
Imperial College of London
Department of Computing

Hybrid FPGA: Architecture and Interface

Chi Wai, Yu

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the Imperial College

June 2010

Declaration

This thesis is a presentation of my original research work. The contributions of others are involved,

every effort is made to indicate this clearly in the references to the literature and acknowledgement of

collaborative researches.

Signature: ...

Date: ...

i

Abstract

Hybrid FPGAs (Field Programmable Gate Arrays) are composed of general-purpose logic resources

with different granularities, together with domain-specific coarse-grained units. This thesis proposes

a novel hybrid FPGA architecture with embedded coarse-grained Floating Point Units (FPUs) to

improve the floating point capability of FPGAs. Based on the proposed hybrid FPGA architecture,

we examine three aspects to optimise the speed and area for domain-specific applications.

First, we examine the interface between large coarse-grained embedded blocks (EBs) and fine-grained

elements in hybrid FPGAs. The interface includes parameters for varying: (1) aspect ratio of EBs,

(2) position of the EBs in the FPGA, (3) I/O pins arrangement of EBs, (4) interconnect flexibility of

EBs, and (5) location of additional embedded elements such as memory.

Second, we examine the interconnect structure for hybrid FPGAs. We investigate how large and high-

density EBs affect the routing demand for hybrid FPGAs over a set of domain-specific applications.

We then propose three routing optimisation methods to meet the additional routing demand introduced

by large EBs: (1) identifying the best separation distance between EBs, (2) adding routing switches on

EBs to increase routing flexibility, and (3) introducing wider channel width near the edge of EBs. We

study and compare the trade-offs in delay, area and routability of these three optimisation methods.

Finally, we employ common subgraph extraction to determine the number of floating point adders/subtractors,

multipliers and wordblocks in the FPUs. The wordblocks include registers and can implement fixed

point operations. We study the area, speed and utilisation trade-offs of the selected FPU subgraphs

in a set of floating point benchmark circuits. We develop an optimised coarse-grained FPU, taking

into account both architectural and system-level issues. Furthermore, we investigate the trade-offs

between granularities and performance by composing small FPUs into a large FPU.

The results of this thesis would help design a domain-specific hybrid FPGA to meet user requirements,

by optimising for speed, area or a combination of speed and area.

ii

Acknowledgements

I am indebted to my supervisors Professor Wayne Luk and Professor Philip Leong for their patience

and enthusiasm. Without their support, I would not have started my doctoral study in UK. Their useful

ideas and advice help me to find a right direction of research and complete this thesis.

Besides my supervisors, I am grateful to Professor Steven Wilton for his involvement in my research.

His knowledge and experience in reconfigurable architecture assist me to improve the research ideas

and results.

Special thanks to Dr. Chun Hok Ho, for his proposed floating point hybrid FPGA architecture in

Chapter3, Section3.1. I have learnt differnt design tools from him while preparing the benchmarks

and experiments. I would like to acknowledge Dr. Julien Lamoureux for his invaluable suggestions

in Chapter4 and Dr. Alastair Smith for providing the common subgraph extraction program to enable

the optimisation of floating point units in Chapter6.

I would also like to thank Professor Jonathan Rose for providing useful comment on descriptions of

future work.

I express my gratitude to fellow colleagues in Custom Computing Group and Computer Architec-

ture Group of Imperial College London: Prof. Ray Cheung, Prof. Yuet Ming Lam, Dr. Brittle Tsoi

Dr. Van Fu, Mr. Carlos Tavares, Dr. Lee Howes, Dr. Qiang Liu, Dr. Kubilay Atasu, Dr. Markus

Koster, Prof. Qiang Wu, Mr. Gary Chow, Mr. Anson Tse, Dr. Timothy Todman, Dr. David Thomas,

Mr. Qi Wei Jin, Mr. Tobias Becker, Mr. Craig Court, Mr. Abdelmalek Halawani, Mr. Philip Potter,

Mr. William Osborne, Dr. Gabriel Figueiredo, Mr. Kees Van Der Bok, Mr. Adrien Le Masle, Dr. An-

dreas Fidjeland, Prof. Peter Jamieson, and Mr. Brahim, for their time of discussions, experience

sharings and proof-reading my thesis.

In addition, it is an honor for me to be a friend of Ms. Ling Li, Ms. Lucille Cheung, Prof. Edith

Ngai, Ms. Lucia Lau, Mr. Min Li, Ms. Dong Ping Zhang, Ms. Nancy Goslowsky, Ms. On Ching

Lam, Ms. Wing Sze Wong, Mr. Terrence Mak, Prof. Yumi Iwashita, Ms. Erica Ngai, Mr. Mai Xu, and

Mr. Yi Zhou Wang. They provide happiness and an unforgetable memory to my life in UK.

The support of all of my friends in Hong Kong is also appreciated.

The financial support of UK Engineering and Physical Sciences Research Council (EP/D060567/1)

is gratefully acknowledged.

iii

Dedication

To my parents:Wan Wai Fong and Yu Cheong-

who guide and take care of me and the family with their love,

To my sisters:Yvonne, Yu Man Ki and Megan, Yu Wing Sze-

who help and solve my daily problems in my life,

To my love:Shirley, Leung Shuk Man-

who loves me, shares my feeling everyday and waits for me during my PhD,

To my cat:Liky -

who always gives joy and happiness to me.

I am very glad to have all of you in my life. This thesis would not be finished without any of you.

iv

Abbreviations

ALM - Adaptiv Logic Module

ASIC - Application Specific Integrated Circuit

BLE - Basic Logic Element

BLIF - Berkeley Logic Interchange Format

CAD - Computer-Aided Design

CB - Connection Box

CGU - Coarse-Grained Unit

CLB - Configurable Logic Block

CPU - Central Processing Unit

Deb - Separation distance between Embedded Blocks

DP - Double Precision

DSP - Digital Signal Processor

EB - Embedded Block

FA - Floating Point Adder/Subtractor

FF - Fliip Flop

FM - Floating Point Multiplier

FP - Floating Point

FPFPGA - Floating Point FPGA

FPGA - Field Programmable Gate Array

FPU - Floating Point Unit

GPU - Graphics Processing Unit

HDL - Hardware Description Language

I/O - Input / Output

LSB - Least-Significant Bit

LUT - Look Up Table

MCS - Maximum Common Subgraph

MSB - Most-Significant Bit

NoC - Network-on-Chip

RTL - Register Transfer Level

SB - Switch Box

SoC - System-on-a-Chip

v

SP - Single Precision

SRAM - Static Random Access Memory

SRL - Shift Register LUT

UCF - User Constraint File

VEB - Virtual Embedded Block

VHDL - Very High Speed Integrated Circuit Hardware Description

Language

VPH - Versatile Place and Route for Hybrid FPGA

VPR - Versatile Place and Route

WB - Wordblock

vi

Publications

Journal Papers

1. C.H. Ho, C.W. Yu, P.H.W. Leong, W. Luk, and S.J.E. Wilton, “Floating point FPGA: Archi-

tecture and Modeling”,IEEE Transactions on Very-Large Scale Integration (VLSI) Systems,

17(2):1709-1718, Dec. 2009.

2. C.W. Yu, Julien Lamoureux, S.J.E. Wilton, P.H.W. Leong, and W. Luk, “The Coarse-Grained/Fine-

Grained Logic Interface with Embedded Floating-Point Arithmetic Units”,International Jour-

nal of Reconfigurable Computing, vol. 2008, Article ID 736203, 2008.

Conference Papers

1. C.W. Yu, Alastair M. Smith, W. Luk, P.H.W. Leong and S.J.E. Wilton, “Optimizing Coarse-

Grained Units in Floating Point Hybrid FPGA”,In Proc. International Conference on Field-

Programmable Technology (FPT), pp.57-64, 2008.

2. C.W. Yu, Julien Lamoureux, S.J.E. Wilton, P.H.W. Leong, and W. Luk, “The Coarse-Grained/Fine-

Grained Logic Interface with Embedded Floating-Point Arithmetic Units”,In Proc. Southern

Programmable Logic Conference (SPL), pp.63-68, 2008. (Synplicity Best Ph.D. Student Paper

Award)

3. C.H. Ho, C.W. Yu, P.H.W. Leong, W. Luk and S.J.E. Wilton, “Domain-Specific Hybrid FPGA:

Architecture and Floating Point Applications”,In Proc. International Conference on Field

Programmable Logic and Applications (FPL), pp.196-201, 2007. (Stamatis Vassiliadis Award

for Outstanding Paper)

Short Papers

1. C.W. Yu, W. Luk, S.J.E. Wilton, P.H.W. Leong, “Routing Optimization for Hybrid FPGAs”,

In Proc. International Conference on Field-Programmable Technology (FPT), pages 419-422,

2009.

PhD forum

1. C.W. Yu, “A Tool for Exploring Hybrid FPGAs”,In Proc. International Conference on Field

Programmable Logic and Applications (FPL), pages 509-510, 2007.

vii

Contents

Declaration i

Abstract ii

Acknowledgements iii

Dedication iv

Abbreviations v

Publications vii

Content viii

List of Tables xv

List of Figures xvii

1 Introduction 1

1.1 Motivation. 1

1.2 Domain Specific Hybrid FPGAs Issue. 3

viii

CONTENTS ix

1.2.1 Interface between Fine-grained and Coarse-grained Elements. 4

1.2.2 Routing Structure. 4

1.2.3 Internal Structure of Coarse-grained Blocks. 5

1.3 Research Approach and Contributions. 6

1.4 Thesis Organisation. 7

2 Background 10

2.1 Fine-grained FPGA Architecture. 10

2.1.1 Logic Block. 10

2.1.2 Routing. 12

2.1.3 Power. 15

2.2 Hybrid FPGA Architecture. 15

2.2.1 Coarse-grained Block. 16

2.2.2 Routing. 18

2.2.3 Power. 19

2.3 Design Space Exploration Tool. 19

2.3.1 CAD Tool for FPGA . 20

2.3.2 Pre-fabrication Evaluation Tool. 21

2.3.3 Post-fabrication Evaluation Tool. 26

2.3.4 Analytical Modelling. 29

2.4 General FPGA Applications. 30

x CONTENTS

2.5 Domain-specific Applications: Floating Point Applications. 30

2.5.1 Floating Point Arithmetic . 31

2.5.2 Optimisation of Floating Point Computation in FPGA. 32

2.5.3 Applications and Benchmarks. 34

2.6 Processing Platforms. 40

2.6.1 CPU. 41

2.6.2 GPU . 41

2.6.3 Comparison: FPGA, CPU and GPU. 42

2.7 Summary . 43

3 Architecture and Modelling 44

3.1 Novel Floating Point Hybrid FPGA Architecture (FPFPGA) and Post-fabrication Ex-

ploration. 45

3.1.1 Requirements. 45

3.1.2 FPFPGA Architecture. 46

3.1.3 Methodology: Post-fabrication Modelling of FPFPGA. 50

3.1.4 Results . 51

3.2 Baseline Hybrid FPGA Architecture for Pre-fabrication Exploration. 57

3.2.1 Fine-grained and Coarse-grained Assumption. 57

3.2.2 Routing Architecture Assumption. 58

3.3 Pre-fabrication modelling tool: Versatile Place and Route for Hybrid FPGA - VPH. 60

3.3.1 Requirements. 61

CONTENTS xi

3.3.2 Design flow. 62

3.3.3 User Constraints in VPH. 64

3.3.4 VPHpack. 64

3.3.5 Elmore Delay Model and Critical Path. 65

3.3.6 Results . 67

3.4 Summary . 68

4 Interface between Coarse/Fine-grained Logic 71

4.1 Motivation. 71

4.2 Interface Parameters: Single EB Type. 72

4.2.1 EB Position. 72

4.2.2 Pin Location . 72

4.2.3 Interconnect Flexibility. 74

4.2.4 EB Aspect Ratio. 74

4.3 Interface Parameters: Multiple EB Type. 74

4.3.1 EB Position. 75

4.3.2 Interconnect Flexibility. 75

4.4 Methodology . 76

4.5 Result: Single EB Type. 76

4.5.1 EB Position. 77

4.5.2 Pin Location . 78

xii CONTENTS

4.5.3 Interconnect Flexibility. 80

4.5.4 EB Aspect Ratio. 80

4.6 Result: Multiple EB Types. 82

4.6.1 EB Position. 83

4.6.2 Interconnect Flexibility. 84

4.7 Summary . 85

5 Routing Optimisation 87

5.1 Motivation. 87

5.2 Routing Demand. 88

5.2.1 Netlength Demand. 89

5.2.2 Congested Region. 89

5.3 Optimisation of Routing . 91

5.3.1 Separation Distance between EBs. 92

5.3.2 Additional Routing Switches in EBs. 94

5.3.3 Extra Routing Tracks. 97

5.4 Ways of Improving the Interface: Single EB Type Optimised FPGA. 99

5.4.1 EB Position. 101

5.4.2 Pin Location . 101

5.4.3 Interconnect Flexibility. 104

5.4.4 EB Aspect Ratio. 104

CONTENTS xiii

5.4.5 Area-Delay Product Comparison. 105

5.5 Ways of Improving the Interface: Multiple EB Type Optimised FPGA. 106

5.5.1 EB Position. 107

5.5.2 Interconnect Flexibility. 107

5.5.3 Area-Delay Product Comparison. 109

5.6 Summary . 109

6 Optimisation of Coarse-grained Floating Point Units 111

6.1 Motivation. 111

6.2 Optimisation Parameters. 112

6.2.1 Internal Optimisation of FPU. 113

6.2.2 System-Level Optimisation. 113

6.2.3 Optimisation by Merging FPUs. 114

6.3 Methodology . 116

6.3.1 Common Subgraph Extraction. 116

6.3.2 Evaluation Flow . 118

6.4 Results. 119

6.4.1 Internal Optimisation of FPU. 119

6.4.2 System-Level Optimisation. 121

6.4.3 Optimisation by merging FPUs. 127

6.5 Summary . 130

7 Conclusion and Future Work 132

7.1 Conclusion . 132

7.2 Future Work. 133

7.2.1 Other FPU Architectures. 133

7.2.2 CAD Tools . 133

7.2.3 Analytical Modelling for Delay, Area and Power of Hybrid FPGA. 136

7.2.4 Other Application Domains. 136

7.2.5 Routing for Hybrid FPGA. 137

7.2.6 Feedback path for common subgraph coarse-grained FPU. 137

7.2.7 Optimisation of Power Consumption. 138

7.2.8 Process Variation. 138

Bibliography 141

xiv

List of Tables

1.1 Summary of the research contributions. 8

2.1 Functions of various versions of VPR.. 26

2.2 Summary of the benchmarks we used in this thesis. 40

2.3 The features, advantages and disadvantages of different devices in Floating Point (FP)

domain . 42

3.1 Parameters for the coarse-grained unit. 48

3.2 Normalisation on the area of the coarse-grained units against a Virtex-II CLB. . . . 51

3.3 FPFPGA implementation results. 53

3.4 Information of the components in the hybrid FPGA. 59

3.5 Information of the routing resources in the baseline FPGA. 60

3.6 Units in mapped library netlist handled by VPHpack. 65

3.7 Number of FPUs and CLBs used for each benchmark packed and clustered by VPHpack68

4.1 Number of BRAM used in each benchmark. 76

4.2 Recommendations of designing hybrid FPGA on baseline architecture for different

optimisation goals. 86

xv

5.1 Average netlength, delay and area of FPGAs over the 8 benchmarks. 90

5.2 Recommendations of routing optimisation of hybrid FPGA on baseline architecture

for different optimisation goals. 110

5.3 Recommendations of the interface for the optimised FPGA. 110

6.1 The common subgraph structure occurred in benchmark circuits. 120

6.2 Statistic of subgraphs.. 121

6.3 The utilisation rate of subcircuits in the three hybrid FPGAs. 122

6.4 The different FPUs merged in the three FPGAs. 127

6.5 The statistic of the merged FPUs in the three FPGAs. 128

6.6 The average wirelength of the three FPGAs in different merge schemes. 129

6.7 Recommendations of FPUs for different optimisation goals. 131

7.1 Summary of the key results. 134

7.2 Summary of limitations of the works in this thesis. 135

xvi

List of Figures

1.1 An example of interface in hybrid FPGA. 4

1.2 Detailed routing architecture in hybrid FPGA. 5

1.3 Constructing bus based coarse-grained FPUs. 6

1.4 Organisation of this thesis. 9

2.1 A conventional island-style FPGA. 11

2.2 (a) A configurable logic block, (b) a basic logic elements in an island-style FPGA. . 12

2.3 The detailed routing routing architecture in an island-style FPGA. 13

2.4 Structure of connection and switch box. 13

2.5 Structure of tri-state buffer. 13

2.6 Comparison of ASIC, fine-grained FPGA, hybrid FPGA and domain-specific FPGA. 17

2.7 A traditional CAD work flow for FPGA . 22

2.8 Tool flow of VPR . 24

2.9 VEB modelling flow overview.. 28

2.10 Modelling coarse-grained unit in FPGAs using Virtual Embedded Blocks.. 29

2.11 IEEE floating point bit index and bias. 31

xvii

xviii LIST OF FIGURES

2.12 Algorithm of floating point adder/subtractor and multiplier. 33

2.13 The circuit diagram ofbfly . 35

2.14 The circuit diagram ofdscg . 36

2.15 The circuit diagram offir . 36

2.16 The circuit diagram ofmm3. 37

2.17 The circuit diagram ofode . 38

2.18 The circuit diagram ofBGM . 39

3.1 Architecture of the FPFPGA. 47

3.2 Architecture of the coarse-grained unit with different parameters. 48

3.3 Floorplan of the single precisionbgmcircuit on Virtex-II FPGA and FPFPGA. . . . 52

3.4 Architecture of the coarse-grained unit with appropriate parameter settings. 54

3.5 (a) A configurable logic block (CLB) in hybrid FPGA, (b) A basic logic element (BLE)

in a CLB . 58

3.6 An example of the baseline hybrid FPGA: Embedded blocks (EBs) are surrounded by

grid based CLBs . 59

3.7 Detailed routing architecture in the baseline FPGA. 61

3.8 Design flow of VPH. 63

3.9 VPHpack packs and clusters basic units into CLB. 66

3.10 Elmore delay model for the delay path in VPH. 66

3.11 The circuitbgm, which has used 7 FPUs out of 16, is placed and routed using VPH. 69

LIST OF FIGURES xix

3.12 Routing switches are allowed in FPUs. The nets in FPUs are able to route and change

of direction . 70

4.1 Various positions of the EBs relative to the fine-grained CLBs. 73

4.2 Different pin positions in EB. 73

4.3 Different aspect ratio of EB. 74

4.4 Various positions of the multiple EBs. 75

4.5 Delay against various EBs positions for the single EB type FPGA (in Figure4.1) . . 77

4.6 Routing area against various EBs positions for the single EB type FPGA (in Figure4.1) 78

4.7 Delay against various I/O configurations for the single EB FPGA (in Figure4.2) with

type 3 and type 4 EB position. 79

4.8 Routing area against various I/O configurations for the single EB FPGA (in Fig-

ure4.2) with type 3 and type 4 EB position. 79

4.9 Average delay against channel width for the single EB type FPGA. 80

4.10 Average delay against various EBs’ shape for the single EB type FPGA. 81

4.11 Average routing area against various EBs’ shape for the single EB type FPGA. . . . 82

4.12 Delay against various EBs positions for the multiple EB types FPGA (Figure4.4) . . 83

4.13 Average routing area against various EBs positions for the multiple EB types FPGA

(Figure4.4) . 84

4.14 Delay against channel width for multiple EB types FPGA. 85

5.1 A column based hybrid FPGA. 90

5.2 Track usage along X-Y channels ofbgmin the baseline FPGA (100x100 CLBs). . . 91

xx LIST OF FIGURES

5.3 Track usage along X-Y channels ofbgmin the column based FPGA (93x110 CLBs) 92

5.4 Average minimum channel width of the benchmarks at differentDeb 93

5.5 Average delay of the benchmarks at differentDeb 93

5.6 Average area*delay of the benchmarks at differentDeb 94

5.7 Additional routing switches in an EB. 94

5.8 The area dominated by active components of switch box or signal wires. 96

5.9 Average delay of the benchmarks at different segment length. 97

5.10 Extra routing tracks near the EB. 98

5.11 The average area-delay product of the benchmarks at differentRextra andDextra values 100

5.12 The average area-delay product of the benchmarks at differentRextra andDextra values

for FPGA 1 . 100

5.13 Delay against various EBs positions for the single EB type FPGA (in Figure4.1),

switches are in EB . 102

5.14 Routing area against various EBs positions for the single EB type FPGA (in Fig-

ure4.1), switches are in EB. 102

5.15 Delay against various I/O configurations for the single EB FPGA (in Figure4.2),

type 3 and type 4 EB position, switches are in EB. 103

5.16 Routing area against various I/O configurations for the single EB FPGA (in Fig-

ure4.2), type 3 and type 4 EB position, switches are in EB. 103

5.17 Average delay against channel width for the single EB type FPGA, switches are in EB104

5.18 Average delay against various EB aspect ratio for the single EB type FPGA, switches

are in EB . 105

LIST OF FIGURES xxi

5.19 Area-delay product against various hybrid FPGA configurations, single EB type only106

5.20 Delay against various EBs positions for the multiple EB types FPGA (Figure4.4),

where switches are in EB. 108

5.21 Average routing area against various EBs positions for the multiple EB types FPGA

(Figure4.4), switches are in EB . 108

5.22 Area-delay product against various hybrid FPGA configurations, multiple EB types. 109

6.1 Connecting WBs, FAs and FMs into different coarse-grained FPUs. 113

6.2 An example of merginggraph15andgraph26into a larger FPU 114

6.3 Merging different types of FPUs can obtain better placement and reduce wirelength. 115

6.4 Increase wirelength when merging FPUs. 115

6.5 Common subgraph extraction for WB, FA and FM in FP applications. 117

6.6 Common subgraph extraction design flow. 117

6.7 Common subgraph extraction algorithm in MCS. 119

6.8 The flow of the selection of (a) the highest density FPUs and (b) the highest flexibility

FPUs in hybrid FPGAs. 123

6.9 The number of CLBs used by different types of embedded FPUs. 124

6.10 The delay of benchmark circuits by using different types of FPUs. 125

6.11 The average total routing area used different types of FPUs. 126

6.12 The area-delay product of different types of hybrid FPGA. 126

6.13 The delay in the three hybrid FPGAs by using different FPU merging methods. . . . 129

6.14 The routing area in the 3 hybrid FPGAs by using different FPU merging methods. . 130

6.15 The area-delay product in the 3 hybrid FPGAs by using different FPU merging methods131

7.1 An example of representation of an FPU with feedback path. 138

7.2 Merging all common subcircuits to an FPU with feedback path. 139

7.3 An illustration of the difficulties in embedding EBs in dual-voltage hybrid FPGA. . 139

xxii

Chapter 1

Introduction

1.1 Motivation

Application Specific Integrated Circuit (ASIC) technologies have been employed by industry to im-

plement digital circuits or embedded systems for many years. ASIC can produce high speed, compact

and low power design. However, it is expensive (e.g. over millions of dollars for the cost of building

photo-masks) and usually takes a long time (several months to several years) to develop and fabricate

a fixed-function ASIC devices [1].

Field Programmable Gate Arrays (FPGAs) are pre-fabricated semiconductor devices containing pro-

grammable logic components and programmable interconnects. Unlike fixed-function ASIC designs,

customised applications can be developed to perform any digital function by configuring the compo-

nents in the FPGA. The FPGA devices can be reconfigured for another application within a second.

This highly flexible technology allows fast and low cost development for industry by removing the

cost and time for fabrication. Therefore FPGA devices are used to implement complex System-on-

a-Chip (SoC) designs and a wide range of applications such as broadcast video, digital TV, wireless

base stations, medical equipments and automation. According to the EE Times report in March and

July 2009, ASIC design starts fall by 22% in 2009.

FPGAs were first debuted in mid to late-80s and the Xilinx XC2064 FPGA had only 64 programmable

1

2 Chapter 1. Introduction

logic blocks. Modern devices such as Altera’s Stratix-III [2] and Xilinx’s Virtex-5 [3] consist of over

200,000 programmable logic blocks. However, FPGA designs are still slower and less compact than

ASICs [4]. Today, further improvements are being made by embedding coarse-grained blocks such as

memories within the fine-grained programmable fabric of an FPGA to increase performance, which

is called a hybrid FPGA.

Coarse-grained blocks can implement a specific function more efficiently than fine-grained pro-

grammable logic. However, since they are less flexible, they only benefit applications which utilise

them. This limits the types of embedded blocks which are commercially viable in general-purpose

FPGAs to common circuit blocks such as memories, adders, and multipliers [2,3,5,6]. For domain-

specific FPGAs, however, additional embedded blocks for specific applications may be beneficial.

Floating point computations are good examples of customised domain-specific applications. The

speed of many floating point applications such as scientific computing and financial calculations can

be improved by FPGA-based designs [7]. To obtain further improvement in area and speed, an FPGA

that is built specifically to implement applications containing a significant amount of floating point

computations would benefit from embedded floating point units. However, such domain-specific

hybrid FPGAs are currently not available in commercial products. Recently, Graphics Processing

Units (GPUs) [8] become more common to accelerate a wide range of floating point applications [9].

Although GPUs are high-performance many-core processors dedicated to calculating floating point

operations, they are less customisable, consume more power and cannot be a stand alone device when

compared to FPGAs [10,11].

In this thesis, we propose a novel coarse-grained Floating Point Unit (FPU) for hybrid FPGAs [12]

(Chapter3) and a methodology to optimise the FPU [13] (Chapter6). Then we optimise the interface

between coarse-grained/fine-grained elements [14] (Chapter4) and the routing structure inside this

floating point FPGA [15] (Chapter5). This optimised floating point FPGA retains the advantages of

general FPGAs.

Computer-Aided Design (CAD) tools are essential to develop and evaluate an architecture or a de-

sign. Fine-grained FPGAs can be modelled using the Versatile Place and Route (VPR) tool [16,17],

which has been used to explore many architectural choices in FPGAs including the amount of logic

1.2. Domain Specific Hybrid FPGAs Issue 3

elements and routing resources. However, a major difference in modern devices lies in the inclu-

sion of fast carry chains, memories, multipliers and processors, which serve to improve speed, power

and density [18]. We develop a tool called Versatile Place and Route for Hybrid FPGA (VPH) [19]

based on VPR. The tool is publicly available [20]. VPH supports place and route of fast carry chains

and coarse-grained blocks. User constraints in VPH allow specifying the position of coarse-grained

blocks. The VPH tool enables the exploration of hybrid FPGA architectures.

1.2 Domain Specific Hybrid FPGAs Issue

Hybrid FPGAs are traditional island-style FPGA like architectures. They consist of a grid of iden-

tical fine-grained resources called Configurable Logic Blocks (CLBs) which are connected by con-

figurable routing resources. There are additional coarse-grained blocks within the fine-grained fabric

to improve the performance of the FPGAs. In particular, coarse-grained blocks for specific applica-

tion domain such as floating point computation can further improve area, delay and power efficiency.

This is because these domain-specific coarse-grained blocks can implement specific functions more

efficiently than the fine-grained logic [4]. However, these domain-specific blocks are more complex

and larger than embedded memories and multipliers. They waste area when they are not used by an

application. FPGAs vendors must consider this trade-off to determine the type and number of coarse-

grained blocks that should be embedded within their devices. In this thesis, we focus on three main

issues of domain-specific hybrid FPGAs based on a novel floating point unit. They are:

1. Interface between fine-grained and coarse-grained elements (Chapter4).

2. Routing structure (Chapter5).

3. Internal structure of coarse-grained blocks (Chapter6).

4 Chapter 1. Introduction

1.2.1 Interface between Fine-grained and Coarse-grained Elements

The first issue we investigate for the floating point hybrid FPGAs is the interface between coarse-

grained and fine-grained elements. An important consideration when adding coarse-grained Embed-

ded Blocks (EBs) to an FPGA is the interface between the coarse-grained and fine-grained resources.

If this interface is not flexible enough, the usefulness of the embedded blocks will be reduced, since

connections to and from the blocks will be expensive. On the other hand, if the interface is too flexi-

ble, it will require too much area and delay, possibly negating the density and performance advantages

of including the embedded blocks, and resulting in unnecessary overhead for applications that do not

use the embedded component. We consider four interface parameters: (1) EB position, (2) I/O pin

location of EBs, (3) width of the channels surrounding the EB, (4) shape of the EB. Figure1.1shows

an example of the interface parameters in a hybrid FPGA.

EBEB

EBEB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB CLBCLBCLB

CLB

CLB

CLBCLBCLB

CLB

CLBCLBCLB

CLBCLB

CLB

CLB

CLB

Wire
Channel
Width

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLBCLBCLBCLB CLBCLBCLBCLB CLB

I/O pins
of EB

Square EB

Position
of EBs

Figure 1.1:An example of interface in hybrid FPGA

1.2.2 Routing Structure

The second issue we examine is the routing structure of the hybrid FPGAs. Programmable intercon-

nects in FPGAs have major impact on the delay and area [21]. The interconnects include connection

1.2. Domain Specific Hybrid FPGAs Issue 5

boxes, switch boxes and wire segments connecting logic blocks as shown in Figure1.2. In hybrid

FPGAs, high density coarse-grained units usually require a high number of channel width. Optimi-

sation of these interconnects to meet the extra routing demanded by large blocks can greatly reduce

the area and delay of those FPGAs [22]. Therefore, we propose an optimised routing architecture for

hybrid FPGAs. Also, we examine whether the commonly used column based architecture for small

embedded memories and multipliers in commercial FPGAs is suitable for large but complex blocks

such as FPUs.

EB

�����

��� ������

����������

���

�	� �	����

�����

���
�

�����

�����

�����

����� ����� �����

��� ���

Channel
width

�

Connection
box

Switch Box
(SB)

���

Wire segment

Figure 1.2:Detailed routing architecture in hybrid FPGA

1.2.3 Internal Structure of Coarse-grained Blocks

The final hybrid FPGA issue we consider is the optimisation of the internal structure of the coarse-

grained embedded block. We design a novel bus based FPU embedded in the FPGA, which contains

Floating point Adders/subtractors (FAs), Floating point Multipliers (FMs) and Wordblocks (WBs).

FAs and FMs contain several basic functional elements such as barrel shifters, adders and multipliers.

WBs are used for the bitwise operation of a floating point number such as comparison, shifting,

latch and logical operation. Constructing hard circuit WBs, FAs and FMs, which are composed of

6 Chapter 1. Introduction

basic functional elements, results in a more compact block with higher speed, but less flexibility.

Optimising these hard circuits is essential. Grouping together optimised WBs, FAs and FMs to form

an FPU can further improve the speed and area, since the interconnects between them use bus-based

connections. Figure1.3 shows an example of constructing an FPU by grouping together WBs, FAs

and FMs. We examine the impact of FPUs on hybrid FPGAs in terms of area, speed, routing resources

and flexibility.

Connecting WBs, FAs and FMs
into coarse- grained FPU

+-
WB ��

�

*

*

*
*

+

+

WB

+
*WB

Figure 1.3:Constructing bus based coarse-grained FPUs

1.3 Research Approach and Contributions

Our research approach extends various existing optimisation algorithms for programmable logic de-

vices. We limit the design space by defining a set of architectural parameters for optimisation. We

carry out experiments on a set of floating point benchmarks to measure the area and delay trade-offs

of those architectural parameters. The results are based on a CAD tool for the novel architecture.

The main contributions of this thesis are:

1. A novel bus based coarse-grained FPU to achieve improvement in speed and area for floating

point applications (Chapter3, Section3.1).

2. The VPH tool for exploring domain-specific hybrid FPGA architectures and supporting opti-

misation for routing architecture (Chapter3, Section3.3).

3. An optimised interface between coarse-grained and fine-grained elements in hybrid FPGAs

(Chapter4).

1.4. Thesis Organisation 7

4. An optimised routing architecture in hybrid FPGAs (Chapter5).

5. Optimised coarse-grained units in floating point hybrid FPGAs based on common subgraph

extraction (Chapter6).

Table1.1summarises the contributions of this thesis.

1.4 Thesis Organisation

This thesis is organised as follows (Figure1.4). Chapter2 describes the background and related work

in CAD tool, FPGA architecture, floating point arithmetic and application benchmarks. Chapter3

presents our novel floating point unit and the tool for exploring the hybrid FPGAs. Chapter4 in-

vestigates the interface between coarse-grained and fine-grained elements in the FPGAs. Chapter5

suggests three routing optimisation schemes for hybrid FPGAs. Chapter6 employs common sub-

graph extraction to determine the optimised coarse-grained FPU. Chapter7 summarises the thesis

and suggests for future work.

8 Chapter 1. Introduction

Table 1.1:Summary of the research contributions

Research Area Contributions

Architecture and modelling
(Chapter3) • An architecture for floating point hybrid FPGA.

• An evaluation tool which supports floating point units and various opti-
mised routing architectures.

Interface between coarse/fine-
grained elements (Chapter4) • A set of parameters that describes the interface between coarse-grained

and fine-grained programmable logic in FPGAs.
• An empirical framework to model the impact of coarse-grained archi-

tectural parameters in terms of performance and density.
• An empirical study that examines:

1. Where the coarse-grained FPUs should be embedded within FP-
GAs.

2. Where the pins of the FPUs should be on the periphery.

3. How flexible the interconnect between the FPUs and the fine-
grained logic should be.

4. What shape the FPU should have.

• A study of a hybrid FPGA interface containing embedded memories
and FPUs including:

1. Where embedded memories used by the FPUs should be located.

2. How flexible the interconnect between the FPUs, embedded
memories and the fine-grained logic should be.

Routing optimisation (Chap-
ter5) • A study of the extra routing requirements introduced by large embedded

blocks.
• Optimised routing architectures for hybrid FPGA to meet the extra rout-

ing demand:

1. Separating the embedded blocks.

2. Adding routing switch on embedded blocks.

3. Inserting extra wires near the edge of embedded blocks.

• Compare the optimised routing architecture to existing column based
FPGA.

• Ways of improving the interface between coarse/fine-grained elements
in FPGA with optimised routing architecture.

Optimisation of coarse-grained
FPU (Chapter6) • A novel methodology to optimise the floating point hybrid FPGA by

considering both internal architecture of FPUs and system-level perfor-
mance according to the mixture of FPUs.

• A study of internal architecture of FPUs. Common arithmetic subcir-
cuits for floating point benchmark circuits are examined, and use these
subcircuits to form a hardcore FPU.

• A quantitative system-level analysis of the speed, area and routing re-
source trade-offs of common FP hardcores. By considering the speed,
the area and the routing resource of a hybrid FPGA with selection of
different hardcores, optimised designs can be obtained.

1.4. Thesis Organisation 9

Chapter 4 – Interface between
Coarse/Fine-grained Logic

EB

EBEB

EB

Chapter 1 -
Introduction

Chapter 2 -
Background

Chapter 3 –
Architecture and

Modelling

Chapter 5 – Routing
Optimisation

� �

Chapter 6 – Optimisation of Coarse-
grained Floating Point Units

� �
��

�
�

�
�

�� � ��
��

�

�

�

� �
�

Chapter 7 – Conclusion
and Future Work

Figure 1.4:Organisation of this thesis

Chapter 2

Background

There is much related work. In this chapter, previous work on FPGA architecture, FPGA applica-

tion, FPGA exploration, CAD tools for FPGA and different computational devices are discussed and

summarised.

2.1 Fine-grained FPGA Architecture

Conventional island-style FPGAs consist of a grid of identical Configurable Logic Blocks (CLBs)

and I/O blocks. The CLBs and I/O blocks are connected using horizontal and vertical wires with

SRAM-based programmable switches between channel wires as shown in Figure2.1. Any circuit

can be implemented in an FPGA by configuring the logic blocks, I/O blocks and routing resources.

Section2.1.1and2.1.2introduce the detailed architecture of the logic blocks and routing resources

in FPGA respectively. In addition, Section2.1.3describes the power optimisation in fine-grained

FPGAs as power efficiency is an important issue in modern computational devices.

2.1.1 Logic Block

FPGA consists of a two dimensional array of CLBs to provide logical operations. Each CLB, which is

shown in Figure2.2(a), contains a cluster ofN Basic Logic Elements (BLEs). A BLE in early FPGAs

10

2.1. Fine-grained FPGA Architecture 11

��� �

��� �

��� �

��� �

� � ��� 	

� � ��� 	

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

� � ��� 	

� � ��� 	

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

��� �

Vertical and horizontal
programmable routing

Figure 2.1:A conventional island-style FPGA

contain simply ak input Look Up Table (k-LUT) and a Flip Flop (FF) as shown in Figure2.2(b) [1,

23]. The k-LUT can implement any single output combinational function withk inputs or less by

configuring 2k SRAM cells. Based on this CLB architecture, previous research has found that the

best pin position of CLB should be full-perimeter (the pins are around all the edges of the FPGA) and

the best FPGA aspect ratio is 1 [21] , LUT with 4 to 6 and cluster size (N) of 3 to 10 provides the best

area-delay performance [1,24,25,26]. Larger LUT (6-LUT) is used in modern commercial devices

to achieve higher speed for more compact logic functions [27,28].

Modern FPGA logic blocks such as CLBs in the Xilinx Virtex family [3] and Adaptive Logic Mod-

ules (ALMs) in the Altera Stratix family [2] include more complex functions. The CLB contains

support for carry chains, shift registers, internal multiplexers and XOR gates. These functions can

speed up the computation of addition and shifting operation. We will adopt this modern CLB archi-

tecture as the fine-grained element in our modelled domain-specific hybrid FPGA.

12 Chapter 2. Background

BLE #N

BLE #1

(b) a BLE

BLE #2

�
.

OUT

OUT

OUT

IN

IN

IN

(a) a CLB

��
�� � � ���	��
 � � �

� � �
 � � � � � � � � ��� � � � ��� � � � ���� � � � � � ���

! � � ! �

Clock

Figure 2.2:(a) A configurable logic block, (b) a basic logic elements in an island-style FPGA

2.1.2 Routing

In FPGAs, the CLBs and I/O blocks are connected by vertical and horizontal channels through Con-

nection Boxes (CBs) [1, 29]. Each channel includesW parallel routing tracks of segment lengthL.

Neighbouring segment channels are intersected by an SRAM-based programmable Switch Box (SB).

The length of the segment is the number of CLBs it spans before connecting a switch box. Figure2.3

shows the detailed routing architecture and an example of segment length of 1 and segment length

of 2. The SRAM-based connection box in Figure2.4(a) consists of multiplexers which allow routing

wires connect to the input pins of CLBs. Pass transistors in connection boxes allow routing wires to

be driven by the output pins of CLBs. The switch box in Figure2.4(b) offers each incoming wire

the ability to connect to other wire segments. The routing switch simply uses bi-directional tri-state

buffers as drivers or pass-transistor to control the connections. A tri-state buffer is a two-stage buffer

shown in Figure2.5. The driving strength is determined by the size of the nMOS and pMOS tran-

sistors [30]. Rose and Brown [31] have defined useful parameters for this routing architecture. Fc is

connection block flexibility, the number of tracks in a channel that can connect to a CLB pin. Specifi-

cally, Fc input and Fc out put are the connection box flexibility of CLB input and output pins respectively.

Fc pad denotes the connection box flexibility of an I/O pad. Fs is the switch box flexibility; it describes

the number of wires in a switch box to which each incoming wire can connect. For example, if Fs=3,

the switch box offers each incoming wire the ability to connect to three other wire segments. The

baseline routing architecture in Section3.2 is based on this fine-grained routing assumption.

2.1. Fine-grained FPGA Architecture 13

��� ������

�����

�����

����� ����� �����

���

Channel width
(W) = 4

	

Switch Box (SB)

Wire segment (L) = 2

����������

��� ���

�����

Connection Box (CB)

Wire segment (L) = 1

Figure 2.3:The detailed routing routing architecture in an island-style FPGA

CLB

� � � �
� � � � � � � � � � � � � 	 � � � � �

 � � � �

� � � � � � � � �
� � 	 � � � 	 � �

� � � � � �

� � � � � �
� � � � �

� � � � � � � � � � � ��� � !� � � � � � � � � � � �"� � # � $ �%�%# &"� � � '"� �

� � � � � � � � �
� � 	 � � � 	 � � � � � � � � � � � � � � � �

� � � � � � () � * + � � � , - .
,) / 0

� � � � � � (� � � � � , - .

- � 1 2 � � � � � � � � 	
� � � 1 � � � �
 � � � �

� �

Figure 2.4:Structure of connection and switch box

� � � � �

� � � �

Figure 2.5:Structure of tri-state buffer

14 Chapter 2. Background

The programmable routing resources between logic and I/O pads in this traditional fine-grained island

FPGA consume about 70% of the area in a die and contribute significantly to delay [4]. A significant

number of studies have focused on optimising this type of FPGA routing architecture to minimise area

and critical-path delay. Betz and Rose [22] have examined the impact of segmentation and buffering

on FPGAs. They have concluded that wire segments of length 4 lead to the most area-efficient and

fastest FPGA. Furthermore, they have evaluated the effect of the routing track distribution on FPGA

area-efficiency and indicated that adding extra tracks to the center channel cannot improve routabil-

ity [21]. Also the most area-efficient FPGA contains about 80% pass-transistor switches to optimise

for area and only 20% tri-state buffer switches to optimise for speed. It is because pass-transistors

are slower but smaller. Commercial devices use different vertical and horizontal channel widths to

accompany the asymmetrical vertical and horizontal aspect ratio in rectangular FPGAs [24]. These

devices contain a lot of dedicated interconnects with different fixed segment lengths enabling direct

fast connection from one tile to another. For example, there are double, hex and long lines in the

Xilinx Virtex-5 [3].

The routing switches have been much optimised over the past decades. The best routing transistor size

in switch boxes has been determined in [23,32,33], as five times the minimum transistor size. Subset

switch box [29], universal switch box [34] and Wilton switch box [5] are most commonly used in

FPGAs. The subset switch box is the planar or domain-based switch box used in the Xilinx’s FPGAs,

in which wire segment in tracki can only connect to other wire segments in tracki. The universal

switch box can route any possible two-point routing requirements. The Wilton switch box is the one

leading to the most routable FPGAs. Chandra and Schmit [35] have suggested to use simultaneous

sizing of driving buffers in routing switches to improve delay by 1-12%. Lemieux et al. [36] have

used uni-directional and single-driver wires to improve area-delay by 32% compared to bi-directional

wiring. Merging connection and switch boxes into a CS-Box structure [37] can reduce the number of

the connection boxes by up to 11.81% with a small penalty of increasing the channel width and the

circuit delay by less than 3%.

2.2. Hybrid FPGA Architecture 15

2.1.3 Power

Power consumption is a critical concern in the semiconductor industry. The power efficiency of

FPGAs consisting of dynamic and static power consumption, is lower than ASIC [4, 38, 39]. The

transistor leakage current in FPGA causes static power consumption. Leakage current is the small

current that leaks from source-to-drain or through the gate oxide; this occurs even when the transis-

tor is logically off. The smaller the physical dimensions of the CMOS transistors, the more current

leaks. During switching events in the core or I/O of the device, there is power consumed, which is

called dynamic power. Static power constitutes only 10% while dynamic power is 90% of total power

consumption in FPGA [38, 39]. Optimisation of power consumption in an FPGA has been studied

recently; pre-defined dual voltage fabric to reduce both dynamic and static power consumption has

been proposed [40, 41]. This dual voltage technique has been employed in Altera Stratix-III and -

IV [42]. The programmable routing fabric consumes 60%-80% of dynamic power [43, 44]. Meijer

et al. [45] have demonstrated that the delay of full voltage swing, fully buffered FPGA interconnect

design can be matched by low voltage swing hybrid switch, which contains buffers and pass-gates.

This hybrid switch dissipates less power with no area penalty. Lin et al. [46] have proposed a mono-

lithically stacked 3D-FPGA architecture to improve logic density 3.3 times, delay 2.35 times and

dynamic power consumption 2.82 times compared to a traditional 2D-FPGA.

2.2 Hybrid FPGA Architecture

Traditional FPGAs have been used to speed up many applications because of their reconfigurability

and parallel processing ability. However, the performance of applications implemented in FPGAs are

worse than ASICs. Kuon and Rose [1,4] have measured the gap between FPGAs and ASICs. They

have found that an FPGA is on average 40 times larger and 3.2 times slower than an ASIC. To address

this problem,hybrid FPGAshave been proposed [47,48,49] which are similar to generic FPGAs, but

contain coarse-grained embedded blocks to improve the efficiency of computations. These can either

be constructed out of fixed non-programmable logic or provide a limited degree of configurability

to make them suitable for a wider application space. Section2.2.1 introduces the possible coarse-

16 Chapter 2. Background

grained embedded blocks in hybrid FPGA. Section2.2.2and2.2.3present the previous research of

the hybrid FPGA routing and power respectively.

2.2.1 Coarse-grained Block

Currently, simple and general embedded blocks such as Digital Signal Processors (DSPs) and mem-

ories have been added to general-purpose commercial FPGA [2,3,5,6] to enhance the speed of mul-

tiplication and the density of memory. Embedded processors [3] have also been added to improve

FPGA processing power. In [50], the local routing resources that connect CLBs to the FPGA routing

resources are shared with the embedded blocks to minimise the overall area penalty when adding

the embedded blocks. This technique, calledshadow clustering, is useful for embedded blocks with

similar I/O pin densities as the existing CLBs; however, there are not sufficient routing resources for

embedded blocks which have higher I/O pin densities than the existing CLBs. In [51], the QUKU

architecture which merges a coarse-grained reconfigurable processing element array and an FPGA

architecture is described. This two-level reconfigurable architecture provides active support for fast

and efficient dynamic reconfiguration.

In order to take further advantage of coarse-grained blocks, domain-specific hybrid FPGAs target a

specific application domain. In doing so, greater area and delay savings can be achieved for certain

types of applications since the amount of coarse-grained logic can be tailored for those applications.

An example is an application which requires a significant amount of floating point computations.

Implementing floating point operations in fine-grained FPGA technology consumes a large amount

of logic and routing resources. Therefore, a number of recent approaches to optimise floating point

operations in FPGAs have been proposed. Pipeline stages of floating point arithmetic in a custom

computing machine have been optimised within existing fine-grained resources [52]. However, the

density and speed are still worse than those implemented in ASICs. The study of embedded hetero-

geneous blocks for the acceleration of floating point computations has been reported. Roesler and

Nelson [53] and also Beauchamp et al. [54] have concluded that employing heterogeneous blocks in a

floating point unit (FPU) can improve area and delay compared to a fine-grained approach. Chong and

2.2. Hybrid FPGA Architecture 17

Parameswaran [55] have increased flexibility of an embedded FPU by providing one double-precision

operation or two single-precision operations in parallel. This multi-mode embedded FPU improves

5.2 times in area and 5.8 times in delay over a set of benchmarks. Wilton et al. [56] have presented a

synthesisable datapath-oriented architecture which can be used to provide post-fabrication flexibility

to an SoC. We propose a novel floating point FPGA architecture in Chapter3 [12], which consists of

both fine-grained elements and word based coarse-grained FPUs based on the synthesisable datapath-

oriented embedded fabric.

The common subgraph extraction technique [57] has been employed to find out the fixed point arith-

metic units which are common in a set of benchmark circuits. Fused-arithmetic units generated by

these common subcircuits get up to 3.3 times speed and 19.7 times area improvements on average for

particular silicon cores. We employ this technique in Chapter6 to determine floating point common

subgraphs, similar to the fixed point approach. Instead of the improvement of particular cores, we

focus on the system-level trade-offs in hybrid FPGAs.

Although embedding coarse-grained elements can improve performance close to ASIC, the flexibility

and granularity are worse than fine-grained FPGAs. Because the embedded blocks are less config-

urable than fine-grained elements, they are wasted when not used. Figure2.6 shows a graphical

comparison of ASIC, fine-grained FPGA, hybrid FPGA and domain-specific FPGA.

�
�
��
��
�
�

�
�
��
��
�
�

ASIC

Fine-grained FPGA

Hybrid FPGA with embedded
DSPs and memories

Domain-specific hybrid
FPGA with specific coarse-

grained units

Speed, density,
power efficiency

Granularity,
flexibility

Figure 2.6:Comparison of ASIC, fine-grained FPGA, hybrid FPGA and domain-specific FPGA

18 Chapter 2. Background

2.2.2 Routing

As mentioned in Section2.1.2, FPGA routing is the bottleneck for area and delay. It is also a major

issue in hybrid FPGA.

Unlike general-purpose FPGAs which contain relatively simple and small embedded blocks (DSPs

and memories), the embedded blocks in hybrid FPGAs can be larger and more complex for a spe-

cific application. High density connections can be routed inside these domain-specific blocks. As an

example, the hybrid FPGA we have proposed in [12] (Chapter3) contains large embedded Floating

Point Units (FPUs) in addition to a general-purpose bit-level FPGA fabric. Each FPU is itself config-

urable, but at a more coarse granularity than the FPGA fabric. The key differentiating feature in our

hybrid FPGAs is the presence of these large embedded blocks. It is shown that the presence of a large

embedded block affects the routing demand within the fine-grained logic [58]. This extra demand

causes Altera to use smaller memory blocks instead of the large MegaRAM Block in Stratix-III and

Stratix-IV devices [24,42]. Existing commercial devices such as Xilinx Virtex-5 [3] arrange the small

embedded blocks like memory and DSP in columns. This arrangement may not be efficient for large

blocks. Therefore optimisation of the routing in hybrid FPGAs is essential.

In [59], a coarse-grained architecture with multibit bus-based connections in FPGA is proposed. Dat-

apath circuits in large arithmetic intensive applications consist of regularly structured signals; this

multibit routing architecture can improve FPGA area by 10%. Mak et al. [60] have studied seven

types of FPGA-based communication architectures with embedded coarse-grained processors, em-

bedded memories and IP cores. Network-on-Chip (NoC) architectures have been advocated and are

believed to be a promising solution for on-chip communication.

In [58], the interface between embedded memory blocks and fine-grained programmable logic is

examined. Memories are quite different from computation blocks, and so we expect that the inter-

face presented in [58] would not be suitable for our FPUs. There is little research on these issues

for domain-specific coarse-grained blocks. Therefore, we investigate the interface in Chapter4 and

routing structure in Chapter5 for domain-specific hybrid FPGAs with large embedded computation

blocks.

2.3. Design Space Exploration Tool 19

2.2.3 Power

In Section2.1.3, we discuss power consumption in fine-grained FPGAs. Dynamic power consumption

is 12 times more than ASIC, narrowing down to 9 times of ASIC with embedded memories and

DSPs [4]. Implementing logic in memory arrays not only leads to an increase in power dissipation,

but also increases in circuit density [61]. It is better to leave the array unused, rather than use it

to implement logic. Also, smaller memory arrays are more power efficient than large arrays. As

a result, choosing a suitable size and combination of the embedded elements is very important to

the performance of the system. We examine area and delay trade-offs of different combinations of

coarse-grained FPUs in Chapter6; power exploration of this study will be added in the future work.

Ho et al. [62] have estimated that the floating point applications implemented on hybrid FPGA pro-

posed in Chapter3 can reduce dynamic power consumption by 14 times compared to the Virtex-II

FPGA. Our novel hybrid FPGA architecture has advantages over traditional general FPGA in area,

delay and power consumption. It is important to further improve the performance to narrow the gap

between FPGAs and ASICs, therefore this thesis focuses on optimising the interface, routing and

internal structure of embedded blocks of the domain-specific hybrid FPGA.

2.3 Design Space Exploration Tool

We require a way to evaluate and compare different architectures for the novel hybrid FPGA proposed

in this thesis. There are existing tools for design space exploration of different architectures. First,

we introduce the general CAD tools for FPGA in Section2.3.1. Then we employ the CAD tools for

hybrid FPGA architectural exploration and divide the tools into two categories:

1. Pre-fabrication evaluation tools, which are used to explore architectures before fabrication of

the devices, is described in Section2.3.2.

2. Post-fabrication evaluation tools, which are used to carry out exploration with the fabricated

devices, is described in Section2.3.3.

20 Chapter 2. Background

In addition to the CAD tool, there exist analytical modelling techniques which consist of a set of

mathematical formula to relate the architectural parameters of an FPGA to area, delay and power.

This technique is discussed in Section2.3.4.

2.3.1 CAD Tool for FPGA

The programmable logic blocks and routing resources in FPGA should be configured to an appro-

priate state to implement a circuit. In general, the circuit is described in high level hardware specifi-

cation languages. The description of the circuit is then converted into a configuration bit stream by

Computer-Aided Design (CAD) programs for the programmable resources.

A typical CAD work flow for FPGA is shown in Figure2.7 [49, 63]. In the traditional work flow,

Hardware Description Languages (HDLs) like VHDL and Verilog or schematic capture are widely

used on commercial reconfigurable platforms to describe the circuit to be implemented in the FPGA.

The description of the circuit is written at the Register Transfer Level (RTL) which specifies the

operations at each clock cycle. The description is then synthesised to netlist of logic blocks before

being placed and routed the circuit onto an FPGA.

In the first stage of the synthesis process, the datapath operations in an RTL design such as control

logic, memory blocks, registers, adders and multipliers are identified and elaborated into a set of

basic boolean logic gates such as AND, OR and XOR. Next, the netlist of basic gates is optimised

independent of the FPGA architecture. The optimisation includes: boolean expression minimisation,

removing the redundant logic, buffering sharing, re-timing and finite-state machine encoding. The

optimised netlist of basic gates is then mapped to the specific FPGA architecture such as Xilinx Virtex

devices or Altera Stratix devices. There is further optimisation based on the specific architecture such

as carry chains for adders, dedicated shift functions in logic block for shift registers. The final stage in

the synthesis process is packing and clustering groups of several LUTs and registers into logic blocks

like Figure2.2(a). The packing and clustering minimise the number of connections between different

logic blocks. After the synthesis process, the logic blocks in the mapped netlist are placed onto the

FPGA based on the different optimisation goals, such as circuit speed, routability and wirelength.

2.3. Design Space Exploration Tool 21

Once the location of the logic blocks is determined, the connection between I/Os, logic blocks and

other embedded elements are routed onto the programmable routing resources in FPGA. The routing

process determines which programmable switches should be used to connect the logic block input

and output pins. Finally, a configuration bit stream of all I/Os, logic blocks and routing resources for

the circuit in specific FPGA is generated.

Modern technology allows high level general-purpose programming languages like C to be added to

the tradition tool flow of FPGAs (The upper part of Figure2.7). These languages include Handel-

C [64], Haydn-C [65], Streams-C [66], SPARK [67], ASC [68] and SPC [69]. They specify the

behaviour of the design without considering the hardware detailed description of the design. This can

facilitate hardware development. Behaviour compilers are used to synthesise high level behavioural

description of the design and generate the HDL description of the circuit. The compilers extract par-

allelism of computation in the source codes, and optimise for pipelining. Although the design time

of this technique is faster, the performance of the resulted circuit may be worse than the one designed

directly by HDL at RTL. This is because the design is not hardware oriented in the behaviour descrip-

tion, it is not optimised based on the specific hardware architecture. Hence, Todman et al. [70] have

proposed customisable frameworks for hardware compilation which enable rapid design exploration,

reusable and extensible hardware optimisation. This can be used in producing designs for signal and

image processing applications, with different trade-offs in performance and resource consumption.

Besides configuring the circuit, there are CAD tools that analyse the delay, area and power consump-

tion of the implemented circuit. This information is important to evaluate the performance of different

FPGA architectures.

2.3.2 Pre-fabrication Evaluation Tool

Before the fabrication of a chip, we need to evaluate the trade-offs of different architectural parameters

such as different LUT size, cluster size, aspect ratio of the FPGA, routing structure and I/O pin

position. Existing commercial tools such as Xilinx ISE [71] and Altera Quartus [72] cannot evaluate

the performance when changing these parameters. We use pre-fabrication evaluation tools to explore

22 Chapter 2. Background

��� � � ��� � �	���
 � � � � � � ��� � � � � � � �
� ����� � � � � � � � � � � � � ��� � �
 � � �
� � � �
 � � � � � � � � � � ��� �

� � �
 � � � � �

��� � ��� � � � � � � � � � � � � �
� �
 � � � � � � ��� � � � � � � ��� �

� � � � � � �

! � �� � � � �

� ����� � � � � � � � � �"� �
� � � � �
 � � � �
 � ��� � � �

#�� � � � � � � � � � �
� � � � � � � � � �
� � � �"�
 � � � � �

� � � � � � � � � $	��� � � �
� � �	� � � � � � � � � � � �

 � � � � � ��� � � ���
 � � � � �

% � � & � � ��� � �
� � �
 � � � � � �

'�� � � �
 � � �
 �
 � �"� � � �

'�� � � �
 � � �
� � � � �� � � � &

% � � � � �"� � � � � � � � � �
 � � � &
�� ��(%)�#

��� � � � � ��� �
� � � � � � � � � �

� � ��� � �
� � � � $
 �

#*� � �
� � � � $
 �

Synthesise

Traditional
work flow
for FPGA

Additional high
level work flow to
facilitate hardware

development

% � �"� �
� � � � $
 �

Figure 2.7:A traditional CAD work flow for FPGA

2.3. Design Space Exploration Tool 23

the architecture of the device before it is fabricated [73,74].

Versatile Place and Route (VPR) [16] is an open source place and route tool that has been widely used

for research into FPGA architectures. VPR is used to explore the logic block [23,25,26] and routing

structure [21,22,35,36,37] as mentioned in Section2.1.

VPR uses an FPGA architecture based on the Xilinx 4000X series, an obsolete device. It places and

routes the FPGA resources by using simulated annealing and timing based routing estimation. In the

original VPR, only three types of circuit elements are modelled: Configurable Logic Blocks (CLBs),

input pads and output pads. Each basic logic element in a CLB contains ak-LUT and an FF. Only

one output is available from each basic logic element. In the tool flow of VPR (Figure2.8), a netlist

of LUTs and FFs in .blif file format are packed and clustered into a netlist of logic blocks by the

T-VPack tool included in VPR. An FPGA architecture description file (.arch file) is used to describe

the architectural and electrical parameters of the FPGA such as position of I/O of logic block, delay

of the driving buffer and resistance of the wire. VPR uses simulated annealing [75] to obtain a good

placement result in a reasonable amount of CPU time. The routing resources of the FPGA in VPR is

represented by a directed graph. This routing-resource graph is determined by global, or combined

global and detailed routers [16]. The path finder algorithm [76] is used to find the shortest path

between a net source node and sink node in the routing-resource graph.

The original VPR framework was released in 1997 and does not model modern features such as carry

chains and embedded block RAMs (BRAMs). The centralised development of VPR version 4.30

stopped in year 2000. Recently, other researchers have modified VPR to include features in modern

FPGA architectures and also optimised the algorithm used in VPR to reduce exploration time.

Wilton et al. [58] have modified VPR to support embedded memories, and investigated the interface

between memories and fine-grained elements. Jamieson and Rose [77] have developed a verilog RTL

synthesis tool called Odin for VPR CAD flow. Odin allows synthesis of hard blocks in heterogeneous

FPGAs. It also employs simple and efficient mapping technique to generate designs comparable

in area and speed to Quartus’s synthesis tool. Tom and Lemieux [78] have introduced a system-

level technique for fitting hard to route large circuits in limited channel width FPGAs. Beauchamp

et al. [54] have modified VPR to explore architectural enhancements of floating point unit in FPGAs.

24 Chapter 2. Background

��� � � � � � � � 	
 � �� � ��� � ��� � � � � � � � � �� � �

� � � � ��� � ��� � � � �
� � � � � � � � � �

��� � � � ��� � � � ��� ��� � � � � �� � � � � � � � ! �

"�� � � � � !�� � � � # � � � � � � � � ! � � � � # ���
� � ��� � ��� � !�� � � � $ � � �

VPR

� � � % � � ��� � � � � � � 	
 � ��� � �
� � ��� � � ��� � ! � ��� � � � %� & ' (*) + , - �

��� � � � � � � � � � ! � ��� � � � % �
� � � � � � � � ��� � �

� � .*�/� � � # � � � � � � � �
� � � � � � � � � � �� � � ��� � � � � # �

� � � � � � � � � �� � � � ��� � ! 0 � � � �
� � �1� � � � � � � � �

Figure 2.8:Tool flow of VPR

2.3. Design Space Exploration Tool 25

Altera also uses an extended version of VPR called FPGA Modelling Toolkit (FMT) to explore the

Stratix architecture [42]. FMT maps a set of customer designs to the Stratix Adaptive Logic Mod-

ule (ALM). Heterogeneous memories are also added. It performs placement, routing, area and power

analysis.

Beside the architectural exploration, place and route algorithm is also explored in VPR. Zhou et al. [79]

have improved LUT-based FPGA routing by logic perturbation method. They have embedded Auto-

matic Test Pattern Generation (ATPG) rewiring engine into VPR to reduce critical path delay. Wong

and Wilton [80] have enhanced the placement and routing algorithm of VPR to provide better speed

in SoC design, which contains non-rectangular embedded programmable logic cores. Chin and

Wilton [81] have reduced the memory footprint of the routing step in VPR. The most memory in-

tensive steps in the CAD flow are significantly improved while the running time increases because of

the extra step to reduce memory.

In the year 2008, the latest version of VPR (VPR 5.0) was released [17,82]. VPR 5.0 supports em-

bedded blocks such as BRAMs and multipliers. Single driver routing is used instead of bi-directional

driver to save routing area. Regression tests are included to check functionality and quality of result

of the output of the tools.

In addition, VPR does not support power estimation, Lamoureux and Wilton of the University of

British Columbia [83] have developed power-aware CAD flow in VPR based on the power model

in [84,85]. The CAD flow includes power-aware technology mapping and clustering algorithms with

post place and route power analysis. Later, they examined various activity estimation techniques by

employing a power-aware CAD tool [86]. The best estimation technique is adopted in the activity

estimation tool called ACE-2.0. The tool is useful to calculate switching probabilities for every node

in the circuit, which helps to estimate the dynamic power consumption of an FPGA design.

The coarse-grained embedded elements in most enhanced versions of VPR are arranged in column

based fixed shape, like commercial devices [2,3], EBs cannot be placed at any position in an FPGA.

Also fast carry chain for fixed point addition is not supported. Addition is a common operation in

any design; the critical path usually occurs in this operation. Modern devices use the fast carry chain

to speed up addition. Without this feature in VPR, the timing analysis is not applicable to modern

26 Chapter 2. Background

devices, which leads to wrong conclusions in architectural exploration. Hence, our tool Versatile

Place and Route for Hybrid FPGA (VPH) enhances VPR 4.30 to support user constraints on position,

area and aspect ratio of any embedded block for interface exploration. We have also modified the tool

flow to support fast carry chain and our optimised routing architecture proposed in Chapter5. The

details of VPH tool flow are discussed in Chapter3. The capabilities of different versions of VPR

are summarised in Table2.1. The table includes the original VPR 4.30, power-aware VPR by the

University of British Columbia, Beauchamp’s VPR for floating point unit in FPGAs, VPR 5.0 and

our exploration tool VPH.

Table 2.1:Functions of various versions of VPR.
Remark: o - supports the feature, x - does not support the feature

VPR version
Functions VPR 4.30 [16] VPR 5.0 [82] Power-aware VPR [85] Beauchamp’s VPR [54] VPH [20]

Multiplier, Multiplier, memories, Any embedded
Embedded block (EB) x memories x multiply-add FPU, block

embedded shifter
Carry chain x x x o o

User constraint Only allow Any position
placement for EB x column EB x Only allow column EB specified by user

(Chapter4) (except overlapping of EB)
Power estimation x x o x x

Single driver routing x o x x x
Extra wires near EB x x x x o

(Chapter5)
Routing switches x x x x o

inside EB (Chapter5)

2.3.3 Post-fabrication Evaluation Tool

Measuring FPGA performance is crucial to the evaluation of different FPGA architectures. Timing

and area analysis of commercial FPGAs such as Xilinx and Altera devices are carried out by using

commercial tools. For example, a standard procedure to implement application circuits in Xilinx

devices is to synthesise, place and route in Xilinx ISE, with timing and area analysis result output.

Although the tool VPR introduced in the last section is powerful enough to explore trade-offs between

different architectural parameters, it is a relatively poor approximation to existing FPGAs. Therefore,

direct comparison of a novel architecture to existing commercial FPGAs using VPR is not possible.

Exploration of design space on the existing devices is possible by using a post-fabrication evaluation

tool flow [73,74].

2.3. Design Space Exploration Tool 27

Ho et al. [87] have proposed a methodology to model hybrid FPGA architectures using Virtual Em-

bedded Blocks (VEBs) on commercial FPGAs, using commercial tools. This method creates dummy

elements called virtual embedded blocks to model the size, position and delay of the embedded ele-

ments in hybrid FPGA. The design with VEBs is analysed using a standard commercial CAD tool.

We adopt this methodology to evaluate our novel floating point architecture in Chapter3.

The VEB methodology allows us to quantify the impact of embedding block on a modern FPGA using

commercial CAD tool optimisations. This is in contrast to VPR-based methodologies which assume

a bare-bone island-style FPGA (without carry chains and with a simplified routing architecture) and

do not employ modern optimisations such as physical synthesis and retiming.

Figure 2.9 illustrates the modelling flow using the VEB methodology. The input is a high level

application description and the output is an FPGA bitstream. The application is first broken into

control logic and datapath portions manually because of a lack of suitable compiler.

The datapath portion is then mapped to the embedded blocks. The result of this step is a netlist

containing black boxes representing those parts of the circuit that will be mapped to embedded blocks,

and fine-grained logic elements representing those parts of the circuit that will be mapped to lookup-

tables in the cases that no suitable embedded block is found or all have been used.

The basic strategy in VEB flow is to use selected logic resources of a commercial FPGA (called

the hostFPGA) to match the expected position, area and delay of an ASIC implementation of the

coarse-grained units, as shown in Figure2.10.

To estimate the area, an ASIC description of each coarse-grained block is synthesised using a compa-

rable technology. For instance, 0.13µmtechnology is used in synthesising the ASIC block embedded

in a Virtex-II device which in turn uses a 0.15µmprocess. Normalisation to the feature size is then ap-

plied to obtain a more accurate area estimation. The area of the coarse-grained block is then translated

into equivalent fine-grained resources in the virtual FPGA.

In order to accurately model the delay, both the logic and the wiring delay of the virtual FPGA must

match that of the host FPGA. The logic delay of the VEB can be matched by introducing delays in

the FPGA resources. In the case of very small VEBs, it may not be possible to accurately match the

28 Chapter 2. Background

�����������	
����

� � � � � �

��� ���

	
�
�

�����

���
���

������������	
����
����
����		�	
�����

�����������������
�

	����������������������������

���

������������	
�
�������
	�

������������

������������������������

 !"�����������
����#�
�

�����$���

����%�������%����%�&&&��

'()�

�����
��
��

'()�

�*����
�

+
��,���
��������
��

!!�!�!�!��&&&&&

�-
������$�

�������
��

.�����,���
����/01.�

$����

2
$
���$����

2
$
���

����*�
�

/����$����

34-�����
��

34-�

��$�
���
��

'����+56/�

���
��

2
$
�������������	�

+����
�����
���+56/

5�����������#��

	���������7

���������������

8

�����

��� ���

	
�
�

.����������
��

������
�
��

(�������

������
�
��

/���
���
���
��

��������

�����
��
��

5*�
����

$���
��

�	
��,���
����

5*�
����

$���
��

�������,���
����

������
�����
������

� �

� �

�

�
	�����	
���
�����

/����

����*�
�

Figure 2.9:VEB modelling flow overview.

2.3. Design Space Exploration Tool 29

number of I/O pins, area or logic delay and it may result in inaccuracies. A complex coarse-grained

unit might have many paths, each with different delays. In this case, it assumes that all delays are

equal to the longest one (i.e. the critical path) as it is the most important characteristic of a coarse-

grained unit in terms of timing.

To instantiate all the VEBs and connect all together, it describes the control logic and instantiates the

VEBs explicitly and connects the signals between the fine-grained units and coarse-grained units. The

design is then synthesised on the target device and a device-specific netlist is generated. The timing

of the VEBs is also specified in the FPGA synthesis tool.

After generating the netlist of the overall circuit it uses the vendor’s place and route tool to obtain

the final area and timing results. This represents the characterisation of a circuit implemented on the

hybrid FPGA with fine-grained units and routing resources exactly the same as the targeted FPGA.

Distributed VEBs in a virtual FPGA
Embedded Block in ASIC

tpd

L

W
Equivalent VEB using LC

L'

W
'

WL ≈ W' L'
tpd ≈ tpd'

tpd'

Figure 2.10:Modelling coarse-grained unit in FPGAs using Virtual Embedded Blocks.

By extending this methodology, estimation of power consumption of a novel FPGA compared to

existing devices can be studied [62].

2.3.4 Analytical Modelling

Traditional FPGA architecture exploration performs numerous experiments repeatedly for each new

architecture; these experiments are time consuming. Analytical modelling can be used to under-

30 Chapter 2. Background

stand the relationships between architectural parameters in the early-stage FPGA architecture devel-

opment [88]. The analytical model is a set of mathematical formulae relating parameters such as logic

block cluster size, LUT size, number of inputs per cluster, switches and channel width to area, delay

and routing demand [88,89,90,91,92]. By using the model, the design space can be searched quickly.

After identifying the promising regions to study, the designer can use a traditional exploration work

flow to examine precise architectural parameters. This significantly reduces the architecture design

time.

2.4 General FPGA Applications

Many publications have reported that fined-grained parallelism based on FPGAs can result in out-

standing performance over traditional general-purpose processors for fixed point computations. A

variety of applications can be speeded up by using FPGAs. Our previous work [93] has used FPGAs

to speed up DNA sequence alignment process by over 300 times compared to the one implemented

in a high performance computer. Cryptography [94,95,96], the computation problem SAT [97,98],

medical [99,100], finance [7,101] and physics [102,103] are speeded up by using FPGAs.

However, the performance of FPGA designs are still worse than ASICs [4]. Focusing the application

in a particular domain can achieve further performance improvement.

2.5 Domain-specific Applications: Floating Point Applications

Although traditional FPGAs can speed up many general applications as discussed in last section, the

performance of a particular application can be further improved by introducing ASIC blocks in FPGA.

The ASIC block is specific to that application domain. Floating point applications are a good example

of domain-specific applications which can be improved by using ASIC coarse-grained floating point

units [54]. We introduce floating point arithmetic in Section2.5.1, the floating point applications

and benchmarks we use in this thesis in Section2.5.3and the optimisation method of floating point

computation in Section2.5.2.

2.5. Domain-specific Applications: Floating Point Applications 31

2.5.1 Floating Point Arithmetic

The standard floating point numbering format is IEEE 754 [104,105]. The floating point number is

represented in the normalised formula and the base is 2:

f p =−1s(1. f)2e−bias (2.1)

wheres is sign bit,1. f is positive mantissa (f is the fraction part and leading ’1’ is implicit in the

representation),e is the exponent and bias is the constant exponent bias.

Mantissa (f)Exponent(e)Sign(s)
0Single precision, 32 bit,

bias = 127 2223
bit index

3031

0
Double precision, 64 bit,

bias = 1023 51526263

Figure 2.11:IEEE floating point bit index and bias

In floating point computation, single precision (32 bit) and double precision (64 bit) are commonly

used, where double precision floating point can represent a wider and more precise number range.

The bit index and bias of single and double precision is shown in Figure2.11.

Floating point addition/subtraction and multiplication require many operations as shown in Fig-

ure2.12. In standard floating point addition/subtraction, five steps are required [106,107,108,109]:

1. Exponent comparator. The exponents of two floating point numbers are compared, the dif-

ference between the exponents is the shifting value for mantissa denormalisation. The larger

exponent is passed to final normalisation.

2. Mantissa denormalisation. The implicit bit ‘1’ of 1. f is appended to the mantissas. The

mantissa corresponding to the smaller exponent is shifted right by the difference between the

two exponents. Now, the two mantissas are aligned and can be added or subtracted.

3. Mantissa addition or subtraction. The aligned mantissas are added or subtracted with carry

output generated.

32 Chapter 2. Background

4. Normalisation of mantissa and exponent.The resulting mantissa and larger exponent are

transformed into normalised format. The mantissa is shifted to the left by finding the leading

‘1’ and the exponent is subtracted by the shift amount.

5. Rounding. Rounding the mantissa after shifting.

In standard floating point multiplication, six steps are required [107,108,109]:

1. XOR the sign bits. XOR the sign bits of the floating point numbers to give the resulting sign

bit.

2. Exponent addition. The exponents of two floating point numbers are added using a fixed point

adder.

3. Mantissa denormalisation.The hidden bit ‘1’ of1. f is appended to the mantissas.

4. Mantissa multiplication. The mantissas are multiplied using a fixed point multiplier.

5. Normalisation of mantissa and exponent.The resulting mantissa is shifted to left by finding

the leading ‘1’ and the resulted exponent is subtracted by the shift amount. The final result is

in normalised form.

6. Rounding. Rounding the mantissa after shifting.

The floating point adder/subtractor and multiplier in the floating point unit proposed in Chapter3 are

based on the above algorithms.

2.5.2 Optimisation of Floating Point Computation in FPGA

Floating point arithmetic requires many operations. These operations contribute to area, delay and

power consumption in the FPGA. There are different optimisation methods for floating point com-

putation. First, floating point representation is efficient when a large dynamic range is required. The

bit-width of exponent and mantissa controls the range of numbers that can be represented. Longer

2.5. Domain-specific Applications: Floating Point Applications 33

��� � � � � � �
� � � 	
 ��� � � � � � 	 �
� � � � � �
 � � � � � �����

� � � 	 � � � � � � � � � � 	 ���� � � � � � �
� � � 	
 ��� � � � � � 	 �

��	
 ��� � � � � � 	 �

� � � 	 � � � �
� 	 ��� �
 � � 	

��� � �
 �
 �! " � �
 � � � �

��� � � � � � �
� ! � � � � � � � � � � 	 �

f1 f2s1 s2 e1 e2 f1 f2s1 s2 e1 e2

s e f s e f

#%$�& ' (
)+*-, (& . . * .

/-0�1 2 , 34, (
5-& ' ' 346 3-, 7 3

8 *-6 9�3-6
3 0�1 2 , 3-, (

#%:)<; .�:�= (6 *�7 (
2�')>*-, (& . . *

?-& 0 3 5@1 2-& , (
) :�A (& 1�A & 3 5B2�'
)>*4, (& . . *

C D�E4F4G H4D I J K�LNM�H�J K�I4D�O4O-P-Q R S4T-U�I Q D�V I H�Q C U-E4F4G H4D I J K�LNM�H�J K�I�WXT4G I J M4G J P-Q

� 	
! � � � � �

��	
 ��� � � � � � 	 �
Y�2 6)>* A & Z 3 5 3 0�1 2 , 3-, (

4, 5)>-, (& . . * � 	
! � � � � �

Y�2 6)+* A & Z 3 5 3 0�1 2 , 3-, (
-, 5)>-, (& . . *

Figure 2.12:Algorithm of floating point adder/subtractor and multiplier

bit-width requires more logic resources such as priority encoders and variable shifters in the pre-

normalisation and post-normalisation stage. The size of the fixed point adder and multiplier depends

on the bit-width of exponent and mantissa. Applications needing less accuracy and precision can use

shorter bit-width to reduce resource consumption [110,111,112,113]. Second, the design of floating

point units has been optimised. Besides standard floating point addition algorithm, the Leading-One-

Predictor (LOP) algorithm [114] and 2-Path algorithm [115] have been proposed to simplify addition.

Liang et al. [116] have designed a floating point generation tool for FPGAs to implement different

floating point addition algorithms with 2 times latency improvement while consuming only half the

FPGA logic area. Roesler and Nelson [53] have studied efficient ways to use FPGA features such as

multipliers on the creation of floating point modules for various word widths.

Xilinx Core Generator can generate fast and complex floating point units for Xilinx FPGA de-

vices [117] by using special features such as MULT18X18S in Spartan-III and Virtex-II FPGA,

DSP48E (multiply and accumulate) in Virtex-4. Usselmann [108] has published open source floating

point units for FPGAs. Ho [118] has heavily modified these open source FPUs to achieve higher

improvement in speed and area. We adopt the floating point adder/subtractor and multiplier design

34 Chapter 2. Background

modified by Ho in this thesis for the generation of novel floating point hybrid FPGA. Section3.1

will give the details of the difference between the ASIC FPUs and fine-grained FPUs implemented in

FPGA.

2.5.3 Applications and Benchmarks

Floating point applications are computationally intensive because of the complex floating point al-

gorithm. FPGAs can improve the speed and area of the floating point core of these applications.

LINPACK is a linear solver using gaussian elimination, which has been accelerated using a high level

code transformation approach for FPGAs [119]. The speed of this approach is 6 times greater than

the microprocessor. An FPGA is implemented as co-processor for the force pipeline for an N-body

solver [102]. In this work, an object arithmetic library allows users to explore the trade-offs concern-

ing precision, accuracy and speed from a high level description of the circuit.

Three Basic Linear Algebra Subroutine (BLAS) functions are examined [120], and the performance

of the function implemented in FPGAs and reconfigurable computing platforms is compared to mi-

croprocessors. The FPGAs and reconfigurable platforms outperform modern microprocessors on

memory bandwidth sensitive double precision floating point computation. The main limitation on

the performance of FPGAs is FLoating point Operation Per Second (FLOPS) rather than memory

band-width. Therefore, optimisation of the FPU can improve the overall performance.

In order to evaluate different systems, benchmarks are required. There is a set of software floating

point benchmark such as SPEC CFP2006 [121] for profiling high performance computing appli-

cations. However, floating point benchmarks to evaluate hardware architecture are lacking. MCNC

benchmarks are widely used for FPGA architecture evaluation [122], but they are different from float-

ing point circuits with different operator logic, bus widths and pipeline arrangements. Synthetic float-

ing point benchmark generation is one solution to the shortage of floating point benchmarks. Chau

et al. [123] have developed a synthetic benchmark generator program for floating point circuits [124].

The generator can be used to produce floating point benchmarks with different user-specified proper-

ties similar to real computational programs such as BLAS and LINPACK.

2.5. Domain-specific Applications: Floating Point Applications 35

In this thesis, we employ eight floating point benchmarks to evaluate the proposed floating point

hybrid FPGA. They arebfly, dscg, fir, mm3, ode, BGM, syn2andsyn7.

1. Butterfly (bfly)

The basic computation of Fast Fourier Transform (FFT):

z= y+x∗w (2.2)

where inputs and output are complex numbers.x andy are the inputs from previous stage andw is

a twiddle factor. Each complex variable contains real part and imaginary part. FFT is an efficient

algorithm to compute the Discrete Fourier Transform (DFT) for signal processing. Figure2.13is the

datapath ofbfly, where Re{} is the real part and Im{} is the imaginary part of the variables.

Re {x}

Im {x}

Im {w}

Re {w}

Re {y}

Im {y}

Re {z}

Im {z}

*

*

*

*

- +

+ +

Figure 2.13:The circuit diagram ofbfly

2. Digital Sin-Cosine Generator (dscg)

Digital sine-cosine generator [125] is used in wide range of digital communication applications. The

circuit diagram of the generator in Figure2.14generates discrete values representative of either a sine

wave or a cosine wave by implementing an equation in CORDIC algorithm [126]:

S1n+1 = cos(θ)S1n +(cos(θ)+1)S2n (2.3)

S2n+1 = (cos(θ)−1)S1n +cos(θ)S2n (2.4)

36 Chapter 2. Background

where S1n and S2n are the floating point outputs of the current samples, S1n+1 and S2n+1 are the next

samples, and cos(θ) is a constant floating point number.

cosθ
1

cosθ

cosθ

1

cosθ

S2 �

S1 �

S1�

S2�

S2� � �

S1� � �

+

+

+

-

*

*

*

*

Figure 2.14:The circuit diagram ofdscg

3. Finite Impulse Response Filter (fir)

A 4-tap finite impulse response filter is essential in digital filters for data sampling. The circuit in

Figure2.15implements the equation:

yi =
3

∑
j=0

k jxi− j (2.5)

wherexi is the input,ki is the constant filter window andyi is the output.

Figure 2.15:The circuit diagram offir

2.5. Domain-specific Applications: Floating Point Applications 37

4. Matrix Multiplier (mm3)

A 3x3 matrix multiplier is commonly used in scientific applications. The circuit in Figure2.16se-

quentially computes the vector dot-product:

x1

x2

x3

=

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

(2.6)

*

*

*

+

+

Delay

Reg

Reg

Reg

x �

Reg

Reg

Reg

a � b�

a � � �

a � � �

a � � �

b � � �

b � � �

b � � �

Figure 2.16:The circuit diagram ofmm3

5. Ordinary Differential Equation (ode)

We choose an iterativeodesolver (Figure2.17) as an example to illustrate floating point computation.

odesolver can be used to solve a simple ordinary differential equation:

dy
dt

=
t−y

2
i (2.7)

The trajectory ofy is approximated by using the Euler method:

38 Chapter 2. Background

yk+1 = yk +h
tk−yk

2
(2.8)

tk+1 = tk +h (2.9)

whereh is the step size to control the accuracy. Smallerh results in more accuratey.

h
0.5

y � � �

h
t� � �

Delay

y �

t �

*

*
-

Delay

+

+

t� � �

Figure 2.17:The circuit diagram ofode

6. BGM

Monte Carlo simulations of interest rate model derivatives in Brace, Ga̧tark and Musiela (BGM)

framework has been sped up in FPGAs [7]. The datapath path in Figure2.18 is the core of BGM

computing the stochastic differential equation widthd stochastic factors:

dFn(t)
Fn(t)

=~µn(t)dt+~σn(t) ·d~W(t) (2.10)

~µn(t) =~σn(t) ·
n

∑
i=m(t)

τiFi(t)~σi(t)
1+ τiFi(t)

(2.11)

whereFn(t) is the forward interest rate observed at timet for a period start attn and end attn + 1.

dFn is the change in the forward rate in time intervaldt. ~µn is the drift coefficient, wherem(t) is the

index of the next reset date and~σn is a 3-dimensional volatility vector.d~W is a vector of uncorrelated

Brownian motion.

2.5. Domain-specific Applications: Floating Point Applications 39

dW = xi + yj+ zk σ = ai + bj+ ck

+

+ +

+Delay Delay

+

*

FIFO

**

Factor a x

+

*

FIFO

**

Factor b y

+

*
FIFO

**

Factor c z

* Delay

dt

+

*

Delay

Delay

F �

+
F’ �

Figure 2.18:The circuit diagram ofBGM

40 Chapter 2. Background

7. Synthetic benchmark 2 (syn2)

A synthetic circuit contains 5 FAs and 4 FMs, generated by the synthetic benchmark circuit genera-

tor [123].

8. Synthetic benchmark 7 (syn7)

A synthetic circuit contains 25 FAs and 25 FMs, generated by the synthetic benchmark circuit gener-

ator [123].

Table2.2summarises the domain, nature and number of floating point adders/subtractors and multi-

pliers of the eight benchmarks we used in this thesis.

Table 2.2:Summary of the benchmarks we used in this thesis
Benchmarks Domain Nature no. of Add/Sub no. of Mul

dscg DSP kernel 2 4
bfly DSP kernel 4 4
ode DSP kernel 3 2

mm3 Linear Algebra kernel 2 3
fir Linear Algebra kernel 3 4

bgm Finance application 9 11
syn2 N/A synthetic 5 4
syn7 N/A synthetic 25 25

2.6 Processing Platforms

Parallelism is essential to speed up high performance computing applications. FPGAs can be used to

perform large amounts of parallel computation. In this section, we introduce and compare processing

platforms including FPGA, CPU and GPU for floating point computation.

2.6. Processing Platforms 41

2.6.1 CPU

Central Processing Units (CPUs) were single core when first invented. Since transistor sizes have

reduced greatly in recent years, multi-core CPUs such as Intel Core2 [127] have been developed. The

multi-core CPUs use the shared memory for communication, and are synchronised through shared

cache.

Each core controls a thread (or two threads for hyper threading in some CPUs) at a time. The status

of each thread is stored in a set of registers. A specific instruction set is used to operate the com-

putation in CPU. Fetch, decode and execute of instructions are the main execution cycle of CPU.

A management and scheduling unit in CPU is used for branch prediction, instruction ordering and

execution [11]. Although the clock rate of CPU is high, memory access and execution cycles are the

bottlenecks.

2.6.2 GPU

A Graphics Processing Unit (GPU) [8] is a special processor that accelerates 3D graphics for micro-

processors or CPUs with high memory bandwidth. It traditionally resides on a graphics card such

as NVIDIA GeForce series [128] dedicated to floating point operations. The GPU does not have the

scheduling logic and caches; instead, most of its area is used for floating point units which include

texture, scalar and vector processors for graphics computations [129]. This can achieve massive

instruction-level parallelism and reduce memory latency. Also, thread-level parallelism is used to

hide latency. Several warps execute in batches of threads, allowing each thread to execute different

parts of program. However it is costly because if less threads within a warp are active, fewer par-

allel operations execute per cycle [11]. Besides graphics computation, the FPUs in a GPU can be

used to accelerate floating point applications [9, 10, 130], captured in languages for GPUs such as

CUDA [131].

42 Chapter 2. Background

2.6.3 Comparison: FPGA, CPU and GPU

FPGA, CPU and GPU have different advantages. There are many studies and comparisons between

FPGA, CPU and GPU in speed and power for floating point application [10,11,120,132]. CPU and

GPU must share system memory, where memory access limits the speed. Also the fetch, decode and

execute cycle of the instructions in CPU and GPU cannot fully utilise the high clock rate. Although

GPUs are very powerful for floating point computations, they must be connected to CPUs as co-

processors, and cannot work as a stand alone system.

FPGAs are limited in processing power for complex floating point computation, but they can be

faster than CPU [10,120,132] in the floating point domain. They have advantages in low power con-

sumption [11], high reconfigurability for system development, and massive parallelism. FPGAs do

not require a specific instruction set for computation and do not need to connect to a CPU, and can

be built as a stand alone device. In this thesis, we employ floating point arithmetic as an example,

showing that embedding domain-specific coarse-grained units in FPGAs can increase their processing

power. This domain-specific hybrid FPGA maintains the advantages of the traditional fine-grained

FPGA while increasing their performance, closing the gap between FPGA and other technologies. Ta-

ble2.3summarises the features, advantages and disadvantages of each device, including our proposed

Floating Point FPGA (FPFPGA).

Table 2.3: The features, advantages and disadvantages of different devices in Floating Point (FP)
domain

Devices
Comparison FPGA CPU GPU Proposed FPFPGA

(expected performance)

Speed of medium low high FPGA< FPFPGA< GPU [12]
FP [10,120,132]

Limitation speed & no. of no. of integrated FPUs, thread scheduling, speed & no. of
on fine-grained FPU, scheduling of floating point high latency coarse-grained FPU,

speed reconfigurable routing instruction (cannot be real time) reconfigurable routing
Power low high high FPFPGA< FPGA [62]

consumption [11]
Instruction no fixed instruction-set specific instruction-set specific instruction-set no fixed instruction-set

execution cycle architecture (fetch-decode-execute cycle) (fetch-decode-execute cycle) architecture
Parallelism high (depends on the size of low high (depends on the high (depends on the size of

FPGA to hold logic circuit) thread scheduling) FPGA to hold logic circuit)
FPFPGA< FPGA

Reconfigurability high low low (coarse-grained FPU
is less configurable)

rapid prototyping need to connect need to connect rapid prototyping
Others for developing to shared to shared system for developing

system (can be stand alone) system memory memory and CPU system (can be stand alone)

2.7. Summary 43

2.7 Summary

In this chapter, we first introduce traditional and hybrid FPGA architectures. Then we present the

CAD tools used to explore hybrid FPGA architectures and the features of our CAD tools. We also

introduce applications that can be accelerated by FPGAs. Next, we describe the floating point bench-

marks used in this thesis to examine the performance of FPFPGAs. Finally, we compare the perfor-

mance of different devices for floating point computation.

Chapter 3

Architecture and Modelling

FPGA technology has been widely adopted to speed up computationally intensive applications. Most

current FPGA devices employ an island-style fine-grained architecture [23], with additional fixed-

function heterogeneous blocks such as multipliers and block RAMs; these have been shown to have

severe area penalties compared with ASICs [1,4]. In Section3.1, we propose an architecture for FP-

GAs which is optimised for floating point (FP) applications as an example of a hybrid FPGA. Such de-

vices could be used for applications in digital signal processing, control, high performance computing

and other applications where the large dynamic range, convenience, and ease of verification compared

with traditional fixed point designs on conventional FPGAs. The result of the FPFPGA is compared

with existing FPGAs. The inclusion of ASIC floating point multipiers and adders/subtractors in a

synthesisable datapath-oriented embedded FPGA fabric to facilitate FP computation is different from

the previous works [56,59], which contain fixed point computation only.

We are also interested in studying what are the trade-offs when adopting hybrid FPGA architecture

with different parameters such as routing structure and interface between different elements. A tool is

needed to explore different architectures. Commercial tools based on existing devices are not feasible

for various architectural parameters such as I/O pin position of coarse-grained blocks and channel

width. Section3.2defines the baseline architecture for pre-fabrication architectural exploration using

VPH in later chapters. Section3.3presents a tool called VPH to evaluate the hybrid FPGA.

44

3.1. Novel Floating Point Hybrid FPGA Architecture (FPFPGA) and Post-fabrication Exploration45

3.1 Novel Floating Point Hybrid FPGA Architecture (FPFPGA)

and Post-fabrication Exploration

This section presents an architecture for a reconfigurable device which is specifically optimised

for floating point applications. Fine-grained units are used for implementing control logic and bit-

oriented operations, while parameterised and reconfigurable word-based coarse-grained units incor-

porating word-oriented lookup tables and floating point operations are used to implement datapaths.

In order to facilitate comparison with existing FPGA devices, the Virtual Embedded Block (VEB)

scheme is employed to model embedded blocks using existing FPGA tools. This methodology in-

volves adopting existing FPGA resources to model the size, position and delay of the embedded

elements. The standard design flow offered by FPGA and CAD vendors is then applied and static

timing analysis can be used to estimate the performance of the FPGA with the embedded blocks.

3.1.1 Requirements

Before we introduce the FPFPGA architecture, common characteristics of what we consider a reason-

ably large class of FP applications which might be suitable for signal processing, linear algebra and

simulation are first described. Although the following analysis is qualitative, it is possible to develop

the architecture in a quantitative fashion by profiling application circuits in a specific domain.

In general, FPGA-based FP application circuits can be divided into control and datapath portions.

The datapath typically contains floating point operators such as adders, subtractors, multipliers, and

occasionally square root and division operations. The datapath often occupies most of the area in an

implementation of the application. Existing FPGA devices are not optimised for FP computations

and for this reason, FP operators consume a significant amount of FPGA resources. For instance, if

the embedded DSP48 blocks are not used, a double precision floating point adder requires 701 slices

on a Xilinx Virtex-4 FPGA, while a double precision floating point multiplier requires 1238 slices on

the same device [117].

The floating point precision is usually a constant within an application. The IEEE 754 single precision

46 Chapter 3. Architecture and Modelling

format (32 bit) or double precision format (64 bit) is commonly used.

The datapath can often be pipelined and connections within the datapath may be uni-directional in

nature. Occasionally there is feedback in the datapath for some operations such as accumulation.

The control circuit is usually much simpler than the datapath and therefore the area consumption is

typically lower. Control is usually implemented as a finite state machine and most FPGA synthesis

tools can produce an efficient mapping from the boolean logic of the state machine into fine-grained

FPGA resources.

Based on the above analysis, some basic requirements for FPFPGA architectures can be derived.

1. A number of coarse-grained floating point addition and multiplication blocks are necessary

since most computations are based on these primitive operations. Floating point division and

square root operators can be optional, depending on the domain-specific requirement.

2. Coarse-grained interconnection, fabric and bus-based operations are required to allow efficient

implementation and interconnection between fixed-function operators.

3. Dedicated output registers for storing floating point values are required to support pipelining.

4. Fine-grained units and suitable interconnections are required to support implementation of state

machines and bit-oriented operations. These fine-grained units should be accessible by the

coarse-grained units and vice versa.

The basic requirements will be addressed by the novel architecture proposed in Section3.1.2. The

performance of the design will be quantified by using the methodology in Section3.1.3and the result

of the comparison with existing devices will be covered in Section3.1.4.

3.1.2 FPFPGA Architecture

This section presents the design of our FPFPGA architecture to fulfill the requirements in the Sec-

tion 3.1.1. Figure3.1 shows a top-level block diagram of the FPFPGA architecture. It employs

3.1. Novel Floating Point Hybrid FPGA Architecture (FPFPGA) and Post-fabrication Exploration47

an island-style fine-grained FPGA structure (Figure2.1) with dedicated columns for coarse-grained

units. Both fine-grained and coarse-grained units are reconfigurable. The coarse-grained part con-

tains embedded fixed-function floating point adders and multipliers. The connection between coarse-

grained units and fine-grained units is similar to the connection between embedded blocks (embedded

DSP block or block RAM) and fine-grained units in existing FPGA devices.

Coarse-grained units
with embedded

floating point units

Fine-grained units

Figure 3.1:Architecture of the FPFPGA

Matching of the Requirements 1 and 2

The previous works [56, 59] have proposed a fixed point uni-directional bus-based synthesisable

datapath-oriented fabric in the FPGA. The coarse-grained logic architecture in this thesis is optimised

to implement the datapath portion of floating point applications. The architecture of each block, in-

spired by their work, is shown in Figure3.2. Each block consists of a set of floating point multipliers,

adders/subtractors, and general-purpose bitblocks connected using a uni-directional bus-based inter-

connect architecture. Each of these blocks will be discussed in this section. The main difference

from the work [56,59] is the inclusion of ASIC floating point multipliers and adders/subtractors in a

synthesisable datapath-oriented embedded FPGA fabric to facilitate FP computation rather than fixed

48 Chapter 3. Architecture and Modelling

WB1,
U0

FM1,
U1

FA1,
U2

WB2,
U3

WB3,
U4

FM2,
U5

FA2,
U6

WB4,
U7

WB{D-
2P},

U{D-1}

Feedback
Register (F)

����
��
� �

�� 	

 �
� �
�
��
�

Status flags output

Input
Bus
(M)

Output
Bus (R)

Feedback
BusWB : Word Block

FM : Floating point
multiplier
FA : Floating point adder

����� ���

...

Bus Width (N)

Control signals input

Figure 3.2:Architecture of the coarse-grained unit with different parameters

point computational blocks only. The bus-based routing in this embedded fabric provides benefits

to the density. We optimise this architecture based on the FP applications. To keep our discussion

general, we have parameterised the architecture as shown in Table3.1. There areD subblocks in each

coarse-grained block.Pm of theseD subblocks are floating point multipliers, anotherPa of them are

floating point adders and the rest (D−Pm−Pa) are general-purpose wordblocks. Specific values of

these parameters will be given in Section3.1.3.

Table 3.1:Parameters for the coarse-grained unit
Symbol Parameter Description

D Number of blocks (Including FPUs, wordblocks)
N Bus Width
M Number of Input Buses
R Number of Output Buses
F Number of Feedback Paths
Pa Number of Floating Point Adders
Pm Number of Floating Point Multipliers
B Number of bitblocks in a wordblock

The core of each coarse-grained block containsPm multiplier andPa adder/subtractor subblocks. Each

of these blocks has a reconfigurable registered output, and associated control input and status output

signals. The control signal is a write enable signal that controls the output register. The status signals

report the subblock’s status flags and include those defined in IEEE standard as well as a zero and

sign flag. The fine-grained unit can monitor these flags via the routing paths between them.

3.1. Novel Floating Point Hybrid FPGA Architecture (FPFPGA) and Post-fabrication Exploration49

Each coarse-grained block also contains general-purpose wordblocks. Each wordblock containsB

identical bitblocks, and is similar to the design in [56]. A bitblock contains two 4-input LUTs and a

reconfigurable output register. The value ofN depends on the bit-width of the coarse-grained block.

Bitblocks within a wordblock are all controlled by the same set of configuration bits, so all bitblocks

within a wordblock perform the same function. A wordblock, which includes registers, can effi-

ciently implement operations such as fixed point addition and multiplexing. Like the multiplier and

adder/subtractor blocks, wordblocks generate status flags such as most-significant bit (MSB), least-

significant bit (LSB), carry out, overflow and zero; these signals can be connected to the fine-grained

units.

Matching of the Requirements 3 and 4

Apart from the control and status signals, there areM input buses andR output buses connected to

the fine-grained units. Each subblock can only accept inputs from the left, simplifying the routing.

To allow more flexibility,F feedback registers have been employed so that a block can accept the

output from the right block through the feedback registers. For example, the first block can only

accept input from input buses and feedback registers, while the second block can accept input from

input buses, the feedback registers and the output of the first block. Each floating point multiplier is

logically located to the left of a floating point adder so that no feedback register is required to support

multiply-and-add operations. The coarse-grained units can support multiply-accumulate functions by

utilising the feedback registers. The bus width of the coarse-grained units is 32 bit for the single

precision FPFPGA and 64 bit for double precision.

Switches in the coarse-grained unit are implemented using multiplexers and are bus-oriented. A

single set of configuration bits is required to control each multiplexer, improving density compared to

a fine-grained fabric.

50 Chapter 3. Architecture and Modelling

3.1.3 Methodology: Post-fabrication Modelling of FPFPGA

To model the mapping of our benchmark circuits on the architecture described in Section3.1.2, we

employ the post-fabrication methodology: Virtual Embedded Block (VEB) introduced in Chapter2,

Section2.3.3to quantify the impact of FPFPGA on existing FPGA.

To adopt this methodology, we follow the VEB work flow in Figure2.9, where area and delay models

for the coarse-grained units are required. To estimate the area, we synthesise an ASIC description

of each coarse-grained block in 0.13µm process technology. We normalise the feature size of the

ASIC block to 0.15µmprocess Virtex-II device to obtain a more accurate area estimation. We employ

a parameterised synthesisable IEEE 754 compliant floating point library [133] where floating point

multiplier and adder are based on the work in [108]. The corresponding floating point multiplier and

adder have been described in Chapter2, Section2.5.2. The library supports four rounding modes

and denormalised numbers. A floating point multiplier and floating point adder are generated and

synthesised using a regular standard cell library flow.

The normalised area of the coarse-grained block is then translated into equivalent CLB resources in

the virtual FPGA. In order to make this translation, an estimate of the area of a CLB in the FPGA

is required, where a CLB refers to a cluster of two 4-input lookup tables and two associated output

registers similar to the one described in Figure2.2. The area estimation includes the associated routing

resources and configuration bits. All area measures are normalised by dividing the actual area by the

square of the feature size, making them independent of feature size. VEB utilisation can then be

computed as the normalised area of the coarse-grained unit divided by the normalised area of a CLB.

This value is in units of equivalent CLBs, and the mapping enables modelling of coarse-grained units

using existing FPGA resources. In addition, special consideration is given to the interface between

the CLBs and the VEB to ensure that the corresponding VEBs has sufficient I/O pins to connect to the

routing resources. This can be verified by keeping track of the number of inputs and outputs which

connect to the global routing resources in a CLB. For example, if a CLB only has two outputs, it is

not possible to have a VEB with an area of four CLBs that requires nine outputs. For such a case,

the area is increased to five CLBs. In our implementation, area matching is achieved by creating a

dedicated scan-chain using shift registers. A longer scan-chain consumes more CLBs and therefore

3.1. Novel Floating Point Hybrid FPGA Architecture (FPFPGA) and Post-fabrication Exploration51

the VEB is larger.

The timing of VEB is obtained in the ASIC synthesis stage. There are many options available to

match the timing of a VEB to the target Virtex-II device. We utilise the fast carry-chains presented

in most FPGAs to generate delays that emulate the critical path in a VEB. This choice has the added

advantage that relocation of CLBs on the FPGA does not affect the timing of this circuit. A manual

placement is applied to ensure that the placement of each VEB is aligned on dedicated columns while

maintaining nearest displacement.

It is important to note that timing information cannot be determined before programming the config-

uration bits of the coarse-grained unit. Otherwise, the tool reports the worst case scenario where the

longest combinational path from the first wordblock to the last wordblock is considered as the critical

path and this is usually not the correct timing in most designs. To address this issue, the tool has

to recognise the configuration of the coarse-grained unit before the timing analysis. Therefore, a set

of configurations is generated during manual mapping, and the associated bitstream can be used in

timing analysis. This bitstream can be imported to the timing analysis tool, so the tool can identify

false paths during timing analysis and produce correct timing for that particular configuration.

3.1.4 Results

Table 3.2:Normalisation on the area of the coarse-grained units against a Virtex-II CLB
(SP - single precision, DP - double precision, and CGU - coarse-grained unit. 15% overheads

and 70% of fine-grained routing resources have already been applied on the coarse-grained units area.)
Fabric Area (A)(µm2) Feature Size(L)(µm) Normalised Area(A/L2) Area in CLB Input Pin Output Pin Max. Delay(ns)

Virtex-II CLB 10,912 0.15 484,978 1 8(8) 4(4) 0.45
SP-CGU 848,040 0.13 50,179,876 104 157 (832) 162(416) 3.35
DP-CGU 1,743,560 0.13 103,169,254 214 285 (1,712) 258(856) 4.25

In this section, we present an evaluation of our architecture. The flow described in the previous section

is employed.

The best-fit architecture can be determined by varying the parameters to produce a design with max-

imum density over the benchmark circuits. Additional wordblocks are included, allowing more flex-

ibility for implementing circuits outside of the benchmark set. Manual mappings are performed for

52 Chapter 3. Architecture and Modelling

(a) Virtex-II XC2V3000. The circuit consumes 100% of chip area

(b) FPFPGA. Coarse-grained units are identified by tightly packed CLBs in a rectangular
region. The circuit consumes 5% of chip area

Figure 3.3:Floorplan of the single precisionbgmcircuit on Virtex-II FPGA and FPFPGA
(Area is significantly reduced by introducing coarse-grained units.)

3.1. Novel Floating Point Hybrid FPGA Architecture (FPFPGA) and Post-fabrication Exploration53

Table 3.3:FPFPGA implementation results
(Values in the brackets indicate the percentages of CLB used in corresponding FPGA device. CGU

stands for coarse-grained unit and FGU stands for fine-grained unit.)

Single precision FPFPGA XC2V3000-6-FF1152 Reduction
Circuit number CGU area FGU area Total Area Delay FPU area Logic area Total Area Delay Area Delay

of CGU (CLB) (CLB) (CLB) (ns) (CLB) (CLB) (CLB) (ns) (times) (times)
bfly 2 208 106 314 2.92 5,839 494 6,333 11.6 20.2 3.99

(1.5%) (0.74%) (2.2%) (41%) (3.4%) (44%)
dscg 2 208 176 384 2.92 4,419 203 4,622 11.3 12.0 3.88

(1.5%) (1.23%) (2.7%) (31%) (1.4%) (32%)
fir 2 208 7 215 3.20 5,059 109 5,168 11.2 24.0 3.51

(1.5%) (0.05%) (1.5%) (35%) (0.8%) (36%)
mm3 2 208 134 342 3.86 4,002 505 4,507 11.8 13.2 3.06

(1.5%) (0.93%) (2.4%) (28%) (3.5%) (31%)
ode 2 208 19 227 3.24 3,329 142 3,471 11.1 15.3 3.44

(1.5%) (0.13%) (1.6%) (23%) (1.0%) (24%)
bgm 7 728 323 1,051 4.52 13,928 406 14,334 13.9 13.6 3.08

(5.1%) (2.25%) (7.3%) (97%) (2.8%) (100%)
syn2 3 312 0 312 2.93 5,983 0 5,977 11.4 19.2 3.90

(2.2%) (0.0%) (2.2%) (42%) (0.0%) (42%)
syn7∗ 16 1,664 0 1,664 2.93 30,656 0 30,625 13.1 18.4 4.47

(11.6%) (0.0%) (11.6%) (214%) (0.0%) (214%)
Geometric Mean: 16.6 3.64

(a) Single precision FPFPGA results.∗Circuit syn7cannot be fitted in a XC2V3000-6 device. The area and the delay
are obtained by implementing on a XC2V8000-5 device

Double precision FPFPGA XC2V6000-6-FF1152 Reduction
Circuit number CGU area FGU area Total Area Delay FPU area Logic area Total Area Delay Area Delay

of CGU (CLB) (CLB) (CLB) (ns) (CLB) (CLB) (CLB) (ns) (times) (times)
bfly 2 428 201 629 4.42 13,653 963 14,616 21.7 23.2 4.91

(1.3%) (0.59%) (1.9%) (40%) (2.9%) (43%)
dscg 2 428 363 791 4.45 8,984 202 9,186 17.3 11.6 3.89

(1.3%) (1.07%) (2.3%) (27%) (0.6%) (27%)
fir 2 428 6 434 4.38 10,310 165 10,310 18.0 23.8 4.11

(1.3%) (0.02%) (1.3%) (30%) (0.5%) (31%)
mm3 2 428 229 657 4.25 7,529 727 8,256 17.1 12.6 4.03

(1.3%) (0.68%) (1.9%) (22%) (2.2%) (24%)
ode 2 428 22 450 4.27 6,794 239 7,033 18.6 15.6 4.35

(1.3%) (0.07%) (1.3%) (20%) (0.7%) (21%)
bgm 7 1,498 321 1,819 4.55 32,918 199 33,117 22.0 18.2 4.84

(4.4%) (0.95%) (5.4%) (97%) (0.6%) (98%)
syn2 3 642 0 642 4.47 12,016 0 12,016 19.0 18.7 4.26

(1.9%) (0%) (1.9%) (36%) (0%) (36%)
Geometric Mean: 17.1 4.33

(b) Double precision FPFPGA results. Circuitsyn7is omitted since it cannot be fitted on any Virtex-II FPGA device

54 Chapter 3. Architecture and Modelling

each benchmark. A more in-depth analysis on how those parameters affect the application perfor-

mance is on-going work.

For the single precision FPFPGA device, a Xilinx XC2V3000-6-FF1152 FPGA is used as the host

and we assume 16 coarse-grained units. We emphasise that the parameter settings chosen for the

coarse-grained block is fixed over the entire set of benchmarks, each coarse-grained unit having nine

subblocks (D = 9), four input buses (M = 4), three output buses (R = 3), three feedback registers

(F = 3), two floating point adders and two floating point multipliers (Pa = 2, Pm = 2). Number of

bitblocks in each wordblock is the same as bus width (B = N). We assume that the two floating

point multipliers in the coarse-grained unit are located at the second and the sixth subblock. The two

floating point adders are located in the third and the seventh subblock. This architecture is shown in

Figure3.4.

WB1 FM1 FA1 WB2 WB3 FM2 FA2 WB4 WB5

�����������	��
���
������� ��� ��

����
��
� �

�� �

�
! "
!
#$
%

Status flags output

& ��' (�)*��
+,*��

� �-.*��)*��
+,*��

WB : Word Block
FM : Floating point
multiplier
FA : Floating point adder

/�0� �.1

Control signals input

Figure 3.4:Architecture of the coarse-grained unit with appropriate parameter settings

The coarse-grained blocks constitute 7% of the total area of an XC2V3000 device. All FPGA results

are obtained using Synplicity Synplify Premier 9.0 for synthesis and Xilinx ISE 9.2i design tools

for place and route. All ASIC results are obtained using Synopsys Design Compiler V-2008.09 and

default optimisation setting for area and delay.

The physical die area and photomicrograph of a Virtex-II device has been reported [134], and the

normalisation of the area of coarse-grained unit is estimated in Table3.2. From inspection of the die

photo, we estimate that 60% of the total die area is used for CLBs.

3.1. Novel Floating Point Hybrid FPGA Architecture (FPFPGA) and Post-fabrication Exploration55

This means that the area of a Virtex-II CLB is 10,912µm2. We assume each CLB contains two LUTs

and two FFs, which is similar to a slice in Virtex-II [135]. This number is normalised against the

feature size (0.15µm). A similar calculation is used for the coarse-grained units. The ASIC synthesis

tool reports that the area of a single precision coarse-grained unit is 433,780µm2. We further assume

15% overhead after place and route the design based on our experience [56]. The area of unit does not

include the routing tracks for fine-grained routing in FPGA. The routing wires consist of over 70% of

total FPGA area [59] for large channel widths. Therefore, we add 70% extra area to the coarse-grained

units for the vertical and horizontal routing tracks. The area values are normalised against the feature

size (0.13µm). The number of equivalent CLB is obtained through the division of coarse-grained unit

area by slice area. This shows that single precision coarse-grained unit is equivalent to 104 CLBs.

Simply assuming each CLB has four outputs, the VEB allow maximum of 416 output pins while the

coarse-grained unit consumes 162 output pins only. Therefore, we do not need to further adjust the

area.

Single precision FPFPGA results are shown in Table3.3(a). A comparison between the floorplan of

the Virtex-II device and the floorplan of the FPFPGA onbgmcircuit is illustrated in Figure3.3.

The FPU implementation on FPGA is based on the work in [108] and described in Chapter2, Sec-

tion 2.5.2. This implementation supports denormalised floating point numbers which are required

in the comparison with the FPFPGA. The FPU area for the XC2V3000 device (seventh column) is

estimated from the distribution of LUTs, which is reported by the FPGA synthesis tool. The logic

area (eighth column) is obtained by subtracting the FPU area from the total area reported by the place

and route tool. As expected, FPU logic occupies most of the area, typically more than 90% of the

user circuits. While thesyn7circuit cannot fit in an XC2V3000 device, it can be tightly packed into

a few coarse-grained blocks. The circuitsyn7has 50 FAs and FMs which consume 214% of the total

FPGA area. They can fit into 16 coarse-grained units, which constitute just 11.6% of the total FPGA

area. Note that it is the minimum fine-grained resources area, we have not accounted the area of

embedded fixed point multiplier in Virtex-II device as we do not have information of the multiplier

area. If we account for the usage of embedded multiplier, the improvement of FPFPGA should be

slightly greater.

56 Chapter 3. Architecture and Modelling

Similar experiments for double precision floating point applications have been conducted and the re-

sults are reported in Table3.3(b). In double precision floating point FPFPGA, we use the XC2V6000

FPGA as the host FPGA and the comparison is done on the same device.

For both single and double precision benchmark circuits, the proposed architecture reduces the area

by a factor of 17 on average, a significant reduction. The saving is achieved by (1) embedded floating

point operators, (2) efficient directional routing and (3) sharing configuration bits. On larger circuits,

or on circuits with a smaller ratio of floating point operations to random logic, the improvement will

be less significant. However, the reported ratio gives an indication of the possible improvement if the

architecture is well-matched to the target applications. In essence, our architecture stands between

ASIC and FPGA implementation. The authors in [4] suggest that the ratio of silicon area and delay

required to implement circuits in FPGAs and ASICs is on average 35. Our proposed architecture can

reduce the gap between FPGA and ASIC from 35 times to 2 times when floating point applications

are implemented on such FPGAs.

The delay reduction is also significant. In our benchmark circuits, delay is reduced by 3.6 times on

average for single precision applications and 4.3 times on average for double precision applications.

We believe that double precision floating point implementation on commercial FPGA platform is

not as effective as the single precision one. Therefore, the double precision FPFPGA offers better

delay reduction than the single precision one. In our circuits, the critical path is always within the

embedded floating point units, thus we would expect a ratio similar to that between normal FPGA

and ASIC circuitry. Our results are consistent with [4] which suggests the ratio is between 3 to 4. As

the critical paths are in the FPU, improving the timing of the FPU through full-custom design would

further increase the overall performance.

We conclude that the proposed architecture meets the basic requirements for FPFPGA in Section3.1.1

by: (1) there are FAs and FMs in the FPU for primitive FP operations (matches requirement 1), (2) the

FAs, FMs and WBs inside the FPU are connected by bus-based routing (matches requirement 2),

(3) feedback and output registers are included to support pipelining (matches requirement 3), (4) the

fine-grained CLBs in FPFPGA support implementation of state machines and other bit-oriented op-

erations (matches requirement 4).

3.2. Baseline Hybrid FPGA Architecture for Pre-fabrication Exploration 57

3.2 Baseline Hybrid FPGA Architecture for Pre-fabrication Ex-

ploration

In the last section, we have proposed a novel FPFPGA architecture and compared it with an existing

device. However, it is not flexible to use post-fabrication exploration to investigate different archi-

tecture parameters such as the size of the device, interface between fine-grained and coarse-grained

logics. In order to solve this limitation, we first introduce the assumption of the fine-grained elements,

coarse-grained elements and routing architecture of our hybrid FPGA model in this section. The as-

sumed base-line architecture can then be evaluated by a flexible pre-fabrication evaluation tool called

VPH which will be introduced in the next section. The assumptions are also applied to Chapter4, 5

and6 in this thesis.

3.2.1 Fine-grained and Coarse-grained Assumption

The physical die area and photomicrograph of a Virtex-II device have been reported [134]. We em-

ploy this area result to estimate the area of the coarse-grained floating point unit in the existing device

which is shown in Section3.1.4. Therefore, we choose Virtex-II architecture as our baseline architec-

ture in this thesis.

In our model, we assume that the fine-grained resources in the FPGA consist of a grid of identical

configurable logic blocks (CLBs) connected by horizontal and vertical wire channels which are sim-

ilar to Virtex-II slices. A CLB is a cluster of two basic logic elements (BLEs) containing4-LUT,

flip flop (FF), fast carry chains, internal multiplexers and XOR gates. Figure3.5shows the BLE in a

CLB. The aspect ratio of the CLB is equal to1 and the pin architecture is full-perimeter, which leads

to the best area-efficiecy [21,24]. The aspect ratio of the FPGA is equal to1 which is the most area-

efficient [21]. We assume the delay of the CLB is the same as the timing specification of a Virtex-II

device, speed grade -6 [135] in the baseline architecture.

We adopt the double precision FPUs proposed in Section3.1 as our coarse-grained elements. There

are two floating point adders/subtractors, two floating point multipliers and five wordblocks in each

58 Chapter 3. Architecture and Modelling

FPU, which are connected by bus based wires. In the hybrid FPGA, coarse-grained EBs are sur-

rounded by fine-grained CLBs and they are connected by horizontal and vertical wire channels [23].

The placement of EBs can be anywhere in the FPGA, which is more flexible than the column based

FPGA in Section3.1, Figure3.1. Figure3.6shows an example of the hybrid FPGA used in this thesis.

Four EBs are positioned in the center and separated by 1 CLB distance. Each EB is 3x3 tiles and sur-

rounded by CLBs, and the EBs are separated by distanceDeb. They are connected by uniform width

vertical and horizontal wires. According to the usage of FPUs and CLBs in Table3.7, we summarise

the information of the components used in the baseline hybrid FPGA as shown in Table3.4.

�����

��
�

���

	�
 �� �

�

��� �
���

�

��
�

���
���

��
�

�����

��� �� �!" �����

�$#
%'&

�'(����

BLE #1

BLE #2

CIN

COUT

OUT

OUT

IN

IN

(a) a configurable logic
block (CLB)

(b) a Basic logic
element (BLE)

Figure 3.5:(a) A configurable logic block (CLB) in hybrid FPGA, (b) A basic logic element (BLE)
in a CLB

3.2.2 Routing Architecture Assumption

Figure3.7shows our assumed routing architecture. CLBs and EBs are connected toW parallel routing

tracks of segment lengthL using connection boxes. All CLBs, EBs and I/O pads are fully connected

to connection boxes (Fcout put= 1, Fcinput = 1 andFcpad = 1, in [23]). W is constant for this baseline

architecture, however we will introduce a heterogeneous channel width near EBs to meet the routing

demand found in Chapter5, Section5.3.3. Segment channels are intersected by a switch box. The

switch box offers each incoming wire the ability to connect to three other wire segments (Fs= 3).

We use the subset switch box (also known as disjoint), in which the wire segment in tracki can only

3.2. Baseline Hybrid FPGA Architecture for Pre-fabrication Exploration 59

EBEB

EB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB CLB

CLB

CLB CLBCLBCLB

CLB

CLB

CLBCLBCLB

CLB

CLB

EB

CLBCLB

CLBCLB

CLB

CLB

CLB

Wire
s eg m en t s

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLBCLBCLBCLB CLBCLBCLBCLB CLBD ��� =1

E B a rea =
3x3 t il es

{

Figure 3.6:An example of the baseline hybrid FPGA: Embedded blocks (EBs) are surrounded by
grid based CLBs

Table 3.4:Information of the components in the hybrid FPGA
Components Description

Hybrid FPGA Area = 100 x 100 CLB tiles
Number of FPUs = 16, arranged as 4x4 grids in the middle of FPGA

CLB Area = 1 x 1 tile
Cluster size = 2
Number of pins = 13 inputs + 5 outputs
I/O density = 4.5 pins per unit CLB tile length
Maximum delay = 0.45ns

FPU Area = 14 x 15 CLB tiles (Total 210 CLBs, best aspect ratio≈ 1 and area≈ 214 CLBs)
Number of pins = 286 inputs + 258 outputs
I/O density = 9.7 pins per unit CLB tile length
Maximum delay = 4.25ns

BRAM Memory used in Chapter4
Area = 2 x 4 CLB tiles
Number of pins = 90 inputs + 64 outputs
I/O density = 12.83 pins per unit CLB tile length
Delay = 2.1ns

60 Chapter 3. Architecture and Modelling

connect to other wire segments in tracki. There are no switch boxes inside EBs, so changes in wire

direction are not allowed, this is common in commercial devices [3]. We will discuss the effect of

adding switch boxes on top of EBs in Chapter5, Section5.3.2. The routing switch is simply using a

tri-state buffer as driver, although the proposed routing optimization methods can be applied to any

buffer such as pass-transistor.

The area and delay model of the wire is based on the PTM 0.13µm, 1.3V CMOS process [136]. We

obtain the equivalent resistances, capacitances and intrinsic delay of the tri-state buffer from SPICE

simulations with the PTM 0.13µmprocess. Table3.5shows the information of the routing resources

used in the baseline architecture.

We estimate the routing area in our architecture by using the model stated in [22]. We count the

area of connection multiplexers from logic blocks to tracks and tri-state buffers in routing switches in

terms of minimum-width transistors per CLB tile.

Table 3.5:Information of the routing resources in the baseline FPGA

Routing resources Description
Tri-state buffer 34.5x minimum width transistor area

5x minimum driving strength
Wire width = 1.5x width of min. width transistor

space = 1.5x width of min. width transistor
Segment length L = 4, the best area-delay product [22]

3.3 Pre-fabrication modelling tool: Versatile Place and Route for

Hybrid FPGA - VPH

In Section3.1, we have introduced a novel hybrid FPGA architecture for floating point application.

We have compared the performance of the virtual architecture with existing devices using a com-

mercial place and route tool. We are interested in studying what are the trade-offs when adopting

different hybrid FPGA architecture parameters such as I/O pin position, aspect ratio of FPU and rout-

ing resources. The commercial tools we used in the last section which based on existing devices

3.3. Pre-fabrication modelling tool: Versatile Place and Route for Hybrid FPGA - VPH 61

EB

�����

��� � �� �

����������

���

��� ������

�����

�����

�����

�����

�����

����� ����� �����

� � ���

Channel
w i d t h (W)

	

Co nnec t i o n
b o x

S w i t c h b o x
(s b)

���

W i r e s eg m ent leng t h (L) = 1

W i r e s eg m ent leng t h (L) = 2

N o s w i t c h
b o x i ns i d e

E B

Figure 3.7:Detailed routing architecture in the baseline FPGA

are not feasible for those architectural parameters. Also the commercial device has limited resources

to implement a circuit. For example, double precisionsyn7cannot be implemented in the Virtex

XC2V6000 device. Therefore, a more feasible tool is needed to explore different architectures. In

this section, we define the research problems, and propose our tool called Versatile Place and Route

for Hybrid FPGA (VPH) to evaluate the hybrid FPGA. We also provide an initial result of packing,

placing and routing of the benchmarks using VPH at the end of this section.

3.3.1 Requirements

In order to evaluate architectural trade-offs, a modelling tool must capture the salient parameters. An

optimised setting of parameters should be found to minimise a cost function that normally involves

delay, area and power consumption.

In a domain-specific hybrid FPGA, some important questions that must be answered include:

1. What is the best interface for the elements in hybrid FPGA? (will be covered in Chapter4)

62 Chapter 3. Architecture and Modelling

2. What is the optimised interconnection method between fine-grained and coarse-grained blocks?

(will be covered in Chapter5)

3. Which coarse-grained elements should be used to give the highest benefit for a specific class of

applications? (will be covered in Chapter6)

VPH is based on VPR and was designed with the following requirements.

1. Modelling modern architectures such as Xilinx and Altera devices. The work presented is

based on the Xilinx Virtex-II but can be generalised to other architectures. (has been capture in

Section3.2and will be achieved in Section3.3.4)

2. Allowing exploration of different hybrid FPGA architectures. Hybrid FPGAs contain both fine-

grained and coarse-grained elements, the architectural parameters of them should be flexible.

(will be covered in Section3.3.3)

3. Supporting optimization of the hybrid FPGA architecture such as a novel routing architecture

and internal optimization of coarse-grained elements. (will be covered in Chapter5)

3.3.2 Design flow

In the VPH design flow (Figure3.8), applications are written in a high level hardware description

language and synthesised to a mapped library netlist in VHDL format using commercial tools such as

Synplicity Synplify Premier 9. The library netlist contains the usage and connection of simple units

such as registers, LUTs, internal muxes and internal NOT gates. The basic logic block packing tool,

VPHpack, packs these units into basic logic elements (BLEs). VPHpack clusters BLEs into CLBs.

VPHpack outputs the final packed basic logic elements (BLEs) as a netlist for VPH.

A user constraint file (.ucf) is used to specify the FPGA area and the absolute position of each em-

bedded block. A separate constraint file for each embedded block is used to specify the area, the

pin position and the timing information for the EB; the area and delay information for each block is

obtained using the Synopsys Design Compiler V-2008.09. A link file is used to connect the ucf file

3.3. Pre-fabrication modelling tool: Versatile Place and Route for Hybrid FPGA - VPH 63

to the associated module netlist. As in VPR, an architecture file specifies the fine-grained FPGA’s

architectural parameters, such as timing delay of the LUT. Using these files, the VPH tool performs

placement, routing, and timing analysis to produce area and delay estimates for each benchmark

circuit.

Modern applications are usually written in a high level hardware description language, e.g. VHDL

or Verilog. In the traditional VPR design flow, SIS [137] is used to synthesise circuits which are

described in Berkeley Logic Interchange Format (BLIF). Conversion of the file format is required.

The VPH design flow is simpler, since available VHDL application benchmarks for different hybrid

FPGA designs can be directly processed by VPH.

� � � � � ��� � 	
�� �
�� � ��� � � � � ����
� ������ �

��� � � � ��� � � � � � �
� � � � �
 �
� � � � � � � � � �

! � � � � �
 �

� ! � � � � � � ��" � � ��� � �

� $ �

��"%�� � � 	

��" &� � � � �
 �
� � � � � � � � � �

"%� � � ��� � ��'%() � �
� �*" %�

��(�) � ��� � � 	�� � � �
� � � � � 	�� � � � �

"%� � � ��� � ��� () � �
� �
) � � � � ��� � ��� � �
� � � � �
 �
�� �
) � �

+*� � � � � � � �) � ��� � � �
� � � � � ��� � � � �

,%�-) � � � � � �

� �) � � � � � � �

� (��) � � � � � �

� �) � � � � � � �

+.� � � / � � ��� � � / 0 1 2
� � ��� (� � � �) � � � � (�

(� , �
" (
 � � � (��(� , �3� �

4 " 5*+

Figure 3.8:Design flow of VPH

64 Chapter 3. Architecture and Modelling

3.3.3 User Constraints in VPH

The user constraint file (.ucf file) in VPH allows flexibility to explore interface and different parame-

ters of hybrid FPGA. In summary, the user constraint file describes:

1. The width and height of the FPGA device model (for Chapter4 to 6).

2. The position of the lower left corner of the EB(for Chapter4 to 6).

3. Area of the EB by specifying its width and height(for Chapter4 to 6).

4. The I/O pin configuration of the EB(for Chapter4 to 6).

5. The delay of the EB(for Chapter4 to 6).

6. Enable or disable switches inside EB(for Chapter5).

7. Enable or disable extra routing wires near EB (for Chapter5).

8. The position and distance of the extra routing wires(for Chapter5).

9. The wire ratio of extra routing to normal routing(for Chapter5).

The above settings allow a wide range of architectural parameters to be examined without the limita-

tion of the physical constraint of existing devices.

3.3.4 VPHpack

We use Synplicity’s Synplify Premier 9 to synthesise the high level hardware description language to

a mapped library netlist (.vhm). The mapped library netlist describes the basic units occupied in a

particular FPGA. We developed VPHpack which packs and clusters the units in the mapped library

netlist. Table3.6shows the units handled by VPHpack.

The packing tool packs the units into Virtex-II BLEs and then clusters the BLEs into CLBs as shown

in Figure3.9 There are two BLEs in a CLB, fast carry chains propagate upwards , shift registers

propagate downwards and FF inputs are (CLK, CE and SR) shared among two BLEs.

3.3. Pre-fabrication modelling tool: Versatile Place and Route for Hybrid FPGA - VPH 65

Table 3.6:Units in mapped library netlist handled by VPHpack

Unit name Description Unit name Description

IBUF Input buffer XORCY Fast carry chain XOR
OBUF Output buffer MUXCY Fast carry chain mux
VCC VCC input MULT AND Internal AND
GND GND input FD D-type FF

BUFGP Clock buffer FF with different combination of
LUT{1,2,3,4} Input size{1,2,3,4} LUT FD{P, C, E, R, S} P: preset, C: clear, E: enable

INV Internal inverter R: Reset, S: synchronous set

To be packed into a single logic cluster, a group of BLEs must satisfy two conditions:

1. The BLEs must use the same shared inputs of FF.

2. The BLEs in different carry chain must not pack into a single cluster.

VPHpack is currently available for the Virtex-II architecture, it is easily extended to other devices by

adding the mapped library and slightly modifying the packing algorithm for a specific device.

3.3.5 Elmore Delay Model and Critical Path

For the timing analysis in VPH, we calculate the Elmore delay [138] from source node to sink node

to find the delay of a path. The interconnects are modelled as an RC tree as shown in Figure3.10.

Formula3.1 is used to calculate the Elmore delay of a source-sink path. The source-sink path is

also called the combinational path, which is the path from flip-flop output to flip-flop input.Rm and

C(subtreem) are the resistance and total downstream capacitance of the element in the path at nodem.

Td,m is the intrinsic delay of either switch box buffer or connection box buffer in the path. The critical

path is the one with highest timing delay among all source-sink paths in a circuit.

Delay= ∑
m∈Source−sink path

RmC(subtreem)+Td,m (3.1)

66 Chapter 3. Architecture and Modelling

BLE #1

BLE #2 OUT

OUT

IN

IN

VPHpack clusters
BLEs into CLB

VPHpack packs the
units into BLEs

�����

��� �	�

���

�����

��� �	�

���

Basic units in mapped library netlist

Figure 3.9:VPHpack packs and clusters basic units into CLB

CLB CLB EB

CLB CLB EB

Elmore delay model

Td,
intrinsic

Td,
intrinsic Td,

connection
buffer

Switch box Switch box

Figure 3.10:Elmore delay model for the delay path in VPH

3.3. Pre-fabrication modelling tool: Versatile Place and Route for Hybrid FPGA - VPH 67

3.3.6 Results

VPH provides feasible exploration for a hybrid FPGA. We first use VPHpack to pack and cluster the

eight benchmarks described in Chapter2, Section2.5.3. By using the resulting netlist, we can explore

different architecture parameters and optimisation for floating point hybrid FPGA by place and route

the circuits from Chapter4 to Chapter6.

The benchmarksyn7is not able to be implemented in the Virtex-II devices in Section3.1 because

of the limited physical logic resources. VPH can implement large circuits in a virtual FPGA as

long as there in enough memory in the computer to run the program. Implementation of the double

precision floating point circuitsyn7 is possible with VPH. From Table3.3(b), the usage of fine-

grained resources reduced significantly after embedding FPUs. This is not complex enough to do

architectural exploration. For example, if the design is too small, the number of nets may not be

enough to simulate the congestion and routability inside FPGA. To remain complexity of the circuits

for architectural exploration after embedding FPUs, the core of each simple DSP kernels:dscg, bfly,

ode, mm3 and firis replicated four times and are connected together in a single circuit. For example,

adscgbenchmark contains fourdscgcores connected together. All circuits use a single global clock.

The number of CLB, FPU and computational cores of each benchmark is reported in Table3.7. Note

that there is no register in input and output pad (I/O registers) and shift register LUT (SRL) in VPH,

where Virtex-II has I/O registers and SRL can be implemented as memory to save the usage of FFs.

Therefore the number of CLB is different from Table3.3(b). If we switch off the options of using

I/O registers and SRL in Virtex-II device, the number of CLB used in Virtex-II is only 5.5% less than

VPHpack. This deviation may be caused by different packing algorithm used in the tools.

Finally, the netlist generated by VPHpack is placed and routed by VPH. Figure3.11gives an example

of placing and routing the benchmarkbgm in the hybrid FPGA architecture with routing switches

inside the FPU. There are sixteen FPUs in this FPGA, the purple blocks are used bybgmand the

green blocks are the unused FPUs. Figure3.12shows that the direction of the nets inside the FPU

can be changed. The detail of the change of direction will be discussed in Chapter4 to optimise the

routing architecture.

68 Chapter 3. Architecture and Modelling

Table 3.7:Number of FPUs and CLBs used for each benchmark packed and clustered by VPHpack

Benchmarks No. of CLB No. of FPU No. of core

dscg 649 8 4
bfly 777 8 4
ode 259 8 4

mm3 713 8 4
fir 169 8 4

bgm 6,433 7 1
syn2 288 3 1
syn7 288 16 1

VPH fulfills the research requirements of a hybrid FPGA architecture stated in Section3.3.1 by:

(1) Modelling Virtex-II likes architecture with carry chain (matches requirement 1), (2) User con-

straint allows flexible architecture of the device (matches requirement 2), (3) Supporting optimisation

of routing architecture such as allowing routing switches in FPU (matches requirement 3),

3.4 Summary

This chapter first proposes an FPFPGA architecture which involves a combination of reconfigurable

fine-grained and reconfigurable coarse-grained units for floating point computations. A parameteris-

able description is presented which allows us to explore different configurations of this architecture.

To provide a more accurate evaluation, we adopt a methodology for estimating the effects of introduc-

ing embedded blocks to commercial FPGA devices. The approach is vendor independent and offers

a rapid evaluation of arbitrary embedded blocks in existing FPGA devices. The FPFPGA reduces

the area by 17 times and increases the clock frequency by 4 times on average when compared to an

existing commercial FPGA device.

After that we define a baseline hybrid FPGA architecture and propose a place and route tool called

VPH to explore domain-specific hybrid FPGA. The features and work flow of VPH are described.

VPH supports most modern FPGA architecture such as carry chains, embedded memories and mul-

tipliers. It is based on VPR which has facilitated research on FPGA architectures. Based on the

VPH and the FPFPGA architecture, optimisation of the FPFPGA will be considered in the next few

chapters.

3.4. Summary 69

Routing succeeded with a channel width factor of 80.

Figure 3.11:The circuitbgm, which has used 7 FPUs out of 16, is placed and routed using VPH
(Purple blocks are the used FPUs and green blocks are unused FPUs.)

70 Chapter 3. Architecture and Modelling

Routing succeeded with a channel width factor of 80.

Figure 3.12:Routing switches are allowed in FPUs. The nets in FPUs are able to route and change of
direction

Chapter 4

Interface between Coarse/Fine-grained Logic

We have proposed a novel hybrid FPGA architecture for floating point application domain in Chap-

ter 3. This chapter examines the interface between fine-grained and coarse-grained programmable

logic in FPGAs. Specifically, it presents an empirical study that covers the location, pin arrangement,

and routing resources between embedded blocks and the fine-grained logic fabric in FPGAs. It also

studies this interface in FPGAs which contain both FPUs and embedded memories.

4.1 Motivation

An important consideration when adding coarse-grained embedded elements to an FPGA is the inter-

face between the coarse-grained and fine-grained resources. If this interface is not flexible enough,

the usefulness of the embedded block will be reduced, since connections to and from the block will

be expensive. On the other hand, if the interface is too flexible, it will require too much area and

delay, possibly negating the density and performance advantages of including the embedded block,

and resulting in unnecessary overhead for applications that do not use the embedded component.

In this chapter, we focus on architectural interface issues, such as the location of the embedded el-

ements, and the I/O interface between the embedded elements and the fine-grained fabric. Our ap-

proach is presented in the context of the embedded FPUs described in Chapter2, Section2.5.3and

71

72 Chapter 4. Interface between Coarse/Fine-grained Logic

the baseline architecture presented in Chapter3, Section3.2. Chapter5, Section5.4 will update the

interface according to the optimised routing architecture.

4.2 Interface Parameters: Single EB Type

In this section, we consider a range of interface architectures. First, we explore the single EB type

hybrid FPGA. To describe the space of single EB type architectures that we consider, we define the

parameters: (1) EB position, (2) pin location, (3) interconnect flexibility and (4) EB aspect ratio.

4.2.1 EB Position

The embedded blocks can be placed in various places within the FPGA. We consider the positions as

shown in Figure4.1. There are advantage and disadvantage in each type of position. EBs are on the

top and bottom of FPGA in Type 1 position, they are close to I/O of FPGA, but far away from the

EB column in the opposite side. For type 2, EBs are close to I/O of FPGA too, but only one of the

side can connect to CLBs directly, the routing density in EB may be very high. The EBs in type 3

are packed closely together, it may help to reduce routing delay compared with type 4. Therefore we

examine the trade-offs of these configurations.

4.2.2 Pin Location

Figure4.2 shows several strategies for positioning the pins of each EB. Strategy (a) has the highest

I/O density, but may be suitable if signals from the I/O block are to be combined using a small set of

CLBs. Strategies (b), (c), (d) have lower I/O density, but may result in longer connections if signals

from more than one side of the EB are to be connected to the same CLB(s).

4.2. Interface Parameters: Single EB Type 73

���������
	��������� �����
� � � � �����������
� � � ���
��� �"!� �

��������# 	 $�% % �&������ �
��� � � � � ������� �"!� �

�������('�	
�&������ ��) �
� � �(��) ����% ���
���"!���

* ��+ * ��+

* , + �����
��-�	��������� �
��.�� � ��.���������� ��� �������
�/!���

* ��+

0�1 0�10�10�1

0�1 0�10�10�1

0�1 0�10�10�1

0�1

0�1

0�1

0�1

0�1

0�1

0�1

0�1

Figure 4.1:Various positions of the EBs relative to the fine-grained CLBs

� �

��� � � � � 	
 � � ��� � � � � � � � � �

� �

��� � � � � 	
 � � ��� � � � � � � � � �

CLBs connect to one side
of EB with highest I/O
density

CLBs connect to three
sides of EB

� �

��� � � � � 	
 � � ��� � � � � � � � � �

CLBs connect to two
sides of EB

� �

��� � � � � 	
 � � ��� � � � � � � � � �

CLBs connect to four sides
of EB with lowest I/O
density

(a) (b)

(c) (d)

Figure 4.2:Different pin positions in EB

74 Chapter 4. Interface between Coarse/Fine-grained Logic

4.2.3 Interconnect Flexibility

The width of the channels surrounding the EB has a significant impact on the routability of the device.

Since our EB has a large number of pins, congestion around the EB may happen so it is desirable to

relieve this congestion by using wider channels.

4.2.4 EB Aspect Ratio

Several layouts of each embedded block are possible. We consider various aspect ratios as shown in

Figure4.3. The I/O density would be different as they have different perimeters. This may affect the

performance of the system.
EB (1:2)

EB
(1:1)

EB
(1:4)

EB
(1:8)

Figure 4.3:Different aspect ratio of EB

4.3 Interface Parameters: Multiple EB Type

We also study the interface between multiple EB types and the fine-grained fabric. In this case,

connections exist between the two types of EBs and also between EBs and CLBs. The best interface

interface architecture may be different to the single type EB FPGA. Therefore, we investigate the

following parameters for the hybrid FPGAs with two types of embedded blocks.

4.3. Interface Parameters: Multiple EB Type 75

4.3.1 EB Position

We arrange the different EB types in various ways as shown in Figure4.4. We consider three different

arrangements. The first type places the smaller EBs in columns next to the larger EBs. The second

type places the smaller EBs around a group of larger EBs. The third type places the smaller EBs

around individual larger EBs.

���������
	����� ���������������
���
��� � ��������������� ��� ���������

����������	� �� ��������!�� ��� ���"���#�
$ �%����� � ������������� �
������� ���&�#�
�����"�%'��#�

�������"�%	�����(�)*� ��� ���"���+$ �
����� � �����������"���,���
��� ���&�#�
�����*�%'��#�

- ��. - ��.

- (.

/�0�1

/�0�1

/�0�1

/�0�1

23
4

23
4

23
4

23
4

23
4

23
4

23
4

23
4

23
4

23
4

/�0�1

/�0�1

/�0�1

/�0�1
23
4
23
4
23
4
23
4

23
4

23
4

23
4
23
4

23
4

23
4
23
4
23
4

/�0�1

/�0�1

/�0�1

/�0�1

23
4
23
4

23
4
23
4

23
4

23
4

23
4
23
4

23
4

23
4
23
4

23
4

23
4
23
4

23
4

23
4
23
4

23
4
23
4

23
4

Figure 4.4:Various positions of the multiple EBs

4.3.2 Interconnect Flexibility

Embedding additional EBs may change the amount of routing resources that are needed. The con-

nections between EBs are usually bus based which require more routing resources. It is because if

the I/O density of the additional EB is larger (the I/O density of BRAM is higher than our proposed

FPU as shown in Chapter3, Table3.4), more wires may be needed to connect to another EB within a

76 Chapter 4. Interface between Coarse/Fine-grained Logic

certain area. And the congestion in this area increases and may reduce the performance of the FPGA.

4.4 Methodology

We employ an empirical methodology to examine the impact of the interface parameters described

in the previous section. This section employ the benchmark circuits in Chapter2, Section2.5.3, the

CAD tool VPH in Chapter3, Section3.3, and the baseline model described in Chapter3, Section3.2.

For the experiment involving embedded memories, we add BRAMs to the benchmark circuits. It is

more realistic to store the input and output data of the applications in internal BRAMs rather than

store the data in off chip memories. The BRAM data lines are connected to primary input/output of

the benchmarks. And the BRAM address lines are connected to counters which are also added to

the benchmarks. The adders do not affect the performance because they are implemented by using

fast carry chain, the delay is small compare to the BRAM and the FPU. The benchmark circuits now

contain two different types of EB: (1) FPUs and (2) BRAMs. The number of BRAMs used in each

benchmark circuit is shown in Table4.1.

Table 4.1:Number of BRAM used in each benchmark

Benchmarks dscg bfly fir ode mm3 bgm syn2 syn7
No. of BRAM 22 40 12 25 12 18 18 18

4.5 Result: Single EB Type

In this section, the impact of the interface parameters in Section4.2 on hybrid FPGAs is studied.

In the experiments conducted, the channel width used is 20% more than minimum channel width to

prevent the result being affected by congestion.

4.5. Result: Single EB Type 77

4.5.1 EB Position

We first examine how the position of the EBs affects the overall performance of the device. As shown

in Figure4.1, we consider positioning the EBs both around the periphery of the device, as well as in

the centre. Intuitively, positioning the EBs in the centre will lead to shorter wirelengths for wires that

connect multiple EBs. However, positioning the EBs around the periphery may cause less congestion

since the EBs will be more spread out. In type 1 and 2 positionDeb= 0 for the EBs on the same row.

Type 3 hasDeb = 0 for all EBs, while type 4 hasDeb = 9.

Delay Impact

Figure4.5shows the delay results for each of the positioning strategies described in Figure4.1. The

best strategy is type 3, in which the EBs are in the centre of the device, surrounded by a sea of CLBs.

It achieves at least 16% in speed improvement compared to the other positioning strategies. The

critical paths of our circuits tend to include nets that connect multiple EBs; thus placing the EBs close

to each other is beneficial.

9.5

10

10.5

11

11.5

D
el

ay
 -

av
er

ag
e

o
f

 4
 I/

O
 p

in

si
d

es
(n

s)

Average of the benchmarks

8.5

9

9.5

10

10.5

11

11.5

type1 type2 type3 type4

D
el

ay
 -

av
er

ag
e

o
f

 4
 I/

O
 p

in

si
d

es
(n

s)

Single-EB Type - EB position

Average of the benchmarks

Figure 4.5:Delay against various EBs positions for the single EB type FPGA (in Figure4.1)

78 Chapter 4. Interface between Coarse/Fine-grained Logic

Routing Area Impact

We investigate the routing area used in the different types of positioning. Routing area is more accu-

rate than minimum channel width for evaluating routing resources as it accounts for the area of the

connection multiplexers and tri-state buffers in routing switches in term of minimum-width transistors

(details are in Chapter3, Section3.2.2). Figure4.6 shows that type 4 configuration consumes less

routing resources, which is only 62.5% of that of type 3 and about 50% of type 1 and 2. There are a

lot of connection from the I/O pins of FPGA to the EBs and between EBs. In type 1 and type 2, the

EBs are positioned very close to the I/O pins, which makes those regions very congested. Similarly,

the EBs are close to each others in type 3 configuration. This leads to high routing demand near the

edge of EBs for the connection between them. Type 4 can evenly distribute the routing nets all over

the FPGA. This configuration requires less routing channels and leads to smaller routing area.

Although type 3 requires more routing resources in the baseline architecture, we will show in Chap-

ter5 that routing optimisation can improve the routing area with similar speed in type 3 position.

10000

15000

20000

25000

30000

35000

R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

Tr

an
si

st
o

r
(p

er
 c

lb
)

Average of the benchmarks

0

5000

10000

15000

20000

25000

30000

35000

type1 type2 type3 type4

R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

Tr

an
si

st
o

r
(p

er
 c

lb
)

Single-EB Type - EB position

Average of the benchmarks

Figure 4.6:Routing area against various EBs positions for the single EB type FPGA (in Figure4.1)

4.5.2 Pin Location

We next consider the effect of I/O pin position on the periphery of each EB. As shown earlier, pins

can be distributed evenly around the EB, or can be concentrated on one or more sides of the block.

4.5. Result: Single EB Type 79

Intuitively, distributing the pins evenly will lead to a lower I/O density, possibly reducing congestion

but may lead to longer wirelengths if pins from more than one side of the EB are connected.

8.5

9

9.5

10

10.5

11

11.5

D
el

ay
 (

n
s)

type3 type4

8.5

9

9.5

10

10.5

11

11.5

One side (density =
38.9 pins per slice

width)

Two sides (density =
18.8 pins per slice

width)

Three sides (density =
12.7 pins per slice

width)

Four sides (density =
9.4 pins per slice

width)

D
el

ay
 (

n
s)

I/O Pin Location

type3 type4

Figure 4.7:Delay against various I/O configurations for the single EB FPGA (in Figure4.2) with
type 3 and type 4 EB position

10008.5

20008.5

30008.5

40008.5

50008.5

60008.5

R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

 T
ra

n
si

st
o

r
(p

er
 c

lb
)

type3 type4

8.5

10008.5

20008.5

30008.5

40008.5

50008.5

60008.5

One side (density =
38.9 pins per slice

width)

Two sides (density =
18.8 pins per slice

width)

Three sides (density
= 12.7 pins per slice

width)

Four sides (density =
9.4 pins per slice

width)R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

 T
ra

n
si

st
o

r
(p

er
 c

lb
)

I/O Pin Location

type3 type4

Figure 4.8:Routing area against various I/O configurations for the single EB FPGA (in Figure4.2)
with type 3 and type 4 EB position

We selected the fastest EB position FPGA (type 3) and smallest EB position FPGA (type 4) to examine

the pin location of EBs. The results are shown in Figure4.7for delay and Figure4.8for routing area.

The average critical path delay of the circuit is similar for all I/O pin configurations in both type 3

and type 4 EB position. The maximum variation is less than 1.9%. The I/O pins configuration does

not have significant impact on delay.

On the other hand, Figure4.8 shows that the routing demand in each channel can be reduced by

distributing the pins evenly around each EB. By comparing to the configuration in which all pins are

80 Chapter 4. Interface between Coarse/Fine-grained Logic

on one side of the block, evenly distributing the pins reduces the routing resources by 37.9% in type 3

EB position and 62.4% in type 4 EB position. We conclude that this is the best choice.

4.5.3 Interconnect Flexibility

We next consider the width of the channels surrounding the EBs. Intuitively, there is a high pin density

on each side of each EB; this may place additional demands on the routing fabric near the EBs. If the

fabric cannot provide the required flexibility, circuitous routes may be required, leading to increased

delay.

0

2

4

6

8

10

12

14

0 +10 +20 +30 +40 +50 +60 +70 +80 +90 +100

A
ve

ra
g

e
d

el
ay

(n
s)

No. Tracks deviation from channel width*1.2

type3 type4

0

2

4

6

8

10

12

14

0 +10 +20 +30 +40 +50 +60 +70 +80 +90 +100

A
ve

ra
g

e
d

el
ay

(n
s)

No. Tracks deviation from channel width*1.2

type3 type4

Figure 4.9:Average delay against channel width for the single EB type FPGA

The results in Figure4.9 show the effect of routing channel width on delay. For routable circuits,

rather surprisingly, the average variation is less than 1.7%. We believe this is due to critical paths

being routed efficiently so once the circuit is routable, channel width does not affect delay.

4.5.4 EB Aspect Ratio

Finally, we consider how the aspect ratio of each EB affects the overall performance of the FPGA. In

this experiment, the area of EB is fixed, but the aspect ratio is changed. Intuitively, changing aspect

ratio will change the distance between pins on different EBs; this leads to change in the delay of the

nets connecting these pins. The aspect ratio of the FPGA is also changed according to the aspect ratio

of EBs.

4.5. Result: Single EB Type 81

Delay Impact

We modify the shape of the EBs from rectangular (aspect ratio of 1:8) to square (aspect ratio of

1:1). The results in Figure4.10 show that square EBs (1:1) are the most efficient in speed for all

applications. This results in a 18.5% speed improvement compared to the 1:8 EBs in type 3 EB

position and 20.1% speed improvement in type 4 EB position. Square EBs lead to a better worst-case

delay between the EBs, shortening the critical path in our benchmark circuits.

0

2

4

6

8

10

12

14

1:8 (I/O density =
4.7)

1:4 (I/O density =
7.4)

1:2 (I/O density =
8.8)

1:1 (I/O density =
9.4)

D
el

ay
 -

av
er

ag
e

o
f

4
I/O

 p
in

 s
id

es
 (

n
s)

Aspect ratio of EB

type3 type4

0

2

4

6

8

10

12

14

1:8 (I/O density =
4.7)

1:4 (I/O density =
7.4)

1:2 (I/O density =
8.8)

1:1 (I/O density =
9.4)

D
el

ay
 -

av
er

ag
e

o
f

4
I/O

 p
in

 s
id

es
 (

n
s)

Aspect ratio of EB

type3 type4

Figure 4.10:Average delay against various EBs’ shape for the single EB type FPGA

Routing Area Impact

In contrast to the speed, rectangular shape can help to spread out the routing stress near EBs. As

shown in Figure4.11, the 1:8 EBs save at most 26% the routing resources in type 3 EB position

when comparing to the other aspect ratio EBs. It is because the perimeter is longer and I/O density is

smaller in higher aspect ratio EB. The I/O density is 4.7 in 1:8 EBs while 9.4 in 1:1 EBs. Therefore,

less routing demand is introduced at the edge of higher aspect ratio EB. This effect is less significant

if the routing structure is optimised like the case of type 4 EB position.

The routing area of 1:8 EBs is even 7.9% more than others in type 4 EB position. It is because the

aspect ratio of FPGA is also changed when changing the EB aspect ratio. In type 4 EB position, the 16

82 Chapter 4. Interface between Coarse/Fine-grained Logic

0

5000

10000

15000

20000

25000

30000

35000

1:8 (I/O density
= 4.7)

1:4 (I/O density =
7.4)

1:2 (I/O density =
8.8)

1:1 (I/O density =
9.4)

R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

 T
ra

n
si

st
o

r
(p

er
 c

lb
)

Aspect ratio of EB

type3 type4

0

5000

10000

15000

20000

25000

30000

35000

1:8 (I/O density
= 4.7)

1:4 (I/O density =
7.4)

1:2 (I/O density =
8.8)

1:1 (I/O density =
9.4)

R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

 T
ra

n
si

st
o

r
(p

er
 c

lb
)

Aspect ratio of EB

type3 type4

Figure 4.11:Average routing area against various EBs’ shape for the single EB type FPGA

EBs are evenly distributed along the vertical and horizontal axises of FPGA (arranged as 4x4 grids of

EBs). The width of the FPGA is shorter for higher aspect ratio EBs, therefore the horizontal distance

between EBs (Deb) is shorter. The minimum separation of 1:8 EBs is 2 CLBs away (Deb = 2),

while 1:1 EBs haveDeb = 9. The routing congestion near the edge of EBs cannot be resolved in

short separation distance (see Chapter5, Section5.3.1). As a result 1:8 EBs consume more routing

resources than others. We will consider the interface after optimised the routing structure in Chapter5,

Section5.4, since the routing area and delay is different in the optimised hybrid FPGA.

4.6 Result: Multiple EB Types

After finding the best parameters for the single EB type case for speed or area, we examine how

embedding more than one type of EB affects performance and routing demand. In our experiments,

we explore the EB position and the interconnect flexibility of the fastest system (type 3 EB position),

since the routing structure is not optimised here. We will examine the updated interface after op-

timised the routing structure in Chapter5, Section5.4. The size of BRAM is2×4 CLBs in these

experiments.

4.6. Result: Multiple EB Types 83

4.6.1 EB Position

We first explore the effect of the BRAMs position for the floating point hybrid FPGA.

Delay Impact

Figure4.12shows the best location is between floating point units which is the type C configuration

in Figure4.4. It is at least 2.5% faster than other configurations. This configuration performs better

than the traditional column based BRAM (type A in Figure4.4) used in Xilinx devices because the

connections between floating point units and BRAMs are reduced in this case. In a similar way

as shown in Section4.5.1, placing the embedded blocks closer together reduces the length of the

bus-based connections between the embedded blocks which improves performance. In addition, it is

reasonable to have 3.3% higher delay than no BRAM architecture because the the BRAMs separate

large EBs such that wires between EBs are longer which causes longer net delay.

9.4

9.6

9.8

10

10.2

10.4

D
el

ay
 -

av
er

ag
e

o
f

 4
 I/

O
 p

in

si
d

es
(n

s)

Average of the benchmarks

9

9.2

9.4

9.6

9.8

10

10.2

10.4

type A type B type C no BRAM

D
el

ay
 -

av
er

ag
e

o
f

 4
 I/

O
 p

in

si
d

es
(n

s)

Multiple-EB Types - EB position

Average of the benchmarks

Figure 4.12:Delay against various EBs positions for the multiple EB types FPGA (Figure4.4)

Routing Area Impact

We also examine the routing area of the multiple EB types FPGAs. We expect the routing demand

should be increased after adding high I/O density BRAM between large EBs. Surprisingly, type C

84 Chapter 4. Interface between Coarse/Fine-grained Logic

configuration uses less routing resources than others by at least 51.8%. And it also reduces 43.7% of

routing area in no BRAM FPGA. In type A and type B configuration, the congestion is near the large

EBs as they are closely positioned together. Additional BRAM causes more routing near BRAM and

requires more routing resources. However in type C configuration, some unused BRAMs separate

the large EBs and create more routing space for the connection between EBs. This resolves the

congestion at the edge of EBs. The reduction of routing demanded between EBs is more significant

than the routing resources required by nets from BRAMs to EBs. As a result, there is major reduction

of routing area by using the type C configuration.

10000

15000

20000

25000

30000

35000

40000

45000

R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

Tr

an
si

st
o

r
(p

er
 c

lb
)

Average of the benchmarks

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

type A type B type C no BRAM

R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

Tr

an
si

st
o

r
(p

er
 c

lb
)

Multiple-EB Types - EB position

Average of the benchmarks

Figure 4.13:Average routing area against various EBs positions for the multiple EB types FPGA
(Figure4.4)

4.6.2 Interconnect Flexibility

Finally, we investigate routing resources for the multiple EB system. Figure4.14 shows delay for

additional channels to 1.2× of minimum channel width. The channel width is observed to be nearly

constant which is similar to the case discussed in Section4.5.3.

4.7. Summary 85

7

8

9

10

11

D
el

ay
(n

s)

type1 type2 type3

5

6

7

8

9

10

11

0 +10 +20 +30 +40 +50 +60 +70 +80 +90 +100

D
el

ay
(n

s)

Tracks deviation from channel width*1.2

type1 type2 type3

Figure 4.14:Delay against channel width for multiple EB types FPGA

4.7 Summary

This chapter investigates the architecture of the programmable interconnect between coarse-grained

blocks and the fine-grained fabric in domain-specific FPGA with embedded floating point blocks.

Specifically, we first examine the position of the embedded blocks (EBs) within the FPGA, the place-

ment of the pins on the periphery of the EB, the width of the routing channels surrounding the EB,

and the aspect ratio of the EB for single EB type FPGA. After that we explore the EBs position and

the channel of multiple EB types FPGAs. We find that (a) the EBs should be positioned close to

each other in the middle of the chip for higher speed while positioned evenly in FPGA for better

area, (b) the EB’s pins should be distributed evenly around the EB, (c) the width of the channels

surrounding the EB have little impact on circuit speed, (d) a square EB leads to the most efficient

implementation for speed while a rectangle EB reduces the routing demand, (e) smaller EBs should

be located between large EB to achieve higher speed, and (f) inserting smaller EBs between large EBs

leads to reduction of routing resources being consumed in highly congested hybrid FPGA. Based on

the results in this section, the recommendations of designing hybrid FPGA on baseline architecture

for different optimisation goal are summarised in Table4.2. Although our results are specific to the

baseline architecture studied, we believe they can be applied to FPGAs containing other types of em-

bedded blocks for computation. Also we will optimise the routing architecture in next chapter based

on the results in this chapter.

86 Chapter 4. Interface between Coarse/Fine-grained Logic

Table 4.2:Recommendations of designing hybrid FPGA on baseline architecture for different opti-
misation goals

Single EB type
Recommended configuration

Goal EB position Pin location EB aspect ratio Channel width

Speed positioned closely in arranged evenly on 1:1 1.2× of minimum
the middle of the FPGA 4 sides of EB channel width

Area positioned evenly arranged evenly on 1:1 1.2× of minimum
in the FPGA 4 sides of EB channel width

Multiple EB types, include large EB and small EB
Recommended configuration

Goal EB position Pin location EB aspect ratio Channel width

Speed small EBs are positioned arranged evenly on 1:1 1.2× of minimum
between closely packed large EBs 4 sides of EB channel width

Area small EBs are positioned arranged evenly on 1:1 1.2× of minimum
between closely packed large EBs 4 sides of EB channel width

Chapter 5

Routing Optimisation

This chapter optimises the routing structure for hybrid FPGAs, in which large and high I/O density

coarse-grained units are embedded within fine-grained logic fabric. This significantly increases in

the routing resources requirement between elements. We investigate the routing demand for hybrid

FPGAs over a set of domain-specific applications. The trade-offs in delay, area and routability of

the separation distance between coarse-grained blocks are studied. The effects of adding routing

switches to the coarse-grained blocks and using wider channel near them to meet extra routing demand

are examined. Our optimised architectures are compared to an existing column based architecture.

Finally, we discuss the ways to improve the interface between coarse-grained/fine-grained logic of

the optimised hybrid FPGA.

5.1 Motivation

The key differentiating feature to traditional fine-grained FPGA in our hybrid FPGAs proposed in

Chapter3 is the presence of large floating point units (FPUs) as embedded blocks (EBs). It has been

shown that the presence of a large embedded block affects the routing demand within the fine-grained

logic fabric [58]. Altera [42] has removed the large MegaRAM Blocks in Stratix-III and Stratix-IV

devices since these large blocks have created a disruption for the routing fabric. In particular, Smith et

al. [90] have presented a detailed wirelength model that includes the impact of embedded blocks, and

87

88 Chapter 5. Routing Optimisation

applies this model to a hybrid FPGA containing floating point embedded blocks. The results from the

model suggest that the expected wirelength in the general-purpose logic surrounding the embedded

block can be as much as 90% larger than if the embedded block does not exist. This suggests that the

extra routing demands imposed by the large embedded block should be accommodated in the design

of the routing architecture of the fine-grained logic. Existing commercial devices such as Xilinx

Virtex-5 [3] arrange the small embedded blocks like memory and DSP in columns. This arrangement

may not be efficient for large blocks.

Therefore, we examine the routing structure of the hybrid FPGA with large embedded coarse-grained

blocks. We then propose three methods of augmenting the fine-grained routing architecture: (1) sepa-

rate the embedded blocks to reduce the routing stress, (2) add routing switches on top of the embedded

block to increase routability, (3) use heterogeneous channel widths near the embedded blocks to meet

the additional routing requirement and compare with column base architecture.

We examine the routing architecture through the benchmarks in Chapter2, Section2.5.3. We also em-

ploy the FPU as large EB, baseline hybrid FPGA and the VPH work flow described in Section3.1, 3.2

and3.3of Chapter3 respectively.

5.2 Routing Demand

This section shows experimentally, that the presence of the large EBs causes an increase in the routing

requirements near them.

Commercial devices [2,3] embed smaller blocks such as DSP and memory in column based arrange-

ment as shown in Figure5.1. The DSP and memory are normally less than 10 CLB tiles. The column

based architecture may not be efficient for large embedded coarse-grained blocks, with over 100 CLB

tiles. Therefore, we compare the performance of the fine-grained FPGA, column based FPGA, and

the baseline architecture for large EBs.

5.2. Routing Demand 89

5.2.1 Netlength Demand

First, we study the average netlength required. The average netlength is important since it determines

the number of routing resources that must be included in an FPGA, longer netlength requires more

routing resources for a net and results in longer net delay.

We examine the netlength and wirelength of fine-grained FPGA, column based and baseline hybrid

FPGAs with FPUs as embedded blocks. The EBs in the baseline architecture are closely packed

together, withDeb=0. The aspect ratio of EBs in column based FPGA is 2 (rectangular shape, 9x23

CLB tiles), and 4 EB columns are evenly distributed which is similar to Figure5.1.

Table5.1shows that on average, the embedded FPUs in the baseline FPGA increase the netlength of

a net by 1.4 times compared to the fine-grained FPGA. In a fine-grained FPGA, all the user logic is

implemented in CLBs, which are more flexibility to move closer for shorter connection. In a hybrid

FPGA, most of the computation logics and nets are in the fast FPUs, which reduces the CLB usage

used by 5.4 times and number of nets by 7.7 times. Therefore, the embedded FPU improves the area

and delay.

The remaining small amount of nets in the hybrid FPGA are used to connect EBs and CLBs. However,

the large EBs with longer perimeter are not flexible to move. They require long length routing nets to

connect to other elements.

The column based FPGA is 20.8% slower and has 18.2% longer netlength than the baseline FPGA.

Floating point applications require a series of addition, subtraction and multiplication. The adders

and multipliers are normally connected in series (circuit diagram in Chapter2, Section2.5.3). The

tall FPU and the long distance between FPU columns cause the longer nets and delay between EBs,

as shown in Figure5.1. This also explains why the FPUs should be closely packed together in the

middle of FPGA as this can reduce the length of a net.

5.2.2 Congested Region

Next, we investigate the most congested region in both baseline and column based hybrid FPGA.

90 Chapter 5. Routing Optimisation

Table 5.1:Average netlength, delay and area of FPGAs over the 8 benchmarks

FPGA Average Av. total Av. no. Av. Av.
netlength wirelength of nets delay(ns) CLB area

Fine-grained 15.15 450,439 31,527 16.93 7,394
Baseline 36.61 102,549 4,089 9.37 1,379
Column based 43.30 120,687 4,089 11.32 1,379

EB

EB

EB

EB

EB

EB

Longer net because of the long separation between EBs in
colum n based arrangem ent and the long ed ge of rectangle EBs

Figure 5.1:A column based hybrid FPGA

We examine the wire segments at the edge and one segment next to the edge of EB in the baseline

FPGA. On average, tracks in these segments are only 17.82% of the total tracks in the FPGA, but

there are about 44% of the routed tracks used for routing near the edge, making it the most congested

region.

We usebgmas an example to show the congested region.bgmuses nearly all CLBs in the baseline

and the column based FPGA. Figure5.2and Figure5.3show the track usage along X and Y channel

of bgmin the baseline FPGA and the column based FPGA respectively. The peak track usage in both

systems are at the edge of EBs. This congestion is caused by the large amount of net connecting from

EB to CLBs or another EB. Many CLBs move near to the EBs to reduce the net delay. Therefore,

the wire density at this area is very high. As shown in the figures, the column based FPGA spreads

the tracks better than the baseline one. The track usage at the EB edge in the column based FPGA is

36.2%, but 44.2% in the baseline FPGA inbgm. And the overall EB edge track usage in the column

based FPGA is 35.8%. The difference is because of the EB columns are evenly distributed in the

column based system. There are enough space to place CLBs around, so the density of connection in

5.3. Optimisation of Routing 91

this area is reduced and spread to another region. As a result of the less congested region and higher

routability, the column based FPGA uses minimum of 83.2 routing channels for successful routing,

which is 40% less than the baseline FPGA (137.5 tracks).

Although the speed of the baseline FPGA is much faster than the column based FPGA, more routing

tracks are used, which lead to 50.4% decrease in area-delay product. The area-delay product of the

baseline FPGA is 345,212 and column based FPGA is 229,582. In order to retain the speed advantage

of the baseline FPGA, we propose three routing optimisation schemes to reduce its routing area.

�

� �

� �

� �

� �

� � �

� � �

� � �

� � �

� � �

� � �

� �� �� �� �� �� �� �� 	�
� ���

�
��
���
��
�	

��

��
��
�

��

���������	
���	�

��� �����	�
������� ��� �����	�
�������

� �	��
� �������� ��� � ��� � � �����
� �� �!��� �"�� !�# ��" �� $!� $" � %#
� �	��
� ������&�� ��� � ��� � � �����
����� " �� �$�� !�# ��" �� $� �� $�!�� %%

�

� �

� �

� �

� �

� � �

� � �

� � �

� � �

� � �

� � �

� �� �� �� �� �� �� �� 	�
� ���

�
��
���
��
�	

��

��
��
�

��

���������	
���	�

��� �����	�
������� ��� �����	�
�������

� �	��
� �������� ��� � ��� � � �����
� �� �!��� �"�� !�# ��" �� $!� $" � %#
� �	��
� ������&�� ��� � ��� � � �����
����� " �� �$�� !�# ��" �� $� �� $�!�� %%

Figure 5.2:Track usage along X-Y channels ofbgmin the baseline FPGA (100x100 CLBs)

5.3 Optimisation of Routing

In the previous section, we have showed that embedding large EBs leads to increase in routing de-

mand. This routing demand cannot be avoided unless remove the large block, likes MegaRAM in

Stratix-I and -II. In this section, we study the trade-offs of three improved architectures to solve the

routing requirement, which minimise the area and delay.

92 Chapter 5. Routing Optimisation

�

� �

� �

� �

� �

� � �

� � �

� � � � � � � � � � � � � � � 	 �
 � � ��

�
��
���
��
�	

��

��
��
�

��

���������	
���	�

��� � � � � � 	 �
 �� � � � � � � �� � � � � � 	 �
 �� � � � � �
� �	��
�� �	������ ��� � ��� � � ����
� ������� �� �� �! � �" ��!�#�� "�$���#��
� �	��
�� �	���%�� ��� � ��� � � ����
� & � ����� ��# � �" ��!���� "�� ��'�"�� #�&

Figure 5.3:Track usage along X-Y channels ofbgmin the column based FPGA (93x110 CLBs)

5.3.1 Separation Distance between EBs

The distance between EBs (Deb) can be varied in the baseline architecture as shown in Chapter3,

Figure3.6. LargerDeb can reduce the routing stress to use less routing channel like column based

FPGA, but the trade-off is having longer net delay. We examine the trade-offs of differentDeb in

delay, minimum channel width and routing area in the baseline architecture without switches in EB.

We place and route the benchmarks in differentDeb by using 20% tracks more than minimum channel

to avoid congestion, which may affect timing analysis. The dot line in Figure5.4shows the minimum

channel width is optimised atDeb=4, which reduces 66.07% of channel width atDeb=0. That means

the routing stress around EBs is minimum when the EBs are 4 CLBs away from each other. Further

increases in distance cannot reduce the usage of channel, but increases the delay by at most 15%,

which is shown in Figure5.5. It is expected as the nets from one EB should use longer wires to

reach another EB and resulted in lower speed. In addition, the routing area consumption is following

the same trend of minimum channel width, where minimum area is atDeb=4. This is because more

channels use more routing resources.

Finally, we study the routing area-delay product to determine whichDeb is the most optimised for

both area and delay. The result in Figure5.6 (dot line) showsDeb=4 is the best combination, which

5.3. Optimisation of Routing 93

is at least 6% better than others. The routing area decreases since less routing channels are used. The

improvement of routing area is more significant than loss in speed, and thereforeDeb=4 achieve the

best combination of low delay and high area-efficient design.

The limitation of this method is depended the area of the hybrid FPGA and number of EBs. We

cannot use this optimisation method if there is not enough space to separate the EBs.

��

��

� �

���

���

���

���

� � � � �

�
��
���
��

��
	

��
��
�
��
��
��

���

����� ��� � 	
����� ���� � ��� � 	
����� ����

Figure 5.4:Average minimum channel width of the benchmarks at differentDeb

��� �

��� �

��� �

��� �

� �

� � � �

� � � �

� � � �

� � � �

� � � � �

��
���

���
	

���

���	
����	������ �
����	������

Figure 5.5:Average delay of the benchmarks at differentDeb

94 Chapter 5. Routing Optimisation

�

� ����

������

�� ����

������

�� ����

� �����

� � ����

������

� � � � �

��
��

��
���

�

���

��������	
������ � ����	
������

Figure 5.6:Average area*delay of the benchmarks at differentDeb

5.3.2 Additional Routing Switches in EBs

In this section, we show that if we extend the routing grid over the embedded block by adding switches

within the embedded block, routability can be improved. Figure5.7 shows the additional switches

which allow the direction of signals inside EBs to be changed.

EB

������

��� �

��� �

��� �

� �

� �

switch
b o x e s e x ist
in sid e E B

� �

C ha n g in g
o f wir e

d ir e ctio n is
a l l o we d in

E B

Figure 5.7:Additional routing switches in an EB

5.3. Optimisation of Routing 95

Area Overhead of Routing Switches

The routing wires and transistors of switch boxes are on different metal layers in the FPGA. When

the channel widthW increases, the area of routing wires and switch boxes increase by different

amount. The switch box includes active component switches and SRAM to store configuration bits

(the transistors). Schmit and Chandra [139] have found that 100% of the area underneath the switch

box is occupied by switch point transistors whenW < 49 in a 0.35µm, four-metal layer process

technology. Otherwise, the switch box area is mainly occupied by the signal routing wires. The

wirebound of the routing area isW=49. The wires for the SRAM only occupy the first two metal

layers, while all signals wires can occupy any upper layers. Figure5.8 illustrates an example of this

wirebound area concept. The area of switch box is larger than the routing wires in Figure5.8(a),

while the area of routing wires is larger than switch box active components in Figure5.8(b).

We adopt this result to estimate the area trade-off when adding switch boxes in a EB. We have added

70% of area to EB for signal routing wires as stated in Chapter3, Section3.2. Using the area of tri-

state buffers, wire width and spacing of 0.13µmprocess in Table3.5. We estimate the ratio of switch

box area to wire area is equal to 33.27/W, which meanW=33 is the wirebound area. Adding switch

boxes over these routing wires in EB is insignificant to the wires area if the channel width is greater

than 33. We need to account for the area overhead of the additional switches when the channel width

is less than 33, where the area of EB would be increased by 33.27/W.

Performance

We study the performance of adding switches in EB by using the same methodology as in Sec-

tion 5.3.1. The minimum channel width, delay and area-delay product in different EB separation

distances are shown in the solid line in Figure5.4, 5.5and5.6 respectively. There are no switch box

area overhead through out the experiment since the minimum channel width is about 50, the routing

wires are dominating the routing area.

Additional routing switches in EBs result in a significant reduction of 48.9% in the required routing

channel atDeb=0. This is because the additional routing switches split the long and inflexible straight

96 Chapter 5. Routing Optimisation

Switch Box
transistors
(Switch +
SRAMs)

Switch Box
transistors
(Switch +
SRAMs)

- Width of wire = W ��� � �
- Min. space between wire = W� � � ��� � � � � � 	
 � �
- Channel width = W
- Area occupied by signal wire = (W * (W � � � � ��� � � � � 	
 � � + W � � � �))

�

- Switch box width = W �
- Switch box height = H �
- Area of switch box = W � * H �

W �

H �

W * (W � � � ����� � � � � 	
 � � + W � � � �)

W
 *
(W

�� ���
�� �� �
��
���

+ W

�� ��

)

H � ’

W � ’

W’
 *
(W

�� � �
�� � �
!"#
$ %

+ W

�� � ’
)

W’ * (W � � � �&� � � � � � 	
 � � ' + W � � � � ’)

(a) W < wirebond area channel width,
The area is dominated by switch box active
components

W() * H () > (W * (W*,+ - .0/1+ 2 3 .0(4�5 6 3 + W /1+ 2 3))
7

W � ’ * H � ’ < (W’ * (W � � � ����� � � � � 	
 � � ' + W ��� � � ’)) �

(b) W’ < wirebond area channel width,
The area is dominated by the signal wires

WiresWires

Figure 5.8:The area dominated by active components of switch box or signal wires

wires inside EBs, which are more flexible to route a net.

However, the delay is at most 11.9% higher than without EB switches. For no EB switches, the long

segment in the EB is faster since the routing on this wire does not pass through a switch. And critical

paths can be routed on these fast tracks. The delay is generally increased for longer wire segment

not in the EB since the signal needs to pass through several internal switch points (fully populated

switches for wire segments are used) and the equivalent resistance is larger.

We verify this explanation by examining the delay at different segment length which is shown in

Figure5.9. As the length increases, the effect of the speed advantage of the long wires in EBs is less

significant compared to other wire segments. Therefore, the delay of the two systems are the same at

segment length 12, which is close to the width and height of the EB. The optimal speed is at segment

length 8 and the best area-delay efficient is at segment length 4, this matches the result in [22] for

different segment lengths.

Adding switches in the EB achieves the best area-delay product atDeb=1, which has the same perfor-

5.3. Optimisation of Routing 97

mance as no switches in EB atDeb=4. There is 65.69% reduction of area-delay product comparing

to the baseline architecture and 48.4% improvement of performance to the column base architecture

without switches in EB. By comparing the column base architecture with switches in EB, the opti-

mised baseline architecture consumes the same amount of routing area, but achieves 5.07% speed

improvement. The switches in EB increase the routability significantly, and separating EBs slightly

is enough to minimise the minimum channel width and obtains highest performance.

The limitation of this optimisation method is the extra effort of ASIC design of EB with switches.

With the additional routing switches, simple standard cell library ASIC EB design may not be suit-

able (an example of standard cell library ASIC design of floating point unit is shown in Chapter3,

Section3.1). Manual place and route of routing switches inside EB is required.

� �

� �

� �

� �

���

� �

��
���

���
	

��������	
������ � ����	
������

�

�

�

� �

� �

� �

� �

� �

���

� �

� � � �� ��

��
���

���
	

�������������	

��������	
������ � ����	
������

Figure 5.9:Average delay of the benchmarks at different segment length

5.3.3 Extra Routing Tracks

Betz et al. [21] have suggested using wider channel in the center of fine-grained FPGA. This archi-

tecture does not improve the routability. It is because all circuits are forced to route most of their

connections through the predefined wide channel. But those connections can be spread out in uni-

form FPGA. The large EBs introduce large routing demand at the edge of EBs, which cannot be

98 Chapter 5. Routing Optimisation

spread out easily. Therefore, in this section, we show how this extra routability can be provided with

low overhead by strategically inserting extra tracks in the channels surrounding the EBs.

{
{

D � � � � � =1, t h e s e g m e n t a n d t h e n e x t s e g m e n t s (+ 1/-1 s e g m e n t) o n
t h e e d g e o f E B a r e w i d e r

W i d e S e g m e n t
o c c u p i e d t h e

w h o l e r o w /c o l u m n ,
W i d t h = W*R � � � � �

N o r m a l
S e g m e n t ,
W i d t h = W

CLB

D � � � � � =1

EB

Figure 5.10:Extra routing tracks near the EB

Figure5.10shows an example of employing extra routing tracks around the EBs. The normal segment

width isW, Rextra is the ratio of the number of tracks in wider segment to the tracks in normal segment.

Dextra is the distance (in term of CLB length) from the edge of the EB, the width of the wider segment

is W ∗Rextra within this distance. We investigate the impact ofRextra andDextra on routability, area

and delay of the baseline hybrid FPGA and the optimised FPGA in previous sections. We select four

systems to evaluate this method:

(1) FPGA 1: Deb=0, no switches in EBs,

(2) FPGA 2: Deb=0, switches in EBs,

(3) FPGA 3: Deb=4, no switches in EBs,

(4) FPGA 4: Deb=1, switches in EBs.

The area-delay product of using extra routing tracks in these systems is shown in Figure5.11. Extra

routing tracks are efficient to increase the performance of the highly congestedFPGA 1 by 35.5% at

Rextra=3 andDextra=2. The reason is that the wide segment routes most of the high density connec-

5.4. Ways of Improving the Interface: Single EB Type Optimised FPGA 99

tions from EBs in the congested region, and only a small amount of connections are used in normal

segments. AsRextra increases, the number of tracks in normal segments decreases. This reduces the

routing area significantly. We find that the delay variation in each system is less than 3%. We believe

that once there are enough tracks to route, the router can route the net efficiently in the same system

although there are congestion.

Surprisingly,FPGA 3 is less efficient starting fromRextra=1.5 in bothDextra=1 andDextra=2. And

FPGA 4 does not improve by using extra routing tracks.FPGA 3 andFPGA 4 are very flexible to

route, but the minimum channel width cannot be further reduced. Therefore, the extra tracks near the

edge of EBs introduce additional area to the optimised system.

We further study the performance of highly congestedFPGA 1 by increasingRextra andDextra. Fig-

ure 5.12 shows that in general, the system is less efficient whenRextra >3 or Dextra >3. The best

area-delay product is atRextra=3, Dextra=3 or Rextra=3, Dextra=2, which is at least 3.9% better than

others. The normal channel width decreases by using larger values ofRextra andDextra, as there are

more connections near EBs routed on the wider channels. However, not all of the wires in the wider

channels are used for routing, especially the wires which are far away from EBs. The increase of

the unused extra wires is greater than the decrease of the wires in normal channel whenRextra >3 or

Dextra >3. The delay is nearly the same in differentRextra andDextra. As a result, there is minimum

area-delay product in this routing optimisation method. However, the best area-delay product of this

method is still 200% of the best area-delay of FPGA3 and FPGA4. Although this optimisation

method is not efficient than the previous two methods, this is easily implemented by adding extra

wires near EBs.

5.4 Ways of Improving the Interface: Single EB Type Optimised

FPGA

In Chapter4, we have studied the interface trade-offs between coarse and fine-grained logics for the

hybrid FPGAs without routing optimisation. The interface parameters may have different impacts on

the delay, area and routing flexibility in the optimised routing FPGA. Therefore we need to improve

100 Chapter 5. Routing Optimisation

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � 	 � � 	 �

� ��
� �
� �
�

� � ������� ����� ! " # $%�

� � ������� ����� ! " # $ &

� � ������& ����� ! " # $%�

� � ������& ����� ! " # $ &

� � ������' ����� ! " # $%�

� � ������' ����� ! " # $ &

� � �����%()����� ! " # $%�

� � �����%()����� ! " # $ &*%+ , - . /*%+ , - . /

Figure 5.11:The average area-delay product of the benchmarks at differentRextra andDextra values

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � 	 � � 	 �
 � �

 ���
� �
�� �
�

� � ������� � � � ! " # $ % � � � ������� � ��� ! " # $ % & � � ������� � ��� ! " # $ % '
� � ������� � � � ! " # $ % (� � ������� � ��� ! " # $ %)

* + , - . /* + , - . /

Figure 5.12:The average area-delay product of the benchmarks at differentRextra andDextra values
for FPGA 1

5.4. Ways of Improving the Interface: Single EB Type Optimised FPGA 101

the interface after we have optimised the routing architecture in the last section.

This section examines the same interface parameters as discussed in Chapter4, Section4.2. They

include: EB position, pin location of EB, interconnect flexibility and EB aspect ratio of the single

EB type hybrid FPGA. Assuming that we employ additional switches in EB andDeb=1 for type 3

EB position as the optimisation scheme for the studies. This scheme provides the highest routing

flexibility with a little decrease in speed.

5.4.1 EB Position

First, we revise the position of embedded block in the single EB type hybrid FPGA, which is defined

in Chapter4, Figure4.1. The delay and area impacts are shown in Figure5.13 and Figure5.14

respectively.

The delay impact is consistent with the result in Section4.5.1. The average delay of type 3 con-

figuration is 10.375ns, which is at least 8.6% less than other configurations. Surprisingly, the result

of routing area impact is different from Section4.5.1. It is because the congestion near the EBs is

completely solved after adding switches in EBs. However, type 1 and type 2 use 31% and 14% more

in routing area than type 3 (15 tracks and 6 tracks more in each channel) respectively. EBs are close

to I/O pads of FPGA in both type 1 and type 2, there are a lot of connections from I/O pads to CLBs

and EBs. This results in congestion near I/O pads and EBs and consumes more routing area.

5.4.2 Pin Location

Next, we explore the pin location of EB for the optimised system. The pin location configuration is

shown in Chapter4, Figure4.2. Type 3 and type 4 EB position are examined as the same as Chapter4,

Section4.5.2. Figure5.15shows the delay of different I/O configurations of EB. The delay of all I/O

configurations are similar in both type 3 and type 4 EB position, the deviation is less than 1.3%. This

matches the result in Chapter4, Section4.5.2. The I/O configuration does not have large impact on

delay. Type 4 EB position is slower than type 3 EB position since the EBs are far away from each

other, the connections between them are long.

102 Chapter 5. Routing Optimisation

10.5

11

11.5

12

12.5

-
av

er
ag

e
o

f
 4

 I/
O

 p
in

si

d
es

(n
s)

Average of the benchmarks

9.5

10

10.5

11

11.5

12

12.5

type1 type2 type3 type4

D
el

ay
 -

av
er

ag
e

o
f

 4
 I/

O
 p

in

si
d

es
(n

s)

Single-EB Type - EB position

Average of the benchmarks

Figure 5.13: Delay against various EBs positions for the single EB type FPGA (in Figure4.1),
switches are in EB

4000

6000

8000

10000

12000

14000

16000

R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

Tr

an
si

st
o

r
(p

er
 c

lb
)

Average of the benchmarks

0

2000

4000

6000

8000

10000

12000

14000

16000

type1 type2 type3 type4

R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

Tr

an
si

st
o

r
(p

er
 c

lb
)

Single-EB Type - EB position

Average of the benchmarks

Figure 5.14:Routing area against various EBs positions for the single EB type FPGA (in Figure4.1),
switches are in EB

5.4. Ways of Improving the Interface: Single EB Type Optimised FPGA 103

The routing area impact is consistent with non-optimised hybrid FPGA as shown in Figure5.16.

Four sides I/O connection has lowest I/O density which results in less routing area. The maximum

reduction is about 67% when comparing to one side connection. The main different to non-optimised

hybrid FPGA is the little deviation of routing resources using in both type 3 and type 4, which are

less than 3%. The routing congestion in both systems is resolved, therefore they have similar routing

demand for the same I/O density.

10

10.2

10.4

10.6

10.8

11

11.2

11.4

D
el

ay
 (

n
s)

type3 type4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

One side (density =
38.9 pins per slice

width)

Two sides (density =
18.8 pins per slice

width)

Three sides (density =
12.7 pins per slice

width)

Four sides (density =
9.4 pins per slice

width)

D
el

ay
 (

n
s)

I/O Pin Location

type3 type4

Figure 5.15:Delay against various I/O configurations for the single EB FPGA (in Figure4.2), type 3
and type 4 EB position, switches are in EB

10008.5

15008.5

20008.5

25008.5

30008.5

35008.5

40008.5

R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

 T
ra

n
si

st
o

r
(p

er
 c

lb
)

type3 type4

8.5

5008.5

10008.5

15008.5

20008.5

25008.5

30008.5

35008.5

40008.5

One side (density =
38.9 pins per slice

width)

Two sides (density =
18.8 pins per slice

width)

Three sides (density
= 12.7 pins per slice

width)

Four sides (density =
9.4 pins per slice

width)R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

 T
ra

n
si

st
o

r
(p

er
 c

lb
)

I/O Pin Location

type3 type4

Figure 5.16:Routing area against various I/O configurations for the single EB FPGA (in Figure4.2),
type 3 and type 4 EB position, switches are in EB

104 Chapter 5. Routing Optimisation

5.4.3 Interconnect Flexibility

In Chapter4, Section4.5.3, additional channels to 1.2× of minimum channel width does not have

significant impact on delay. We examine this interconnection flexibility in this section and the result

is shown in Figure5.17. The result is the same as the non-optimised hybrid FPGA as the critical paths

being routed efficiently so once the circuit is routable. Therefore the delay is nearly constant even

there are more tracks in a channel.

0

2

4

6

8

10

12

14

0 +10 +20 +30 +40 +50 +60 +70 +80 +90 +100

A
ve

ra
g

e
d

el
ay

(n
s)

No. Tracks deviation from channel width*1.2

type3 type4

0

2

4

6

8

10

12

14

0 +10 +20 +30 +40 +50 +60 +70 +80 +90 +100

A
ve

ra
g

e
d

el
ay

(n
s)

No. Tracks deviation from channel width*1.2

type3 type4

Figure 5.17:Average delay against channel width for the single EB type FPGA, switches are in EB

5.4.4 EB Aspect Ratio

Next we update the result of the EB aspect ratio after optimising the routing architecture by referring

to Chapter4, Figure4.3. In Figure5.18, we find that higher aspect ratio EB introduces large delay,

where 1:1 EB aspect ratio is at most 10% less than others in type 3 EB position and 20.5% less than

others in type 4 EB position. The tall of EB introduces long connections between EBs.

In Chapter4, Section4.5.4, we show that longer perimeter in higher aspect ratio EB can reduce

the routing demand. Contradictorily, there are no significant improvement of routing area in highly

optimised routing architecture in both type 3 and type 4 EB position. The average deviation of routing

area is about 2% and 3% in type 3 and type 4 EB position respectively. The additional routing switches

in EB allow very flexible routing and all EBs are separated by 1 CLB. The congestion near the edge

5.4. Ways of Improving the Interface: Single EB Type Optimised FPGA 105

4

6

8

10

12

14

16

av
er

ag
e

o
f

4
I/O

 p
in

 s
id

es
 (

n
s)

type3 type4

0

2

4

6

8

10

12

14

16

1:8 (I/O density =
4.7)

1:4 (I/O density =
7.4)

1:2 (I/O density =
8.8)

1:1 (I/O density =
9.4)

D
el

ay
 -

av
er

ag
e

o
f

4
I/O

 p
in

 s
id

es
 (

n
s)

Aspect ratio of EB

type3 type4

Figure 5.18:Average delay against various EB aspect ratio for the single EB type FPGA, switches
are in EB

of EBs is resolved, therefore the high I/O density EB (square EB) requires similar routing resources

as lowest I/O density EB (1:8 EB aspect ratio).

5.4.5 Area-Delay Product Comparison

Finally, we compare the area-delay product of four selected systems with and without routing optimi-

sation which achieve better speed or routing area, they are:

1. FPGAA - Type 3 EB position, no switches in EB, 4 sides I/O configuration, 1:1 EB aspect

ratio (Advantage in speed),

2. FPGAB - Type 4 EB position, no switches in EB, 4 sides I/O configuration, 1:1 EB aspect ratio

(Advantage in routing area),

3. FPGAC - Type 3 EB position, switches in EB, 4 sides I/O configuration, 1:1 EB aspect ratio

(Advantage in routing area),

4. FPGAD - Type 4 EB position, switches in EB, 4 sides I/O configuration, 1:1 EB aspect ratio

(Advantage in routing area).

106 Chapter 5. Routing Optimisation

The area-delay product of the four systems is shown in Figure5.19. Although FPGAA is faster than

the second fast one (FPGAC) by 8.7%, it is highly congested at the edge of EBs, which requires large

routing area and leads to high area-delay product. FPGAC has the best area-delay product among

the four systems. FPGAC achieves the best area-delay product which is 6.5% better than FPGAB

and 11.4% better than FPGAD. There is little routing congestion in FPGAB, FPGA C and FPGAD

as the routing in them is very flexible. FPGAC consumes only 0.9% and 4.9% less routing area than

FPGA B and FPGAD respectively. The EBs in FPGAC are positioned closely, therefore it can have

higher speed. FPGAC is 5.6% and 6.9% faster than FPGAB and FPGAD respectively. Overall,

FPGA C is the best choose of the architecture, which has a balanced speed and area for the single EB

type FPGA.

160000

180000

200000

220000

240000

260000

280000

300000

A
re

a-
d

el
ay

 p
ro

d
u

ct

Average of the benchmarks

100000

120000

140000

160000

180000

200000

220000

240000

260000

280000

300000

Type3, no switches
in EB

Type4, no switches
in EB

Type3, switches in
EB

Type4, switches in
EB

A
re

a-
d

el
ay

 p
ro

d
u

ct

Different hybrid FPGA configurations, single EB type

Average of the benchmarks

Figure 5.19:Area-delay product against various hybrid FPGA configurations, single EB type only

5.5 Ways of Improving the Interface: Multiple EB Type Opti-

mised FPGA

After comparing the single EB type FPGA, we discuss the ways of improving the interface of the

multiple EB types FPGA by following the same parameters as stated in Chapter4, Section4.3. The

same embedded BRAM memory is used. We assume that the EBs are packed in the middle of FPGA

(Type 3 EB position for the single EB type FPGA) with 4 sides I/O pin configuration. Switches are

5.5. Ways of Improving the Interface: Multiple EB Type Optimised FPGA 107

inside EB andDeb=1 as the optimised FPGA. These architectural configurations have achieved the

best performance in the studies in previous sections.

5.5.1 EB Position

First, we examine the EB position for the multiple EB types FPGA as defined in Chapter4, Figure4.4

Figure5.20and Figure5.21show the delay and area impact of different position of BRAM. The delay

of type C is 2.4% and 5.4% less than type A and type B configuration respectively. It has similar delay

as no BRAM existing in benchmarks, with only 0.9% different. In type A and type B, the BRAMs are

not close to some of the large EBs, therefore the net delay connecting BRAM and large EB is longer.

The BRAMs are between the large EBs in type C configuration, the connections between BRAMs

and EBs are short and result in small net delay in type C. The small BRAMs separate the large EBs

by Deb=2, which is similar to theDeb=1 in no BRAM FPGA and leads to similar delay between them.

The routing area is opposite to the result in Chapter4, Section4.6.1. Inserting small BRAMs be-

tween large EBs increases the routing demand. It is because the congestion between large EBs is

small, larger separation between EBs by inserting small BRAMs close to them cannot improve the

routability. Instead, the connections between high I/O density BRAMs and EBs require additional

routing resources as the case in type B and type C. In type A, the BRAMs are not positioned close to

the large EBs, where BRAM columns are at least 4 CLBs away from large EBs. There are enough

space to spread the extra routing stress for connection between BRAMs and EBs in type A. Therefore,

type B and type C configuration use 96.6% and 55% more routing area than type A. In addition, type A

uses 4.8% more routing resources than the no BRAM FPGA because of the additional connections

between BRAMs and EBs.

5.5.2 Interconnect Flexibility

We study to impact of additional tracks to the 1.2× minimum channel width. The result is consistent

to Section4.6.2, where the additional tracks have no impact to the delay as the critical paths being

routed efficiently once the circuit is routable.

108 Chapter 5. Routing Optimisation

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

D
el

ay
 -

av
er

ag
e

o
f

 4
 I/

O
 p

in

si
d

es
(n

s)

Average of the benchmarks

10

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

type A type B type C no BRAM

D
el

ay
 -

av
er

ag
e

o
f

 4
 I/

O
 p

in

si
d

es
(n

s)

Multiple-EB Types - EB position

Average of the benchmarks

Figure 5.20:Delay against various EBs positions for the multiple EB types FPGA (Figure4.4), where
switches are in EB

5000

10000

15000

20000

25000

R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

Tr

an
si

st
o

r
(p

er
 c

lb
)

Average of the benchmarks

0

5000

10000

15000

20000

25000

type A type B type C no BRAM

R
o

u
ti

n
g

 a
re

a
 in

 M
in

.-
W

id
th

Tr

an
si

st
o

r
(p

er
 c

lb
)

Multiple-EB Types - EB position

Average of the benchmarks

Figure 5.21:Average routing area against various EBs positions for the multiple EB types FPGA
(Figure4.4), switches are in EB

5.6. Summary 109

5.5.3 Area-Delay Product Comparison

Finally, we compare the area-delay product of six selected multiple EB types systems in Figure5.22.

Obviously, type A configuration with switches in EBs (The small BRAMs are arranged in columns

and large EBs are closely packed in the middle of FPGA) achieves the best area-delay product, which

at least 26.2% better the others. Type A uses the least routing area with reasonable speed makes it the

most area-delay efficient architecture for multiple EB types FPGA.

200000

250000

300000

350000

400000

450000

A
re

a-
d

el
ay

 p
ro

d
u

ct

Average of the benchmarks

100000

150000

200000

250000

300000

350000

400000

450000

Type A, no
switches in EB

Type B, no
switches in EB

Type C, no
switches in EB

Type A,
switches in EB

Type B,
switches in EB

Type C,
switches in EB

A
re

a-
d

el
ay

 p
ro

d
u

ct

Different hybrid FPGA configurations, multiple EB types

Average of the benchmarks

Figure 5.22:Area-delay product against various hybrid FPGA configurations, multiple EB types

5.6 Summary

Hybrid FPGAs require high routing resource demand. This is because the coarse-grained embedded

blocks require high density connection to other elements. We explore four interconnection param-

eters in order to reduce routing area and net delay. First, we show the extra demand of routing

requirements by examining channel width, segment length and netlength. Second, we examine the

effect of the separation distance between EBs. Third, we study the trade-offs when we add switches

on embedded blocks such that switching of routing direction is allowed inside the blocks. Finally,

we add extra wires surrounding coarse-grained units to accommodate high density connection. We

find that (a) the routing nets are mainly condensed near the edge of EBs, which occupy 44% of tracks

usage, (b) both separating EBs and adding switches on EBs systems perform about 48.4% better than

110 Chapter 5. Routing Optimisation

existing column based architecture in term of area and delay efficiency. (c) extra wires near the edge

of EBs is efficiently improving the area of highly congested system by 34.9%, but cannot further

improve the system optimised by separating EBs and adding switch on EBs.

We study the ways of improving the interface between coarse/fine-grained logic in the optimised

hybrid FPGA. We find that the features of the interface of non-optimised hybrid FPGA include: (a) the

EBs should be positioned close to each other in the middle of the chip to achieve the best area-delay

product, (b) a square EB leads to the most efficient implementation, (c) smaller EBs should be located

in column to avoid introducing extra routing demand to the large EBs. Based on the results in this

chapter, we recommend which optimisation method should be used for which design goal in Table5.2

and the interface for the optimised FPGA in Table5.3.

Table 5.2:Recommendations of routing optimisation of hybrid FPGA on baseline architecture for
different optimisation goals

Optimisation method

Enough space to separate EBs or Not enough space to separate EBs and
Goal additional routing switches in EB are available additional routing switches in EB are not available

Speed (a) Deb=4 and no additional switches in EB (c) extra wires near the edge of EB
Rextra=3 andDextra=2 orRextra=3 andDextra=3

(less efficient than method (a) and (b))
Area (b) additional routing switches in EB and Deb=1 method (c)

Balanced speed optimisation method (a) or (b) method (c)
and area

Table 5.3:Recommendations of the interface for the optimised FPGA

Recommended configuration for single EB type FPGA using method (b) in Table5.2

Goal EB position Pin location EB aspect Channel width
ratio

Speed/area/balanced positioned closely in the arranged evenly 1:1 1.2× of minimum
speed and area middle of the FPGA on 4 sides of EB channel width

Recommended configuration for multiple EB types FPGA using method (b) in Table5.2

Goal EB position Pin location EB aspect Channel width
ratio

Speed small EBs are positioned arranged evenly 1:1 1.2× of minimum
between closely packed large EBs on 4 sides of EB channel width

Area/balanced small EBs are arranged in column, arranged evenly 1:1 1.2× of minimum
speed and area large EBs are closely packed with Deb=1 on 4 sides of EB channel width

Chapter 6

Optimisation of Coarse-grained Floating

Point Units

This chapter introduces a novel methodology to optimise coarse-grained floating point units (FPUs)

in a hybrid FPGA. We employ common subgraph extraction to determine the number of floating point

adders/subtractors (FAs), multipliers (FMs) and wordblocks (WBs) in the FPUs. We first study the

area, speed and utilisation trade-offs of the selected FPU subgraphs in a set of floating point bench-

mark circuits. We then explore the impact of density and flexibility of FPUs on the system in terms of

area, speed and routing resources. We derive an optimised coarse-grained FPU by considering both

architectural issues and system-level issues.

6.1 Motivation

In a modern commercial FPGA device, different simple fixed point computation elements are con-

nected together to achieve higher speed. An example for Xilinx Spartan-3A includes XtremeDSP

DSP48A [140]. The DSP48A slices support many independent functions, including multiplier, multiplier-

accumulator (MACC), pre-adder/subtractor followed by a multiply-accumulator, multiplier followed

by an adder, wide bus multiplexers, magnitude comparator, or wide counter. The architecture also

111

112 Chapter 6. Optimisation of Coarse-grained Floating Point Units

supports connecting multiple DSP48A slices to form wide math functions, DSP filters, and complex

arithmetic without the use of the general FPGA fabric.

In our proposed FPU in Chapter3, Section3.1, Floating point adders/subtractors (FAs) and floating

point multipliers (FMs) contain several basic functional elements such as barrel shifters, adders and

multipliers. Wordblocks (WBs) are used for the bitwise operation of the floating point number such as

comparison, shifting, latch and logical operation. Constructing hard circuit WBs, FAs and FMs, which

are composed of basic functional elements, results in a more compact block with higher speed, but less

flexibility. Optimising these hard circuits is essential. Higher density and speed FPUs can improve

the overall area and delay of the floating point hybrid FPGA. We assess the impact of FPUs on hybrid

FPGAs in terms of area, speed, routing resources and flexibility. The number and connection of WBs,

FAs and FMs are determined by considering common subcircuits in a selected set of floating point

benchmark circuits. Common subgraph extraction has been employed to find efficient arithmetic units

over a set of benchmark circuits [57]. We adapt this method to study the combination of wordblocks,

floating point adders/subtractors and multipliers. The FPUs constructed using common subgraph

extraction do not include the feedback path in Chapter3, Figure3.2. Future work will involve the

inclusion of feedback path in FPU using the common subgraph methodology.

6.2 Optimisation Parameters

In this section, we optimise the internal connection structure and the number of the WBs, FAs and

FMs. If more WBs, FAs and FMs are inside an FPU (Figure6.1(b)), greater area and speed im-

provement can be achieved, but the whole FPU is wasted if not used. In Figure6.1(a), FPU1 with

fewer WBs, FAs and FMs would waste fewer resources if not used, but we need a large amount of

fine-grained elements to support WBs, FAs or FMs. Therefore, choosing a suitable number of WBs,

FAs and FMs is important. We consider the FPU in the following parameters:

6.2. Optimisation Parameters 113

(a) FPU1

Connecting WBs, FAs and FMs
into coarse-grained FPU

(b) FPU2

+-

WB ��
�

*
*

*
*

*+
+ **

+*
*

+

+

WB

+

�

�� � �

� � 	

>>
==?

WB consists of LUT,
shifter, comparator

and flip flop
LUT

Figure 6.1:Connecting WBs, FAs and FMs into different coarse-grained FPUs

6.2.1 Internal Optimisation of FPU

The WBs, FAs and FMs in FPUs can be connected in different orders as shown in Figure6.1. We

consider the performance of individual FPUs by connecting such elements using commonly found

connection patterns.

6.2.2 System-Level Optimisation

Based on the different FPU architectures from common subgraphs, we optimise the performance of

the hybrid FPGAs by selecting the FPUs in the following ways:

• Density of FPU. An FPU with more computational elements achieves greater reduction since

all elements can be closely packed. However, this may require more routing resources for

the connection between the coarse-grained block and fine-grained block. Also the flexibility

decreases, since it is difficult to reuse in another application.

• Flexibility of FPU. FPUs are wasted when not used. The FPUs can be reused across different

applications. Therefore, embedding high flexibility can reduce the area waste for unused FPUs.

114 Chapter 6. Optimisation of Coarse-grained Floating Point Units

6.2.3 Optimisation by Merging FPUs

Inspired by the results of the system-level optimisation, fewer number of FPU types and smaller FPUs

may lead to better placement for shorter delay. It is because different types of FPU cannot be swapped,

the placement is not flexible. We try to reduce the number of FPU types by merging different FPUs

into a larger FPU to increase placement flexibility. Figure6.2shows an example of merginggraph15

andgraph26into a largergraph15 + graph26. We simply merge them into a single FPU without

any optimisation, where only clock signal is shared. This merging scheme may have two possible

outcomes:

+- *

* +-WB
x6

��
�

graph26

graph15
+

* +-WB
x6

��
�

graph15+graph26

+- *����� �	��
 � ������
 � ��� �
��������
 � ��� ���� �
���
 ��
 � ��
 ���

clk

clk
clk

Figure 6.2:An example of merginggraph15andgraph26into a larger FPU

1. Better placement to reduce wirelength

In system-level optimisation, there are many types of FPUs to choose from in a hybrid FPGA. The

position of various FPUs are fixed, and only the same FPU type can be swapped during the placement

stage. This leads to inflexible placement and introduces long wire between FPUs as shown in Fig-

ure6.3(a). Merging different FPU types into a larger FPU can achieve better placement and reduce

the wirelength. Figure6.3(b) shows an example of merging FPU1 and FPU3 to reduce the length of

wire. FPU13 can be swapped to optimise the connections such asNet1 andNet3. Net2 becomes a

short self-connected wire. Therefore, the delay of the circuit can be reduced in this case.

6.2. Optimisation Parameters 115

FPU1

FPU1

FPU2

FPU2

FPU3

FPU3

FPU3

FPU3

Long Net2 and Net3 because of the
inflexible placement of FPUs

FPU1_3
(FPU1
+FPU3)

FPU1_3
(FPU1
+FPU3)

FPU1_3
(FPU1
+FPU3)

Merge FPU1 and
FPU3

FPU2

FPU1_3
(FPU1
+FPU3)

FPU1

(a) FPU1 and FPU3 cannot be swapped to
reduce the length of wires

(b) Merging FPU1 and FPU3 can reduce the
length of wires

Net1

Net2 Net3

Cannot swap
FPU1 and FPU3

Net1

Net2, shorter self-
connected wire

Net3,
shorter

FPU-FPU
wire

Same type FPU, can be
swapped to obtain shortest

connection

FPU2

Figure 6.3:Merging different types of FPUs can obtain better placement and reduce wirelength

2. Larger FPU increases wirelength

However, a larger merged FPU can also increase the length of wire connection. Figure6.4 shows

an example of increasing wirelength. The originalNet1 between CLB and FPU1 andNet2 between

FPU1 and FPU2 are short (Figure6.4(a)). In Figure6.4(b), the width and height of the merged

FPU12 is longer, which leads to longer nets and delay.

FPU1 FPU2

����� ����� �
	��
� �������� �������
���
�����

N e t 1

��� �
� ���
	�� ����� �������
���
���!� "
�$#�%�� �
� ���
	��
���
� �������
���������$�
	�� �������

M e r g e FPU1 a n d
FPU2

&�'�(

����� ����� ��	���� ��
����� �������
��������� "��

)���	����
*���� � � ��� ��	���� ��
�,+�- �
�������!� "
�

FPU1_2

W

H

.
/

&�' (

0 ��1�2�����* � �
*�3
* �
4�45������6 7!)�89%�� * � 4 0 :�1�)���	����
*�3
* ��4�45������6 7;)
8 %�� * � 4
��<���* �5� ��	���4��
� � =
3���	�	���3 � ���5%�� * � 4

Figure 6.4:Increase wirelength when merging FPUs

Since there are advantages and disadvantages of the proposed optimisation by merging FPUs, it is

116 Chapter 6. Optimisation of Coarse-grained Floating Point Units

interesting to study the trade-offs of wirelength, area and speed in this optimisation scheme.

6.3 Methodology

We employ an empirical methodology to examine the speed and area of different coarse-grained

FPUs. This section describes a common subgraph extraction methodology for floating point applica-

tions, and the tools, benchmarks and models that are used.

6.3.1 Common Subgraph Extraction

Floating point applications have common characteristics for floating point computations. A common

subgraph in these applications represents functionality shared across the benchmark circuits. The

subgraph can potentially be implemented as a hard EB to speed up the computation. Efficiency can

usually be improved by combining similar FP operations into the same core, by common subgraph

extraction [57]. We enhance this method for floating point application which supports FA, FM and

WB extraction.

Figure6.5 is an example of a common subgraph of two circuits. Figure6.5(a) and (b) are part of

dscgandbfly respectively. The common floating point operations can be extracted as a single unit as

shown in Figure6.5(c). The main differences between original common subgraph extraction [57] and

enhanced version are:

• finding common floating point arithmetic components (floating point adder/subtractor and mul-

tiplier) instead of fixed point adder/subtractor and multiplier,

• identifying not only FF between two arithmetic components. We also identify binary operations

such as AND, OR, XOR for WB. The binary operations and FF are consisted in a WB.

In the tool flow of common subgraph extraction as shown in Figure6.6, floating point benchmark

circuits are written in Verilog. Icarus Verilog [141] and ODIN [77] are used to parse and flatten the

6.3. Methodology 117

(c) co m m o n s u bg r ap h
o f dscg an d b f l y

(a) p ar t o f dscg

(b) p ar t o f b f l y

* WB ��
�

*
+*

*
-

+ *
*

+
FF

+-

Figure 6.5:Common subgraph extraction for WB, FA and FM in FP applications

� � � � ��� � �
� 	 �

 � ��� �
 	 � �

 �
 �
� � � � � � � ����� �

� �
� � � � � ��� � � �
� � � � � 	 � � � 	
���� !

� 	 �

 � ��� �
 	 � �

� " � #�$�%

#�$�%
� & '
 � � �
 #(� ' � ��� �

$ " ��� " �
%)� * � � � + � � !

% , �
 � � � � �(� " ��� " �
� � * � � � � � �

� % , � " + � , ���)� � � � �
$ " ��+ 	 � � � -).
/ 0 0 1 2 0 3 !

-)� � � 	 " �
� � � � � � * � �(
 � �
� " ��� " �
� � * � � � � � �

� � � ��� � �(
 � � � � �
� � � 	 , � � ��� � � � 	

Figure 6.6:Common subgraph extraction design flow

118 Chapter 6. Optimisation of Coarse-grained Floating Point Units

Verilog benchmark circuits. The flattened netlist is then fed into the program Maximum Common

Subgraph (MCS) generation stage to extract the common subgraphs in these benchmark circuits.

The common subgraph extract algorithms in MCS are shown in Figure6.7. Algorithm 1 identifies

the common subgraph by traversing both graphs (graph of the benchmarks) to find two similar nodes

(type T={FA or FM}). The new node is created as a seed node to grow the common subgraph

structure. The graphs traversal add nodes to this common subgraph recursively. TheISMATCH

function determines whether the visiting node satisfies our problem constraint to add to the subgraph.

The constraint is whether any combination of components connecting to and from this visiting node

is a combination of FA, FM or WB. Algorithm 2 (FASTMATCH) describes the recursive algorithm

for adding nodes to the common subgraph. All the ports of the node should be examined to match all

the combination of inputs. The functions r1(u’) and r2(u’) return the nodes from benchmark netlists

G1 and G2 respectively which have been mapped onto common subgraph node u’. f−1(u1) returns the

node of u1 in G’. The algorithm terminates when all combinations of the seed nodes from the graphs

have been visited.

The common subgraphs cover FP operations such as the example shown in Figure6.5(c). With the

connection information of WBs, FAs and FMs, we describe the coarse-grained FPU of common

subcircuit in another Verilog file. The FPU, which consists of complex FA and FM circuits, is then

synthesised by Synopsys Design Complier V-2008.09 with 0.13µmprocess. We obtain the area and

delay of the this FPU, and use this information to evaluate the FPGA by VPH.

6.3.2 Evaluation Flow

After we have determined the FP coarse-grained blocks by common subgraph extraction, such blocks

are interfaced to the fine-grained FPGA. We use the VPH work flow described in Chapter3, Sec-

tion 3.3.2to explore this novel hybrid FPGA architecture. We use the common subgraph circuits as

EBs in the high level HDL. We employ the eight benchmarks described in Chapter2, Section2.5.3

and the optimised routing architecture in Chapter5 to evaluate the FPU generated using common

subgraph extraction.

6.4. Results 119

Input: G1, G2

1: G’ = empty

2: for all vi in G1 do

3: for all vj in G2 do

4: if T(vi) = T(vj) then

5: if ISMATCH(vi, vj) then

6: add nodes to G’

7: FAST MATCH(G1, G2, G’)

8: end if

9: end if

10: end for

11: end for

Input: G1, G2, G’

1: for all nodes u’ in G’ do

2: for all ports i on node r1(u’) do

3: u1 = node on port i of r1(u’)

4: for all ports j on node r2(u’) do

5: u2 = node on port j of r2(u’)

6: if ISMATCH(u1, u2) then

7: add node to G’ on appropriate port of u’

8: FAST MATCH(G1, G2, G’)

9: remove f!1(u1) and its connections from G’

10: end if

11: end for

12: end for

13: end for

Algorithm 1 : Common

subgraph extraction top-level

algorithm

Algorithm 2 FAST MATCH:

Recursive algorithm to add

nodes to a common subgraph

Figure 6.7:Common subgraph extraction algorithm in MCS

6.4 Results

In this section, the internal and system-level optimisation of coarse-grained floating point units are

studied. The common subgraphs of the floating point benchmark circuits are examined to optimise the

architecture of the FPU. After that we explore the area and delay impact of making the common sub-

graphs coarse-grained units in the hybrid FPGA. Finally, we further optimise the systems by merging

different FPUs into a larger FPU. The default architecture parameters of the experiments conducted

are: (1) additional 20% of minimum channel width to avoid congestion, (2) baseline architecture de-

scribed in Chapter3, Section3.2, (3) optimised routing architecture - square EBs positioned in the

center of FPGA, 4 sides I/O pin configuration of EB, switches in EB and Deb=1 to facilitate routing

flexibility which can achieve better area-delay product.

6.4.1 Internal Optimisation of FPU

We determine the common subgraphs of floating point arithmetic in the benchmark circuits. The hard

FPU has a specific ordering of WBs, FAs and FMs so that it can be reused by different benchmark

120 Chapter 6. Optimisation of Coarse-grained Floating Point Units

circuits. The common subgraphs are shown in Table6.1, which are found by common subgraph

extraction described in Section6.3. Common subgraph extraction can enumerates all possible com-

mon subgraphs, but we only include subgraphs with two or more nodes. The hard FPU is obtained

by 0.13µmprocess, however the CLB feature size modelled in VPH is 0.15µm. Therefore, the nor-

malised area (Area/Feature size squared) is used to obtain the equivalent area in terms of CLBs. The

performance of the various common subcircuits is examined.

Table6.2 shows the occurrence in benchmarks, normalised area, delay, number of input/output and

latency of each common subgraph found. It is obvious that more FAs and FMs embedded in an FPU

can achieve higher area reduction since all the elements are compacted into a single unit. The average

area of the FPUs is 1.9% less than that without clustering of WBs, FAs and FMs. But the delay after

grouping is 5% more than pure FAs and FMs. The difference in the delay is because the timing report

of single FA or FM does not account for the output to input delay when connecting them together.

Therefore we should investigate the performance of the system rather than the single unit.

Table 6.1:The common subgraph structure occurred in benchmark circuits

no. Subcircuits no. Subcircuits no. Subcircuits no. Subcircuits no. Subcircuits

1 2 3 4 5

6 7 8 9 10

11

*
+-

WB
x6

��
�

* 12

+-

WB
x6

��
�

* 13

*
+

WB
x6

��
�

*+- 14

+
WB
x6

��
�

+

*

15
* +-WB

x6
��
�

16
+

WB
x6

��
�

*+- 17

*
+

WB
x6

��
�

+* 18
+

WB
x6

��
�

+* 19
+

WB
x6

��
�

+ 20

*
+

WB
x6

��
�

+
*
*

21 22 23 24 25

26 27 28

29 30 31

32 33 34

��
�

��
�

35 36

��
�

��
�

��
�

��
�

37

+
WB
x6

��
�

+*
*

38
��
�

��
�

39

40 41

6.4. Results 121

Table 6.2:Statistic of subgraphs.
(The feature size (L) of the coarse-grained units is 0.13µm. Virtex II CLB: area is 10,912µm2, feature
size is 0.15µm, normalised area is 485,013µm2)

Graph Occurrence in benchmarks area(A) normalised area in delay no. no. latency
no. dscg bfly fir ode mm3 bgm syn2 syn7 (µm2) area(A/L2) CLB (ns) input output (cycles)

WB No separate WB embedded 37,135 2,197,321 7.7 0.76 104 38 1
FA 4 4 3 3 2 9 5 25 75,681 4,478,179 15.7 2.88 67 39 6
FM 4 4 4 2 3 11 4 25 214,348 12,683,315 44.5 2.95 67 39 6

1 0 8 4 0 4 2 0 4 451,637 26,724,083 93.7 2.54 133 53 12
2 0 0 0 4 0 0 0 8 472,909 27,982,762 98.1 3.02 133 53 18
3 0 0 0 0 0 0 1 3 197,894 11,709,705 41.0 2.56 133 53 12
4 0 0 0 0 0 0 1 4 761,720 45,072,171 158.0 2.93 199 67 18
5 0 0 4 0 0 2 0 2 706,994 41,833,960 146.6 2.56 199 67 18
6 0 0 0 0 0 0 1 6 630,374 37,300,261 130.7 2.91 133 53 18
7 0 8 4 0 4 2 0 8 320,451 18,961,579 66.5 2.74 133 53 18
8 0 0 0 0 0 1 1 8 143,433 8,487,139 29.7 2.57 133 53 18
9 0 0 0 0 0 4 0 7 475,222 28,119,673 98.6 3.18 133 53 18

10 0 0 0 0 0 3 0 5 534,648 31,636,000 110.9 3.04 166 60 24
11 8 8 4 0 4 2 0 4 747,237 44,215,226 155.0 3.17 160 84 18
12 8 8 12 4 4 7 0 16 547,774 32,412,679 113.6 3.17 127 77 18
13 8 0 0 0 0 1 0 4 830,166 49,122,235 172.2 3.17 193 91 18
14 0 0 4 0 4 2 0 6 631,444 37,363,552 131.0 3.17 160 84 18
15 8 8 12 4 8 9 0 16 548,265 32,441,718 113.7 3.17 127 77 18
16 8 0 0 4 0 3 0 8 631,508 37,367,336 131.0 3.17 160 84 18
17 0 0 4 0 4 2 0 5 823,209 48,710,582 170.7 3.09 193 91 18
18 0 4 4 0 4 2 0 8 630,715 37,320,404 130.8 3.17 160 84 18
19 0 4 4 0 4 2 1 8 431,948 25,559,063 89.6 3.17 127 77 12
20 0 0 4 0 4 2 0 2 1,021,944 60,470,082 212.0 3.09 226 98 18
21 0 8 4 0 4 2 0 2 563,734 33,357,046 116.9 2.95 166 60 18
22 0 0 4 0 0 2 0 5 563,800 33,360,932 116.9 2.95 166 60 18
23 0 0 0 0 0 1 0 5 450,878 26,679,195 93.5 2.95 166 60 18
24 0 0 0 0 0 0 1 5 448,952 26,565,188 93.1 2.95 166 60 18
25 0 0 0 0 0 0 1 6 563,636 33,351,218 116.9 2.95 166 60 18
26 8 0 0 4 0 5 1 15 282,039 16,688,697 58.5 2.95 100 46 12
27 0 0 0 0 0 1 0 1 1,011,722 59,865,180 209.8 2.95 298 88 48
28 0 0 0 0 0 1 0 3 735,905 43,544,680 152.6 2.95 232 74 36
29 0 8 4 0 4 2 1 8 166,059 9,825,981 34.4 2.95 100 46 12
30 0 0 0 0 0 1 0 4 646,918 38,279,188 134.2 2.95 199 67 30
31 0 0 0 0 0 1 0 4 762,722 45,131,475 158.2 2.95 199 67 30
32 0 0 0 0 0 0 1 2 847,988 50,176,826 175.9 2.95 232 74 18
33 0 0 0 0 0 1 0 1 1,243,104 73,556,461 257.8 2.95 298 88 30
34 0 0 0 4 0 0 0 4 566,409 33,515,327 117.5 3.75 232 60 18
35 0 0 0 0 0 0 1 3 649,054 38,405,567 134.6 2.95 199 67 18
36 0 0 0 4 0 0 1 8 486,112 28,764,043 100.8 3.6 265 53 12
37 0 4 4 0 4 2 0 2 829,449 49,079,801 172.0 3.17 193 91 18
38 8 0 0 4 0 3 0 8 366,637 21,694,478 76.0 3.75 199 53 18
39 0 0 0 0 0 1 0 2 851,733 50,398,398 176.6 2.95 232 74 36
40 0 0 4 0 0 0 0 2 1,044,227 61,788,577 216.6 2.95 265 81 24
41 0 0 0 0 0 1 0 1 1,505,000 89,053,247 312.1 2.95 397 109 54

6.4.2 System-Level Optimisation

After we determine the common subcircuits, we evaluate the impact of these subcircuits to the sys-

tems. Based on the optimisation parameter in Section6.2.2. The delay, area and routing resources of

purely FA/FM system, and mixture of subcircuits are examined. In the purely FA/FM system, 25 x

122 Chapter 6. Optimisation of Coarse-grained Floating Point Units

Table 6.3:The utilisation rate of subcircuits in the three hybrid FPGAs

Hybrid FPGA 1. Purely FA/FM FPGA 2. FPGA 12 15 26 3. FPGA 41 20 37 12 26

Graph no. FA FM 12 15 26 FA FM 41 20 37 12 26 FA FM
No. of

subcircuits 25 25 16 4 2 8 8 1 4 4 8 3 8 8
in FPGA

Benchmark Utilisation rate (%)

dscg 64 64 50 0 0 100 100 0 0 0 100 0 100 100
bfly 64 64 50 0 0 100 100 0 0 100 50 0 50 50

fir 48 64 75 0 0 0 50 0 100 0 50 0 0 0
ode 48 32 25 0 0 100 50 0 0 0 50 0 100 50

mm3 32 48 25 100 0 0 12.5 0 100 0 0 0 0 0
bgm 36 44 43.75 50 0 0 25 100 25 0 12.5 0 0 25
syn2 20 16 0 0 50 50 37.5 0 0 0 0 33.33 50 37.5
syn7 100 100 100 0 100 87.5 87.5 100 0 50 100 100 50 62.5

FA and 25 xFM are used in the hybrid FPGA.

1. Selection of Systems

We select two systems based on density and flexibility of FPU to compare to purely FA/FM system.

(a) Density of FPU: We select a set of common subcircuits with more FAs, FMs and WBs. For

example,graph41has 11 nodes that are a combination of FAs and FMs, contains most computation

elements among subgraphs in Table6.2. Since the density and area reduction of this individual sub-

circuit is greatest compared to separate FA, FM and WB, this set of subcircuits can be the best choice

to reduce the area of the hybrid FPGA. The selection scheme is shown in Figure6.8(a).

We choose 7 types of FPUs:graph41, graph20, graph37, graph12, graph26, FM andFA as subcir-

cuits to embed in the hybrid FPGA (FPGA 41 20 37 12 26).

(b) Flexibility of FPU: If we can reuse all the subcircuits for all applications, the area of the hybrid

FPGA may be reduced. We select a set of subcircuits which have highest occurrence rate in the

benchmark circuits from Table6.2, based on the flow in Figure6.8 (b). graph12has the highest

occurrence rate (16 times) among all the subgraphs.

We finally choose 5 types of FPUs:graph12, graph15, graph26, FM andFA to embed in the hybrid

FPGA (FPGA 12 15 26).

6.4. Results 123

����������	
 �� � ��� ��������������
 �
�����	
�� � ��� ��� ��� � ���� �������

�� �! � 	 " � �	 � ��# " ���$� � ��! ��
 ��������" %

��	 " �� �	 � �

&���� ��� � 	
 �� � �� ��������
��� �! ��	 " �� �	 �
	 ��� ���' ��� �����#�� � ����	 ��� ��� ��� ��� ���

� ��! ��"���#�� ��������������
 �(�)���

&*��� ��� � 	
 �� � ��
 ��+ ������� �
� ��������
��� �! ��	 " �� �	 ��	
�� � �

" ������	
�	
 ��� �! ��" ��'�� ��� ���' ��� ���
��#�� � ����	 ��� ��� ��� ��� ���
� ���! ��"���#

� ���'� � ��� 	 ��
� �
�	 � �

�,� � � �! ��" ��'�� �� � � �
! ����
���	 ��	 � ���

-�
 ��� ��� ��� � 	 ��
���#�� � �
��	 ��� ��� ������
 ��	 � .���/�0��

��� � �

� " �

�����(� ��	
 �� � ��� ��������������
 �
�����	
�� � �� ��� ��� � ����� �������

�� �! ��	 " �� �	 � ��# " ���$� � ��! ��
 �����(��" %

��	 " �� �	 � �

&���� ��� � 	
 ��� � �� ����(��
��� �! ��	 " �� �	 �
1 ��	 ���" ��'�" ��� ��
 � ��� � ����	 ��� ��� �

� ���! ��"���#�� ���'� � ��� 	 ��

��� ������
 � �	
���� � ! ��
 � ������" %

��	 " �� �	 � �

&���� ��� � 	
 ��� � ��
 ��+ ���(��� �
� ����(��
��� �! ��	 " �� �	 ��	
�� � �
" ������	
�	
 ��� �! ��" ��'�� � 1 ��	 ���
" ��'�" ��� ��
 � �2� � ����	 ��� ��� ��
� ��! ��"
��#�� ����'� � ��� 	 ��
���� ���(��
 � �	
���� �

! ��
 ��������" %,� 	 " � �	 � �

�2� � �� �! ��" ��'�� �(� � � �
! ����
���	 ��	 � ���

-*
 �� ��� ��� � 	 ��
���#�� � �
��	 ��� ��� ��# � � +�	 !�	 � 	 � .���/�0��

��� � �

� " �

(a) Selection of the highest density FPUs (b) Selection of the highest flexibility FPUs

Figure 6.8:The flow of the selection of (a) the highest density FPUs and (b) the highest flexibility
FPUs in hybrid FPGAs

Discussion

From the three hybrid FPGAs we selected : (a) Purely FA/FM FPGA, (b)FPGA 12 15 26and

(c) FPGA 41 20 37 12 26, we examine the area, delay and routing resources impact to the applica-

tions. The utilisation rate of the subcircuits in each hybrid FPGA for benchmark circuits is shown

Table6.3. The two selection methods are greedy, and do not consider any connections of the chosen

subgraphs.

124 Chapter 6. Optimisation of Coarse-grained Floating Point Units

2. Fine-grained Area Impact

Figure6.9 shows the average number of CLBs used in the eight applications with different types of

graphs. If the area of FPU is not counted,FPGA 12 15 26 reduces area by 14.4% and

FPGA 41 20 37 12 26 reduces area by 18% when compared to purely FA/FM hybrid FPGA’s area

in average. However, when the area of FPUs is counted in the total area,FPGA 12 15 26 is 1.8%

more than the purely FA/FM system in total area. Total area ofFPGA 41 20 37 12 26 is still 4.6%

less than purely FA/FM system. The purely FA/FM system does not have wordblocks and as such it

requires a lot of fine-grained CLBs as registers and logical operators.FPGA 41 20 37 12 26embeds

high density subcircuits, which are not flexible to the benchmarks, some of the FPUs are thus wasted,

as they are not used. However, the individual subcircuits obtain highest area reduction to overcome

the waste of area when being used. Therefore, it is the best to reduce fine-grained area in hybrid

FPGA. The density ofFPGA 12 15 26 is not high enough to overcome the waste of area, and results

in higher total fine-grained area.

1000

1500

2000

2500

3000

3500

4000

A
ve

ra
g

e
n

o
. o

f
C

L
B

s

Not include area of FPU Include area of FPU

0

500

1000

1500

2000

2500

3000

3500

4000

Purely FA/ FM FPGA_12_15_26 FPGA_41_20_37_12_26

A
ve

ra
g

e
n

o
. o

f
C

L
B

s

Hybrid FPGA

Not include area of FPU Include area of FPU

Figure 6.9:The number of CLBs used by different types of embedded FPUs

3. Delay Impact

Figure6.10shows purely FA/FM hybrid FPGA achieves highest speed. The delay of purely FA/FM

FPGA is 20.1% and 23% less thanFPGA 12 15 26 and FPGA 41 20 37 12 26 respectively. We

discover that embedding more coarse-grained FPUs types causes a decrease in speed. Besides the

different between the delay of individual FPUs. The critical path is dominated by the connection

6.4. Results 125

between two FPUs. This path can only be optimised by moving the FPUs close together. Since

the various FPUs have different architectures, they cannot be swapped to get better placement. For

example, we cannot swapgraph41andgraph20, but twograph12can be swapped. The purely FA/FM

system has least types of subcircuits and the subcircuits are small. Therefore, due to the placement

constraints of the different FPUs type, FPUs in a purely FA/FM system have more freedom to move

around to achieve higher speed. This can be reflected by the wirelength, where the wirelength of

purely FA/FM is 6.7% shorter thanFPGA 12 15 26and 21% shorter thanFPGA 41 20 37 12 26.

0
1
2
3
4
5
6
7
8
9

10

Purely FA/ FM FPGA_12_15_26 FPGA_41_20_37_12_26

D
el

ay
 (

n
s)

Hybrid FPGA

Average delay

0
1
2
3
4
5
6
7
8
9

10

Purely FA/ FM FPGA_12_15_26 FPGA_41_20_37_12_26

D
el

ay
 (

n
s)

Hybrid FPGA

Average delay

Figure 6.10:The delay of benchmark circuits by using different types of FPUs

4. Routing Resource Impact

On average, the total routing area ofFPGA 41 20 37 12 26 and FPGA 12 15 26 are 27.9% and

23.5% less than the purely FA/FM FPGA as shown in Figure6.11. We employ the optimised rout-

ing architecture, where switches are in EB and EBs are separated to minimise the congestion at the

edge of EB. The congestion of all FPGAs should be similar. However, inFPGA 41 20 37 12 26

andFPGA 12 15 26, most of the connections are in the FPUs, therefore they must use less routing

resources for connection.FPGA 41 20 37 12 26 is the most compact and consumes less total CLBs

(including the area of FPUs). Therefore, it uses less total routing area.

From the above result, different mixtures of coarse-grained subcircuits can achieve different aspects

of optimisation in hybrid FPGAs. As a result, we could use a suitable set of subcircuits to obtain a

particular optimisation goal.

126 Chapter 6. Optimisation of Coarse-grained Floating Point Units

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

Purely FA/FM FPGA_12_15_26 FPGA_41_20_37_12_26

R
o

u
ti

n
g

 a
re

a
in

 M
in

.-
W

id
th

 T
ra

n
si

st
o

r

Hybrid FPGA

Average total routing area

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

Purely FA/FM FPGA_12_15_26 FPGA_41_20_37_12_26

R
o

u
ti

n
g

 a
re

a
in

 M
in

.-
W

id
th

 T
ra

n
si

st
o

r

Hybrid FPGA

Average total routing area

Figure 6.11:The average total routing area used different types of FPUs

5. Area-Delay Product Impact

After we examined the individual system’s speed and area. We study the overall area-delay product of

the systems in Figure6.12. FPGA 41 20 37 12 26 achieves the best area-delay product in the three

systems. It is 2.2% and 6.4% better thanFPGA 12 15 26 and purely FA/FM FPGA respectively.

FPGA 41 20 37 12 26 is slower than the other systems, it consumes less routing resources. Overall,

FPGA 12 15 26 is the best for both speed and area.

375000000

380000000

385000000

390000000

395000000

400000000

405000000

410000000

415000000

420000000

Purely FA/FM reduce FPGA_12_15_26 FPGA_41_20_37_12_26

A
re

a
*

d
el

ay

Hybrid FPGA

Average area-delay product

375000000

380000000

385000000

390000000

395000000

400000000

405000000

410000000

415000000

420000000

Purely FA/FM reduce FPGA_12_15_26 FPGA_41_20_37_12_26

A
re

a
*

d
el

ay

Hybrid FPGA

Average area-delay product

Figure 6.12:The area-delay product of different types of hybrid FPGA

6.4. Results 127

6.4.3 Optimisation by merging FPUs

The various types of FPUs may cause ineffective placement and lead to longer wire as discussed in

Section6.2.3and the result from Section6.4.2. From the result of the last section, FA/FM FPGA is

the fastest because the effective placement of FPUs and small FPUs. We propose merging different

types of FPUs together to improve the placement flexibility (Figure6.3). The merged FPU is larger

and may result in longer net delay (Figure6.4). Therefore, we examine the impact of the wirelength,

area and delay of the three FPGAs obtained in Section6.4.2by merging their FPUs. The best merged

FPUs scheme will be determined in this section.

1. Merging Scheme

We merge the FPUs with similar number of subcircuits in the FPGAs stated in Table6.3 which

minimises the waste of unused FPUs. For example, inFPGA 41 20 37 12 26, graph37occurs 4

times andgraph26occurs 3 times. We merge them into a single FPUgraph26+graph37. We apply

different merge scheme: A, B, C, D and E, each of them has various combination of merged FPUs

which is shown in Table6.4. FPGA in scheme A contains smaller FPUs while FPGA in scheme E

composes of larger merged FPUs. Table6.5shows the area, delay and the number of FPUs embedded

in FPGAs. We examine the impact on area, delay and wirelength of the merged FPUs in the hybrid

FPGAs based on the these FPU results.

Table 6.4:The different FPUs merged in the three FPGAs

Merge Pure FA/FM FPGA 12 15 26 FPGA 41 20 37 12 26
scheme FPGA

A (1)FA (2)FM (1)graph12 (2)graph15 (3)graph26 (1)graph12 (2)graph20 (3)graph26
(4)FA (5)FM (4)graph37 (5)graph41 (6)FA (7)FM

B (1)FA+FM (1)graph12 (2)graph15 (3)graph26 (1)graph12 (2)graph20 (3)graph26
(4)FA+FM (4)graph37 (5)graph41 (6)FA+FM

C (1)5*FA+5*FM (1)graph12 (2)graph15+graph26 (1)graph12 (2)graph20 (3)graph26+graph37
(3)FA+FM (4)graph41 (5)FA+FM

D (1)7*FA+7*FM (1)graph12+graph15+graph26+FA+FM (1)graph12+graph20+graph26+graph37+graph41+FA+FM
E (1)10*FA+10*FM (1)4*graph12+graph15+graph26+2*FA+2*FM (1)2*graph12+graph20+graph26+graph37+graph41+2*FA+2*FM

128 Chapter 6. Optimisation of Coarse-grained Floating Point Units

Table 6.5:The statistic of the merged FPUs in the three FPGAs

System: Purely FA/FM FPGA

Merged FPU type Area in CLB Delay (ns) No. FPU I/O density

FA+FM 56 2.95 25 13.43
5*FA+5*FM 289 2.95 5 29.46
7*FA+7*FM 400 2.95 4 35.04
10*FA+10*FM 576 2.95 3 41.70

System: FPGA12 15 26

Merged FPU type Area in CLB Delay (ns) No. FPU I/O density

FA+FM 56 2.95 8 13.43
graph15+graph26 169 3.17 4 11.62
graph12+graph15+graph26+FA+FM 342 3.19 16 18.014
4*graph12+graph15+graph26+2*FA+2*FM 756 3.19 4 24.73

System: FPGA41 20 37 12 26

Merged FPU type Area in CLB Delay (ns) No. FPU I/O density

FA+FM 56 2.95 8 13.43
graph26+graph37 225 3.17 4 12.47
graph12+graph20+graph41+graph37+graph41+FA+FM 930 3.19 8 24.11
2*graph12+graph20+graph26+graph37+graph41+2*FA+2*FM 1406 3.19 4 32.01

2. Delay and Wirelength Impact

Figure6.13shows there is a maximum delay reduction in the five merge schemes. The delay is the

average place and route result of the eight benchmarks. Merge scheme A is the original FPGA without

any merged FPUs. In scheme B, purely FA/FM hybrid FPGA reduces 3.1% andFPGA 41 20 37 12 26

reduces 3.5% in delay, whileFPGA 12 15 26achieves slightly amount of 1.6% delay reduction. Fur-

ther increases in the size of merged FPUs increases the delay. The increment is due to the change

of width (W) and height (H) of the merged FPUs. Table6.6 shows the average wirelength and the

maximumW + H of the FPUs and merged FPUs. The wirelength is generally increasing while the

FPUs are getting larger. When theW + H of the merged FPUs are shorter than average wirelength,

the speed can be improved. It is because of the both cross FPUs and self-connected wires are short

as described in Figure6.3. Once theW +H of the merged FPUs exceed the average wirelength, the

cross FPUs wire are short, but the self-connected wires are long as shown in Figure6.4. The long

self-connected wire becomes the critical path which leads to decrease in speed.

6.4. Results 129

6

7

8

9

10

11

12

13

A B C D E

A
ve

ra
g

e
d

el
ay

 (
n

s)

Merge scheme

Purely FA/FM FPGA_12_15_26 FPGA_41_20_37_12_26

6

7

8

9

10

11

12

13

A B C D E

A
ve

ra
g

e
d

el
ay

 (
n

s)

Merge scheme

Purely FA/FM FPGA_12_15_26 FPGA_41_20_37_12_26

Figure 6.13:The delay in the three hybrid FPGAs by using different FPU merging methods

Table 6.6:The average wirelength of the three FPGAs in different merge schemes

Purely FA/FM FPGA FPGA 12 15 26 FPGA 41 20 37 12 26
Merge Average Max. W+H Max. W+H Average Max. W+H Max. W+H Average Max. W+H Max. W+H
Scheme wirelength of all of merged wirelength of all of merged wirelength of all of merged

FPUs FPUs FPUs FPUs FPUs FPUs

A 24.08 13 – 25.80 21 – 30.48 35 –
B 23.46 15 15 29.11 21 15 32.19 35 15
C 26.87 34 34 28.97 26 26 28.97 35 30
D 28.63 40 40 35.75 37 37 43.55 61 61
E 28.96 48 48 37.16 55 55 43.55 75 75

3. Area Impact

We examine the total routing area used in each merge scheme, the result is shown in Figure6.14.

There are at least 6.1%, 11.1% and 5.2% increment of routing area when merging FPUs into a larger

FPU in purely FA/FM FPGA,FPGA 12 15 26 andFPGA 41 20 37 12 26 respectively. The larger

and more compact FPU has higher I/O density as shown in Table6.5. Originally, FA and FM have

7.7 and 12.6 I/O pins per CLB length respectively. The I/O density of merged FA+FM FPU is 13.43,

which is 74% more than FA and 6.6% more than FM. In Chapter5, we have showed that the higher

I/O density FPU requires more routing resources. Therefore, the large FPUs in scheme B, C, D and

E cause larger routing area.

130 Chapter 6. Optimisation of Coarse-grained Floating Point Units

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

A B C D E

R
o

u
ti

n
g

 a
re

a
in

 M
in

.-
W

id
th

 T
ra

n
si

st
o

r

Merge scheme

Purely FA/FM FPGA_12_15_26 FPGA_41_20_37_12_26

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

A B C D E

R
o

u
ti

n
g

 a
re

a
in

 M
in

.-
W

id
th

 T
ra

n
si

st
o

r

Merge scheme

Purely FA/FM FPGA_12_15_26 FPGA_41_20_37_12_26

Figure 6.14:The routing area in the 3 hybrid FPGAs by using different FPU merging methods

4. Area-Delay Product Impact

Finally, we discuss the area-delay product to identify which scheme is the best for the overall perfor-

mance. Figure6.15shows that the area-delay product of scheme A and B are similar in all the three

systems. Scheme B has advantage in speed which can compensate the lost in routing area. Scheme A

is opposite to scheme B, which has better area but slower. Therefore, they achieve similar perfor-

mance. Scheme C, D and E include more compact FPU, the area gained in individual FPU cannot

compensate the lost in speed and routing area as discussed before. As a result, the larger merged

FPUs cause worse area-delay product.

From the above result, we could use a suitable merge scheme to obtain a particular optimisation goal.

6.5 Summary

This chapter illustrates the adoption of common subgraph extraction to determine optimised floating

point coarse-grained blocks in hybrid FPGAs. Floating point circuits are often not efficiently imple-

mented in fine-grained FPGA technology. This chapter has shown the impact of embedding different

and multiple types of coarse-grained blocks on a floating point hybrid FPGA. We have found that,

(a) the speed of the system is the highest for implementations involving only FAs and FMs, (b) higher

6.5. Summary 131

1.00E+09

1.50E+09

2.00E+09

2.50E+09

A
re

a*
d

el
ay

Purely FA/FM FPGA_12_15_26 FPGA_41_20_37_12_26

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

A B C D E

A
re

a*
d

el
ay

Merge scheme

Purely FA/FM FPGA_12_15_26 FPGA_41_20_37_12_26

Figure 6.15:The area-delay product in the 3 hybrid FPGAs by using different FPU merging methods

density subgraphs produce greater reduction on the area of the system, and (c) they provide the best

area-delay product, (d) merging of FPUs can improve the speed of the hybrid FPGAs, but results in

lost of area. We can optimise specific parameters such as area, delay and balanced speed/area for the

hybrid FPGA based on the above results as shown in Table6.7.

Table 6.7:Recommendations of FPUs for different optimisation goals

Goal Recommended optimisation of FPU

Speed An FPU contains 1 FA and 1 FM
Area Different types of FPUs which are the highest density common subgraphs

Balanced speed and areaDifferent types of FPUs which are the highest density common subgraphs

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The research in this thesis has contributed to domain-specific hybrid FPGA architecture. We propose a

novel floating point hybrid FPGA architecture to optimise floating point computations for applications

in science, medicine and finance. A floating point embedded block is included in the architecture. We

develop an evaluation tool called VPH for the proposed domain-specific hybrid FPGA architecture.

This tool enables evaluation of hybrid FPGAs without the limitation of physical constraints such as

area of the chip, I/O pin position and position of the embedded blocks. The proposed architecture

and VPH facilitate the study of interface between coarse-grained and fine-grained logics, routing

architecture optimisation, and internal optimisation of embedded floating point units.

There are three main achievements. First, we explore the area, speed and routing resource impact

of interface parameters: EB position, pin location, interconnect flexibility and EB aspect ratio for

FPGAs with single and multiple EB types. Second, we study the routing demand of the large EBs and

evaluate the effect of three routing optimisations to meet the extra routing requirement. Finally, we

optimise the floating point embedded block by using common subgraph extraction and examine the

area, speed and routing resource of the systems containing different optimised FPUs. The key results

of the research are summarised in Table7.1.

132

7.2. Future Work 133

The results are important for hybrid FPGA architecture design. Various interface parameters and

optimisation methods have different impact on speed, area and routing resources of hybrid FPGAs.

We could use a suitable set of parameters to cover a particular optimisation goal. The goal can be

optimising the FPGA architecture for either speed, area or a combination of speed and area.

7.2 Future Work

The limitations of the work presented in this thesis are summarised in Table7.2. There could be

improvements and further research based on the CAD tools and the optimisation architecture proposed

in this thesis.

7.2.1 Other FPU Architectures

The proposed FPU in Chapter3 adopts a reconfigurable bus-based architecture as embedded block in

hybrid FPGAs to reduce area and delay. The FA and FM inside an FPU are fixed, so are not flexible.

We can study more flexible FPUs in future work. For example, Chong and Parameswaran [55] have

increased flexibility of an embedded FPU by providing one double-precision operation or two single-

precision operations in parallel. This multi-mode embedded FPU improves 5.2 times in area and 5.8

times in delay over a set of benchmarks.

7.2.2 CAD Tools

VPH requires large memory to store the timing nodes for place and route of floating point benchmarks.

It is because there are a lot of I/Os in an FPU and they require many routing tracks. Optimisation of

memory usage should be done. Memory footprint reduction [81] for VPR can be employed for VPH.

The computation time of routing for coarse-grained blocks without internal switches is high. It is

because changing of routing direction inside the blocks is not possible. The VPR placement and

routing algorithms are both geometry-based which are not suitable for non-rectangular cores [80].

134 Chapter 7. Conclusion and Future Work

Table 7.1:Summary of the key results

Research Area Key results

Architecture and modelling
(Chapter3) • The proposed architecture can achieve 4 times improvement in speed

and 17 times reduction in area on average when compared with tradi-
tional FPGA devices on the selected floating point benchmark circuits.

• The hybrid FPGA evaluation tool VPH supports modern FPGA archi-
tecture. Flexible position and routing architecture for embedded blocks
are enabled in the tool.

Interface between coarse/fine-
grained elements (Chapter4) • EB position: They should be positioned (a) close near the center of the

FPGA for better speed and (b) evenly in FPGA for better area.
• EB pin: Their I/O pins should be arranged around all four sides of the

FPU.
• Channel width: the addition of tracks to minimum channel width has

little impact on circuit speed.
• EB aspect ratio: FPUs should have a square aspect ratio for speed.
• Smaller embedded memory should be located between the large EBs in

highly congested FPGA to reduce the consumption of routing resources
and gain speed.

Routing optimisation (Chap-
ter5) • The routing nets are mainly condensed near the edge of EBs, which

occupy 44% of tracks usage.
• Both the separation of EBs and adding switches on EBs systems per-

form about 48.4% better than existing column based architecture in
term of area and delay efficiency.

• Extra wires near the edge of EBs would improve the area of highly
congested system by 34.9%, but cannot further improve the system op-
timised by separating EBs and adding switch on EBs.

• Ways of improving the interface between coarse/fine-grained elements
for optimised routing architecture are: (a) the EBs should be positioned
close to each other in the middle of the chip to achieve the best area-
delay product, (b) a square EB leads to the most efficient implementa-
tion (c) small embedded memory should be located in column to avoid
introducing extra routing demand to the non-congested hybrid FPGA.

Optimisation of coarse-grained
FPU (Chapter6) • Embedding more types and larger coarse-grained FPU in the system

causes at most 23% increase in delay.
• The routing area of the system can be reduced by 27.9% by embedding

high density subgraphs as FPUs.
• The high density subgraph is the best choice for achieving balanced

speed and area FPGA.
• Merging of FPUs can improve the speed of the hybrid FPGAs by at

most 3.5%, but cannot improve the area-delay product.

7.2. Future Work 135

Table 7.2:Summary of limitations of the works in this thesis

Research Area Limitations

Architecture and modelling (Chapter3) • The proposed connections inside FPU may
not be the best way to construct an FPU
(address in Section7.2.1).

• VPH is slow to route large number of FPU
with high density of routing channel (ad-
dress in Section7.2.2and Section7.2.3).

• Routing algorithm is not optimised for
hybrid FPGA with coarse-grained blocks
which do not have switches inside (address
in Section7.2.2).

• Power estimation is currently not available
(address in Section7.2.2).

Interface between coarse/fine-grained elements
(Chapter4) • The methodology only covers FPU in

the floating point FPGA (address in Sec-
tion 7.2.4).

Routing optimisation (Chapter5) • The proposed methods are only based
on the fine-grained routing architecture,
which may not be effective for the hybrid
FPGA (address in Section7.2.5).

Optimisation of coarse-grained FPU (Chapter6) • No technology mapping tool for common
subcircuits in the floating point hybrid
FPGA (address in Section7.2.2).

• There is no feedback path in the com-
mon subcircuits, which likes the datapath
described in Chapter3 (address in Sec-
tion 7.2.6).

Others • Power optimisation of hybrid FPGAs is
not considered (address in Section7.2.7).

• Impact of process variation on embed-
ded blocks is not studied (address in Sec-
tion 7.2.8).

136 Chapter 7. Conclusion and Future Work

In [80], the placement and routing algorithms are modified for totally unroutable embedded blocks

which are different to our blocks. We can employ the algorithms in [80] to facilitate the routing time

of our proposed hybrid FPGA.

Power modelling is not supported by VPH. We need to develop a power model in VPH to provide

power evaluation of hybrid FPGAs. The power model can be based on the work from the University

of British Columbia [85] to estimate the power consumption of hybrid FPGAs.

There is lack of synthesis and mapping tool for packing the floating point operators into FPUs and

mapping the proposed FPU into a target architecture. We can employ the open source synthesis tool

Odin [77] to support packing and mapping of the proposed FPU for VPH.

7.2.3 Analytical Modelling for Delay, Area and Power of Hybrid FPGA

As introduced in Chapter2, Section2.3.4, analytical models can be used for quickly searching the de-

sign space by estimating the effects of different architecture parameters. There are limited models for

domain-specific hybrid FPGA architectures. Smith et al. [90] have modelled wirelength for heteroge-

neous FPGAs. Analytical models for delay, area and power of hybrid FPGAs would also be useful.

As an example of using the model, we could try to find out the optimum number and combination of

coarse-grained elements in a hybrid FPGA for a specific domain.

7.2.4 Other Application Domains

We only consider floating point application domain in this thesis. We can employ the interface

methodology, routing and coarse-grained block optimisation to produce other domain-specific hy-

brid FPGAs. One possible domain is in network processing. Networking applications include packet

encoding, decoding, filtering and flow monitoring. Implementing a flow monitor requires a large

number of resources (about 2000 slices and 800 Block RAM) in an FPGA [142]. Embedding ASIC

cores of network flow monitor in FPGAs can reduce the area consumed by the flow monitor and may

even increase the maximum packet flow. This could help the development of the flow monitoring

7.2. Future Work 137

architecture to provide quality of service (QoS) and denial of service (DoS) detection.

Medical imaging is another domain which is not efficiently implemented in FPGAs. Accelerating

texture analysis for prostate cancer classification in an FPGA consumes 77% of slices and 76% of

BRAM in FPGA [143]. Computing texture feature from Grey Level Co-occurrence Matrix (GLCM)

is very time and area expensive. GLCM is commonly used in medical imaging. Embedding GLCM

ASIC cores in FPGAs can improve the area and speed for medical applications.

7.2.5 Routing for Hybrid FPGA

The routing architecture examined in this thesis is based on existing fine-grained routing architecture

which may not be optimised for domain-specific FPGAs.

In [59], a coarse-grained architecture with multibit bus-based connections has been proposed. We

can employ this connection method to further optimise our routing architecture. In addition, we can

explore the trade-offs of different switching methods for hybrid FPGAs rather than the fine-grained

switch box. An example is crossbar interconnection [144], which provides higher bandwidth and

simpler design, but it is less area-efficient. We can study the speed and area trade-offs of the crossbar

interconnection for hybrid FPGAs by examining which part of the FPGA should use the crossbar and

the ratio of the crossbar to the fine-grained routing resources.

In addition, VPR5.0 [82] includes single driver routing which is commonly use in modern commercial

devices. We should adopt this new routing feature of VPR5.0 in VPH.

7.2.6 Feedback path for common subgraph coarse-grained FPU

We adopt common subgraph extraction to optimise the coarse-grained FPU in Chapter6. The com-

mon subcircuits include direct connection between FP adders/subtractors, multipliers and wordblocks

with simple multiplexers. They do not make use of the feedback path in the FPU proposed in Chap-

ter 3, Section3.1.2(Figure3.2). The feedback path enables the FPU to represent several common

subcircuits as shown in Figure7.1, at the expense of is using more internal wire connections and

138 Chapter 7. Conclusion and Future Work

feedback multiplexers. It is interesting to study the performance trade-offs of the whole system with

and without feedback paths. In order to make a comparison, we need to find the best combination

of FP adders/subtractors, FP multipliers and parameters for the FPU with feedback paths (Table3.1

in Section3.1.2) to represent all the common subcircuits found in common subgraph extraction (Fig-

ure 7.2). Geometric Programming [145] is a technique widely used in digital circuit optimisation,

which may have a chance to solve this problem.

��� �

+ *
��� �

�������
	 ����
� ����� � � � �

��� � ��� ���� �

�������
	 ����
� ����� � � � � ��� �

� ����� �

�
� �
��� � ��� �

+

*

*

+

���� "!#� � $&% �����
	 ����&� ��� $&� ���
� ��� � ��� ��� ��� ��' � � ��(����	 ��� � ����� � �

Figure 7.1:An example of representation of an FPU with feedback path

7.2.7 Optimisation of Power Consumption

Altera Stratix devices employ dual voltage technique to reduce power consumption [42]. They have

different regions for high speed (high power) processing and low speed (low power) processing in the

fine-grained FPGA. Based on this idea, we can further explore the number and the type of coarse-

grained elements that should be embedded in high power or low power regions in a hybrid FPGA to

achieve better performance (Figure7.3). Enhanced CAD tools which optimise critical paths for speed

or power in an FPGA containing different power regions and embedded blocks are required.

7.2.8 Process Variation

In deep sub-micron technology, there is significant reduction in feature size of transistors. The vari-

ation in process, voltage and temperature (PVT [146]) needs to be considered in designing high per-

formance devices, since such devices have to work under a range of parameter values. The variation

7.2. Future Work 139

��� �

+ *
��� �

�������
	 ����
� ���
� � � � �

��� � ��� ���� �

�������
	 ����
� ���
� � � � � ��� �

� ����� �

�
� �
��� � ��� �

+* *+

���
 �!
" # !
�$" % &(')�% # *�! % '�+-, # .�/
!�.$/0/-.�12&��
 �3�# *
4$5(')�% # *�! % " .�1

+
��� ���� �

687 7 7

*

* **

9
" 1�+0*-9$:�;=<2" % 5�, '�'�+� �*�!
>24�* % 5
% .=# '
4$# ' &�'$1 %�*
? ? % 5�'(!�.�/-/-.�1

&��$ �!
" # !
�$" % &

Figure 7.2:Merging all common subcircuits to an FPU with feedback path

��� � � � � ��� � 	 ��
 � � � �� � ��� � ����� � �
� � � � � � � ��� ��� ��� � � � � ��� ��� � � �

 � � � ��� � � � �� � � � ��� � � � � � �

 !� � � � " # � �
 � � ��� � � � � ��$ % &'

(

)'� � �� � � � � � � � � ��� � �*� �
	 � � � ���
 � � ��� � � � � �

+ � �� � � � � � � � �,� � �*� �
	 � � � ���
 � � ��� � � � � �

� �-�

 � � � .

� �'�

 � � � /

(

Figure 7.3:An illustration of the difficulties in embedding EBs in dual-voltage hybrid FPGA

140 Chapter 7. Conclusion and Future Work

is due to many factors including processing temperatures, equipment properties and wafer polishing.

Smaller feature size makes the manufacturing process more difficult to be controlled.

There are studies of process variation in FPGAs [147,148] but the effect of embedding coarse-grained

elements is not included. The timing yield optimisation of hybrid FPGA architectures would be an

interesting topic to be considered in future work.

Bibliography

[1] I. Kuon , R. Tessier and J. Rose. FPGA Architecture: Survey and Challenges.Foundations

and Trends in Electronic Design Automation, 2(2):135–253, 2008.

[2] Altera Corp. Stratix III Device Handbook, Vol.1. 2006.

[3] Xilinx Inc. Virtex-5 Family Overview - LX, LXT, and SXT Platforms. 2007.

[4] I. Kuon and J. Rose. Measuring the Gap between FPGAs and ASICs.IEEE Transactions on

Computer-Aided Design (CAD) of Integrated Circuits and Systems, 26(2):203–215, 2007.

[5] S.J.E. Wilton. Architecture and Algorithms for Field-Programmable Gate Arrays with Embed-

ded Memory.PhD dissertation, University of Toronto, 1997.

[6] Actel, ProASIC3 Flash Family FPGAs Datasheet: Device Architecture, 2007.

[7] G.L. Zhang and P.H.W. Leong and C.H. Ho and K.H. Tsoi and C.C.C. Cheung, D. Lee,

R.C.C. Cheung and W. Luk. Reconfigurable Acceleration for Monte Carlo Based Financial

Simulation. InProc. International Conference on Field-Programmable Technology (FPT),

pages 215–222, 2005.

[8] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone and J.C. Phillips. GPU Computing.

Proceedings of the IEEE, 96(5):879–899, May 2008.

[9] M. Zechner and M. Granitzer. Accelerating K-Means on the Graphics Processor via CUDA.

In Proc. International Conference on Intensive Applications and Services (INTENSIVE), pages

7–15, 2009.

141

142 BIBLIOGRAPHY

[10] S. Che, J. Li, J.W. Sheaffer, K. Skadron and J. Lach. Accelerating Compute-Intensive Applica-

tions with GPUs and FPGAs. InProc. Symposium on Application Specific Processors (SASP),

pages 101–107, 2008.

[11] D.B. Thomas, L.W. Howes and W. Luk. A comparison of CPUs, GPUs, FPGAs, and Massively

Parallel Processor Arrays for Random Number Generation. InProc. International Symposium

on Field-Programmable Gate Arrays (FPGA), pages 63–72, 2009.

[12] C.H. Ho, C.W. Yu, P.H.W. Leong, W. Luk and S.J.E. Wilton. Floating-Point FPGA: Archi-

tecture and Modeling.IEEE Transactions on Very-Large Scale Integration (VLSI) Systems,

17(2):1709–1718, Dec 2009.

[13] C.W. Yu, A.M. Smith, W. Luk, P.H.W. Leong, S.J.E. Wilton. Optimizing Coarse-grained Units

in Floating Point Hybrid FPGA. InProc. International Conference on Field-Programmable

Technology (FPT), pages 57–64, 2008.

[14] C.W. Yu, J. Lamoureux, S.J.E. Wilton, P.H.W. Leong and W. Luk. The Coarse-Grained/Fine-

Grained Logic Interface with Embedded Floating-Point Arithmetic Units.International Jour-

nal of Reconfigurable Computing, 2008, Article ID 736203, 10 pages, 2008.

[15] C.W. Yu, W. Luk, S.J.E. Wilton, P.H.W. Leong. Routing Optimization for Hybrid FPGAs.

In Proc. International Conference on Field-Programmable Technology (FPT), pages 419–422,

2009.

[16] V. Betz and J. Rose. VPR: A New Packing, Placement and Routing Tool for FPGA Research. In

Proc. International Conference on Field Programmable Logic and Applications (FPL), pages

213–222, 1997.

[17] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W.M. Fang and J. Rose. VPR 5.0: FPGA

CAD and Architecture Exploration Tools with Single-driver Routing, Heterogeneity and Pro-

cess Scaling. InProc. International Symposium on Field-Programmable Gate Arrays (FPGA),

pages 133–142, 2009.

[18] J. Rose. Hard vs. Soft: The Central Question of Pre-fabricated Silicon. InProc. International

Symposium on Multiple-Valued Logic (ISMVL), pages 2–5, 2004.

BIBLIOGRAPHY 143

[19] C.W. Yu. A Tool for Exploring Hybrid FPGAs. InProc. International Conference on Field

Programmable Logic and Applications (FPL), PhD Forum, pages 509–510, 2007.

[20] http://www.doc.ic.ac.uk/ cyu/VPH.

[21] V. Betz and J. Rose. Effect of the Prefabricated Routing Track Distribution on FPGA Area-

Efficiency. IEEE Transactions on Very-Large Scale Integration (VLSI) Systems, 6(3):445–456,

1998.

[22] V. Betz and J. Rose. FPGA Routing Architecture: Segmentation and Buffering to Optimize

Speed and Density. InProc. International Symposium on Field-Programmable Gate Arrays

(FPGA), pages 59–68, 1999.

[23] V. Betz, J. Rose and A. Marquardt. Architecture and CAD for Deep-Submicron FPGAs.

Kluwer Academic Publishers, 1999.

[24] D. Lewis et al. The Stratix Routing and Logic Architecture. InProc. International Symposium

on Field-Programmable Gate Arrays (FPGA), pages 12–20, 2003.

[25] E. Ahmed and J. Rose. The Effect of LUT and Cluster Size on Deep-Submicron FPGA Per-

formance and Density.IEEE Transactions on Very-Large Scale Integration (VLSI) Systems,

12(3):288–298, Mar 2004.

[26] I. Kuon and J. Rose. Area and Delay Trade-offs in the Circuit and Architecture Design of FP-

GAs. In Proc. International Symposium on Field-Programmable Gate Arrays (FPGA), pages

149–158, 2008.

[27] D. Lewis et al. The Stratix II Logic and Routing Architecture. InProc. International Sympo-

sium on Field-Programmable Gate Arrays (FPGA), pages 14–20, 2005.

[28] Altera Corp. Stratix III FPGAs vs. Xilinx Virtex-5 Devices: Architecture and Performance

Comparison. 2007.

[29] S. Brown, R. Francis, J. Rose and Z. Vranesic. Field-Programmable Gate Arrays.Kluwer

Academic Publishers, 1992.

144 BIBLIOGRAPHY

[30] N. Weste and K. Eshraghian.Principles of CMOS VLSI Design. Addison-Wesley, second

edition, 1993.

[31] J. Rose and S. Brown. Flexibility of Interconnection Structures for Field-Programmable Gate

Arrays. IEEE Journal of Solid-State Circuits, 26(3):277–282, 1983.

[32] V. Betz. Architecture and CAD for Speed and Area Optimization of FPGAs.Ph.D. Disserta-

tion, University of Toronto, 1998.

[33] V. Betz and J. Rose. Circuit Design, Transistor Sizing and Wire Layout of FPGA Interconnect.

In Proc. Custom Integrated Circuits, pages 171–174, 1999.

[34] Y.W. Chang, D.F. Wong and C.K. Wong. Universal Switch Modules for FPGA Design.ACM

Transactions on Design Automation of Electronic Systems, 1(1):80–101, 1996.

[35] V. Chandra and H. Schmit. Simultaneous Optimization of Driving Buffer and Routing Switch

Sizes in an FPGA using an Iso-Area Approach. InProc. IEEE Computer Society Annual

Symposium on VLSI, pages 28–33, 2002.

[36] G. Lemieux, E. Lee, M. Tom and A. Yu. Directional and single-driver wires in FPGA inter-

connect. InProc. International Conference on Field-Programmable Technology (FPT), pages

41–48, 2004.

[37] L. Zhou, C.C. Cheung, and Y.L. Wu. What if Merging Connection and Switch Boxes — an

Experimental Revisit on FPGA Architectures. InProc. International Conference on Commu-

nications, Circuits and Systems (ICCCAS), pages 1295–1299, 2004.

[38] Xilinx Inc. Power Consumption in 65 nm FPGAs. White Paper, 2006.

[39] Altera Corp. Stratix III Programmable Power. 2006.

[40] F. Li, Y. Lin, L. He and J. Cong. Low-power FPGA using Pre-defined Dual-Vdd/Dual-Vt Fab-

rics. In Proc. International Symposium on Field-Programmable Gate Arrays (FPGA), pages

42–50, 2004.

BIBLIOGRAPHY 145

[41] F. Li, Y. Lin and L. He. FPGA Power Reduction using Configurable Dual-Vdd. InProc. Design

Automation Conference (DAC), pages 735–740, 2004.

[42] D. Lewis et al. Architectural Enhancements in Stratix-IIITM and Stratix-IVTM. In Proc. Inter-

national Symposium on Field-Programmable Gate Arrays (FPGA), pages 33–42, 2009.

[43] L. Shang, A.S. Kaviani and K. Bathala. Dynamic power consumption in VirtexTM-II FPGA

family. In Proc. International Symposium on Field-Programmable Gate Arrays (FPGA), pages

157–164, 2002.

[44] V. George. Low Energy Field-Programmable Gate Array.PhD dissertation, University of

California, Berkeley, 2000.

[45] R. Krishnan M. Meijer and M. Bennebroek. Energy-Efficient FPGA Interconnect Design. In

Proc. the conference on Design, automation and test in Europe, pages 42–47, 2006.

[46] M. Lin and A.E. Gamal. A Routing Fabric for Monolithically Stacked 3D-FPGA. InProc.

International Symposium on Field-Programmable Gate Arrays (FPGA), pages 3–12, 2007.

[47] A. Kaviani and S. Brown. Hybrid FPGA architecture. InProc. International Symposium on

Field-Programmable Gate Arrays (FPGA), pages 3–9, 1996.

[48] R. Hartenstein. Coarse Grain Reconfigurable Architecture (Embedded Tutorial). InProc. Asia

and South Pacific Design Automation Conference (ASP-DAC), pages 564–570, 2001.

[49] T.J. Todman, G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, and P.Y.K. Cheung.

Reconfigurable computing: architectures and design methods.IEE Proceedings- Computers

and Digital Techniques, 152(2):193–207, 2005.

[50] P. Jamieson and J. Rose. Enhancing the Area-Efficiency of FPGAs with Hard Circuits Us-

ing Shadow Clusters. InProc. International Conference on Field-Programmable Technology

(FPT), pages 1–8, 2006.

[51] S. Shukla, N.W. Bergmann and J. Becker. QUKU: A Coarse Grained Paradigm for FPGA. In

Proc. Dagstuhl Seminar 06141, 2006.

146 BIBLIOGRAPHY

[52] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna. Analysis of High-performance Floating-point

Arithmetic on FPGAs. InProc. Parallel and Distributed Processing Symposium, pages 149–

156, 2004.

[53] E. Roesler and B. Nelson. Novel Optimizations for Hardware Floating-Point Units in a Modern

FPGA Architecture . InProc. International Conference on Field Programmable Logic and

Applications (FPL), LNCS, volume 2438, pages 323–345. Springer, 2002.

[54] M.J. Beauchamp, S. Hauck, K.D. Underwood and K.S. Hemmert. Architectural Modifications

to Enhance the Floating-Point Performance of FPGAs.IEEE Transactions on Very-Large Scale

Integration (VLSI) Systems, 16(2):177–187, Feb. 2008.

[55] Y.J. Chong and S. Parameswaran. Flexible Multi-Mode Embedded Floating-Point Unit for

Field Programmable Gate Arrays. InProc. International Symposium on Field-Programmable

Gate Arrays (FPGA), pages 171–180, 2009.

[56] S.J.E. Wilton, C.H. Ho, B. Quinton, P.H.W. Leong and W. Luk. A Synthesizable Datapath-

Oriented Embedded FPGA Fabric for Silicon Debug Applications.ACM Transactions on Re-

configurable Technology and Systems (TRETS), 1(1):1–25, 2008.

[57] A.M. Smith, G.A. Constantinides and P.Y.K. Cheung. Fused-Arithmetic Unit Generation for

Reconfigurable Devices using Common Subgraph Extraction. InProc. International Confer-

ence on Field-Programmable Technology (FPT), pages 105–112, 2007.

[58] S.J.E. Wilton, J. Rose, and Z.G. Vranesic. The Memory/Logic Interface in FPGAs with Large

Embedded Memory Arrays.IEEE Transactions on Very-Large Scale Integration (VLSI) Sys-

tems, 7(1), 1999.

[59] A. Ye and J. Rose. Using Bus-Based Connections to Improve Field-Programmable Gate-Array

Density for Implementing Datapath Circuits.IEEE Transactions on Very-Large Scale Integra-

tion (VLSI) Systems, 14(5):462–473, 2006.

[60] T.S.T. Mak, P. Sedcole, P.Y.K. Cheung and W. Luk. On-FPGA Communication Architectures

and Design Factors. InProc. International Conference on Field Programmable Logic and

Applications (FPL), pages 1–8, 2006.

BIBLIOGRAPHY 147

[61] S.Y.L. Chin, C.S.P. Lee and S.J.E. Wilton. On the power dissipation of embedded memory

blocks used to implement logic in field-programmable gate arrays.International Journal of

Reconfigurable Computing, 2008:1–13, 2008.

[62] C.H. Ho, P.H.W. Leong, W. Luk, W. and S.J.E. Wilton. Rapid estimation of power consump-

tion for hybrid FPGAs. InProc. International Conference on Field Programmable Logic and

Applications (FPL), pages 227–232, 2008.

[63] D. Chen, J. Cong and P. Pan. FPGA Design Automation: A Survey.Foundations and Trends

in Electronic Design Automation, 1(3):139–169, 2006.

[64] Celoxica. http://www.celoxica.com.

[65] J.G.F. Coutinho and W. Luk. Source-directed Transformations for hardware Compilation. In

Proc. International Conference on Field-Programmable Technology (FPT), pages 278–285,

2003.

[66] M. Gokhale, J. Stone, J. Arnold and M. Kalinowski. Stream-oriented FPGA computing in the

Streams-C high level language . InProc. IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), pages 49–56, 2000.

[67] S. Gupta, N. Dutt, R. Gupta and A. Nicolau. SPARK: a high-level synthesis framework for

applying parallelizing compiler transformations. InProc. International Conference on VLSI

Design, pages 461–466, 2003.

[68] O. Mencer, D.J. Pearce and L.W. Howes and W. Luk. Design Space Exploration with A Stream

Compiler. InProc. International Conference on Field-Programmable Technology (FPT), pages

270–277, 2003.

[69] M. Weinhardt and W. Luk. Pipeline Vectorization.IEEE Transactions on Computer-Aided

Design (CAD) of Integrated Circuits and Systems, 20(2):234–248, Feb 2001.

[70] T. Todman, J.G. Coutinho and W. Luk. Customisable Hardware Compilation.Journal of

Supercomputer, 32(2):119–137, 2005.

148 BIBLIOGRAPHY

[71] Xilinx Inc. ISE Design Suite Software Manuals and Help - PDF Collection, UG681 (v 11.2),

June 24, 2009.

[72] Altera Inc. Quartus II Handbook Version 9.0, March, 2009.

[73] A. Chattopadhyay, Z. Rakosi, K. Karuri, D. Kammler, R. Leupers, G. Ascheid and H. Meyr.

Pre- and Post-Fabrication Architecture Exploration for Partially Reconfigurable VLIW Proces-

sors. InProc. International Workshop on Rapid System Prototyping, pages 189–194, 2007.

[74] A. Chattopadhyay, W. Ahmed, K. Karari, D. Kammler, R. Leupers, G. Ascheid and H. Meyr.

Design Space Exploration of Partially Re-configurable Embedded Processors. InProc. Design,

Automation and Test in Europe Conference and Exhibition (DATE), pages 1–6, 2007.

[75] S. Kirkpatrick, C.D. Gelatt, Jr. and M.P. Vecchi. Optimization by Simulated Annealing.Sci-

ence, 220:671–680, 1983.

[76] E.W. Dijkstra. A Note on Two Problems in Connexion with Graphs.Numerische Mathematik,

1(1):269–271, December 1959.

[77] P. Jamieson and J. Rose. A verilog RTL Synthesis Tool for Heterogeneous FPGAs. InProc.

International Conference on Field Programmable Logic and Applications (FPL), pages 305–

310, 2005.

[78] M. Tom and G. Lemieux. Logic block clustering of large designs for channel-width constrained

FPGAs. InProc. Design Automation Conference (DAC), pages 726–731, 2005.

[79] C.L. Zhou, W.C. Tang and Y.L. Wu. Fast Placement-Intact Logic Perturbation Targeting for

FPGA Performance Improvement. InProc. Southern Programmable Logic Conference (SPL),

pages 63–68, 2007.

[80] T. Wong and S. Wilton. Placement and routing for non-rectangular embedded programmable

logic cores in SoC design. InProc. International Conference on Field-Programmable Technol-

ogy (FPT), pages 65 –72, 2004.

[81] S.Y.L. Chin, S.J.E. Wilton. Memory Footprint Reduction for FPGA Routing Algorithms. In

Proc. International Conference on Field-Programmable Technology (FPT), pages 1–8, 2007.

BIBLIOGRAPHY 149

[82] VPR and T-VPack 5.0. http://www.eecg.toronto.edu/vpr/ .

[83] J. Lamoureux, J. and S.J.E. Wilton. On the interaction between power-aware FPGA CAD

Algorithms. InProc. International Conference on Computer Aided Design, pages 701–708,

2003.

[84] K.K.W. Poon, S.J.E. Wilton and A. Yan. A Detailed Power Model for Field-Programmable

Gate Arrays.ACM Transactions on Design Automation of Electronic System, 10(2):279–302,

2005.

[85] http://www.ece.ubc.ca/˜stevew/powermodel/power_intro.html .

[86] J. Lamoureux and S.J.E. Wilton. Activity Estimation for Field-Programmable Gate Arrays. In

Proc. International Conference on Field Programmable Logic and Applications (FPL), pages

1–8, 2006.

[87] C.H. Ho, P.H.W. Leong, W. Luk, S.J.E. Wilton and S. Lopez-Buedo. Virtual Embedded Blocks:

A Methodology for Evaluating Embedded Elements in FPGAs. InProc. IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM), pages 35–44, 2006.

[88] W.M. Fang and J. Rose. Modeling routing demand for early-stage FPGA architecture develop-

ment. InProc. International Symposium on Field-Programmable Gate Arrays (FPGA), pages

139–148, 2008.

[89] A. Lam, S.J.E. Wilton, P.H.W. Leong and W. Luk. An Analytical Model Describing the Rela-

tionships between Logic Architecture and FPGA Density. InProc. International Conference

on Field Programmable Logic and Applications (FPL), pages 221–226, 2008.

[90] A.M. Smith, S.J.E. Wilton and J. Das. Wirelength Modeling for Homogeneous and Het-

erogeneous FPGA Architectural Development. InProc. International Symposium on Field-

Programmable Gate Arrays (FPGA), 2009.

[91] H.L. Yu, Y.H. Chan and P.H.W. Leong. FPGA interconnect design using logical effort. InProc.

International Symposium on Field-Programmable Gate Arrays (FPGA), pages 257–257, 2008.

http://www.eecg.toronto.edu/vpr/
http://www.ece.ubc.ca/~stevew/powermodel/power_intro.html

150 BIBLIOGRAPHY

[92] J. Das, S.J.E. Wilton, P.H.W. Leong and W. Luk. Modeling Post-techmapping and Post-

clustering FPGA Circuit Depth. InProc. International Conference on Field Programmable

Logic and Applications (FPL), pages 205–211, 2009.

[93] C.W. Yu, K.H. Kwong, K.H. Lee and P.H.W. Leong. A Smith-Waterman Systolic Cell. .In

Patrick Lysaght and Wolfgang Rosenstiel, editors, New Algorithms, Architectures and Applica-

tions for Reconfigurable Computing, pages 291–300, Springer 2003.

[94] K.H. Leung, K.W. Ma, W.K. Wong and P.H.W. Leong. Implementation of a Microcoded Ellip-

tic Curve Cryptographic Processor. InProc. IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), pages 68–76, 2000.

[95] K.K. Ting, S.C.L. Yuen, K.H. Lee and P.H.W. Leong. An FPGA Based SHA-256 Processor. In

Proc. International Conference on Field Programmable Logic and Applications (FPL), pages

577–585, 2002.

[96] K.H. Tsoi, K.H. Leung and P.H.W Leong. High Performance Physical Random Number Gen-

erator.Computers and Digital Techniques, IET, 1(4):349–352, July 2007.

[97] P.H.W. Leong and C.K. Chung. A FPGA Based Runtime Configurable Clause Evaluator for

SAT Problems.Electronics Letters, 35(19):1618–1619, 1999.

[98] P.H.W Leong, C.W. Sham, W.C. Wong, H.Y. Wong, W.S. Yuen and M.P. Leong. A Bitstream

Reconfigurable FPGA Implementation of the WSAT algorithm.IEEE Transactions on Very-

Large Scale Integration (VLSI) Systems, 9(1):197–201, Feb 2001.

[99] C.K. Wong and P.H.W. Leong. An FPGA-Based Electronic Cochlea with Dual Fixed-Point

Arithmetic. InProc. International Conference on Field Programmable Logic and Applications

(FPL), pages 1–6, 2006.

[100] K.H. Tsoi, D. Rueckert, C.H. Ho and W. Luk. Reconfigurable Acceleration of 3D Image

Registration. InProc. Southern Programmable Logic Conference (SPL), pages 95–100, 2009.

BIBLIOGRAPHY 151

[101] D.B. Thomas, J.A. Bower and W. Luk. Automatic Generation and Optimisation of Recon-

figurable Financial Monte-Carlo Simulations. InProc. IEEE International Conference on

Application-specific Systems, Architectures and Processors (ASAP), pages 168–173, 2007.

[102] K.H. Tsoi, C.H. Ho, H.C. Yeung and P.H.W. Leong. An Arithmetic Library and Its Application

to the N-body Problem. InProc. IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 68–78, 2004.

[103] L. Musa. FPGAS in high energy physics experiments at CERN. InProc. International Con-

ference on Field Programmable Logic and Applications (FPL), pages 2–2, 2008.

[104] IEEE Task P754. A Proposed Standard for Binary Floating-Point Arithmetic.IEEE Computer,

14(12):51–62, 1981.

[105] New York ANSI/IEEE. IEEE Standard for Binary Floating-Point Arithmetic. Technical report,

The Insittution of Electrical and Electronics Engineerings, Inc, 1985. IEEE Std 754-1985.

[106] S.F. Oberman, H. Al-Twaijry and M.J. Flynn. The SNAP project: design of floating point

arithmetic units. InProc. IEEE Symposium on Computer Arithmetic, pages 156–165, 1997.

[107] J. Hennessy and D. Patterson.Computer Architecture: A Quantitative Approach. 2003.

[108] R. Usselmann.Floating Point Unit. http://www.opencores.com/project,fpu, 2005.

[109] D. Lundgren.doublefpu verilog. http://www.opencores.org/project,doublefpu, 2009.

[110] A.A. Gaffar, W. Luk, P.Y.K. Cheung, N. Shirazi and J. Hwang. Automating Customisation of

Floating-Point Designs. InProc. International Conference on Field Programmable Logic and

Applications (FPL), LNCS, volume 2438, pages 241–268. Springer, 2002.

[111] A.A. Gaffar, O. Mencer, W. Luk, P.Y.K. Cheung and N. Shirazi. Floating-point Bitwidth Anal-

ysis via Automatic Differentiation. InProc. International Conference on Field-Programmable

Technology (FPT), pages 158–165, 2002.

[112] A.A. Gaffar, O. Mencer and W. Luk. Unifying Bit-width Optimisation for Fixed-point and

Floating-point Designs. InProc. IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM), pages 79–88, 2004.

152 BIBLIOGRAPHY

[113] H. Fu, W. Osborne, R.G. Clapp, O. Mencer and W. Luk. Accelerating Seismic Computations

Using Customized Number Representations on FPGAs.EURASIP Journal on Embedded Sys-

tems, 2009.

[114] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase, K. Mashiko and T. Sumi. Leading-Zero

Anticipatory Logic for High-Speed Floating Point Addition .IEEE JOURNAL OF SOLID-

STATE CIRCUITS, 31(8), 1996.

[115] P.M. Farmwald. On the design of high performance digital arithmetic units. PhD thesis,

Stanford, CA, USA, 1981.

[116] J. Liang, R. Tessier and O. Mencer. Floating Point Unit Generation and Evaluation for FPGAs.

In Proc. IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM),

pages 185–194, 2003.

[117] Xilinx Inc. Floating-Point Operator v5.0. Product Specification, 2009.

[118] C.H. Ho. Automatic Synthesis and Optimization of Floating Point Hardware.MPhil disserta-

tion, The Chinese University of Hong Kong, 2003.

[119] K. Turkington, K. Masselos, G.A. Constantinides and P.H.W. Leong. FPGA Based Accel-

eration of the Linpack Benchmark: A High Level Code Transformation Approach. InProc.

International Conference on Field Programmable Logic and Applications (FPL), pages 1–6,

2006.

[120] K.D. Underwood and K.S. Hemmert. Closing the Gap: CPU and FPGA Trends in Sustainable

Floating-Point BLAS Performance. InProc. IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), pages 219–228, 2004.

[121] Standard performance evaluation corporation.http://www.spec.org/cpu2006/. 2006.

[122] S. Yang. Logic Synthesis and Optimization Benchmarks.Tech Report, Microelectronics Center

of North Carolina, 1991.

BIBLIOGRAPHY 153

[123] T.C.P. Chau, S.M.H. Ho, P.H.W. Leong, P. Zipf and M. Glesner. Generation of Syn-

thetic Floating-Point Benchmark Circuits. InProc. IEEE International Symposium on Par-

allel&Distributed Processing (IPDPS), pages 1–9, 2009.

[124] P. D. Kundarewich and J. Rose. Synthetic circuit generation using clustering and iteration.

IEEE Transactions on Computer-Aided Design (CAD) of Integrated Circuits and Systems,

23(6):869–887, 2004.

[125] S.K. Mitra. Digital Signal Processing A Computer-Based Approach International Editions

1998, pages 339–416. McGraw-Hill, 1998.

[126] E.I. Garcia, R. Cumplido and M. Arias. Pipelined CORDIC Design on FPGA for a Digital Sine

and Cosine Waves Generator. InProc. International Conference on Electrical and Electronics

Engineering, pages 1–4, 2006.

[127] Intel Corp. Introducing the 45nm Next-Generation IntelR©CoreTM Microarchitecture.White

Paper, 2007.

[128] NVIDIA Corp. Quick Guide to NVIDIA GeForce Desktop Graphics Processors. 2008.

[129] E. Kilgariff and R. Fernando. The GeForce 6 series GPU architecture. InACM SIGGRAPH

2005 Courses, page 29, 2005.

[130] J. Michalakes and M. Vachharajani. GPU Acceleration of Numerical Weather Prediction. In

Proc. IEEE International Symposium on Parallel and Distributed Processing (IPDPS), pages

1–7, 2008.

[131] NVIDIA Corp. NVIDIA CUDATM Programming Guide. 2009.

[132] K. Underwood. FPGAs vs. CPUs: Trends in Peak Floating-Point Performance. InProc.

International Symposium on Field-Programmable Gate Arrays (FPGA), pages 171–180, 2004.

[133] Synopsys, Inc.DesignWare Building Block IP, Datapath – Floating Point Overview. December

2007.

154 BIBLIOGRAPHY

[134] C. Yui, G. Swift and C. Carmichael. Single Event Upset Susceptibility Testing of the Xil-

inx Virtex II FPGA. In Proc. Military and Aerospace Applications of Programmable Logic

Conference (MAPLD), vol. IV, 2002.

[135] Xilinx Inc. Virtex-II Platform FPGAs: Complete Data Sheet. March 2005(v3.4).

[136] Predictive Technology Model (PTM). http://www.eas.asu.edu/˜ptm/ .

[137] E. Sentovich et al. SIS: A System for Sequential Circuit Analysis.Tech Report No. UCB/ERL

M92/41, University of California, Berkley,1992.

[138] J. Rubinstein, P. Penfield and M. Horowitz. Signal Delay in RC Tree Networks.IEEE Trans-

actions on Computer-Aided Design (CAD) of Integrated Circuits and Systems, 2(3):202–211,

1983.

[139] H. Schmit and V. Chandra. FPGA Switch Block Layout and Evaluation. InProc. IEEE Sym-

posium on Field-Programmable Custom Computing Machines (FCCM), pages 11–18, 2002.

[140] User Guide of XtremeDSP DSP48A for Spartan-3A DSP FPGAs (UG431). July 2008(v1.3).

[141] ICARUS, Verilog http://www.icarus.com/eda/verilog.

[142] S. Yusuf, W. Luk, M. Sloman, N. Dulay, E.C. Lupu and G. Brown. Reconfigurable Architec-

ture for Network Flow Analysis.IEEE Transactions on Very-Large Scale Integration (VLSI)

Systems, 16(1):57–65, Jan. 2008.

[143] M.A. Tahir, A. Bouridane and F. Kurugollu. An FPGA Based Coprocessor for GLCM and

Haralick Texture Features and their Application in Prostate Cancer Classification.Analog

Integraded Circuits Signal Processing, 43(2):205–215, 2005.

[144] H. Fan and Y.L. Wu. Crossbar based design schemes for switch boxes and programmable

interconnection networks. InProc. Asia and South Pacific Design Automation Conference

(ASP-DAC), volume 2, pages 910–915, Jan. 2005.

[145] S. Boyd, S.-J. Kim, L. Vandenberghe and A. Hassibi. A Tutorial on Geometric Programming.

Optimization and Engineering, 8(1):67–127, 2007.

http://www.eas.asu.edu/~ptm/

BIBLIOGRAPHY 155

[146] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi and V. De. Parameter Variations

and Impact on Circuits and Microarchitecture. InProc. Design Automation Conference (DAC),

pages 338 – 342, 2003.

[147] J.S.J. Wong, P. Sedcole and P.Y.K. Cheung. Self-characterization of Combinatorial Circuit De-

lays in FPGAs. InProc. International Conference on Field-Programmable Technology (FPT),

pages 17–23, 2007.

[148] P. Sedcole, J.S.J. Wong and P.Y.K. Cheung. Characterisation of FPGA Clock Variability. In

Proc. IEEE International Symposium on VLSI, pages 322–328, 2008.

	Declaration
	Abstract
	Acknowledgements
	Dedication
	Abbreviations
	Publications
	Content
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Domain Specific Hybrid FPGAs Issue
	1.2.1 Interface between Fine-grained and Coarse-grained Elements
	1.2.2 Routing Structure
	1.2.3 Internal Structure of Coarse-grained Blocks

	1.3 Research Approach and Contributions
	1.4 Thesis Organisation

	2 Background
	2.1 Fine-grained FPGA Architecture
	2.1.1 Logic Block
	2.1.2 Routing
	2.1.3 Power

	2.2 Hybrid FPGA Architecture
	2.2.1 Coarse-grained Block
	2.2.2 Routing
	2.2.3 Power

	2.3 Design Space Exploration Tool
	2.3.1 CAD Tool for FPGA
	2.3.2 Pre-fabrication Evaluation Tool
	2.3.3 Post-fabrication Evaluation Tool
	2.3.4 Analytical Modelling

	2.4 General FPGA Applications
	2.5 Domain-specific Applications: Floating Point Applications
	2.5.1 Floating Point Arithmetic
	2.5.2 Optimisation of Floating Point Computation in FPGA
	2.5.3 Applications and Benchmarks

	2.6 Processing Platforms
	2.6.1 CPU
	2.6.2 GPU
	2.6.3 Comparison: FPGA, CPU and GPU

	2.7 Summary

	3 Architecture and Modelling
	3.1 Novel Floating Point Hybrid FPGA Architecture (FPFPGA) and Post-fabrication Exploration
	3.1.1 Requirements
	3.1.2 FPFPGA Architecture
	3.1.3 Methodology: Post-fabrication Modelling of FPFPGA
	3.1.4 Results

	3.2 Baseline Hybrid FPGA Architecture for Pre-fabrication Exploration
	3.2.1 Fine-grained and Coarse-grained Assumption
	3.2.2 Routing Architecture Assumption

	3.3 Pre-fabrication modelling tool: Versatile Place and Route for Hybrid FPGA - VPH
	3.3.1 Requirements
	3.3.2 Design flow
	3.3.3 User Constraints in VPH
	3.3.4 VPHpack
	3.3.5 Elmore Delay Model and Critical Path
	3.3.6 Results

	3.4 Summary

	4 Interface between Coarse/Fine-grained Logic
	4.1 Motivation
	4.2 Interface Parameters: Single EB Type
	4.2.1 EB Position
	4.2.2 Pin Location
	4.2.3 Interconnect Flexibility
	4.2.4 EB Aspect Ratio

	4.3 Interface Parameters: Multiple EB Type
	4.3.1 EB Position
	4.3.2 Interconnect Flexibility

	4.4 Methodology
	4.5 Result: Single EB Type
	4.5.1 EB Position
	4.5.2 Pin Location
	4.5.3 Interconnect Flexibility
	4.5.4 EB Aspect Ratio

	4.6 Result: Multiple EB Types
	4.6.1 EB Position
	4.6.2 Interconnect Flexibility

	4.7 Summary

	5 Routing Optimisation
	5.1 Motivation
	5.2 Routing Demand
	5.2.1 Netlength Demand
	5.2.2 Congested Region

	5.3 Optimisation of Routing
	5.3.1 Separation Distance between EBs
	5.3.2 Additional Routing Switches in EBs
	5.3.3 Extra Routing Tracks

	5.4 Ways of Improving the Interface: Single EB Type Optimised FPGA
	5.4.1 EB Position
	5.4.2 Pin Location
	5.4.3 Interconnect Flexibility
	5.4.4 EB Aspect Ratio
	5.4.5 Area-Delay Product Comparison

	5.5 Ways of Improving the Interface: Multiple EB Type Optimised FPGA
	5.5.1 EB Position
	5.5.2 Interconnect Flexibility
	5.5.3 Area-Delay Product Comparison

	5.6 Summary

	6 Optimisation of Coarse-grained Floating Point Units
	6.1 Motivation
	6.2 Optimisation Parameters
	6.2.1 Internal Optimisation of FPU
	6.2.2 System-Level Optimisation
	6.2.3 Optimisation by Merging FPUs

	6.3 Methodology
	6.3.1 Common Subgraph Extraction
	6.3.2 Evaluation Flow

	6.4 Results
	6.4.1 Internal Optimisation of FPU
	6.4.2 System-Level Optimisation
	6.4.3 Optimisation by merging FPUs

	6.5 Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work
	7.2.1 Other FPU Architectures
	7.2.2 CAD Tools
	7.2.3 Analytical Modelling for Delay, Area and Power of Hybrid FPGA
	7.2.4 Other Application Domains
	7.2.5 Routing for Hybrid FPGA
	7.2.6 Feedback path for common subgraph coarse-grained FPU
	7.2.7 Optimisation of Power Consumption
	7.2.8 Process Variation

	Bibliography

