturbed values x′ and y′ are calculated they are re-assembled into

FP values by recombining the individual sign, exponent significand values:

x = (s� 63) || (e� 52) || (m & (252 − 1)) (5.13)

5. Once the FP values are re-built the initial result, r′ is computed using standard

FP operators:

r′ = x′ ◦ y′ (5.14)

6. The initial result r′ is now disassembled into separate values for sign, exponent

and significand using the procedure in step 1.

7. The random value ξr is generated using a third MECTG according to step 2.
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Figure 5.3: System Overview of the MCA FPU co-processor

8. The value of the final result is determined by perturbing the initial result:

r = inexact(r′, ξr, t) (5.15)

according to step 3.

9. The final result r is reassembled according to step 4.

5.2.2 Co-Processor Implementation

The co-processor is implemented using the C to register transfer level (RTL) SW

Vivado HLS. Using this SW the MCA operators are described using C syntax, along

with descriptions of the IO protocol implemented using an AXI4 Lite bus interface.

The complete co-processor architecture is shown in Figure 5.3, this implementation

is based on the protocol processing methodology presented in [98]. Using this
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Vivado HLS Settings
Vivado Version 2014.4 Build 1071461
Target Device xc7z020clg484-1
FPGA Board Xilinx ZC702 Evaluation Board
Target Clock Period 10 ns
Target Clock Uncertainty 0 ns
Simulator Vivado Simulator
RTL Simulation Selection Verilog
RTL Export Format IP Catalog (w. Verilog Evaluation).

Table 5.1: Vivado HLS Synthesis, Co-Simulation and RTL Export Parameters

implementation method internal data connections between functional units are

implemented using AXI4-Stream connections allowing for pipelined data-flow to

be implemented at a later stage if required. Synthesis of the co-processor has been

performed targeting the Xilinx ZC702 Evaluation kit using settings as shown in

Table 5.1. Initial results from synthesis are shown in Table 5.2 and initial synthesis

of a IEEE-754 FPU are shown for comparison purposes in Table 5.3. These results

in indicate an expected overall increase in logic utilization of approximately 80%

over an equivalent IEEE-754 FPU implementation. Performance results will largely

depend on the level of overhead associated with data transfer from the PS to the

co-processor, and to a lesser extent the ratio of operation types used, but the initial

timing results indicate a minimum speed of 2.8 Mfloating point operations per

second (FLOPS), a maximum speed of 7.7 MFLOPS and an average speed of 6.4

MFLOPS is theoretically possible.

5.2.3 Processor Implementation

The MCA FPU co-processor is connected to a Zynq7020 SoC containing the Arm

Cortex A9 central processing unit (CPU). This processor/co-processor interface

has been implemented using the Xilinx LogiCORE IP Processing System 7 v4.00.a,

the SW interface built around the Zynq PS [173]. The PS has been implemented as

standard for the Zynq7020 system with the general purpose AXI master interface,

M_AXI_GP0 enabled for the purposes of connecting the PS to the AXI interconnect
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Timing Results (Estimated)
Max Frequency 116 MHz
Clock Uncertainty 1.25 ns
Latency - Add/Subtract 15
Latency - Multiply 16
Latency - Divide 41

Resource Utilization (Estimated)
block RAM (BRAM) 0 / 280 0 %
digital signal processing/processor (DSP) 14 / 220 6 %
flip flop (FF) 6376 / 106400 5 %
look up table (LUT) 13964 / 53200 26 %

Table 5.2: Vivado HLS Synthesis Results - MCA FPU Co-Processor

Timing Results (Estimated)
Max Frequency 116 MHz
Clock Uncertainty 1.25 ns
Latency - Add/Subtract 4
Latency - Multiply 5
Latency - Divide 30

Resource Utilization (Estimated)
BRAM 0 / 280 0 %
DSP 14 / 220 6 %
FF 4728 / 106400 4 %
LUT 6541 / 53200 12 %

Table 5.3: Vivado HLS Synthesis Results - IEEE FPU Co-Processor

and subsequently to the MCA FPU. Clock signals to the co-processor are implemen-

ted with the PL fabric clocks generated by the PS and have been set to a frequency of

100 MHz based on the estimated timing results from Vivado HLS. The LogiCORE IP

AXI Interconnect v2.1 [170] is included to connect the PS to modules with AXI type

interfaces, and is implemented with a single AXI Lite slave interface, connected to

the PS, and two AXI Lite master interfaces, connected to the MCA FPU and to a AXI

Timer. The timer module is included for the purposes of measuring performance

using a LogiCORE IP AXI Timer v2.0 [171], and is setup for a 32-bit timer/counter

in polling mode. The final module included in the system is the LogiCORE IP

Processing System Reset Module v5.0 [174], which implements synchronous reset

signals for the PS and associated peripherals on the PL. For the purposes of synthesis
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Resource Utilization
Type Used Available Utilization
Slice LUT 8256 53200 15.5%
Slice Registers 6405 106400 6%
F7 Multiplexers 7 26600 < 1%
F8 Multiplexers 1 13300 < 1%
Slices 2456 13300 18.5%
LUT as Logic 7578 53200 14%
LUT as Memory 678 53200 1.3%
LUT/FF Pairs 8971 53200 17%
BRAM 0 140 0%
DSP 14 220 6.5%

Table 5.4: Vivado Implementation Results - MCA FPU Co-Processor

and implementation Vivado default settings have been used. A summary of Vivado’s

post implementation resource utilization report is presented in Table 5.4. Note that

the summary presents results of logic utilization for the MCA FPU co-processor only

and does not include resources used by peripheral overhead such as the interconnect,

timer or reset modules which are also implemented on the PL.

5.3 Testing & Results

5.3.1 The LINPACK Benchmark

Linear algebra routines are widely used in science and engineering and accurate

implementation of these algorithms is essential. Their implementation necessitates

a large number of numeric operations and MCA is well suited for analysis of the

potential effects of rounding error. For the purposes of this chapter linear algebra

package (LAPACK) and basic linear algebra subprograms (BLAS) methods imple-

mented as part of the LINPACK benchmark are used both to measure performance

and to demonstrate the error analysis capabilities of the co-processor system. The

benchmark implements methods for determining the solution to a dense n × n

system of linear equations Ax = b using Gaussian Elimination with partial pivot-

ing [43]. The implementation used for testing is a C port of the original Fortran
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System Parameters
CPU Intel Core 2 Duo E8400 (3 GHz)
Memory 4 GB
operating system (OS) Ubuntu 12.04 LTS (32-bit)
GNU compiler collection (GCC) Version 4.6.3
Compilation Flags (IEEE-754) O3
Compilation Flags (MCA) O0

Table 5.5: PC specifications for baseline performance measurements of an IEEE-754 FPU

implementation available from [162]. Performance testing and error analysis have

been performed using array sizes from n = 10 to n = 200 and the value of A and

b set using the matgen method provided as part of the LINPACK implementation.

Statistical measurements have been performed using the Euclidean, (L2), norm of

the result vector, x[n], defined as:

||x|| :=
√

x2
1 + ... + x2

n (5.16)

In order to determine a performance measure for comparison purposes the LINPACK

has been run on a desktop using two configurations with settings listed in Table 5.5.

In the first instance the benchmark is executed as normal in order to determine the

baseline FP performance of the test system, and secondly using a SW implementation

of MCA, in this case Monte Carlo arithmetic library (MCALIB) was used as the

example SW implementation. Note that due to limitations with this system the

optimization level used for testing the SW implementation of MCA is set to O0,

(disabled), while the optimization level for testing the performance of standard

acIEEE-754 FPU is set to O3, (maximum optimization). Performance results for

both single and double precision test cases are shown in Figure 5.4. The average FP

performance of the test system measured without using MCA was approximately 2

GFLOPS, while the average performance when using MCA was approximately 1.5

MFLOPS. These results represent a 100% decrease in measured performance and

highlights the disadvantages faced by SW-based implementations.
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Figure 5.4: Comparison of performance of IEEE-754 FPU and MCA SW implementation measured
with the LINPACK benchmark

5.3.2 System Performance Results

In order to test the performance of the co-processor the LINPACK benchmark was

modified in order to be compatible with the Zynq 7 PS and to enable offloading of

FP operations to the co-processor. Modification to the program include converting

the timing function SECOND to utilize the AXI timer/counter module as opposed to

ctime methods, implementing a MCA library containing a set of functions that send

FP arithmetic functions to the co-processor, and finally modifying the LINPACK

source to ensure each relevant FP operation calls a library function instead of using



118 Chapter 5. FPGA-based Floating Point Unit for Rounding Error Analysis

50 100 150 200

0.0

0.5

1.0

1.5

2.0

Performance Measurements with LINPACK

Array Size

S
pe

ed
 in

 M
F

LO
P

S

MCA SW Single Precision
MCA SW Double Precision
MCA FPU Single Precision

Figure 5.5: Comparison of performance of MCA FPU Co-Processor and MCA SW implementation
measured with the LINPACK benchmark

standard C FP operators. The modifications to the LINPACK source were performed

using the cilly compiler as used in MCALIB to ensure all FP operations were correctly

transformed to library calls. Using the Xilinx software development kit (SDK) a

board support package (BSP) is defined containing a library of required functions for

the Zynq and associated peripherals. An AXI4-Lite peripheral is implemented with

a memory mapped interface, using the Vivado tool chain a set of driver functions are

defined as part of the Vivado HLS IP export process. Included in this set of driver

functions are functions for read/write access to each input and output register as
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well as functions for initialization, starting and polling the state of the peripheral. For

the purposes of performance testing with the LINPACK benchmark the modified

version of the SW is now compiled using GCC under Xilinx SDK with the O3

optimization flag, testing has been conducted for array sizes N = 10 to N = 200

and results of testing are presented in Figure 5.5. The average performance of the

co-processor over the tested array sizes was approximately 0.4 MFLOPS, this result

is compared against measurements of SW based MCA implementation run using a

desktop PC, measured as approximately 1.5 MFLOPS over the same array size range.

These results demonstrate that the HW implementation of MCA is significantly

outperformed by the SW implementation, and is in fact 75% slower than the original

implementation. The lack of performance in the co-processor is due to two reasons,

the high initiation interval between MCA operations and the high communications

overhead between the processor and co-processor. Modifications to the co-processor

to address these performance bottlenecks and updated performance results are

presented in Section 5.4.

5.3.3 Results of Error Analysis

In addition to measuring the performance of the co-processor the L2 norm of the

result vector x has been measured using MCA error analysis techniques developed

for Section 4.3 in order to verify the error analysis and detection capabilities of

the co-processor. Testing has been conducted for array sizes between N = 10 and

N = 200 with a step size of 10, using virtual precision values between t = 1 and

t = 24 with a step size of 1. The number of trials for each experiment is set by the

minimum required sample size of 100, (as detailed in Section 4.2.3), for a total of

20× 24× 100 = 48000 executions of the benchmark. A full set of results for K, the

number of significant figures lost to rounding error, is shown in Figure 5.6(a) while

the full results for tmin, the minimum required precision, is shown in Figure 5.6(b).

Note that both K and tmin initially increase as the array size, N, and subsequently

the number of required operations increases. In both cases the results appear to
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converge as the array size approaches N = 200 at K ≈ 5 and tmin ≈ 14. Detailed

results for the N = 100 case are presented in Figure 5.7(a) and the results for the

N = 10 and N = 200 cases are compared in Figure 5.7(b). These results correspond

to the results for testing of the benchmark between t = 1 and t = 53 as performed

using MCALIB in the previous chapter, verifying the correct implementation of the

MCA operators as used in the co-processor.
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5.4 Customization of Co-Processor Implementation

As stated in the previous section the FP performance of the MCA FPU is signific-

antly worse than that of a comparable SW implementation. In order to increase the

performance of the co-processor to a level comparable with the SW implementa-

tion the performance bottlenecks in the system must be addressed. This has been

achieved by customizing the co-processor to take advantage of vectorization oper-

ations in the LINPACK benchmark. By targeting these types of operations with a

custom implementation the co-processor may be pipelined in order to reduce the

initiation interval between operations, and implement a streaming direct memory

access (DMA) interface to reduce communications overhead between the processor

and co-processor.

5.4.1 Profiling Results for LINPACK Benchmark

In order to customize the co-processor implementation to the LINPACK benchmark

the SW must first be profiled in order to determine where the majority of execution

time is spent and if these areas can be targeted for optimization strategies. For the

purposes of this work the LINPACK benchmark has been profiled using the call

graph execution profiler GNU profiler (GPROF) [69]. Profiling has been performed

using the testing platform detailed in Table 5.5 with optimization level O0, the default

profiler sampling period of 10 ms and over array sizes between N = 10 and N = 1000.

Full results of profiling for all array sizes and methods are presented in Figure 5.8

and a summary of the mean and maximum execution times for each method is

presented in Table 5.6. The results of profiling clearly show that a significant

majority of execution time is spent in the functions daxpy_r and daxpy_ur. These

two functions both implement the BLAS routine daxpy [135] which performs a

double precision multiply accumulate (MAC) operation using two vectors each
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Percentage Execution Time Results
Name Type Mean % Execution Time Max % Execution Time
daxpy_r BLAS 42.53% 54.70%
daxpy_ur BLAS 33.04% 41.51%
matgen overhead 9.98% 28.27%
dgefa LAPACK 7.86% 23.10%
idamax BLAS 2.20% 8.03%
dgesl LAPACK 1.92% 12.55%
dscal_r BLAS 1.05% 2.63%
dscal_ur BLAS 0.93% 3.29%
second overhead 0.37% 3.32%
linpack overhead 0.08% 0.89%
ddot_ur BLAS 0.04% 0.30%

Table 5.6: Profiling Results - Average & maximum execution time over array sizes from N = 10× 10 to
N = 1000× 1000

containing a total of N elements, X and Y, and one scalar quantity a:

Y = Y + aX (5.17)

The BLAS implementation of the function utilizes loop unrolling in order to max-

imize performance, however in the event that the stride of the vectors X or Y is not

equal to 8 bytes loop unrolling is not used. In order to provide a more complete

performance measure the LINPACK benchmark provides both rolled and unrolled

implementations of the function, named daxpy_r and daxpy_ur. For the purposes

of this work the arithmetic operation of both functions is identical and both functions

may be vectorized using the MCA FPU co-processor in the same way. As such the

profiling results of both functions may be combined and it is evident that approxim-

ately 75% and up to 95% of execution time is spent performing a daxpy operation.

Based on the profiling results of the benchmark it is possible to estimate the possible

performance increase available using Amdahl’s Law [5]:

R =
1

(1− P) + P
S

(5.18)
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where R is the potential performance improvement factor, P is the proportion of

execution time to be sped up and S is the speedup factor. Based on the estimated

minimum speed of the original co-processor of 2.8 MFLOPS, the benchmark perform-

ance measurement of 0.45 MFLOPS and assuming a maximum possible pipelined

performance of the co-processor implementation is 100 MFLOPS, (an estimate based

on the timing results from synthesis and a minimum initiation interval of 1 clock

cycle), a speedup factor of 6.5× to 8.5× is achievable depending on IO overhead. A

complete estimate of the potential benchmark performance is shown in Figure 5.9

and compared against the performance measurement of the original co-processor

implementation and the MCA SW implementation.

5.4.2 Modifications to Co-Processor & Bus Implementations

Having determined the functions for which optimization will provide the most bene-

fit, the co-processor can now be modified in order to create a custom implementation

that targets these types of operations. In order to maintain the original functionality

of the co-processor, (i.e maintain the general purpose functionality in addition to the

new optimized functions), the co-processor will now contain two sub-cores. One

core consists of the original co-processor, accessed via an AXI4-lite interface and

performing the original five arithmetic operations, while the second core contains a

pipelined MAC operation with a streaming DMA interface capable of performing

vectorized daxpy operations. Using Vivado HLS the required modifications to the

original co-processor are minimal. The original MCA operations are modified to

perform the MAC operation in terms of the inexact function:

yi = round(inexact(inexact(yi) + inexact(inexact(a)× inexact(xi)))) (5.19)

Pipelining is implemented by adding the pipelining directive to the project with the

interval option set to one clock cycle. The interface is modified using the interface

directive with the AXI stream option enabled for the vector inputs and output to
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Timing Results (Estimated)
Max Frequency 116 MHz
Clock Uncertainty 1.25 ns
Latency 21
Pipeline Initiation Interval 1

Resource Utilization (Estimated)
BRAM 0 / 280 0 %
DSP 14 / 220 6 %
FF 7657 / 106400 7 %
LUT 15482 / 53200 29 %

Table 5.7: Vivado HLS Synthesis Results - Vectorized MCA FPU Co-Processor

the co-processor. A total of three stream interfaces are implemented for the inputs

X and Y, and the result vector. The 32-bit config input used to set the value of t,

and the 64-bit scalar quantity a are implemented using AXI4-lite interfaces. This

has been done to reduce the communications overhead, as the values a and t only

need to be transferred to the co-processor once for every N operations, (where N is

the length of the vectors X and Y), and therefore do not require a stream interface.

Once these changes have been made the new co-processor core may be synthesized

and exported as an IP Catalog using the settings listed in Table 5.1. Preliminary

synthesis results from HLS are shown in Table 5.7. Note that these results are for

the pipelined co-processor core only and complete resource utilization estimates

can be found by totaling the results from Tables 5.2 and 5.7. Having implemented

the necessary changes to the co-processor the Zynq PS and associated interface

modules must also be updated in order to correctly implement the processor/co-

processor interface. In addition to the AXI master interface port, a high performance

AXI4-lite slave port, S_AXI_HP0 is enabled on the PS. This port is connected to a

second AXI interconnect module, implemented with three AXI4-lite slave ports, each

connected to a AXI4-lite master port on a DMA module, and one AXI4-lite master

port, connected to the AXI4-lite slave port on the PS. The original AXI interconnect

is also modified to include a further three AXI4-lite master ports, two of which are

connected to the slave ports on a DMA module and the third to the slave port on
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Resource Utilization
Type Used Available Utilization
Slice LUT 6241 53200 11.5%
Slice Registers 7214 106400 7%
F7 Multiplexers 13 26600 < 1%
F8 Multiplexers 1 13300 < 1%
Slices 2578 13300 19.5%
LUT as Logic 6241 53200 11.5%
LUT as Memory 0 53200 0%
LUT/FF Pairs 8421 53200 16%
BRAM 0 140 0%
DSP 14 220 6.5%

Table 5.8: Vivado Implementation Results - MCA FPU Co-Processor Pipelined Implementation

the new co-processor core. As the pipelined co-processor core is implemented with

two streaming inputs and one streaming output, the DMA interface is implemented

using a pair of LogiCORE IP AXI DMA 7.1 modules [1], one implemented with both

read and write channels, and one implemented with a write channel only. Each

DMA unit is setup with a memory map data width of 64-bits, a stream data width of

64-bits and a maximum burst size of 256. The scatter/gather engine on both units

is disabled. A summary of the post-implementation resource utilization report is

shown in Table 5.8. Note that the table presents results of logic utilization for the

pipelined co-processor core only and does not include resources used by the original

co-processor or peripheral overhead such as the interconnect, timer, reset or DMA

modules.

5.4.3 System Performance Results

The final step in modifying the co-processor was re-running the LINPACK bench-

mark in order to evaluate the performance benefits of the modifications. Minor

modifications to the benchmark and to the MCA library used in the previous tests

were required. These included implementing a function to set the values of the scalar

quantities using the AXI4-lite interface, and a daxpy function to send and receive the

vector quantities using the DMA interface. This function also included operations
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to flush/invalidate the cache before sending and after receiving data in order to

maintain cache coherency. The LINPACK benchmark was also modified so that the

MAC operations in the daxpy_r and daxpy_ur functions were offloaded to the

co-processor. Initial testing of the co-processor was performed to determine the raw

performance of the daxpy core when performing pipelined operations via the DMA

interface. This testing was performed without the LINPACK benchmark and instead

the time taken to perform a set of 1000 MAC operations was measured and used to

determine the FLOPS of the pipelined core. These measurements result showed an

average speed of approximately 25 MFLOPS, a significant improvement over both

the original co-processor and over the SW implementation of MCA. Comparing

these measurements against the predicted performance results detailed in Figure 5.9

indicates a benchmark performance of 2 to 3 MFLOPS is to be expected. Testing

with the LINPACK benchmark has been performed using the same system and com-

pilation parameters as used for testing of the original co-processor implementation,

and using array sizes between N = 10 and N = 200. Results of testing are shown

in Figure 5.10 and are compared against the performance results of the MCA SW

implementation. The peak performance as measured with the benchmark for an

array size of N = 200 was approximately 3 MFLOPS, twice the speed of the SW

implementation and 7.5× faster than the original co-processor implementation.

Several conclusions may be drawn by comparing the theoretical maximum

throughput of the pipelined implementation of 100 MFLOPS, the tested maximum

throughput of 25 MFLOPS, and the tested result of the LINPACK benchmark of

3 MFLOPS. Firstly IO overhead from the DMA interface results in a four-fold

decrease in performance, i.e. an average of 3 clock cycles of processor to co-processor

communication (and vice-versa) are required for every 1 clock cycle of computation.

Secondly the final performance result is limited not only by the throughput of the

co-processor but by the proportion of optimizable operations, the value of P in

Amdahl’s law as presented in equation 5.18. Improvements to the performance of
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mentation measured with the LINPACK benchmark

the complete system may therefore be made in one of three ways, by decreasing

the IO overhead, by improving the ratio of optimizable operations, (both of which

may be achieved by selecting larger problem sizes), or by implementing several

co-processor units in parallel to perform N independent MCA trials simultaneously.

Given N parallel units operating on problems where P→ 1 throughputs of several

hundred MFLOPS are achievable, leading to performance improvements of at least

1-2 orders of magnitude over existing SW implementations.
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5.5 Summary

Using high level design synthesis a complete system for run-time detection of round-

off error has been devised. The design has been implemented as a co-processor to

demonstrate the effectiveness of hardware acceleration of error detection algorithms.

Testing of the co-processor system in combination with analysis methods for MCA

developed for Chapter 4 have verified the implementation of MCA operators. Initial

performance testing of the co-processor implementation has demonstrated that co-

processor throughput and communications overhead are significant performance

bottlenecks and have resulted in an implementation that is in fact 75% slower than an

equivalent SW implementation. In order to address these performance issues HLS

design techniques have been used in order to develop a customized co-processor

that targets vectorizable operations in the system undergoing analysis. Further

testing of this optimized solution has shown that the performance of the current

implementation is similar to an equivalent PC based SW implementation. This

work shows that HW accelerated implementations of error detection algorithms can

provide accurate measurements of the effects of rounding error while not impacting

device performance.



Chapter 6

Variance Reduction Methods for

Monte Carlo Arithmetic

6.1 Introduction

One of the drawbacks of Monte Carlo arithmetic (MCA) is the significant degrad-

ation in performance due to two primary causes. Firstly, probabilistic analysis

necessitates N independent trials to be performed in order to provide a represent-

ative sample set for statistical analysis. While the independent nature of the trials

means that they may be implemented with a high degree of parallelism, an N-fold

increase in computation is required nevertheless. In the second case performance is

degraded due to the additional computational overhead of the analysis affecting

floating point (FP) performance. In the case of MCA the computation of the inexact

function requires the generation and scaling of the random perturbation values ξ

for input and output operands. In addition, conversion from a FP operation to an

MCA operation requires the precision of the operators be extended to the MCA

working precision, defined in Chapter 4, Section 4.2.2 as W = p + t. This can be

achieved in one of three ways. If both single and double precision analysis are to

be supported the existing FP hardware (HW) can be modified, (as modern floating

point unit (FPU)s are typically double precision units). While this is achievable using
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field programmable logic (FPL), a more feasible solution is to use a software (SW)

library supporting extended precision FP. Finally the extended precision W may

be simulated by restricting analysis to single precision FP types and implementing

MCA operations using double precision FP, thus avoiding the requirement to modify

existing FP HW or switch to a SW implementation.

In this thesis both SW based and HW accelerated implementations of MCA have

been explored. In the case of Monte Carlo arithmetic library (MCALIB) as presented

in Chapter 4 the extended precision is handled using multiple precision floating

point reliably (MPFR) and this move from a FPU to a SW based implementation

results in a 1300× decrease in performance. When the number of minimum required

number of trials N = 100 is also taken into account it is apparent that implementa-

tion of MCA will increase execution time by five orders of magnitude. In Chapter 5

a HW accelerated MCA FPU was presented demonstrating the feasibility of field

programmable gate array (FPGA) based implementations of MCA. Using this setup

the performance achieved was comparable to an equivalent SW implementation

running on a desktop PC. However, while the raw performance of the optimized

co-processor core was capable of a potential 25× speed-up over the SW implementa-

tion under ideal conditions, once the repeated trials are taken into account this still

represents a performance decrease of 3 orders of magnitude compared to standard

FP performance on the same machine. Further performance gains are achievable via

improvements to the MCA algorithm by reducing the required number of trials.

The concept of variance reduction techniques, designed to reduce the required

number of trials by improving the convergence rate of an estimator, is well under-

stood as it pertains to standard Monte Carlo method (MCM)s [46, 75, 97]. However,

the application of these methods to MCA has yet to be explored. This chapter

presents results of implementation and testing of two variance reduction techniques

for MCA, the remainder of the Chapter is organized as follows. In section 6.2 im-
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plementation of the variance reduction methods and the required modifications to

MCA are presented. The experimental procedure for testing and comparing the

results of implementation to standard MCA is presented in Section 6.3. Results of

analysis for several test cases are presented in Section 6.4 and finally a summary is

presented in Section 6.5.

6.2 Application of Variance Reduction Methods to MCA

6.2.1 Quasi-Monte Carlo Arithmetic

Quasi-Monte Carlo methods, as introduced in Section 3.3, are an implementation

of the MCM where randomized inputs to the simulation are generated using an

s-dimension low discrenpancy sequence (LDS) as opposed to a uniformly distributed

random number sequence. The LDS exhibits better equi-distribution of random

variables for lower values of N, thus improving the convergence rate of a Monte

Carlo estimator. The use of quasi-Monte Carlo techniques and LDSs is well un-

derstood as it pertains to standard MCMs [7, 45, 129, 155] and it has been shown

quasi-Monte Carlo methods have an approximation error limited by O
(

log Ns

N

)
,

while traditional MCMs have a probabilistic error of O
(

1√
N

)
. Several studies have

compared the convergence rate of quasi-Monte Carlo methods with that of MCMs

when applied to practical real world problems, in particular it is noted that both

MCMs and quasi-Monte Carlo methods converge to an accurate result quickly when

applied to multi-dimensional integrals with a large number of dimensions, (300

and higher) [129, 155], however it has also been noted that in order for there to be a

significant advantage over traditional MCMs, the number of dimensions, s should

be small and the number of samples, N, should be large [111, 129]. Further studies

have compared different types of LDS [112, 129] to determine if the convergence

rate is dependent on sequence type. In particular the Sobol [158], Faure [49], Neider-

reiter [134] and Halton [73] sequences have been compared, with the Sobol sequence

commonly found to provide better convergence rates, particularly for problems with
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higher dimensions, (more than 6).

For implementing quasi-Monte Carlo arithmetic (qMCA), the inexact function is

re-defined as the quasi-exact function:

qexact(x, t, ξk) = x + βex−tξk (6.1)

where x ∈ F is an FP number as defined in Section 2.4, t is the virtual precision of

the qMCA operation and ξk is a random variable in the range [− 1
2 , 1

2 ) drawn form

the kth dimension of the s-dimension Sobol sequence, (where k ≤ s). Using this new

definition an operation ◦ ∈ {+,−,×,÷} is now implemented in terms of the qexact

function:

x ◦ y = round(qexact(qexact(x) ◦ qexact(y))) (6.2)

The dimensionality of the operation is determined by the number of unique variables

present, i.e. the operation a = b + c contains three unique variables and as such

requires a Sobol sequence with three dimensions:

a = round(qexact(qexact(b, t, ξ1) + qexact(c, t, ξ2), t, ξ3)) (6.3)

Alternatively an operation such as a = a + b contains only two unique variables and

can be implemented using a two-dimension Sobol sequence:

a = round(qexact(qexact(b, t, ξ1) + qexact(c, t, ξ2), t, ξ1)) (6.4)

where the random number ξ1 is drawn from the first dimension twice. Extending

this concept to a complete FP algorithm and/or program is detailed in Section 6.2.3.

The implementation of the Sobol sequence used for qMCA has been selected for

its ability to generate high-dimension Sobol sequences, as a typical FP program
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will contain several thousand independent variables and will therefore require a

Sobol sequence with several thousand dimensions for analysis. The Sobol sequence

generator that has been selected is capable of generating a sequence with number of

dimensions s = 21201 [89, 90].

6.2.2 Monte Carlo Arithmetic with Antithetic Variates

As in the case of quasi-Monte Carlo Methods, correlated sampling with antithetic

variates is a variance reduction technique that has been applied to standard MCMs [74,

76]. As detailed in Section 3.2.3 implementing this sampling type requires modifying

the input to the simulation such that the s-dimension uniform random number

sequence of length N is replaced with a uniform random number sequence of length

N
2 combined with its antithetic path. In practice, this will mean that a single iteration

of a Monte Carlo simulation is now performed with two simulation paths, which are

subsequently combined to determine the estimated value, as shown in equations 3.30

through 3.33. When the results of Monte Carlo simulation from the original and

antithetic paths are combined the variance in the result is given by:

σ2(z) =
1
4
[
σ2(z1) + σ2(z2) + 2 cov(z1, z2)

]
(6.5)

as shown in equation 3.34. In the event that z1 and z2 are independent and identically

distributed (IID) the resulting variance of z simplifies to the following:

σ2(z) =
σ2(z1)

2
(6.6)

=
σ2(z2)

2
(6.7)

as σ2(z1) = σ2(z2) and the covariance cov(z1, z2) self-cancels [20]. The use of anti-

thetic variates for correlated sampling ensures that z1 and z2 are no longer IID and

the covariance is negative, reducing the variance in the final result.
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Implementation of Monte Carlo arithmetic with antithetic variates (ATMCA) re-

quires redefinition of the inexact function to form the antithetic-exact function:

atexact(x, t, ξk) = [x− βt−ex ξk, x + βex−tξk] (6.8)

where x ∈ F and t are defined as in the inexact, (equation 3.50), and qexact functions,

(equation 6.1), and ξk is a random variable in the range [− 1
2 , 1

2 ) drawn form the kth

dimension of the s-dimension uniform random sequence, (where k ≤ s). Using this

redefinition, the results of applying the atexact function to a variable x results in an

interval containing two results:

atexact(x, t, ξk) = [x1, x2] (6.9)

where x2 is the result of randomization of x using the random variable ξk and x2 the

result of randomization using the antithetic path −ξk. Using this definition of the

atexact function a FP operation z = x ◦ y → ◦ ∈ {+,−,×,÷} is implemented as

follows:

[z1, z2] = round(atexact(atexact(x) ◦ atexact(y))) (6.10)

z =
z1 + z2

2
(6.11)

In practice it is simpler to modify the random number generator to alternate between

generated values and the antithetic path to form a random number stream ξ =

[ξ1,−ξ1, ξ2,−ξ2, ..., ξ N
2

,−ξ N
2
] for each dimension, as opposed to tracking results

that are formed as a set of interval bounds. This method will correctly implement

ATMCA if the following conditions are met:

• The dimensionality of the problem is tracked correctly, (see Section 6.2.3).

• The number of trials, N, is even.

• The random number generator is not reset or reseeded between trials.
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6.2.3 Determining Problem Dimension with Data Flow

As noted in the descriptions of qMCA and ATMCA in the preceding sections the

implementation of these techniques necessitates that the dimensions of the problems

under analysis be carefully tracked. In the case of MCA the separate dimensions of

the s-dimension uniformly distributed random number set may be drawn from the

same pseudo-random number generator (PRNG) without issue, and as such there

is no requirement to track the separate dimensions. When implementing qMCA

and ATMCA the nature of the number sequences requires that individual dimen-

sions be tracked in order to correctly apply the qexact and atexact functions. In

the case of qMCA each problem dimension must be assigned a separate dimension

of the Sobol sequence in order to ensure equi-distribution of the random number

inputs in that dimension, without which the benefits of quasi-Monte Carlo, (fast

convergence of the result estimators), will not be realized. In the case of ATMCA

a random number vector, [x1, x2, ..., x N
2
], and its antithetic path, [−x1,−x2, ...,−x N

2
]

must be combined and applied to a single dimension in order to correctly implement

correlated sampling.

The number of dimensions in a FP algorithm or SW implementation is determined

by the number of independent variables present. This means that the dimensionality

of the problem may be tracked via data flow analysis and represented visually by a

data flow graph (DFG), where nodes represent qMCA or ATMCA operations and

edges represent separate dimensions. This concept is demonstrated for the two

results, u and v, of Knuth’s example:

u = (a + b) + c (6.12)

v = a + (b + c) (6.13)

in Figures 6.1(a) and 6.1(b) respectively. Note that in each DFG there are two nodes

and five edges, as such qMCA or ATMCA analysis is implemented for Knuth’s
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Figure 6.1: Data flow analysis of Knuth’s example

example with two operations, (or six instances of the qexact or atexact functions),

and five dimensions. For example, qMCA analysis of u is implemented as follows:

u′ = round(qexact(qexact(a, t, ξ1) + qexact(b, t, ξ2), t, ξ3)) (6.14)

u = round(qexact(qexact(u′, t, ξ3) + qexact(c, t, ξ4), t, ξ5)) (6.15)

Note that the variable u′ is common to both operations, and therefore is represented

by a single edge on the DFG in Figure 6.1(a) and is randomized by a common input

to the qexact function, ξ3. The resulting qMCA implementation will require a 5-

dimension Sobol sequence, where dimensions 1, 2, 4 and 5 are polled once per trial,

and dimension 3 is polled twice per trial.

6.2.4 Limitations of Implementation & Scalability

At present qMCA and ATMCA have been implemented using a modified form of

MCALIB. The modifications performed allow for problem dimension to be tracked

for small scale examples by re-implementing the interface functions to include
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information on the address of incoming variables and the return address of calling

functions. Each variable is identified and stored in a look up table (LUT) with the

following identifiers:

• Variable address

• Return address of the current function.

• Return address of the caller of the current function.

While MCALIB has been modified the cilly compiler has not, and as such imple-

mentation of qMCA and ATMCA requires manual modification of existing source

code. Furthermore the current system for monitoring dimension only checks the

return address two steps up the function call stack. A complete and automated

implementation would therefore require the following modifications (at minimum);

• Monitoring of problem dimension should include variable address and n levels

of recursion in the function call stack.

• The cilly compiler must be modified to correctly re-write FP operations as

function calls to the modified version of MCALIB

• If no disable option is available, the C intermediate language (CIL) must be

modified to prevent replacement of array indexing with fixed point pointer

arithmetic, as this removes information on variable address.

At this stage these modifications are outside the scope of this thesis and are left

for future implementation. Instead the variance reduction extensions to MCA are

presented as theory with proof of concept examples provided.

6.3 Analysis & Comparison of Implementation Types

Analysis of the proposed techniques has been performed by comparing the experi-

mental results of qMCA and ATMCA against MCA for a set of three test cases:
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• Knuth’s example:

u = (111111113− 11111111) + 7.5111111 (6.16)

v = 11111113 + (−11111111 + 7.5111111) (6.17)

• FP summation:

s =
n

∑
i=1

xi, for n ≥ 3 (6.18)

• The Chebyshev polynomial

T20(z) = cos(20 cos−1(z)) (6.19)

= 524288z20 − 2621440z18 + 5570560z16

− 6553600z14 + 4659200z12 − 2050048z10

+ 549120z8 − 84480z6 + 6600z4

− 200z2 + 1 (6.20)

These comparisons have been made in order to verify the improved rate of conver-

gence resulting from the application of variance reduction techniques, specifically

reducing the approximation error in the results from O
(

1√
N

)
to O

( 1
N

)
. In this

chapter the experimental procedure is outlined, and methods used for measurement

and comparison of result convergence rates are detailed. A modified version of

MCALIB has been used for the implementation of qMCA and ATMCA analysis,

and the standard version of MCALIB has been used to generate MCA results for

comparison.

6.3.1 Experimental Procedure

In the general case MCA analysis of a function y = f (x) implemented as FP SW

is tested by performing repeated executions. For the purposes of this chapter a
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trial is defined as a single execution of the function f (x). Using MCALIB standard

experimental procedure as defined in Chapter 4 is to sweep the virtual precision

between tstart and tend, typically set to 1 and 53 respectively for analysis of double

precision FP, and to perform a total of N trials for each t value. The minimum value

for N has been defined as 100 trials. For the purposes of this chapter an experiment

is defined as a set of tend × N trials. In order to determine the effect of sample size

on the results the value of N is swept from 5 to Nmax = 200. This results in a set

of 195 experiments producing 195 data sets each containing tend × N data points.

Collected data is analyzed using statistical measurements as detailed in Sections 6.3.2

through 6.3.3.

6.3.2 Sample Mean

Using standard MCMs the true mean of the result is determined by measuring

the sample mean, as such the sample mean is designated an estimator of the true

mean. The sample mean is measured by first grouping data by sample size and

virtual precision. Grouping data in this way creates 195× 53 = 10335 subsets, each

containing N samples, and the sample mean and variance are calculated as follows:

µN,t =
1
N

N

∑
i=5

yi (6.21)

where y is the result of the function y = f (x) under testing. The approximation error

of an estimator is measure by calculating the mean squared error (MSE) over N. This

is measured for each value of N as follows:

MSEN,t(θ̂N,t) = E[(θ̂N,t − θ)2] (6.22)

where MSEN,t(θ̂N,t) is the MSE of the estimator for a specific value of sample size,

N, and virtual precision, t, θ̂N,t is the measured result of the estimator, and θ is the

true result. Using this setup a set of N MSE values is determined for each t value by
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calculating the following:

MSEN,t(µN,t) =
1
N

N

∑
i=5

(µi,t − µ)2 (6.23)

In the case of sample mean, each result is compared against the true result of the

function under test, represented by the true mean, µ.

As is the case with standard MCM, the approximation error as estimated with the

MSE should decrease with N in a monomial relationship, (i.e. a linear relationship

when plotted on a log-log scale), modeled as:

log10(y) = m log10(x) + c (6.24)

y = 10c · xm (6.25)

where y = MSEN,t(θ̂N,t) and x = N. Linear regression analysis with log transformed

variables is performed using MSEN,t(θ̂N,t) as the dependent variable and N as the

exploratory variable to determine the value of m, which represents the convergence

rate of the estimator.

6.3.3 Stopping Criteria

Stopping criteria or stopping rules are intended to provide methods to automatically

terminate a Monte Carlo simulation once the required level of accuracy in the

result estimator has been achieved. Stopping rules for standard MCMs are often

implemented using analysis of the confidence intervals on the sample mean [62].

Alternatively, stopping rules as used in statistical analysis will typically define

application specific rules or equalities that must be met for a specified number of

iterations. For the purposes of testing in this chapter a stopping rule has been defined

based on MCA analysis methods developed as part of MCALIB and presented in

Chapter 4. This stopping rule compares sequential values of significant figures lost,
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K, and minimum required precision, tmin calculated over a range of sample sizes N

in order to find the minimum sample size n ≥ m for which the following inequalities

hold:

m · δK >
n+m

∑
i=n+1

[Ki − Ki−1] (6.26)

m · δt >
n+m

∑
i=n+1

[ti − ti−1] (6.27)

i.e. the inequalities:

δK > Kn − Kn−1 (6.28)

δt > tn − tn−1 (6.29)

should hold for m sequential iterations.
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Figure 6.2: Analysis of sample mean of Knuth’s example for t = 53 and sample sizes from N = 5 to N = 200
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Method Type Sample Mean (Slope) Sample Std. Dev. (Slope)
MCA -0.566 0.153
ATMCA -0.899 0.167
qMCA -0.970 0.009

Table 6.1: Summary of linear regression analysis of sample mean results for virtual precision values
from t = 1 to t = 53 for Knuth’s example

6.4 Results

6.4.1 Analysis of Estimator Convergence

In the first case the sample mean and the MSE of the sample mean have been meas-

ured for Knuth’s example, and the t = 53 case is plotted in Figures 6.2(a) and 6.2(b).

This figure clearly shows the estimators from all three methods converging towards

the true result. However it is clear that in the case of qMCA and ATMCA the sample

mean is converging to the true result significantly faster than in the case of MCA.

Performing the linear regression analysis for all three sets of results produces in the

following models, (for the t = 53 case only):

MSEmca = 10−18.27 · N−0.47 (6.30)

MSEqmca = 10−17.53 · N−0.97 (6.31)

MSEatmca = 10−18.97 · N−0.81 (6.32)

Note that the error in the MCA estimator is proportional to O
(

1√
N

)
while the error

in the qMCA case is proportional to O
( 1

N

)
. While the sample mean of the ATMCA

results converges at a faster rate than that of the MCA results, it is not proportional to

O
( 1

N

)
. The three models are compared against the raw data in Figure 6.2(b). Statist-

ical measurements on the results of linear regression analysis on all virtual precision

values from t = 1 to t = 53 are summarized in Table 6.1. These measurements con-

firm the general case for Knuth’s sample demonstrating the effectiveness of qMCA,

in this case the variance reduction method results in a significant improvement in

the convergence of the result estimator over the standard MCA method.
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Method Type Sample Mean (Slope) Sample Std. Dev. (Slope)
MCA -0.561 0.228
ATMCA -0.416 0.216
qMCA -0.909 0.328

Table 6.2: Summary of linear regression analysis of sample mean results for virtual precision values
from t = 1 to t = 53 for floating point summation

This same type of analysis has been performed for results of MCA analysis

of the FP summation example. Results of measuring the sample mean and the

MSE of the sample mean for the t = 24 case are shown in Figures 6.3(a) and 6.3(b)

respectively. As was the case of Knuth’s example, the sample mean of the results

of qMCA analysis is clearly converging towards the true result at a faster rate than

that of either MCA or ATMCA analysis. This finding is re-enforced by the result of

the linear regression analysis, highlighted in Figure 6.3(b) for the t = 24 case. The

complete results for each model are as follows:

MSEmca = 10−12.00 · N−0.43 (6.33)

MSEqmca = 10−12.57 · N−0.95 (6.34)

MSEatmca = 10−13.37 · N−0.75 (6.35)

Note again the difference in convergence rates between MCA and qMCA, (O
(

1√
N

)
vs. O

( 1
N

)
). Results of statistical measurements of the linear regression analysis

results for all cases from t = 1 to t = 53 are summarized in Table 6.2.



6.4.
R

esults
149

0 50 100 150 200

2.999999

2.999999

3.000000

3.000000

3.000001

Sample Mean v. Sample Size

Sample Size N

S
am

pl
e 

M
ea

n

MCA
ATMCA
QMCA
True Result

(a) Sample mean

5 10 20 50 100 200

MSE of Sample Mean v Sample Size

Sample Size N

10−17

10−16

10−15

10−14

10−13

MCA
MCA Linear Model
ATMCA
ATMCA Linear Model
QMCA
QMCA Linear Model

M
S

E
(b) MSE of sample mean

Figure 6.3: Analysis of sample mean of summation example for t = 24 and sample sizes from N = 5 to N = 200
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6.4.2 Analysis of Stopping Criteria

The final set of experiments conducted for this chapter have been performed using

the Chebyshev polynomial as a test case, and have been conducted using stopping

rules to demonstrate the reduction in sample size requirements resulting from the

use of quasi-Monte Carlo techniques. The testing procedure has been expanded to

test multiple values of the Chebyshev input z, (as in Chapter 4), in this case testing

the known best and worst case inputs, z = 0.0 and z = 1.0. The first set of results

are shown for both input test cases in Figures 6.4(a) and 6.4(b). In these results the

value of the stopping criteria threshold δk has been varied in order to determine it’s

effect on the results of analysis and on required sample size. In the analysis method

developed as part of MCALIB, the bound for the result of K when used to determine

outliers was set at ±0.5, i.e. plus or minus half a binary digit and as such the value

of δK has been varied between 0.5 and 0.0025 for testing purposes while the value of

m is fixed at 3. The results indicate that the stopping criteria stabilizes at δK = 0.2

and show that the required sample size for qMCA is significantly lower than that

of MCA in this region. For the z = 0.0 case the average result in the stable region

for qMCA is 5 samples and 21 samples for MCA, a reduction of approximately 75%.

In addition
√

21 = 4.58... or approximately 5 samples. For the z = 1.0 case the

average result is 13 samples for qMCA and 29 samples for MCA, a reduction of

approximately 55%. Note that in this case the result for qMCA is significantly higher

than
√

29 = 5.39... indicating the ideal reduction in variance has not been achieved.

Figures 6.5(a) and 6.5(b) detail the same set of results as the previous figure, however

the experiment has been modified to sweep the value of m while fixing the value of

δk = 0.25. From these results two findings are apparent. The results of stopping cri-

teria analysis are highly data dependent, indicating that more samples are required

when analyzing systems exhibiting high sensitivity to rounding error. Secondly it is

again clear that the results for qMCA analysis require a smaller number of samples

than that of MCA or ATMCA.
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6.5 Summary

In this chapter the application of variance reduction techniques to MCA has been

investigated with the aim of reducing the required number of samples for effective

analysis. Two methods have been implemented, qMCA using an LDS in place of

the uniform random number generator using in standard MCA, and ATMCA, and

implementation of correlated sampling using antithetic variates. Testing for several

test cases has demonstrated that the qMCA analysis type significantly improves the

convergence rate of the measured estimator, sample mean, and reduces the required

sample size under certain conditions. The results of testing the ATMCA method

are not as promising, while the convergence rate of the sample mean was found to

increase in some test cases, the increase was not as significant as that of qMCA, and

did not appear in as many cases. Furthermore analysis of stopping criteria testing

indicated that ATMCA increases the required sample size when the stopping criteria

is based on measurements of K and tmin. As these measurements are calculated

from the relative standard deviation (RSD) of results, it is possible that ATMCA

implementation has an undesirable effect on the sample variance of the result set.

This work has shown that certain variance reduction techniques as applied to tra-

ditional MCMs are also effective when applied to MCA and can achieve O
( 1

N

)
convergence compared with O

(
1√
N

)
for the naive case. However the reduction in

sample size comes at the cost of increased computational complexity. In the case of

qMCA and ATMCA the dimension of the problems under analysis must be tracked

in order to ensure correct results, this increases the computational time required for

analysis when compared with MCA. As with standard MCMs these techniques are

best applied in cases where the number of dimensions is low, reducing the computa-

tional overhead and providing the best chance for increasing the convergence rate of

the results.





Chapter 7

Conclusion

7.1 Introduction

The field of numeric analysis has grown as the use of computer arithmetic systems

has become more widespread, leading to the development of static and dynamic er-

ror analysis methods. However, the amount of knowledge required of both computer

arithmetic and numeric analysis has limited the use of error analysis as part of the

software development life cycle (SDLC). This lack of understanding beyond experts

in the field stems from issues with implementation, performance and scalability.

This thesis is intended to address these issues by developing automated tools for the

implementation of Monte Carlo arithmetic (MCA).

7.2 Findings & Contributions

The specific aims and contributions of this thesis are listed in chapter 1, and experi-

mental findings are detailed in chapters 4 through 6. The primary aim of this thesis

was the development of methods that allow unsophisticated users to understand

rounding error and required precision level and the key contribution of this work

lies in the proposed plots which allow a complete MCA analysis to be understood

from an easily interpretable summary. These plots are generated from the results of



156 Chapter 7. Conclusion

automated implementations of MCA; the Monte Carlo arithmetic library (MCALIB)

and the MCA floating point unit (FPU). These systems have been designed to allow

optimal implementation by both experts in numeric analysis and lay persons. A

naive or fire-and-forget approach may be implemented by automatically translating

all floating point (FP) operations to MCA operations, alternatively more in depth

analysis my be achieved by focusing on specific operations or by selecting the type

of random perturbations applied to the operations, (inbound, outbound or both).

This work was also aimed at addressing issues with performance and scalability,

encouraging adoption by reducing the cost of implementation typically associated

with these methods. The MCA FPU demonstrated a tested maximum throughput of

approximately 25 MFLOPS, an improvement of 16× over equivalent software (SW)

implementations, a figure that can be increased to over 100× if improvements are

made to communication between processor and co-processor or with parallel im-

plementations. Performance has been further improved by extending MCA to

quasi-Monte Carlo arithmetic (qMCA). This has reduced the convergence rate of

the estimation error from O
( 1

N

)
to O

(
1√
N

)
and in test cases the required number of

samples was reduced by a factor of 2 to 5×.

Encouraging the adoption of error analysis methods is a critically important

goal, particularly as the use of computer arithmetic systems becomes increasingly

more widespread. As the number of computing devices and applications for these

devices grows increased understanding of error and the effects of error will be

necessary. MCALIB has been provided as an open source implementation and it

is hoped that this will lead to further developments and improvements to MCA

and other dynamic error analysis tools. Wider adoption of error analysis routines

will also have the obvious effect of mitigating the effects of rounding error. The

current understanding of error is that significant effects are few and far between,

and therefore can often be discounted except in safety critical systems. However this

thinking is contradicted by two points,
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1. The number of computing devices and their performance is increasing rapidly,

therefore increasing the likelihood of errors occurring.

2. Discounting the possibility of errors as negligible can increase the effects of

these errors when they do occur.

This second point is especially important to consider, as the cost of catastrophic errors

and failures can often be heavy, as in the case of Intel’s floating point division (FDIV)

bug, the failure of the Patriot air defense system at Dharan air base or the failure of

the Ariane 5 rocket system [65, 104, 139]. Wider implementation of error analysis

schemes and more importantly, better understanding of the concepts of error has the

potential to not only limit the incidence rate of error, but to mitigate its effects through

well designed arithmetic systems and SW. Development of systems with the effects

of error in mind also has the potential to improve efficiency and reduce overhead. In

the case of optimization or iterative refinement problems, minimizing the sensitivity

to rounding error will allow for faster convergence rates to be achieved, reducing

the level of computation required and the cost of implementation.

7.3 Future Work

The automated application of other dynamic error analysis techniques could be

investigated with the aim of developing a library containing a set of dynamic error

analysis techniques such as the contrôle et estemation stochastique des aarondis

calculs (CESTAC) method, interval arithmetic (IA), random interval arithmetic (RIA)

and affine arithmetic (AA). In addition this library should contain an implementa-

tion of qMCA allowing for automated implementation of this method which will

subsequently allow for further testing of qMCA and investigation of the application

of variance reduction techniques on larger scale problems. In the case of the MCA

FPU, future work should investigate the implementation of custom FP libraries and

integration with compiler systems capable of fully utilizing a pipelined co-processor,

with the aim of improving performance and ease of use. Further hardware (HW)
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acceleration techniques should also be investigated, including graphics processing

unit (GPU) based implementations or high performance computing (HPC) and

large scale cluster systems for highly parallel implementations. The processor/co-

processor type interface can be extended beyond the Zynq platform to desktop

based systems communicating with the field programmable gate array (FPGA) over

peripheral component interconnect express (PCIe) interfaces. Finally this study has

been limited to dynamic error analysis, combining it with static techniques would

allow the advantages of both to be enjoyed.
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